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ELECTROMAGNETIC SCATTERING BY MOVING BODIES
by
Robert Charles Restrick III

The purpose of this work is to investigate the nature of electromagnetic
scattering by moving objects by means of the Theory of Relativity. The object
of such a study is to learn what may be anticipated in the case of relativistic
velocities and to justify the low velocity approximations now being used.

Since the general problem allowing the scattering body to possess an
arbitrary shape, motion, and material composition is highly difficult, this
work considers two specific problems both involving perfect conductors
scattering electromagnetic plane waves.

The first problem considered is that of a uniformly moving sphere.

The incident plane wave is allowed to have arbitrary polarization and direction
of propagation relative to the motion of the sphere. Because of the choice of a
uniform motion and of a spherical geometry the problem can be transformed
to an inertial system moving with the sphere where the scattered field can be
found. In this moving system the scattered field is obtained by application of
Mie's Theory. A straightforward transformation of this result to the inertial
system in which the problem was stated would give a correct but extremely
involved solution. It is found that a simpler and more meaningful solution

is obtained by using the far-zone scattered field and expressing the solution

in a "retarded' coordinate system whose coordinate surfaces turn out to be
characteristics of the hyperbolic differential equation.

The resulting solution is seen to possess such expected behavior as a
Doppler effect and an aberration of light effect. It is used to calculate the
scattering cross section and the energy exchange processes pertaining to this

problem. The solution may also be directly used to determine the far-zone



scattered field for other moving finite bodies provided only that their stationary
far-zone solutions be known.

The second problem considered is that of an infinite conducting sheet moving
with an accelerated motion, called hyperbolic motion, which is the relativistically
correct motion of a body being acted upon by a constant force. The problem is
attacked by two methods.

In the first a transformation of the space-time coordinates which in the case
of accelerated motion is nonlinear, is made. This is accomplished by using the
invariant formalism described by Post. The transformed differential equation
is found to be separable in terms of exponential and modified Bessel functions.
The incident field is transformed to the new space-time coordinate system and
expanded in terms of an infinite series of the above functions. By means of the
boundary condition and an argument based on causality the scattered field is

determined in the form of an infinite series.

From another point of view a second solution analogous to the ray-optics
solution pertaining to stationary scattering problems is developed and applied
to the hyperbolically moving sheet. In the case where the incident wave is nor-
mally incident upon the accelerating sheet the series solution and the ray-optics

type of solution are found to be identical.

For the case of oblique incidence the series solution obtained by the first
method is written as a contour integral following the work of Watson. The
contour integral is regarded as the sum of two terms. One of these terms for
the case of small acceleration and wavelength is approximated by the stationary
phase technique resulting in an expression equivalent to the solution obtained
by the second method. Little meaning is given to the second term. It is suggested
that this term results from the fact that at one time the motion of the sheet was

such that its velocity equaled the velocity of light.
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Chapter One
INTRODUCTION

Upon the revelation of the Special Theory of Relativity by Einstein and
the further enhancement of it by Minkowski, science was given a means of intro-
ducing motion into the realm of classical electromagnetics. For not only did
the theory give a new concept of the physical world, it also gave a convenient
analytic technique for solving electrodynamic problems involving motion.

For example, Einstein's concept of the invariance of the free space Max-
well equations for an arbitrary inertial system allows an clectromagnetics prob-
lem involving a uniformly moving body to be regarded from the viewpoint of an
observer moving with the body to which it appears that of an electromagnetics
problem involving a stationary body. For a material medium Minkowski wrote
the equations of electromagnetics in terms of four indefinite equations that remain
invariant for arbitrary intertial systems plus a set of constitutive equations that
describe the material medium. The situation of a body moving with uniform
motion through a material medium described by a set of constitutive relations
can again be reduced to that of a stationary body, in this case in a material medium
described by new constitutive relations. This powerful method has several im-
portant applications. One of the most famous of these is the treatment of charges
moving through a dielectric predicting Cerenkofr radiation (Nag and Sayied, 1956;
Tai, 1965; Lee and Papas, 1964).

It was recognized by Weyl (1951) and Cartan (1924) that this important
concept of invariance exists even in the case of accelerated motion. They were
able to write the equations of electromagnetics in the form of a set of indefinite
equations that remain invariant for a quite general set of non-linear space-time
transformations and a set of constitutive relations which contain the effect of the

motion (Post, 1962). There is a fundamental difference between this formalism

and the Maxwell-Minkowski theory concerning uniform motion. The Maxwell-
Minkowski theory is based on the Theory of Relativity while for arbitrary



acceleration there exists no equivalent theory. However, this concept of invariance
has been successfully applied to rotating electromagnetic cavities and in particular
the Sagnac ring interferometer (Yildiz and Tang, 1966).

This present work is concerned with the scattering of an electromagnetic
wave by a perfectly conducting body undergoing motion. Clearly a solution to the
general problem can not be expected since even in the case of electromagnetic scat-
tering by stationary conductors no general solution is known. Two specific prob-
lems are considered here as a means of obtaining more knowledge about the complex
problem. The first problem is that of a perfectly conducting sphere moving with
uniform motion scattering an incident electromagnetic plane wave. The second
is that of a perfectly conducting infinite sheet moving with hyperbolic motion
(Mgller, 1952) also scattering an incident plane wave. The first was chosen since
the sphere problem is one of the few problems possessing an exact solution in the
stationary case. The motion in the second problem was chosen because it pos-
sesses a space-time symmetry quite compatible with the hyperbolic partial dif-
ferential equation.

The earliest application of the Theory of Relativity to a problem involving
scattering by a moving conductor was to that of a plane wave incident upon a
moving mirror. This problem has been discussed by Sommerfeld (1964b) and by
Pauli (1958). Problems involving more complicated geometry do not seem to
have been treated until recently when the case of the uniformly moving cylinder
was attacked by Lee and Mittra (1967) and that of an expanding sphere was
treated by Lam (1967). Lewis and Pressman (1966) in discussing radiation by
moving sources have suggested a coordinate system equivalent to the one used
here in the sphere problem that is well suited to problems such as these.

The justification for a study such as this is twofold. First from an
academic viewpoint to obtain more knowledge about relativity and electromag-
netics, secondly from a practical viewpoint to justify the low velocity approxi-

mations now being used and to find their domain of validity.



In chapter two of this work the invariant formalism of the laws of elec-
trodynamics is presented and the special case of uniform motion is discussed.
A far field solution to the moving conducting sphere problem is obtained in
chapter three. This solution is used in chapter four to calculate the energy ex-
change processes that occur. In chapter five an expression for the electromag-
netic wave scattered by the hyperbolically moving sheet is found. The meaning
of this solution is considered from several viewpoints in chapter six. The main
body of this work is ended in chapter seven by a discussion of the results of the
problems and some suggestions for future research to clarify some questions

that arise.



Chapter Two

THE EQUATIONS OF ELECTRODYNAMICS
IN GENERALIZED SPACE-TIME COORDINATES

2.1 Introduction

The problem of the electromagnetic scattering of an incident wave by a
body undergoing motion consists of finding a scattered wave such that:

1. The scattered wave satisfies the equations of electrodynamics.

2. The scattered wave satisfies a causality or radiation condition.

3. The sum of the scattered and the incident waves satisfies a boundary

condition on the surface of the scattering body—in four-dimensional

space a hypersurface, f(x,y,z,t) = 0.

The process used in this paper entails the introduction of new four-
dimensional, space-time, curvilinear coordinates. That is, with the original
. , . 1 2 3 4 . a
coordinates x,y, z,t written respectively x , x , x , x or simply x , new coor-

1 a! o L
=x (x ) are chosen and conditions 1, 2, and 3 above are trans-

dinates x
formed into this new coordinate system.
In this chapter, the transformation of the electrodynamic equations, con-

dition 1, is discussed. The other two conditions will be considered later.

2.2 The Method of Natural Invariance

This presentation follows that of Post (1962). First in a stationary, free-

space, environment the indefinite Maxwell-Minkowski equations are

- oB
VxE—--at (2.1)
V:-B=0 (2.2)

- = oD

=J+— 2.3
VxH=J P (2.3)
v.D=p (2.4)

and the constitutive relations are



(@3]

m=]
il
os]]

(2.5)

(@)

=¢E . (2.6)
0

(o)

A formalism for transforming the quantities E, B, D, ﬁ, J, and p to
a new system, such that the indefinite Maxwell-Minkowski relations remain
invariant and the effect of the transformation is incorporated into new constitutive
relations, exists and is given in the following.

First, equations (2.1) through (2. 6) can be written in four-dimensional

tensor notation as

OF.  oF OF
By, @b 1o _, (2.7)

a®  x e

L oB
ofaB _ (2.9
ox
1 5
T 5 Nl F (2.9)
where
0 B -B E
z y X
-B 0 B E
z X y
P, = 5 .m . . (2.10)
y X z
.-E -E -E 0
X y zZ
0 H -H -D
z y X
’ -H 0 H D
P y (2.11)
H -H 0 -D
y  ox. 2
D D D 0
X y zZ

and ¢ =(J,3,3,p) . (2.12)
Xy z



The nonzero components of the constitutive tensor )(043 76 are

1212 1313 2323
X =X =X = 1/“0 (2.13)
1414 2424 3434
X =X =X = -60 (2.14)
and onp'yé - _XaBay _ _X&% - xvéaﬁ ' (2.15)

(Post, 1962, shows that (2.15) is a general property of any constitutive tensor not
just the free-space stationary one.)

New coordinates xa’(xa) are now introduced. For the following presenta-
tion to be valid, only holonomic transformations can be considered, that is the

transformation satisfies

aa' ot
5 <'x 9 <<’3x > (
= . 2.16)
& \ o 0 \ o

Then, let the quantities Fa g fa B s ca, and xaB 76 transform to the new coordinate

system as

a o]
B = 28 °"5, F o (2.17)
* ox" axB

ta’B‘ _ |Al_1 _a_xa_'_ aXB' tIIB

- (2.18)
Bxa 8xp
a -1 8xa' o
¢ =" e (2.19)
ox
. _ 1 ! ;Yl 6'
xamﬁvy@ - IAI 1 BJJS\ 0Xx' OX xaB'yé (2.20)

o o oax! o

!
where A is the determinant of ox" /ox" .
Thus F _ is a second order covariant tensor of weight zero while £ ,
Q
ca, and )(01B 6 are each contravariant tensors of weight +1 and order two, one,

and four respectively. By direct substitution of these transformations, using



(2.16), (2.7) to (2.9) become

aFﬁ'v 1 oF 121 oF [P9]
e Ay (2.21)
o' ,Yv XBY
0x ox )
'\ta'B' '
OXB' =c" (2.22)
d
!BV _ l Q'B"Y'é'
and = 5 X Figr - (2.23)
—-— - —-— - - 131
If one defines B', E', H', D', J' and p' in terms of F 1015 , and

\ Q'B"
& by (2.10), (2.11), and (2.12), the equations of electrodynamics become

V'xE' = -%I:i,' (2.24)
V'-B'=0 (2.25)
V'xﬁ'=3'+%l?—"- (2.26)
v'-D'=p' (2.27)
H' = H(B',E") : (2.28)
D' = DYB'E") . (2.29)

It should be pointed out, however, that the quantities ﬁ’, E', etc. were introduced
in a purely mathematical manner and in the general case do not have the physical
meaning of magnetic flux density vector, electric field strength vector, etc. They
do have physical meaning and in fact are real physical quantities in the case of the

Lorentz transformation representing translation with a constant velocity.

2.3 The Case of Uniform Motion

For uniform motion in the z-direction with velocity v the Lorentz trans-

formation is



X' =X (2.30)
y' =y (2.31)
4t = Z-Vtz (2.32)
Vl-B
v
t- 2z
to= ;. B=v/e. (2.33)
1-8

In this case the new, primed, coordinates are the actual coordinates
seen by an observer moving with the velocity v in the z direction. The quantities
E', B', etc. obtained by the method of section 2.2 are the actual electric field,
magnetic field, etc. seen by the observer.

The Lorentz transformation has two important properties:

1. A motion with the velocity of light, ¢, in the unprimed system is

2 2 22
given by x +y2+z -ct =0. The same motion satisfies

x'2+y’2+ z'z - czt'2 = 0 in the primed system and hence moves in this

system with the same velocity c.

