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ITERATIVE SOLUTIONS OF MAXWELL'S EQUATIONS
° by |
John Stelios Asvestas
Co-Chairmen:  Ralph E. Kleinmﬁn
Chen-To Tai

The problem of scattering of elec'tromagnetic waves by a closed, bounded,
émooth, perfectly conducting surface immersed in vacuum is considered and a
method for determining the scattered electric and magnetic field vectors 0
(solutions of the homogeneous Maxwell equations satisfying well known boundary
conditions on the surface and the Silver-Muller radiation condition at infinity)
everywhere exterior to the surface is presented. Specifically, two integral
equations are derived, one for each scattered field vector. These equations
are coupled. The kernels of the equations are dyadic functions of position and
can be derived from the solutions of standard interior and exterior potential
problems. Once these dyadic kernels are determined for a particular surface
geometry the integral equations can be solved by iteration for the wave number
k being sufficiently small. Alternatively, the scattered fields in the integral
equations may be expanded in a power series of the wave number k and recur-
sion formulas be found for the unknown coefficients in the expansions by equating
equal powers of k. As a check, the method is applied to the problem of scat-
tering of a plane electromagnetic wave by a perfectly conducting sphere. The
first two terms in the low frequency expansions of the electric and magnetic
scattered fields are found and are shown to be in complete agreement with

known results.
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INTRODUCTION

The subject of low frequency electromagnetic scattering dates back to
Lord Rayleigh (1897). In his well-known paper Lord Rayleigh examined the
scattering of both acoustical and electromagnetic waves by two-dimensional
as well as three-dimensional bodies and he showed that in the limit as the
* wave number k tends to zero the electric and magnetic scattered vectors
in the near field can be expressed in terms of solutions of standard potential
problems, Furthermore, he was able to continue these solutions into the
far field region and arrive at his famous fourth power of frequency law for
the scattering cross section of objects whose characteristic dimension is
small compared with the wavelength,

Since that time considerable work has been done in this direction. An
extensive bibliography for both acoustical and electromagnetic low frequency
scattering is given by Kleinman (1965a). Much of the work in deriving higher
order terms in the low frequency expansion,however, has depended explicitly
on a particular geometry for the scatterer and on a particular type of source
with a restricted direction of incidence. Stevenson (1953) overcame these
limitations by means of the Stratton-Chu integral representation of the scat-
tered fields. He showed that the scattered fields for a sufficiently smooth
three-dimensional scatterer and for arbitrary excitation can be written in

the form

where Efn and ﬁfn are the coefficients of kK in the k-series expansions of the

electric and magnetic scattered fields, respectively. The vectors fm and

- - -

Gm are known in terms of the previous coefficients E z, ..., E fn— 1 and

25 23 .

H,..., H . The sealar functions ¢S and ws are solutions of Laplace's
o m-1 . m m

equation satisfying known conditions on the scatterer arising from the pro-

perties of the electromagnetic field. They also satisfy the Kellogg regulafity



conditions at infinity. Thevectors -ﬁfn and ﬁfn can be continued into the far field by

substituting them in the Stratton-Chu equations and using the far field approximation

for the free space Green's function whichis involved in these equations. Kleinman
' (1965b) showed, however, that Stevenson's method leads to incorrect results after
the first few terms and proposed an alternate scheme largely based on Stevenson's.
Wewill undertake this pointin Ch. III. Ineither case, however, the labor for ob-
taining higher order terms becomes prohibitive at a very early stage.
Inherent to all three-dimensional low frequency techniques is the assumption ,

thatthe scattered electric and magnetic fields can be written in a power series of
the wave number k. Werner (1963) put the whole subject on a rigorous mathematical
basis by showing that this assumption was correct. Specifically, he proved that
the scattered electric field E ° tends, as k —> 0, analytically to a corresponding
electrostatic field. '