2. The electrodynamic equations including constitutive relations are

completely invariant under this transformation.

The first statement is equivalent to Einstein's principle of the constancy
of the velocity of light and the second to his principle of relativity (Einstein et al,
1923, p. 41). The principle of relativity implies that the application of the Lorentz
transformation to a problem involving motion with constant velocity reduces the
problem to that of scattering by stationary objects.

The transformation of the field quantities from one system to another
moving with a constant velocity v relative to it can be written in the useful form
given below. In these the field quantities are resolved into two components; one,
denoted by the subscript || , is parallel to the direction of motion and the other,
denoted by the subscript | , is perpendicular to the motion. Then (Sommerfeld,
1964a)



B- — VxE
= = 1=- = = c2
[ e — v | - —_—
Bj, QS 5 VXE> , Bl =5 (2.34)
- - - 1 =
D'= ¢ E' , H' = — B!
0 ,uo

These results will be used in the following chapter.



Chapter Three

THE SCATTERING OF A PLANE WAVE
BY A MOVING PERFECTLY CONDUCTING SPHERE

3.1 Statement of the Problem

It was pointed out in chapter two that the principle of relativity implies
that a situation involving electromagnetic scattering by a uniformly moving body
can be reduced by the Lorentz transformation to one involving scattering by a
stationary body. In this chapter the case of a uniformly moving sphere is con-
sidered. For a plane wave incident upon a stationary sphere the method of eigen-
function expansion can be used to find the scattered wave. This results in the
well-known Mie series (Stratton, 1941). This problem could then be solved by
making a Lorentz transformation to a system moving with the sphere; obtaining
in this system the correct Mie solution, and then making a Lorentz transformation
back to the system in which the problem was stated. However, it will be seen that
the result of doing this directly would be an extremely complicated expression that
although allowing numerical computation of the field components would give little
insight into the problem. By examining the behavior of the far field an expression
for the field scattered by the moving sphere can be found in a useful and physically
meaningful form.

The specific problem considered here consists of a perfectly conducting
sphere of radius a moving with the velocity v. For convenience several coordinate
systems will be used (Fig. 3-1). Oriented with the motion of the sphere is the
X,y,z system. Here the positive z direction is the direction of the motion. The
incident plane wave is specified by the &, n, { system. Its direction of propagation
is the negative ¢ direction and its polarization is designated by the angle y/ between
the n axis and the E vector. No generality is lost by making the y and n axes
common so that the transformation between the x,y, z system and the &, 1, { system

(1)

is a rotation about the common y or n axes through an angle 6

10



11

*>y.n

FIG. 3-1: STATEMENT OF THE PROBLEM FOR SCATTERING BY A
MOVING SPHERE.
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The incident field may be expressed

—i(k§’+wt)+

gV E coswr';‘—sinwg}e (3.1)

(3.2)

Here the fields are written as real quantities by adding to each complex expression
A A
its complex conjugate, c.c. The symbols E,ﬁ, and ¢ represent unit vectors in

the £, n and ¢ directions respectively.

3.2 The Transformation to a System Moving with the Sphere

The problem is now transformed to a system moving with the sphere. To
do this the Lorentz transformation presented in section 2.3 is used. Primes will
be used to designate all quantities in this system. It is found that in this system,
also, the incident wave is a plane wave; however, it has a new frequency, wave
number, magnitude, and direction of propagation. Two new spatial coordinate
systems will be defined in a manner analogous to the definitions of the x,y, z
and &,n, { systems in the unprimed coordinates.

Oriented with the direction of motion will be the x',y',z' system while the
§Ln', {' system is oriented with the incident plane wave. In this coordinate system

the incident wave is given by
( ) (1) e ! l
E'(l) <——+-M> {coswn -smwg-} -k +o't) .c. (3.3)

(3.4)

where

(1)

B=vle; w=w 1+fcosd
(i)

(i) )
k' = _l_+_‘Bc_os_6___k , cose'(l) = —(&-t(% ) (3.5)
1-8 1+Bcosf !
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Ia the prined sysiem the problem appears that of an incidant plane wave

scattered by a stationary sphere whose solution is the Mie series.

3.3 The Scattered Wave in the Prinied System

The Mie solution assumes its simplest form ia a spherical coordinate
system having its polar axis parallel to the directioa of the propagation of the
incident wave. Therefore let the spherical coordinate system R', 6°', ¢' be defined
so that the polar axis is the {' axis and the dihedral angle §' is measured from

the n'-¢' plane. Then the scattered wave pertaining to this incident wave is

. i) <
pls) - gl ltbcosf Z (2n+1)(-1)"

V 1 _52 n=1
w Ry L () Fy (o000
1Bn R Pn (cos6')) cos(P' -y)R' + an+ 1) \% n (k'R') sinf'

+1ﬁ [ du[_— (1)(u£]] % ()(COSG>COS(¢"‘¢/)6'

u=k'R'
D S (SRR ¢ 9 ()
n(n+1) ( (k R' ) de, (0089 )
(1) ,
P "(cosB")
1 A
+1Ln[-u du [ il)( ..)I| nsingr > Sin(¢"<//)¢—:}+0.c. (3.6)
u:k'Rl

(1)

1
In this expression h§1 ) is the spherical Hankel function of the first kind, Pn

is the associated Legendre function of the first kind,

jn(u)
O(n = h(l)(u) , (37)
n u=k'a
and
d
— | uj (u)
d“ ] . (3.8)

Py = I:h(l ]

u=k'a
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(s)

Now }_3'(8) can be calculated, then both B' and E'(S) can be written in
x',y', and z' components, and the results transformed back to the unprimed
system by using the inverse of (2.34). Clearly the result will be complicated.
The far field expression, k'R'>>1, is simpler and it can be transformed back
to the unprimed system to give a result allowing physical interpretation. The far

field expression is

() (i) ik'(R'-ct')

E < 1tfcosd >{cos(¢'-t//)s (6 )6'—sm(¢ d/)S (6 )a} TR te.c.
(3.9)
B8 = Rix il (3.10)

(1)

(1)
dP' "'(cos0') P "(cosB')
N o_ 2n+1 n n _ n
Sl(6 ) = Z n(n+1) (-1) Gn de' “n sin @' > (3.11)

n=1
Pill)(cose') dPill)(cose')
(1) BT esme . T @ (3.12)-

@
500 - Z

To obtain an insight on how to transform this field the surfaces of constant

phase defined by setting R'-ct' equal to a constant are observed in the unprimed

system.

3.4 The Behavior of the Scattered Far Field in the Unprimed System

The exponent of equation (3.9) is written in terms of the unprimed variables
by substituting the Lorentz transformation and the result is equated to a constant

depending on a quantity 7 which will be seen to have a physical meaning. That is

1/2 j
2, 2 t-(vz/c’)
ik'(R' -Ct') = ik’ E( +y +< >J ‘T%
{ \/1 -B

= _ik’c-r\l]_ - [32 . (3. 13)
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Equation (3.13) is squared and the result simplified to give the following equation

representing the motion of a surface of constant phase.

x2 +y2+(z—v'r)2 = cz(t—T)2 (3.14)

This represents a spherical wave front propagating with the velocity of light.
The wave front appears to have been emitted at the time t = 7 at which time the
sphere's position was x=0, y=0, z=vr.

Alternately for an observer at the position x,y,z and time t, vr would
correspond to the retarded position of the sphere and 7 the retarded time. The
solution of (3.14) for given values of x,y,z, and t such that t-7 is positive gives
an expression for the retarded time as a function of the observer's coordinates.

A certain amount can be said about the behavior of the scattered field by
examining the motion of these surfaces of constant phase. As 7 goes from T
to T such that

ry-T = 27 > (3. 15)
k‘cgl—ﬁ

the exponent of (3.9) changes by 27 and the function goes through one period of
oscillation.

An effective wavelength Ae may be dgfined as the distance between two
wave fronts emitted respectively at 7, and 7,. Let an observer's position be

1 2
given by the angle ® shown in Fig. 3-2. Then using the far field assumption

ke = c(t—"rl) -c(t- 1'2) - v(72 - 'rl)cos ;)

_ 2n(l1-5cos @)

- . (3.16)
w1 - 62

Associated with this will be an effective scattered frequency w(s) and wave number

k(S)

where
(i)
(s) _ 2mc _  1+fcosf
W= T = I Bcos (3.17)
and (s) _ (s)

k" =w Jc
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. FIG. 3-2: TWO SCATTERED WAVE FRONTS.

Strictly speaking the scattered field is spatially and temporally harmonic
only if @ equals 0 or . Elsewhere such quantities as wavelength and frequency

are only approximations valid over a certain interval of time and a certain volume
of space.

3.5 The Coordinate Systems to be Used

The surfaces described in the previous section are seen to be important
as far as the behavior of the scattered field is concerned. They are closely con-

nected to the hyperbolic differential equations. The function 7(x,y, z, ct) satisfies
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Y. () (2) - (2 -o

implying that the surfaces,

,ct) =
7(X,y, z, ct) T

where 70 is aconstant, are characteristics.(Courant and Hilbert, 1962). These"
facts led to using the following coordinate systems in representing the scattered
wave.

In addition to the R', 6', §', t' coordinates in the primed system moving
with the sphere, the R', 8', (I)’, t' spherical coordinate system will be used. This
system has for its polar axis the z' axis and its dihedral angle (I)'is measured
from the z'-n' plane. The transformation from the R!', @', (D', t' system to the

x',y', z',t' system is given by

z' = R'cos @'
y' = R'sin @' cos §'
X' = —R'sinB'sin(I)'

tt =t (3.19)

In the stationary system two spherical coordinate systems will be defined.

Both have their origins at the retarded position of the sphere, x=0, y=0, z=vr.
The R, 0, ¢,7 system has its polar axis in the positive { direction with its dihedral
angle measured from a plane parallel to the n-¢{ plane while the R, 0, (I), T Sys-
tem has its polar axis in the z direction and its dihedral angle measured from the
y-z plane. The transformation from the x,y, z,t system to the R, O, (I), T system
is

z = Rcos O+ vr

y =Rsin®cos §

x = -R8inOsin

t = % +T (3.20)
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The transformation between the R',6', ¢', t' system and the R', @', (I)', t!
system and that between the R, 6, ¢, T system and the R, ©, Q) T system are both
found from geometry. The transformation between the R',®',§',t' system and
the R, ®,{,7 system is found by substituting (3.20) and (3. 19) into the Lorentz
transformations. The result is that R',8', and ¢' may be expressed as functions
of R, 6, and § by

cos @ = cos 0cos 6+ sinf sind sinf; cos = sinbcosf

sin® (3.21)

_ _cos®- _
[ . 1 =
cos @ I-Boos® ° ¢ =9 (3.22)

. . . \
cos6' = cos @' cos@’(l)- sin ' sin §’ sin@'(l); cosf = 5in8' cos

sin Q'
(3.23)

and

R = 1-Bc0s® . (3.24)

o

The exponent is seen to be

R'-ct' = -c7 1-62 . (3.25)
The statement of the golution in the unprimed system is now straightforward.

3.6 The Scattered Field in the Stationary System

The next step is to find the transformation of the field components from
the R',6',§',t' system to the R,6,$, 7 system. This will be done in three stages.
The first transformation is from the R', ', §',t' system to the R', ®', §',t' sys-
tem, then tothe R, ®, y, system, and finally to the R,6,§,7 system.

Both ordered sets of unit vectors, ﬁ', 6’, @' and ﬁ', 6 ', ﬁ', are right-
handed orthogonal systems with the ﬁ' vector an element of each set. This implies
that the transformation between the 6', (f)’ vectors and the 6', ﬁ' vectors is a rota-
tion about the common R' vector. Let X' be the angle between ﬁ' and @' defined
so that



(i)

cosX' = sin@' sin ' +cos §' cos ' cos 6" : (3.26)

A A A
and X'> 0 if a rotation in the right-hand sense about R' takes §' to ¢'. Then

the ®' and ' components of the electric field are

Eés) = Eé(S)cosx%Eb(s)sinx' 5
and

A AD A Al
For the R, O, (b and the R, 9,¢ systems there exists a X satisfying a rela-

tion similar to (3.26) only written in terms of the unprimed coordinates. In this

case
Eés) = E(Os)cos X- Eg)sinx

and
E;S) = E(;)smxmg)cosx : (3.28)

Now in both the R, O, Q) and R', @', (])‘ systems E and B can be written in
terms of their perpendicular and parallel components defined in section 2.3 and

the result substituted into (2.34) to give

E(s) _ 1+Scos @ E'(S) _ Vl—@z E'(S)

0 [‘1_82 0 1-Bcos® '@
2
gl - ——EE, gl® (3.29)

$ = 1-Bcos® P

and

Equations (3. 21) to (3.29) are sufficient for the transformation of the field
in the primed system to the unprimed system so that
(i)

2
B - E b {sin(x-x')sin(sb' -U)s,(6")
(1-BcosB)

e-ikc'r(1+B cos O(i))
+cos(x—x')cos(¢'-w)81(9’-1} ) +c.c.

(3.30)
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and
(i) 2
E(¢B) =i E2 1 "@ 5 {jcos(x_ X')Sil’l(¢' _(//)Sz(gv)
(1-Bcos8)
e—ikC’T(l +8 cos 9(1))
—sin(x-x’)cos(¢'-w)sl(9'} R +c.c.
(3.31)

The magnetic field can be found from

oB® - RxE® (3.32)

For an observer whose position is fixed in the x,y, z system, 6,§, and
R are each functions of 7 which in turn is a function of time. However, the
change in 6,@, and R is small over several time periods of oscillation and several
wavelengths in space if 3 << kR which is equivalent to the far field condition
kR >>1. This implies that the scattered far field appears as a quasi-plane wave
whose magnitude, direction of propagation, frequency, wavelength, and polarization

are changing with time.

3.7 Conclusion

An expression for the far field scattered by a perfectly conducting sphere
moving with uniform velocity through an electromagnetic plane wave has been
obtained in this chapter. It is seen to exhibit such effects as a Doppler shift and
an aberration causing the sphere to appear in a retarded position due to the finite
velocity of propagation of light.

The far field was expressed in terms of the infinite series Sl(G') and
82(9') defined by (3.11) and (3.12). For k'a << 1 these series converge rapidly,
the terms being interpreted as representing radiation by moving magnetic and
electric multipoles. For k'a >1 the series converge slowly, but a Watson trans-
formation may be applied. The result of the transformation may be expressed as
the sum of two types of scattered waves. One of these found by a contour integra-

tion is the optics solution. The other a residue series can be interpreted as the
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sum of so-called creeping waves. Expressions for both the optics and creeping-
wave solutions have been worked out in detail (see for instance, Senior and Good-
rich, 1964).

In the next chapter such quantities as differential and total scattering cross
sections, electromagnetic forces, and the electromechanical energy exchange

processes that occur will be discussed.



Chapter Four

SOME ENERGY CALCULATIONS
CONCERNING THE MOVING SPHERE PROBLEM

4.1 The Differential Scattering Cross Section

The instantaneous Poynting vector has the form

|§(S) . -}—I(s)| 21C7 | o -20iC7

6,0,R)e +g(6,9,R) . (4.1)

This can be verified by substitution of the expression developed in chapter 3.
If it is assumed that 6, ¢, and R remain constant over several periods of oscil-

lation, then since 7 is an increasing function of time, the average,

t
2
<lﬁ(s)xﬁ(s)l> = lim IE(B)XI'_I(S)‘ dt/(tz‘tl) s

(t2— tl) —> tl

is approximately

<|F3(S)xﬁ(s)l >=g(0,0,R) .
=(s) —(8)

In this sense substitution of E and H shows

<EF 7O = \/écﬁse>{1n (- w)S,$ +cos 2 - w)sls’i‘}ﬁ

kR

(4.2)
where

E(i)E*(i)
I =n ——— and n = eo/u

In the case where k'a <<1 this expression may be approximated by

4 6

I1k'a (1),6
s o DL e 2

4R (1-62)(1 - Bcos 8)

+4coso'+[1+30082(¢'-w1| 00829} ﬁ . (4.3)

22
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The results of some calculations using (4.3) showing the differential scattering

cross section (Jackson, 1962) defined as

do _ energy scattered per unit time per solid angle
dQ2 ihcident energy per unit time per unit area

<|E®x5¥> (4.4)

as a function of the angular position of the observer are given in Appendix A.

4.2 The Total Cross Section

The total scattering cross section is defined (Jackson, 1962) as

(4.5)

where the integral is over a solid angle of 47 steradians. The quantity P( )

is the average power passing out of the surface of a stationary sphere of large

radius due to the scattered field. Substitution of E(S) and H( 8) shows that

g= 1 <E(S)xﬁ(s)> ds

{1+£sin 0'“) l
k (1 -3 )

. 2
+2[30089'(1)12+ﬁ Qsze’(i) 1 mze'“ I+ b sin26'(i)cos 2y I& .

—
o

i

2 3 4
(4.6)

The terms Il’ 12, 13, and I 4 are given below.
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@ and Bn represent magnetic and electric multipole fields of order n. The fact

that the series I. contains products of ana;'"; and BnB;:; only implies that stationary

1
magnetic and electric multipoles radiate independently and do not interact with

each other.

However, in the case of uniform motion it appears from I2 that electric
multipoles of order n and n+1 interact, magnetic multipoles of order n and
n+1 interact, and electric and magnetic multipoles of the same order interact.
From (4.6) it is seen that these effects are of first order in 3. From 13 electric
multipoles of order n and n+2 interact, magmetic multipoles of order n and
n+2 interact, and multipoles of one kind of order n interact with multipoles of
the other kind of order n+1. These effects are seen to be of second order in .

The same type of interactions appear in I 4 and these are also of second
order in /5 but the effect of this term is seen to depend on the polarization angle

y.
That such interactions should occur is indicated in the following way.

Consider a dipole source in the primed system given by

3! = sine s(x)a(yNs(ze ™t

= cosas(x")s(y)6(ze™ ",
and
mltl
A P dé(u) 1y 48(u) e
p —-|:s1naé(x')6(y’) ™ u=z'+cosoz<5(x')<5(z) a0 u=y] o (4.11)

In the unprimed system this distribution appears as
Jl +v 1
z [

1-8

it
= sina §(x)s(y) 6(z - vt)eiwt- v Vl - 32 l}ma 6(x)6(y) 9%%! v;]%w-,—
u=z-

]m
e _
W
usy

ds(u)
du

-v Eos a §(x)6(z - vt)
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i
l:sl(ev)sl(ev)+sz(9')s2(eﬂsmevdo'
0

Pt
]

@
Sk *
2 ;(2n+ 1)(anan+ Bnﬁn) . (4.7)

m

—
]

! =;< 1 * 1] 1 3 ] ]
sl(e )Sl(G )+Sz(9')Sz(6 )icose sin6'de
0

2n 1 G K n(n+2)
—_ZZ {a Put o0 trn) T Panfat e o) Ty
(4.8)

m

—
]

N*(g1 ng* 2 1d4Q!
[SI(O )81(9 )+8,(6 )82(9’{]005 6'sin6'do
0

n{n+3)

x x 2
n=1 {anan+2+6n+28n+c'c' 203 @ Bn+1+a nfat e )T

(2n+1)% - 12(2n+1)%+59
8n(n+1)X2n+3)(2n-1)

+<a§an+BnB:)<2n+1) (4.9)

m

I

* * 3
[5,(6153(6) - 5 (61)5,(6) | 5106
0

Z(a o, -B p)Nen +1>‘—2-P—‘i-11§—~—
(2n+1)" -4

Lk n(n+3) * *
w2~ PePura ) onvs THYf, Bl

2<a“ 0Pt~ Pkl

+c.c.) . (4.10)

The series I1 is recognized to be the same series that appears in the

expression for the total cross section for a stationary sphere. The coefficients
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J =J
y v

= \/1-;32 cos a 5(x)6(y)s(z - vt) e ,

and
2
|+ 1
p sz/c

i o
J1-6°
- - Emaa(x)a(y)d—ad-fl“—’

- Eos a 8(x)6(z - vt) dé(u)
du

iwt
L.
iw!
u=z-

eiwt N iwt
=t — sine dx)é(y)é(z - vt)e
u=y

2
c

(4.12)

where w = w'\1- Bz . Now the first terms in each of these expressions represent
dipole sources undergoing uniform translation. However, the second and third
terms in the expression for Jz represent moving quadrapole moments and the
final term in the expression for p represents a moving monopole moment. In
general a moving multipole of order n appears as a multipole of order n, n+1,
and n-1. The magnitude of the n+1 and n-1 terms is proportional to the veloc-
ity making it ifirst order in 3. This then gives some physical justification for
the various interactions appearing in the expression for the total cross section of

the moving sphere.

4.3 The Rate of Change of Energy Stored in the Scattered Electromagnetic Field

In the last section an expression for the rate of flow of energy due to the
scattered field through the surface of a large stationary volume of space contain-
ing the sphere was obtained. Now the rate of change of stored energy of the scat-
tered field in this volume will be found.

The stored energy density

(s)

_.(s) -
E .E '€ =(8) =(8)
w® = <i o,B -B :> (2.13)
2 2u

(o]




is seen to have the property that

(s)

w (x,y,z,t) =w

®)y.y, z+a, t+% ) (4.14)
indicating that the stored energy moves with a velocity, v. The time rate of

change of the total energy within this large sphere is then

S a\\\ e (8)-

d _ 13
" o w dV = w v-dS. (4.15)

The integration can be performed and is seen to be

(s) ml 2 .
aW_ 0 N2 B a2 +(g+pYcosoV
dt K4(1-6%) 2 ! 2

2
+52 Qosze'(i) —-;- sinze'(i) 13#-&4 sinze'(i)cosi’awl‘} (4.16)

12, 13, and I 4 are the same quantities calculated in section 4. 2.

From these two expressions the rate of flow of energy from the sphere to

wh I,
ere 1

the scattered field is seen to be

) =l
(s) aw'® _ o{ (1) }
Pout + - kz I1 +Bcos B 112 (4.17)

In the next section the rate of flow of energy from the total field to the sphere is
calculated and found to agree with (4.17).

4.4 The Rate of Flow of Energy from the Electromagnetic Field to the Sphere

In the case of a stationary perfectly conducting body, no energy can flow
from the total (incident plus scattered) electromagnetic field to the body. However,
in the case of a moving perfect conductor energy can be exchanged between the
electromagnetic field and the body. This energy appears in the form of mechanical
energy. It is expected that this should occur since there is an electromagnetic

force acting on the body and the velocity of the body is nonzero.
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The rate of flow of energy from the field to the sphere may be found in
the following way. First the quantity E -J from the Poynting theorem has the
meaning of the rate of flow of energy per unit volume from the field to the charges
which constitute the current J in this case the material of the sphere. It is not
necessary that this energy appear as Joule heat as in the case of an imperfect
conductor or a lossy dielectric as far as this theorem is concerned.

The time averaged rate of flow of energy from the field to the sphere is

tzoooooo

lim (E-7 )dxdydzdt/(tz-tl) : (4.18)
(tz—tl) —>

t1 -0 V-moV-w
Now the variables of integration may be changed to the primed variables. The

Jacobian of the transformation is unity. By direct substitution it is seen that

E'-J'+vf
EJ = —=2 (4.19)

Vi-8
where f’z is the z' component of the volume force density. In the primed sys-
tem E'-J' = 0 since within the sphere E'= 0, on the surface E' and J' are
perpendicular, and outside of the surface J' = 0. The domain of integration is
transformed to the primed system so that (4.18) becomes

2 2
® A® no At l1-g - vz!fe vff

Z
lim dt'dz'dy'd%z-tl) .
2 V1-5°

(t.-t.)=> o \/ 2.
271 -0 V-0 V- t1 1-8" ~vz'/c (4.20)

Now in the primed system the sphere is stationary and a quadratic function of the

field quantities such as f'z varies as

141 sk 141
f(X',y',Z')eziw t +fe 2wt +gix',y',2') . (4.21)

When (4.21) is substituted into (4.20) expression (4.18) becomes

v<F'Z> = v<F'§,>cos 9'(1) (4.22)
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where <F'Z > is the time averaged total electromagnetic force acting in the z'
direction on the sphere. The form of (4.22) justifies the assumption that this
quantity represents mechanical power. The total force acting on a stationary
sphere due to an incident plane wave appears in the direction of propagation of
the wave, -{ direction, and its magnitude has been calculated by Debye (1909).
Using his expression shows that the rate of flow of energy from the electromag-
netic field to mechanical energy is

Bl
(; |:15+Iz:lcose'(i). (4.23)
k

where 12 is the same as the I2 presented in section 4.2 and

®
I5 =le (2n+1)(ozn+Bn+c.c.) . (4.24)

Compare (4.23) with (4.17). It appears that

7l

0 _ '(1) 4.2
¥ L Blscose } (4.25)

represents the rate of flow of energy from the incident wave to the sphere, while

m (1)

—2 {1 +8cos6" 1 (4. 26)
2 1 2

k

represents the rate of flow of energy from the sphere to the scattered field. The

difference of these two expressions is (4.23), the mechanical power obtained from

the total electromagnetic field.

Notice that for 0 < 9'( D < /2, (4.23) is negative, implying a conversion

of mechanical to electromagnetic energy, while for 7/2 < 9'(1) < there is a con-

version of electromagnetic energy to mechanical energy. The first terms in (4. 25)
and (4. 26) are seen to appear in the case of scattering by a stationary sphere
(Stratton, 1941, p. 569). The quantity L, is from (4. 8) the integration of the ¢!
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component of the Poynting vector over the surface of a large spherical volume
containing the conducting sphere. Now, the scattered electromagnetic field
may be regarded as containing a volume momentum density proportional to
the Poynting vector which is being transported radially with the velocity c.
This implies that I, is proportional to the rate of flow of the {' component of
linear momentum from the sphere to the scattered electromagnetic field. In

a similar manner I is found to represent the rate of flow of momentum in

the ¢' direction from the incident field to the sphere. The difference be-
tween (4. 25) and (4. 26) is proportional to the rate of flow of momentum from
the total field to the sphere in the ¢' direction.

At this point the far field scattered by a perfectly conducting sphere
moving through an incident plane wave has been obtained. This expression
has been used to calculate the angular distribution of scattered energy for
several cases and to discuss the energy exchanges that occur in such
situations. Finally, the result of some numerical calculations using this
solution is presented and discussed in Appendix A. Now this problem will
be left and a problem concerning electromagnetic scattering by an accelerating

body will be considered.



Chapter Five

AN EXPRESSION FOR THE FIELD SCATTERED
BY A CONDUCTING SHEET MOVING WITH HYPERBOLIC MOTION

5.1 Statement of the Problem and Discussion

The problem considered in this and the following chapter consists of a
plane wave incident upon a moving infinite sheet. The sheet is perfectly conducting,
infinite in extent in the y and z directions, and moves in the x direction hyper-

bolically with time, t, satisfying

2\ 2 4
G+c—a> _eitl = . (5.1)
a

This motion is the relativistically correct solution for the motion of an object

Io
Do

under the influence of a constant force (Mgller, 1952, pp 74-5). As a function

of t, the position, velocity, and acceleration of the sheet are respectively

at2

2.2-1/2
at
{}*T} "1

c

X = , (5.2)

e P : (5.3)

J

and

dx . __a (5.4)

For lt |<< c/ a the motion corresponds to the case of constant acceleration, a,

as predicted by classical mechanics.

31
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For [t[>>c/a,

2
x=clt l—%+0(1/t) ,

(;—df = cl—:l+0(1/t2) ,

2
X

(o))

=0+ o(1/t3) ,

[ SV

dt

(5.5)

(5.6)

(5.7

showing that the motion asymptotically becomes that of constant translation witi

the velocity of light, c.

Initially, t=-co, the infinite sheet is at x =00, moving in the negative

x direction with the velocity of light, with all space being permeated by a plane

electromagnetic wave. The propagation of this wave is given by its wave vector

k which is taken to be in the x-y plane making an angle § with the x axis. Its

magnitude is E0 and the following two polarizations are considered.

In these equations n,= "eo/“o and w = ck.

(i) (l(x cos p+ysinf - ct)

Case I:
E " =E
z 0
B(l) -1 E(l)sinﬁ
X c z
B(l) -1 E(i)cos[b
y c z
Case II:
(i) _
H =nkE,
I B LN
X c z
I L
y c z

eik(x cos f+ysinf - ct)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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In the discussions to follow it is convenient to consider the x,t behavior
for constant z and y of the electromagnetic waves. Some properties of a plane
wave in this respect will now be considered.

First, to an observer at a point Xo the field of a plane wave appears to lag
X9 -X

the field seen by an observer at X by a time interval At = cosf). In

this sense the plane wave appears to move with a velocity
") c

Vpx - .l;; ~ cos [
to the volume energy density is, for a plane wave, ccosf. Interms of energy

However, the ratio of the flux of energy in the x direction

transport a velocity Vg'x = = ccos ) may be associated with the wave. These

definitions are recognized tcci) e respectively the phase and group velocities asso-
ciated with the concept of propagation through a dispersive medium. Here also
these concepts are meaningful.

In the x,ct plane a motion with the group velocity will be a straight line
trajectory with a slope greater than or equal to unity and that with the phase
velocity will be a straight line also, but with a slope less than or equal to unity.
The two slopes are reciprocal.

For
C
t= ;cot¢ (5.14)

the velocity of the sheet, (5.3), and the group velpcity of the incident wave in the
x direction, vgx’ are equal. For t > § cot the sheet appears to be moving ..
away from the incident wave and it is expected that the behavior of the solution

will change as t goes from -oo <t <-§ cotf to -E cotP <t < o.

5.2 The Transformation of the Problem

There exists for hyperbolic motion the following transformation (Mgller,
1952, p. 255)

1 voo

p'e =x=x'cosh%—— (5.15)

X =y=y' (5.16)
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3
X =z =2z (5.17)
4 1 1
xi=t=Xgnndt (5.18)
Its inverse is
. 1/2
1! cz 22 /
X =x'= x+;- -ct (5.19)
X =y = (5.20)
'
x3 =z'=2z (5.21)

2
4" _ ¢ -1 x+—
X =t'= coth {—&i} . (5.22)

2
The value x' =x2) = ¢ /a describes the motion of the sheet

Q+-—> 9— . (5.1)

Within the Minkowski light cone given by

2 2
-@c_) <ct<é+9_>
a \ a

the transformation is one-to-one. From (5.19) curves of constant x' are hyper-

l\D

bolae approaching the light cone as x' goes to 0. Curves of constant t' are
straight lines through t=0, x= 02/ a. They also approach the light cone as lt’l
goes to infinity.

By differentiation of (5.15) and (5.18)

1 !
dx = cosh-t— dx' + smh%:— dt’ (5.23)
1]
dt-%smh--dx'+-—c sh?‘t—dt' . (5.24)

2
c
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A point x' appears to move in the x,t system with the velocity

v=— =ctanh% . (5.25)

An interval of ''length' dx' appears in the x,t system to have the length

2
!
dx = —d—x;—,= 1+35 ax' . (5. 26)
dt=0 cosh— c
c
Infinitesimal lengths are contracted in accordance with the Lorentz- FitzGerald
contraction. However, an interval of "time" dt' appears as an interval of time

1 !
dt = % coshé(t-:' dt'
dx'=0 c

(5.27)

which agrees with the Einstein time dilation only if x' =x6.
A special property of this transformation is that on the surface of the con-
ducting sheet, x'= x(’), the transformation of infinitesimal quantities reduces to

the Lorentz transformation,

dx' + vdt'

dx = (5.28)

dt (5.29)

where v is given by (5.25) and is a function of time. It is because of this that,
on the surface of the sheet, the field quantities calculated by the method of section

2.2 are the actual physical quantities measured by an observer moving with
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constant velocity such that at the instant of the measurement, the motion of the

sheet and the observer are coincident. The boundary condition as seen in the

primed system may then be taken to be

E =0 (5.30)
E =0 (5.31)
y
for
x'=x" . (5.32)
0

The transformations between the primed and the unprimed systems can now

be calculated. They are found by substitution of

! !
cosh-?-t— 0 0 -C sinh-%t—
c c
8xa' 0 1 0 0
—(-1- = ’ (5. 33)
0x 0 0 1 0
1 1
- a sinhit— 0 0 Acoshi
c c ¢
1 '
coshﬁt- 0 0 L4 sinhgi
c A c
[04
_al_'_ = 0 1 0 0 ’ (5.34)
axa
0 0 1 0
1 1
1 sinhét— 0 0 1 coshé-t-
c c A c
and the determinant of (5. 33),
02 X
A=—===2 (5.35)
ax x!'

into the equations of section 2.2. The transformations that will be needed are

listed below.

" In this work it is assumed that the acceleration forces do not affect the con-
ducting medium.,
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l ! !
E = -—<E cosh£+cB sinhg'L) (5.
z' ANz c y ¢
' !
H = LQ{ coshil-c—-cD sinhE'L) (5.
z' ANz c y c
E_=AE_ (5
X X
! 1
E =AE cosh—a}-+cB sinh-'gi (5.
y y' c z' c
! 1
E =AE cosh’- - cB_ sinh 2 (5.
z z c y c
B =B (5.
X X
AE
1 1 1
B =B 'cosh?&— £ sinhEL (5.
y y c c
AE
! 1 !
B =B  cosh2: + —L ginp 2t (5.
z Z c c c
D =D, (5.
X X

1 ! '

D =D ,coshL+ z sinh%- (5.
at' AR, at'

D =D ,cosh———x-smh— (5

Z c
H =AH (5.
X X

! !

H =AH ,cosh-a—t-—cD ,sinhﬂ- (5.
y y c zZ c

' '
H =AH 'cosh--—alt +¢D ,sinh——at
z z c y c

The differential equations may now be written in the primed system.

(5.

36)

37)

.38)

39)

40)

41)

42)

43)

44)

45)

. 46)

47)

48)

49)
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5.3 The Equations of Electrodynamics in the Primed System and Their Solutions

By equation (2.20) the non-zero elements of the constitutive tensor in the

primed system are given by

1'2'1'2' 1'311'3" 2'312'3! 1
A
(0]
'4Y 4! 2'412!4V |41 14!
X1 = X = X3 3 —/.\60 , (5.51)
and the symmetry relation (2. 15).
The resulting electrodynamic equations are
_ Rt
vixr = - .20
V'-B'= 0 (2.25)
=~ = . oD
VIxH' =J'+ _E;tT (2.26)
v'.D' = p' (2.27)
H = —— B (5.52)
A '
)
D' = AfOE'. , (5.53)

The problem is invarient under an arbitrary translation in the z' direction;
hence, it is anticipated that the scattered wave will not depend on z' —all z'
derivatives vanish. This condition allows the above equations to be reduced to

the following two sets of uncoupled equations valid in the source-free domain

! !
X 'T‘xo. , ,
J aEz' 2 0 Ez' 2 o Ez'
X' = x!—=) +x' 5 —(x(')/c) 5 =0 (5.54)
3y at!
0B, OE,

st ox' (5.55)
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(5.56)

(5.57)

(5.58)

(5.59)

6B,  OE
X z
ot oy
and
oH | 6°H . 5%H
RN (PR A Y z_(,/’) z' _
o \* Tox! X 2 T/ ° 2
ay' ot
oD , H,
oy
eD,  oH,
ot " ax
If either E_, or H , is written as the product X(x")Y(y')T(t'), equations

(5.54) and (5.57) can be separated into three ordinary differential equations,

2
(x(')/c)z LI Y Tz -qu =0,
at!

2
——+p2Y=0 ,
Byl

and
0 oX 2.2, 2.,
< a5 (o 5) - oo
The solutions of (5. 60) and (5.61) are exponentials,

+ 1]t
tqet'/x

T=¢e °
and

+ 1
Y=¢ ipy

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

For p # 0, equation (5.62) is recognized to be a modified Bessel's equa-

tion and for p=0 anEuler equation. Its solutions are for p # 0
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X = Iq(px’) = lam /2 Jq(ipx') = eiqﬂ/qu(-ipx') (5.65)
or
_ n_ m i(qtrf2 (1), o 71 -ilqtl)r[2 (2) .
X = Kq(pX) =3 Hq (ipx') = 5 H ~'(-ipx")
(5. 66)
and for p=0
+
x=x"1, (5.67)

In (5.65) and (5.66) I and K are the modified Bessel and Hankel functions.
Jq, Hill), and Hff) are respectively the Bessel function and the Hankel functions
of the first and second kinds; each of which has been extended to an imaginary
argument. For integer order q and real x, both Iq and Kq are real quantities
with Iq monotonically increasing with x and decreasing with q while Kq mono-
tonically decreases with x and increases with q (Gray and Mathews, 1931).

Now the incident wave is transformed to the primed system where it is

expanded in terms of the above solutions.

5.4 The Incident Field in the Primed System

The incident wave is transformed to the primed system by replacing the
variables, x,y,z,t, by x(x',y', z',t'), etc. and then invoking expressions (5.36)
and (5.37). The result obtained in this way is expanded in an infinite series
involving the solutions presented in section 5.3. The resulting forms will be
different depending on whether §§ = 0, normal incidence, or § # 0, oblique inci-
dence. The two situations will be handled separately.

First oblique incidence is considered. The exponent of (5. 8),
ik(x cos f+ysinf - ct) , (5.68)
becomes in terms of the primed variables

. at' at' .
ik 6’ E:ossbcosh—;- - sinh—c-] -x! cosP+y’ sm@ : (5.69)

Define t(') and k(') so that
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até)
sinh—z— = cotf (5.170)
and
ki = ksinf . (5.71)

Then (5. 69) assumes the following form:
a at(')
-ik'x'sinh — (t'-t') - ik'x' sinh— +ik'y' . (5.72)
0 c 0 0o c 0

For the polarization of case I, from (5. 36),

1 ! ! i
E(i') = £ (cosh 2 cos p sinh _at> WD
2 x! c c/ z

= -)'(':- sinf cosh 2 (t'- t! )E(i) (5.73)
X )

¢ z
o}
So that

. ' at'
E(l) -g X sin¢cosh'ai (t'-t') exp< ik'(y' - x'sinh— » -
! ox' c 0 o 0 c

z
o
. a
. exp {—1k'x' sinh = (t'- t')}
o c 0

iEo at(’) d | a
- — ] 1_ ! af —_— — ) P St _ 4!
ok exp{lko y'-x! sinh S } at lexp{ 1kox sinh c(t t0)> '

(5.74)
Now

o8]

1 -1
= uw-w )
K - E 7 (" (5.75)

n=-a

is an identity that can be verified by expanding the Bessel function and the expo-
nential in their respective power series (Gray and Mathews, 1931, p. 31). The
resultant power series are seen to converge for arbitrary complex but finite u

and w. This allows u and w to be written u=—ikox' and w = exp a(t'—t(’))/ c}
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which results in the following identity

. ® nc(t' - t(’))/x(')
exp{—ik'x'smh-(t'-t'} = § J (-ik'x"e . (5.76)
o c o n o

n=-m
The substitution of (5. 76) into (5.74) shows that for case I

. iE at' @ -nct' /x' ik'y' nct'/x!
E(l) = —2 oxp {-ik'x' sinh — E ne 0 %e % g (-ik'x")e °
z' kx P 00 c = n o

o

(5.77)

The quantity in the brackets is one of the solutions presented in section 5.3

with q=n, p= k('). A similar result is obtained in case II,

o)
in E 1 -nct' /x' ik' v t'/x"
(i) _ Moo ot 3 ne o/ %o ) oY : net'/ %o
H' = exp< -ik'x' sinh — ne e J (-ik'x"e
z kx(') 00 c n o

n=-qQ

(5.78)
Little physical meaning as far as the behavior of the scattered wave is con-
cerned can be given to the quantity ké) other than the fact that it is the y com-
ponent of the incident wave's propagation vector. It was introduced primarily
for the purpose of simplifying the form of the resultant equations.
The quantity t('), however, has a large importance in the behavior of the
scattered wave. The curve t' = t(') is a straight line through x = —xé, t=0. It

intersects the trajectory of the accelerating sheet, x' = x:), at the point

t= g cot (5.79)
c2
= ~-x!
X asin¢ X, - (5.80)

The time, (5.79), is the same critical value discussed in section 5. 1.
Finally the case of normal incidence is considered. For § = 0 the

exponent of (5. 8) becomes
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et e 2 ! (5.81)

and
-1
' —at! _at!
E(Zl.) o ::, : /Ce oexp{ikx'e at /(}
iE -ikx'
_at!
= —c—koe Oa% exp{ikx'e at/c} . (5.82)

By using

@
X E Xn
e = ‘Il—’ ) (5. 83)

n=0
the expression
3 - ' @© - 1 '
gD - -—13 e "% E :“k)n x"e R (5. 84)
2"~ x'k T (-1 '

is obtained.

For the other polarization

z' no z'

H(f) 3 E(i) (5. 85)

Now the choice of which of the solutions presented in section 5.3 may be
used to represent the scattered wave must be made. For this a causality or

radiation condition is necessary.

5.5 The Representation of the Scattered Wave

The representation of the scattered wave in the region 0 <x' < xé) will
now be determined. As this is a wave produced by currents and charges on the
accelerating sheet, a solution valid in the above region must appear to have its

sources in the region x' >,x:).



The scattered wave is to be represented by an infinite series of the form

H(S) _

)

E(zS'L ot z'n
n
however, it is possible to consider a single term at a time. This is true since
the substitution of a sum of solutions whose respective sources are in the region
X' 3x6 into the linear equations (2. 24) and (2.27) shows that the sum also has its
sources in the region x' ZXL).

Again the fact that on the surface of the sheet the transformation to the
primed system is an instantaneous Lorentz transformation allows the results of
the special theory of relativity to be extended to this problem. Here, at x'= x('),
the quantity E'xH' is the actual Poynting vector representing the flux of energy
seen by a uniformly moving observer whose motion coincides with that of the
sheet at the time of observation.

For the case of oblique incidence, examination of (5.77) and (5. 78) shows

(s) (s)

that the Ez'n and Hz'n defined above are the sum of such quantities as

ik'y' i‘nct'/xé)

aI(k'x")e O e (5.86)
nn o
ik'y' tnect'/x
o o
and B K (k'x"e e . (5.87)
nn o
. (s) (s)
By using (5.55) and (5. 59) the corresponding By'n and -D i 2Te the sum of

k'x!' I ik'y! i- t'/x!
x dl - ikly' nc /x0

00
. d(k(’)x')e e (5.88)

1+

and

1! ry! t 1yt
x\kdK  ik'y' fnct /xo

+ 0 0
N bn “ho ——d(ké)x‘) e e . (5.89)

Also Bis,) and D)

are obtained from
n X'n
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ik'x! ik'y' Tnct'/x'
00 0y / 0

o —1e e (5.90)
n nc n
and ik'x' ik'y' ‘tnct'/x(')
+5 SKe 2 e . (5.91)
n nc n

- 1 = - -
At x' =x2) equation (5.52) and (5. 53) reduce to H' = . B' and D'= eOE'
0
so that the x-component of the Poynting vector may be written alternately

-— -
S, = (E'xH)x' =

(BxB) |, = = (Brxil) (5.92)
X X €

1
1
o 0 x
Now the field quantities are written as real quantities in the usual way—
one half the sum of the complex field and its complex conjugate—and substituted

into (5.92) which is averaged over y' by the operation

Y

lim dy' /2Y . (5.93)
Y—>o v

The result, using only the partial field involving the In term is

S >=3A = 2 (5.94)

K dK  *2nct'/x
<s >=3B 2 3. ° (5.95)
where An and Bn are positive and real. Both In and Kn are positive while
dIn/ dx' is greater thah zero and dKn/dx' is less than zero.

The In term with the upper sign or the Kn term with the lower sign
represent fields that always radiate energy from the sheet to the space x' < xé.
The sources of these fields appear to be in the region xé\< X', an acceptable con-
dition for a scattered wave. On the other hand, the fields represented by In with

the lower sign and Kn with the upper sign show a constant absorption of energy by
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the sheet from the space x' < x('). The sources of these fields appear to be out-

side the region x'>x'. This is unacceptable in the sense of the above argument.

0
This suggests that

@ = 0  for the lower sign (5.96)
and

Bn =0 for the upper sign. (5.97)

This same result may be obtained from another point of view. This is
done by examining the flow of energy as seen in the unprimed system when the
lower part of the light cone given by x+x;)+ct = 0 is approached. Since energy
can never flow with a velocity greater than c, the only possible way that energy
can propagate from the sheet to a point x= 4(x(')+ et) is if the velocity of energy
transport approach the velocity of light in the negative x-direction as the lower

part of the light cone is approached. That is a causal wave must satisfy

lim v =-¢ (5.98)
x-—)—(xé)+ct) gx

where vgx is the group velocity defined earlier.

For the polarization given by case I or case II respectively, define

1 ct’/xg'
A=< (AE_-cB )e
2 z y
1 ct'/x!
or = =(AH_ +cD )e °, (5.99)
2 z y
Py y
ct /xo

1
B= < (AE_ +cB e
2 z y

{ -ct'/x!
or = ~(AH -cD e ° (5.100)
2 Z y
and D =cB_,
X
or =cD , . (5.101)
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Then by using (5. 38) to (5.49) the x-component of the Poynting vector averaged
over y by the operation (5.93) is

<§ >=<ExH> = — <A“-B“>
X X cu
or =——<A“-B"> . (5.102)
ce

The stored electromagnetic energy density averaged over y is

2
<w>=c¢€ QX2+B2+ D—>
o 2

2
or = “0Q2+B2+—]?2—> (5.103)

so that in either case the group velocity is

2 2
< - >
<v >=¢ 5 A > 2<B T 3 . (5.104)
<A " >+<B >+§<D >

Clearly, its magnitude may never exceed the velocity of light, c.

For the case of oblique incidence there are four possibilities for either
ESL or H:ﬁ:1 given by (5.86) and (5.87). These, along with the associated field

components, (5.88) to (5.91), are substituted into (5.104) and simplified by using
the following properties of the modified Bessel functions (Gray and Mathews, 1931).

dIn n
In+1(u) = T " u In ) (5.105)
dIn n
= — 4 -
I w= =231 (5. 106)
dKn n
= — 4 -
Kn+l(u) u . Kn s (5.107)
dK n
and K (W=-—2_2g , (5.108)
n-1 du u n



(s) (s)

If E° or H ' depends on I the result is
z'n z'n n
+9¢ct!/x! T 1x!
, T2t /x0 , et /x0
InrH © —In—le
<v. >=1 .
Vax ¢ t2ct'[x! Toct'/x! (5.109)
2 e o1 e 0 o1
nt+l n-1 n
and if they depend on Kn it is
+ 13! [y ]
o tlet /xo o Foet /x0
Km'le ~K‘n-l
<y >=1 .
Vex -° 5 +2ct!/x! 9 3 2ct'/x! 9 (5.110)
K- e °+k" e %12k
n+1 n-1 n

The various cases will be grouped as before. First expression (5.109)
with the upper signs and expression (5. 110) with the lower signs will be considered.

The expansions of Kn and In about x'= 0 show

>>K > .
K., >»>K >K (5.111)

and

>> :
In_1 >>In In+1 (5.112)

for k;x' <<'1. For this case as the lower part of the light cone is approached,

t' <0, x'<K1,
<v. >—»-<c (5.113)
gx
satisfying condition (5.98).
Now the other case where the lower signs in (5.109) and the upper signs
in (5.110) are used will be considered. For a given x' there exists a value of t',

t' <0, such that (5.109) or (5.110) will vanish. As the light cone is approached
with t' greater than this value

<v > . 5.114)
c (5.11
while with t' much less than this value

<v >—>-c . (5.115)
gx
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It can be shown that in the limit as x approaches —(x(’)+ ct), <Vgx> goes con-
tinuously from c¢ to -c, as t goes from 0 to -o. Clearly the solutions in this
case violate condition (5.98).

Finally, the results of the previous discussion, the fact that In = I-n and
Kn= K-n’ the expressions (5.65) and (5.66), and an examination of expression

(s) (s)

(5.77) or (5.78) imply the scattered wave, E_, or H ', can be written

2 ) ik'y' nct'/x(’)
E [aan(—ik(')x'HBan (—ikéx'z'e e (5.116)
n=-o
where @ = 0 if ng0
and Bn =0 if n20.

The analysis of the case of normal incidence may be handled in the same

(s) (s)

manner. The expression for E' ' and Hz' is found to be

zl
= 0 -nct'[x'
E o x e °, (5.117)
n
n=1

In these expressions the unknown constants will now be evaluated by invoking

the boundary conditions (5.30) to (5.32).

5.6 The Scattered Wave
Using (5.30) to (5.32), the boundary condition becomes in case I

E = E(i)+E(S) for x'=x' (5.118)
zl Z' Z' 0o
and in case II
om o on®
Z - 2 2 -0 for x'=x' . (5.119)
ox' ox' ox' 0



The constants a and Bn are determined by substituting the series expres-
sions for the incident and scattered waves into the above boundary conditions. The

resultant solutions are for oblique incidence for case I,

(zs' = exp{ <y -x' smh——-)}
= nc(t'—té))/x'
. _Z- nd (ik'x")e °
noo
n=1

-1

J (-ik'x') ne(t'-t')/x
+ E n——n———°—°—H(2)(-ik'x')e ° "} (5.120)
n (0]

n=-m H( )( ik'x'")
0o

and for case II,

in E at'
H(s)=—-—o---9 ex "W y'-x' sinh----(2 .
z' kx! P o y o) c
0
2 ne(t' - tg)/x'
. E :nJ (-ik'x") e °
n o}
n=1

-1 d |
—-;J( -ik'x') ne(t'-t')/x’
dx £ Hflz)(—ik(')x')e ° 0}

n=-oo di' ()( 1k‘ ")

X=X (5.121)

For normal incidence for case I,

[00)
iE  -ikx' -nct'/x'
By = wn Oz(fn Dt {zx/x'z N o}’ (5.122)

o n=1

and for case II,
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iE n —1kx' —nct'/x‘
H(ZS) - -x—f’kﬂ e (n“‘)l {( 'x! 0}. (5.123)
0

A formal solution to this problem that satisfies the Maxwell equations, the
boundary condition, and that is causal in the sense of section 5.5 has now been
obtained. Given a point x,y, z,t, the corresponding components of the electro-
magnetic field can be calculated by the results of this chapter. The solutions are
given in the form of infinite series which can be shown to converge; however, in
general the convergence is very slow.

In the next chapter an attempt is made to express the solutions in a more
physically meaningful form. It will be seen that in the case of normal incidence
the series sums to an exponential function which is easily transformed to the
stationary system.

Inthe case of oblique incidence a simple closed form does not seem feasible.
However, the series may be written as a contour integral after the Watson tech-
nique. One part of this integral is approximated by a saddle point integration,
which results in a solution that can be interpreted by extending the solution of the
problem of plane wave scattering by a uniformly moving mirror. Unfortunately

little meaning has been given to the remaining portion of the integral.



Chapter Six

A DISCUSSION OF THE FIELD
SCATTERED BY THE HYPERBOLICALLY MOVING SHEET

6.1 An Intuitive Analysis of the Problem

A solution of this problem analogous to the ray-optics solution of problems
involving scattering by stationary bodies is presented here. The presentation
will be intuitive with little justification being given at this time. In the following
sections it will be shown that in the case of normal incidence such a golution is
exact while in the case of oblique incidence a solution of this nature seems to be
incorporated in the exact solution.

In this attack a particle nature is given to the electromagnetic field.

A plane wave of infinite extent whose behavior with x and t is given by
(i) _ . (1)
E = Eo(y) exp 1k(x/BpX-ct) (6.1)

. P (i) .
is regarded as a distribution or sum over a parameter C ~ of particles or wave-

lets each of whose motions are given by the trajectories

A1), (1)
= 6.2
ct x/ﬁngr C (6.2)

while the value of each particle varies with (6.1). Here the velocities are nor-

malized to the speed of light— B(gl)i = v(l) c, v(l) is the group velocity, and

p(i) = v(i) c v(i) is the phase velocitgx For %:ee space, B B =1. Itwill
px o px  px v Pace, PoPpx =
be assumed such a representation is valid for the scattered wave, also.

The motion of the scattering sheet is represented parametrically by

X, = xs(u) and cts = cts(u). The normalized velocity of the sheet is then

_ dx /du
S dcts /du

B (6.3)

The relativistic law of addition of velocities (Mgller, 1952, p. 52) implies

the velocity of the incident wave particle relative to the sheet will be

23



(i) _ p‘gx_p‘s (6.4)
gx' 1-8 p‘(i) ' :
s gx

By observing the problem relative to the moving sheet at the time of reflection
the problem appears that of reflection by a stationary sheet. The solution of
plane wave reflection by a stationary mirror.or, since a particle nature is being
given to the field, an argument based on conservation of momentum and energy

s) _ (i)

shows that the scattered wave velocity relative to the sheet is 5(

g~ Pgxr
Relative to the stationary system this velocity is
(i)
B -B__,
gs) - -S—(g—’;- . (6.5)
X i
B 1-8p

s gx'
The scattered wave particle reflected from the point on the sheet given by u= u
will move with a trajectory

_ at8)
X=X, = ngc(t-tso) (6.6)

and this reflected wave particle with vary with

(s) . (s), , (s)
E7 « exp{lk (x/Bpx—ctHI)}. (6.7)

zZ
Drawing from the behavior of the plane wave let

(s) (s) _
ng ppx -

1.

The quantities k(s) and (P will be determined by making the exponents
of (6.7) and (6.1) equal on the surface of the sheet about the instance of scattering
u . About u
o 0



and

dt

t t +— - .
s~ SO du (u uo)

u
(]

Substitution of these into (6.1) and (6.7) shows

_ k. (i) (s)
q) i k(s) (xso/bpx ) ctSO) —(XSO/BPX _Ctso) (6.8)
and
(1)
B.JB -1
€ =g = : (6.9)
oS!
s’ "px

The boundary condition that must be satisfied is taken to be
(E+vxB)x2 =0,

where @ is a vector normal to the surface of the sheet. Assuming that the behavior
of the incident and scattered waves is dominated by the exponentials of (6.1) and

(6.7),

B =- E
y (i) 7z
C‘Bpx
and
B(S)=— 1 E(S)
y CB(S) z
px

The boundary condition is satisfied if

(i)
N [B /B -1
E(s) _ _E(l) 7s'"px (6.10)
G N
s’ px

at the instance of reflection uo.



Finally if, for two scattered wave trajectories reflected from the points

u= uo and u = u0+ Au, it is seen that the x distance between them for constant t

A B !
scattered wave
trajectories le—trajectory of conducting
sheet, x (u), t (u)
S S
ct

incident wave
trajectories

FIG. 6-1: TWO INCIDENT WAVE TRAJECTORIES SCATTERED BY A
MOVING CONDUCTING SHEET.

changes as t increases; then, it is expected that the magnitude of the electro-
magnetic field will vary inversely with the square root of this x distance. A
so-called divergence factor must be found. Let x* and ot® be the points on one
of the above trajectoris and xBandctBthe points on the other. Then

xA—x = B(S)c(tA-t )
so gx 80
and to first order
: (s)
dx dt ds
B 8 (8 (B s B
- - —= = -t -— + - —BX
X xso du u Au =8 gx CQ tso du u AL) olt tso) du u Au

(0] "0 o
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A
Subtract these two, let XB— X = Ax, and let tB =tA =t so that Ax is the x

distance between the two trajectories for constant t. This results in
dx dt ad®
Ax —_ ._S B(S) c _.S_
du gx du
u u

Fox }Au |
u
0
The spacing at the instance of reflection, t = tso’ is

du
Ax { du

so that the divergence factor is

+e(t-t )
SO

Axo/Ax

The results of this discussion may be summarized as follows. The wave

scattered from the point xs(u), ts(u) moves along the trajectory

x-xs(u) = b(gi)(u)cE‘.—tS(u)__] (6.6)

where B(gi)(u) is given by (6.5) and (6.4). Along this trajectory
(s)

(1) ot~ t ) g —i/Z l ‘ .
. (8), , (8)
o (Y){ (S) l} { } P {:lk (X/Bpx -ct+(b)}
B /5 s

du gs du

(6.11)

This method will now be applied to the problem of the sheet moving with

hyperbolic motion.
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6.2 Application of the Particle Trajectory Solutions to the Hyperbolically
Moving Sheet

The method presented in the previous section may be applied to the hyper-

bolically moving sheet in a straightforward way. Here again the case of normal
incidence and that of oblique incidence will be seen to be quite different, requiring
that the two situations be handled separately.

For the case of oblique incidence as the time, t, becomes greater than
the value ccos ¢/ a, mentioned in section 5.1, the solution obtained by the method
of section 6.1 no longer has meaning. It will be seen that in this situation the
scattered wave calculated in this way appears to be reflected from the side of the
infinite sheet away from the source of the plane wave. Also it will be seen that
there is no way for an incident wave particle moving along a trajectory given by
(6.2) to encounter the surface of the sheet after this value of time.

What appears to be happening is that the sheet is moving away from the
incident wave and beyond this time the total field attenuates to zero in a manner
somewhat similar to the behavior of the electromagnetic field at a shadow boundary.

In this section only the polarization given by case I will be considered. The

motion of the sheet may be expressed parametrically by

x =X'coshu-x',
S o o
ct =x'sinhu,
s 0
and Bs = tanhu . (6.12)

For the case of normal incidence

Eo(y) - Eo
and
(i) _ () -
ng -Bpx 1, (6.13)

while for the case of oblique incidence



Eo(y) . e1ky sin @
and

D) %
= I/Bpx =cosf = tanh—= . (6.14)

o

In these, t(') is the same quantity defined by equation (5.70). By direct application
of the discussion of section 6.1, expressions for the scattered field can be found.

For the case of normal incidence the scattered field varies as

E(Zs) = —EO e-zuexp{—ik e—2u<x+ct - x(’)(2eu— ezu- 19} (6.15)

along the trajectory

u

x=x"(e -1)-ct. (6.16)
0

In this case the result may be simplified by eliminating the parameter u

from (6. 15) and (6. 16), producing

(s) < >
E = - —.—____. exp ! ; (6.17)
z (x+x’ +ct { X+X Fet }

which as will be shown in section 6.3, is identical to the result, (5.122) obtained
in chapter five. In the case of normal incidence the solution described in the pre-
vious section is exact.

The solution in the case of oblique incidence assumes a more complicated

form. Substitution of (6. 14) into the equations of section 6.1 results in
, -1/2
(s) 2(ct - x(’) sinh u) /
E"=-E sm¢cosh 2u - > = oIy
x' si.nh<—, —Qcoshéu- —;—>
0 X X
) o

ct. ct!
- exp9iksin (x+xv)sinh<2u— -;('—0> —ctcosh<2u- -;(—'-> +y
0 . !
ct(') Cté,
"X, Sinh 7 2K Sinh<—, —9 (6.18)
(o) Xo 0 xo




along the trajectory

ct(‘) cté cté)
(x+x')cosh|2u- — )-ctsinh{2u- — ) = x'coshlu- — ) . (6.19)
0 x! x' o) x'
) : 0

0
As u goes from -m to ct‘o/x(') the magnitude of E(ZS) goes from oo to O while its
x component of group velocity goes from -c to tanh(cto/ xé)) where its velocity
equals that of the sheet. As u becomes greater than ct(’)/ xé) the wave's velocity
becomes greater than the velocity of the sheet, a situation not physically accept-

able. Examination of Fig. 6-2 shows that no incident wave trajectories reach the

scattered wave

trajectories .
trajectory of

conducting sheet

ct

incident wave
trajectories

FIG. 6-2: INCIDENT WAVE TRAJECTORIES SCATTERED
BY HYPERBOLICALLY MOVING SHEET.
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surface of the scattering sheet in the shaded region. It appears that if this solution
is valid anywhere, it certainly is not as the boundary of the shaded region is
approached since an electromagnetic field can not be discontinuous along such a

line, as implied by this analysis.

6.3 The Case of Normal Incidence

The case of normal incidence is particularly simple since the series

(5.122) can be recognized as a series expansion of the exponential function. That

is
. 2
x'E e ikx'" -ct'/x! 1
E(s) 0 0 E 1 o .
z' ct'/x! — (n-1)! | x'
. n=1
x'e
xc')Eo
= - —_ct'_/x—' exp lkX(') Ct'/X' ) (6.20)
x'e ° X'e
and by (5.55)
2
(s) X5 Eo
= o m———— i !
By' 5 ct'/x' P 1kx0 ct'/x' > ' (6.21)
cx' e ° x'e

In the stationary system

g - —f———-—-— exp{ ikx! -1 (6.22)
z 20t' 1 EXP ct‘/x' ' '

X’
Finally from (5. 15) and (5.18)

ct'/xg
x'e = x+x(')+ct

so that
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(s) X' g
S
- _ -9 0o 6.17
E 5 exp 1kx0 x+x' ot ) (6.17)
(x+x' +ct

which is the same as that obtained in section 6.2,

6.4 The Case of Oblique Incidence for Small Acceleration

For the case of oblique incidence the total field, incident plus scattered,

is, for case I

iEo Ct(') d in7
= — 11! L 1 i —— — —ilk! [
Ez’ " exp{l OQ X sinh xé)) }dt' n§=1 e {Jn( 1kox)

J (-ik'x') -nc(t'-t')/x'
—f‘—;———"—"—— (2)(—ik'x}e 0 °} . (6.23)
(-ik!x!) noo

and for case II

iEo Ct(') d inm
= —_— ik'[ v' = %! sinh —1% — Zile! !
2= o ok exp{lko(y X sinh xé,) e E l e {Jn( 1kox )

n=1
d

FRRARLEY -nc(t'-t')/x!
dx 0 H(Z)(—ik'x') . oo
d (2)( i x) n o

dxl

- (6.24)
0

The behavior of these series is to be examined for the situation where
k(')x' >>1 and k(')x(') >>1. The second statement implies that ) must be away from
zero while kxz) = kcz'/a, = wef/a >> 1, a reasonable condition since in problems
involving radiation w >> 1 and the acceleration will for a real problem be much
less than the speed of light. The first condition requires that a domain close to
the light cone must be excluded. The analysis to follow will be simplified if only

the quantities in the square brackets are considered.



These quantities may be written as contour integrals by using the method

of residues which shows that

. A dv
§ A== | T ¥ (6.25)
n 2i sinvw

C

where the contour C is shown in Fig. 6-3. It is assumed that Av is an analytic

function in the domain being considered.

v=ik'x'
0O

v=ik'x'
0

FIG. 6-3: THE CONTOURS Cl’ 02’ C3, AND C IN THE v-PLANE.

The Bessel and Hankel functions have the following asymptotic approxima-
tions in the region of integration (Appendix B).
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-ivm

. e f
Jy(-lu)rv m e (6.26)
(2), . 216" -t
Hv (-iu) ~ races e (6.27)
a‘% JV(-iu) JU(-iu)
— H (-iu) H '(-iu)
du v v
where
sinW = L4
Im(W) >0 for -1/2 < Re(W) 7 /2
Im(W) >0 for -T<Re(W) < -7 /2
Im(W) >0 for 7/2 <Re(W) <7 (6.29)
and
f= u(cos w+(w+—’2-’)smw) . (6.30)

The series in the square brackets are converted to contour integrals and

the above approximations are substituted giving

1\ -ir efz F ezfl_f2 velt-t)/x,
I= 5 e 72 e dv . (6.31)
sinvr(2rk'x' cos W)
C o) 2

In this the upper sign is for case I and the lower for case II. The function

i
= ! w! + i P
f2 kox (cost (w2+ 2)smW2> (6.32)
T
= It ! + + - 3 .
and fl koon:osW1 (W1 2)smW1> (6.33)
where
sinW_ = - (6.34)

2 k'x'
6)



and

. iv
sinW, =
1 k'x!
00

(6.35)

1 and W2 and v is made one-to-one by

restricting Wl and W2 in the same manner as was W.

The contour is deformed to pass through a vicinity about the point v = iké)xé)

The functional relationship between W

) be the part of the contour C extending from

oo in the upper half v-plane to point v = ik(')x('); C

and about the point v = ik(')x‘. Let C
9 be the part extending from
V= ik(')x(’) tov= iké)x'; and C3 be the part extending from v = iké)x' down into
the lower half v-plane to infinity. By examining the behavior of these functions

it is seen that along C ) and C_ the first term of the integrand is well suited to

2
analysis by the method of stationary phase while along C ) this is true for the
second term. On the remaining portions of C such an analysis is not possible
although these integrals do converge.

Let I be written I = Il+I2 where

: ) ~ve(t'-t')/x!
1 -ivm e o' o
ST ¢ 1/2 ° v
1 1
c +C sinvr (21rk0x cos W2)
1 72
-f
. 2 - -ve(t'-t')/x!
. -ivm e o' %o
+i e 1/2 e dv
sinvr (27k'x'cos W.))
-C o 2
2
Civn erl_ b —vc(t'-t(’))/x'
+ e 73 © °av (6. 36)
sinvr (27rk'x' cos W..)
-C o) 2

and
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f

. 2 ~ve(t'-t')/x!
[ = 1 e—11/7r e o o) Ody
2 2 sinvm(27k'x' cos W )1/2
C o) 2
3
-f
, 2 -ve(t'-t')/x!
. -ivr e o' %o
+i e 1/2 e dv
sinvm(27k'x' cos W)
C o) 2
2
o -
Civn . f1 fz —Vc(t'-té))/x'
T e 2 e ay . (6.37)
sinvr(27rk'x'cos W.,)
—C1 0 2

The term I1 consists of the two parts of I that lend themselves to asymptotic
evaluation and in addition a term resulting from the first integral of I being ex-
tended analytically around the branch point v = iké)x' andupto v = ik(')xz) making
the total path of integration of I1 a continuous curve starting at infinity, going to
V= ik(‘)x', tov= ik(')x('), and terminating at infinity.

I. may now be approximated. First since on the contour Im(v) >/ké)x' >>1,

1
the following approximation is made

-iyw
~ -2i .

sinvm

The contour is deformed to coincide with the imaginary axis. In the first

integral of I1 write W = -g -ia, -w <a <0, and in the second and third
T

+iq, 0 <a <. This results in

2
j@ -i37 [4 ’ .
L =% {e exp {—ik(’)x'(smha— [:a—c(t' —t('))/xé’—_lcosh(z)}
-
y Isinhall/zda

%o

+e+137'/4 exp{—ik(')x'(sinha- [af— clt'- t('))/xé)]cosha)} |sinha\1/2doz
0

(cont'd)
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®
X’
ir [4
+ em/ exp{—ik(')x'(sinha- 2 ;(To sinha,

(63
0]

- [a— 20, - c{t'- té)/xﬂcoshe)} | sinha|1/2doz .

(6.38)
In these integrals
!
cosha1 = -)-(’5,- cosha , 0 <a/1 <o (6.39)
)
and .
*o
cosha = — 0<a <o . (6.40)
) 0

The first integral has a point of stationary phase at

c(t'-—t(’))
a = —— if -o<ct'<ect' ;
s X 0
o)
the second at
c(t'-t')
o = —— if O<ect' <a x'+ect' ;
s X o0 O
o
and the third at
c(t’-t(’))
a =2a +—— if -o<ct' <a x'+ct'
S 1 x0 00 o

There are no stationary points if

ct' >a x! +ct!
ol o)

The contribution to I1 due to the stationary points is
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(@) (s) oft’-t))
= + = ik v! @1 ———
I ) I1 I1 exp 1kox sinh " E,

x'sinho 1/2
_ 0 1
+ oft'-t!)
2x'sinh| — +2¢_ | -x'sinh«
x! 1 o) 1
0
c(t'—té))
- expy -ik' \x'sinh| —— +2¢_ [ - 2x'sinho ,
0 x(') 1 o 1
if —-o<ect'<a x't+et' (6.41)
o} o

By calculating 811/ ot' and 811 /6x' and ignoring all terms but those of the
toE , B H and D _,
2 y

" VA

highest order in ké) the asymptotic contribution of I1

can be found. The part due to the first term, I(l), is the original expression for

(s)

the incident wave. The result for the second term, I °, is

E(,S) or -H(S)/no

z' z'
i x'E_sinf <c(t'—té) ) > (s) .'<' - it—(')>}
= ___—_—xl, cosh xé, + o I1 exp{;ko y —xosmh x(,)
: (6.42)

and

E, ey N o
—_ : —— et [ xr! — w! Qf —_
-— s1n¢s1nh< Xt +20> I, exp lkoQ x! sinh < )[

(6.43)

In the unprimed system
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E(S) or —H(S)/n

z z o e(t'-t')
o x'sinh< —— +2a1> -1/2
. 0 0
_-Eosm¢cosh<2a1— x’> P -1}
0 0 1
c(t’—t(')) ct!
e s N ot sinh —2 9t ai
exp iksm¢[xsmh< X ZozD y xosmh Xt 2xos1nhoz]

(6.44)
By writing (6.44) and (6.39) in terms of x, y, and t and letting
ct! t'+t'
a = ;79 -u and o= c( r °>—2u it is found that (6. 44) and (6.39) are
o o

equivalent to (6. 18) and (6.19). The stationary phase approximation fails as o

approaches zero. The condition o = 0 implies

2
c r) = 2L
x—<asin¢ -x0> cos f (ct acot@ , (6.45)

which is the line representing the boundary of the shaded area in Fig. 6-2. The

quantities in parenthesis are those values of x and t given by (5.79) and (5. 80) in
section 5.4. As this line is crossedthe contour integral I1 has no points of

stationary phase and so attenuates rapidly.

6.5 A Discussion of the Case of Oblique Incidence

In this section it will be shown that either the particle-trajectory solution
or the solution obtained from the integral Il, since the two are equivalent, satis-
fies time dependent forms of the Eikonal and the transport equations. First it
is seen that

Egs) - A, ct)eik sin fy o ik sin § S(x,ct)

(6. 46)
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where

ctz) ' ct! ct'
S(x, ct) = (x+x')sinh { — -2u ) +ctcosh —2_2u ) +x' sinh =
0 X, x(') 0 x(’)

ct'
- 2x! sinh <—;,9 -9 ) (6.47)
. 0

ct'
A(x, ct) = -E sinﬂ)cosh(*;(2 - 9
0 x!

ct;) ct'
(x+x;))sinh<;,— —2x>+ctcosh<-;'—°- —29 -1/2
. {2 0 2 - 1} (6. 48)

ct")
x' sinh <"‘," - 19
0 X

and

ct' ct'
(x+x' )cosh< -29 +ctsinh< -2u> = x cosh pry 9 . (6.49)
0 o

This solution will be substituted into the wave equation (Sommerfeld,

1964b). It is seen that

(8)
26 az‘Ez- = e {as ) (s)
2 act

z a(ct)
d S JA oS aA oS (s)
- ik sin > < } E
{Bx alc t) ax Bct 8ct zl
L1 {BZA azA} (s)
A) 27 2 Ez
ox Acet)

Substitution of A and S shows

(6.50)
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9\2 .2
5%\ /o8 )
(56?) '(5?:) '1} =0 (6.51)

2 2
(9_84-_8_5_>+_2_ (%@a_é@_s_)}o | 6.5

and

8x2 a(ct)2 A\ 0ox ox odct oct

Equation (6. 51) is recognized to be a time dependent form of the Eikonal
equation while (6.52) is a time dependent form of the transport equation.

So, on one hand, drawing from the classical results of geometric optics
it appears that the above solution should be valid in the limit as k goes to
to infinity; while, on the other hand, the analysis of section 6. 4 shows the
existence of a second term I, . The two above statements would be in direct
agreement, of course, if I, were seen to vanish for large k ; however it does
not appear that this is the case. This work has not determined a meaning for
that part of the electromagnetic field obtained from Iy and it will terminate
this question not completely answered. To the final chapter a possible reason
for the existence of this term is given along with some suggestions on how

this reason may be tested.



Chapter Seven
CONCLUSIONS

7.1 Some Observations on the Sphere Problem

The analysis of the scattering of a plane wave by a moving perfectly
conducting sphere presented in this work leads to some conclusions which
are pertinent to the sphere problem itself and also to ones which apply to
more general problems.

Pertaining directly to the sphere problem an expression that is
relativistically correct and valid for the far scattered field was obtained.

This solution leaves the polarization and direction of the incident wave
arbitrary and can be used to calculate the scattered field for any position and
time provided only that the far field condition is fulfilled. In addition the form
of this solution is such that the behavior expected from observation of other
problems is apparent. . That is the scattered wave appears locally that of

a plane wave. . Its direction of propagation is away from the retarded position
of the sphere exhibiting the well known aberration of light effect. Its wave
length and frequency are explained as a Doppler effect.

This solution was seen to lend itself to the calculation of the various
forms of energy giving results that although of a complex nature permitted
physical interpretation.

More generally the method that was used in obtaining this solution depended
only on the fact that in the stationary case the far scattered field appeared as
a spherical wave, a property that by the Sommerfeld radiation condition
all finite bodies must possess. The far field scattered by an arbitrarily
shaped finite body whose stationary far field solution is known in the form
of a product of one function depending only on the angular coordinates and the
other varying with the radial coordinate and time in the manner of a spherical
wave can be found by direct application of (3.30) and (3.31). This is done by

replacing the various spherical harmonics representing the angular variation

72
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of the scattered field components pertaining to the sphere in (3. 30) and (3. 31)
by those pertaining to the body being considered. Also, the far field of any
moving source may be determined this way.

7.2 The Accelerating Sheet Problem

A solution in the form of an infinite series was obtained for the problem
of a hyperbolically moving, infinite, perfectly conducting sheet scattering an
incident plane wave. In the case of the plane being normally incident upon the
sheet the resultant solution was seen to be identical to a solution analogous to
the ray-optics solution pertaining to stationary scattering problems.

In the case of oblique incidence it was possible to show that for small
wavelength and small acceleration that the scattered wave could be approxi-
mated by the sum of two terms. One of these terms was equivalent to a
scattered wave predicted by the same ray-optics type argument used in dis-
cussing the case of normal incidence. On the other hand this research was
able to find little about the meaning of the second term.

It is suspected that in a more realistic problem in the limit of small
acceleration and wavelengththat this first solution is a valid representation
of the electromagnetic field and that the appearance of the second term was
due to the fact that the motion assumed in this problem allowed the sheet to
be initially moving with the velocity of light. This could possibly be tested

by; 1) solving other problems involving motions that do not approach the
velocity of light,

or 2) a study of the behavior of I, including numerical calculations.

A justification of the ray-optics type of analysis would lead to some
interesting effects worthy of future study. For instance, such an analysis
of the case of electromagnetic scattering by an oscillating sheet shows the
scattered wave trajectories intersecting resulting in an effect similar to

the situation of caustics.
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A second effect that is suggested for study is that which occurs when,
in the direction of the sheets motion, the velocities of the incident wave and
of the sheet are equal, resulting in an effect analogous to that of a shadow
boundary in ray-optics problems (see Fig. 6-2). Perhaps an extension of
the technique used by Fock (1946) would be applicable to this situation.
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Appendix A
NUMERICAL RESULTS OF THE SPHERE PROBLEM

Polar plots of the differential scattering cross section as a function of the
observers position for a uniformly moving, perfectly conducting, sphere
satisfying the small sphere condition, k'a << 1, are given in the following
figures. The calculations were based on Eqs. (4.3) and (4.4). The
coordinate system used is described in Fig. 3-1.

The following observations can be made:

1. Let the ¢-£ plane which contains both the direction of motion and the
direction of the incident wave be called the plane of incidence. From Figs.
A-1 and A-2 it is seen that the patterns are symmetrical about the plane of
incidence.

2. For the case of a stationary gphere a rotation of both the polarization
of the incident wave and of the plane of the observer about the axis of the inci-
dent wave's propagation vector by the same angle leaves the scattered wave
pattern unchanged. Applying the symmetry in statement (1) to Fig. A-3 shows
this isotropy is lost in the case of motion except for the case where the velocity
vector and the incident wave propagation vector are parallel. This effect may
also be observed by reference to the last term of equation (4. 6).

3. From Figs. A-4 and A-5 it is observed that the energy scattered into
the direction of motion is increased while that scattered into a direction opposite
the direction of motion is reduced.

4. Figures A-1 through A-5 show that both the backscattering and total
cross sections are increased when the motion is into the incident wave while
they are decreased when the motion is away from the incident wave. This
agrees with the results of section 4. 4. In the first case there is a conversion
of mechanical energy to electromagnetic energy while in the second there is

a conversion from electromagnetic to mechanical.

7
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5. Figures A-6 and A-7 show the nonlinear dependence on f so that as

B approaches 1 the above effects become exaggerated.
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Appendix B
ASYMPTOTIC EXPRESSIONS FOR BESSEL FUNCTIONS
OF LARGE NEGATIVE IMAGLNARY ARGUMENT
AND ARBITRARY COMPLEX ORDER
The integral representations of the Bessel functions given by Sommerfeld

(1964c) are extended to the case where the argument is a negative imaginary num-

ber. They become

ucos W+i{W- E)

2
JV(-iu) = 2 e dw (B.1)
A
and
. T
) ! ucos‘WHv(W—'i)
H (-iu) = =\ e dw (B.2)
v T
B

where the paths A and B are shown in Fig. B-1. In these u is real and positive

and v is complex with -7 <argv .

4 /

%
/
%

20 AU

7

FIG. B-1: THE PATHS A AND B IN THE v-PLANE.
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The integral is of the form euf(W) which in some cases can be approximated
by the saddle point method. The path of integration is deformed to pass through
the pertinent saddle points, Wn’ such that™ f'(Wn) = 0. The approximation depends
on u being large and f"(Wn) >¢€ where € > 0. In this case the second condition

=t

excludes values of v about the turning points of the Bessel equation, v iu. Away

from these points the contribution to'the integral due to the saddle point Wn is

27 uﬂWn)
\’ W e ) (B.3)

When v is along the positive real axis paths of steepest ascent of {W)

approximately

are shown in Fig. B~2 with the arrows pointing in the direction of maximum: in-

crease.
W-Plane
A
B
Y —9- Y
=27 - 0 T 4 27

FIG. B-2: SADDLE POINTS FOR v REAL AND POSITIVE.

* In this appendix the prime is used to denote differentiation.



88

The choice of which saddle points represent the Bessel and Hankel
function is apparent in this case -

for J (-iu), W = isinh-1 vfu,
v n
and
for Hﬁ/z)(—iu), Wn =7 -isinh-1 vfu.

Let Wo be defined so that

sinW_=ivfu
0
and  Im(W)20 for —1r/2$Re(Wo)$7r/2
Im('\Wo)]>0 for -7r\<Re(Wo) <-m/2

Im(Wo) >0 for 7/2< Re(Wo) <m (B.4)

making the relation between Wo and v one-to-one with branch points in the v
plane at v =t fu and a branch line along the negative real:axis from v= - to
v = 0, and another along the imaginary v axis from v = -iu to v = iu. Then by
carrying out the saddle point integration and writing the results in terms of Wo

it is seen that for v real and positive

1 : S
JV(—iu) = W exp {ul}os W0+(Wo- z)sin Wo]} (B.5)

(2) ]2 L
Hv (-iw) =i T W Wo exp {ul}os Wo+(Wo— 5 )sin Wo‘_]} (B.6)

Along the negative real v axis the lines of steepest ascent are shown in

and

Fig. B-3 The saddle points to be used in this case are for J V(—iu)
W = -r+isinhv/u ; -isinhv/u; and 7 +isinhv/u
and for Hf/z)(—iu)

W = +isinhw/u
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-2 - 0 T 21

B and|A

FIG. B-3: SADDLE POINTS FOR v NEGATIVE AND REAL.

The saddle point integration then gives

_ 1 -fvr ’ T
J V(-iu) = e Wo {i e )exp {-u l:cos Wo+(WO+ 5 )sin W;J}
ive  -iur T
-(e" " -e )exp{l l}os W (W +3 )sin Wo:]}} (B.7)

and

(2) _ -2 ive T
Hv (-iu) = WB_WO e exp{xEos Wo+(Wo+2)sinW0jl} . (B.8)

Now both Jy(—iu) and HiJZ)(-iu) are analytic functions of v so they must be con-

tinuous as v goes from v = -a+ie to v = -a-ie, a >0, € >0, i.e. as the neg-

ative real axis is crossed. However, the relationship between Wo and v has a
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branch cut along the negative real axis implying that Wo is not continuous across
this line. To make the Bessel and Hankel functions continuous, just above the

real axis use (B.7) and (B. 8), while just below this axis use

_ 1 _ -i2rv _m .
JV(—iu) = ___—_—Zwucoswo %1 e )exp{aE:osWoHWo 5 )sin Wo]}
. [ T
- 1exp{-u cosW0+(W0- E)sin WO]E (B.9)

and

(2) .\ _ 2 [ _my .
Hv (-iu) = VW exp{l cosWo+(Wo 5 )smWo:]} (B.10)
Now let

f= uE,-osw +(W +2 )smwQ] : (B.11)
o o 2

Its behavior in the upper half v-plane is shown in Fig. B-4. Its magnitude is zero

arg(f) = 37 /2

arg(f) =«

T[2

FIG. B-4: THE FUNCTION f{.
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at v = iu and goes to infinity along any of the lines such that the argument of f is
constant. There is a branch point at v = iu with a branch line along the imaginary
axis extending from v = - to v = iu.

The functions (B.7) and (B. 8) can now be extended into the upper half v-
plane, across the imaginary axis above the point v = iu, into the right half v-
(2)(-iu)

v
are continuous and so that on the positive real axis they agree with (B.5) and (B.6).

plane, and then down to the real axis in a manner such that J V(rill) and H

For example, just above the real axis J V(-iu) from (B.7) may be written

1 -ivr -f  ivmr  -ivm, f
Jv( iu) me; {ie e -(e e )e} . (B.12)
As the imaginary part of v becomes more positive, eiy7r 14 e—iwr so that the
third term of (B. 12) may be dropped without destroying the continuity of this asymp-
totic function. In this region

-ivm
C e -f f
Jv(—m) = 27rucosWo {ie +e } . (B.13)

Next, as the line where the argument of f equals 27 is approached, still avoiding
a region about v = iu, e_f << ef, and the first term of (B. 13) may be dropped.
In this next region

~-ivr f

e e
Jy(-iu) = m . (B. 14)

This expression agrees with (B.5) obtained for v on the positive real axis. The
Hankel function may be handled in the same way.
In the lower half v-plane let

g = quswo+(wo- %)smwo] (B. 15)

Its behavior is shown in Fig. B-5. The expressions (B.9) and (B. 10) can be ex-

tended down into the lower half v-plane, across the imaginary axis, and then up
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arg(g) = 7/2

FIG. B-5: THE FUNCTION g.

to the positive real axis in a similar fashion. The result of doing this is sum-
marized at the end of this appendix.

Finally about the Point v =1u asymptotically convergent solutions to the
Bessel's equation are represented by expression involving Airy functions of fz /3
(Langer, 1932; Olver, 1954). Of these expressions the one which, as f becomes
large, agrees with the result previously obtained by the saddle point technique is
chosen. About the point v =-iu expressions involving the Airy function of gz/ 3
occur. The correct one is chosen to agree with the previous zesults.

The table below summarizes the result of this discussion giving appropriate
asymptotic expressions for the different regions of the v-plane designated by the
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letters A through I bounded by the dashed lines and the branch cuts (heavy lines)

shown in Fig. B-6. The region D includes the negative real v axis. The symbol

ai{u}

designates the Airy function of u (see for example, Olver, 1954).

-~ ~

= arglg=0 argl)=1 =~

FIG. B-6: THE REGIONS A, B, C, D, E, F, G, H, AND I IN THE
v-PLANE.
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