In the present work we propose an alternate low frequency scheme by
means of which one can obtain as many terms as desired in the expansions of
the scattered fields by operating on potential functions (solutions of Laplace's
equation) satisfying certain boundary conditions on the scatterer and the Kellogg
regularity conditions at infinity. The advantage of the present method over
Stevenson's is that it does away with the determination of 2m poteatial functions
(¢fn and Wil ). That is, for every E fn and ﬁ fn we wish to determine we do not
have to solve two boundary value problems to determine ¢fn and (//fn . Moreover,
we believe (though we do not prove) that the resulting series expansions through
the present method represent the scattered fields not only in the near region but
everywhere in space. Its disadvantage is that it applies only to perfectly con-
ducting scatterers while Stevenson's applies to scatterers of finite or zero con-
ductivity also.

In order to facilitate reading bf this work and to clarify our approach
we include an introductory section where the problem, its motivation, and

the main results are presented.



The Problem, its Motivation, and the Principal Results

The problem under consideration is the following:

In the three-dimensional free space (vacuum) we have a closed, bounded,
perfectly conducting surface S which separates the whole space into two regions:
the finite region V; enclosed by S and the rest of the space V. The surface S
is sufficiently smooth to guarantee the existence of a normal at all of its
points. A time harmonic source of electromagnetic waves is located in V and
its electric and magnetic fields are denoted by _}5 1 and _ﬁ i, respectively. The
time dependence e_iwt is omitted. The presence of the perfectly conducting
surface S gives rise to an electromagnetic wave whose electric and mag'netic

.vectors we denote by _ﬁ S and ﬁ S, respectively. These two vectors satisfy

1) Maxwell's equations

S - - K
VxE®=ikzH® vxH®=-kYE"®, (1)
Z=1 / Y, the free space characteristic impedanée,
2) the homogeneous vector wave equation

>S

>3
Vx Vx %s —kz Es

Fsts 0 inV, (2)
a consequence of Maxwell's equations,
3) the boundary conditions

N e ] ey .
AxE°=AxE', A B%=-A- &' ons, (3)

where 7 is the unit normal on S directed out of V
and into Vi, and

4) the radiation conditions

gl R[ﬁx(VxES)+ikE‘°_‘]= 0,

A
. uniformly in R (4)
lim A =N ’
R> o0 RERx( VxH )+1kH.]— 0,
A
R being the radial unit vector and R the distance from

the origin of a coordinate system to a point in V,



Our intention is to determine ES and ﬁ S for k "sufficiently" small, The
plan is as follows: First, we express the scattered fields in terms of two
coupled integral equations. The kernels of these equations are dyadic functions
of position which are derivable from solutions of Laplace's equation, The
equations are coupled in the sense that both ]T: S and H 8 appear in each of them,
Secondly, for k "sufficiently'" small, we iterate these equations in an alter-
nating manner to produce a Neumann series for each of the scattered fields.

The motivation for such an approach to the problem is a paper by
Kleinman (1965c¢) entitled '""The Dirichlet Problem for the Helmholtz Equation, '
In it the author derives a new integral equation for the regular part of the
Dirichlet Green's function for the Helmholtz equation. The "kernel" of this
equation is not, as is commonly the case, the free space Green's function but
the Dirichlet Green's function for the Laplace equation, The equation can be
solved by iteration as a Neumann series to produce the regular part of the
Dirichlet Green's function for the Helmholtz equation for the absolute value of
k sufficiently smalll. The practical value of this method lies in the fact that
it employs the static Dirichlet Green's function which is known for most coor-
dinate systems of interest and which usually involves special functions whose
properties have been studied extensively, What is more important, however,
is its conceptual value; for the first time it was rigorously demonstrated that
the slowly varying dynamic Green's function can be obtained by suitably per-
turbing the corresponding static function. That this could be true had long been
felt among workers in the ﬁeldz. The same feeling certainly existed regarding

the electromagnetic problem and now Kleinman's method suggested a way of

attacking it.

In connection with this work it should be mentioned that the Neumann pro-
blem for the Helmholtz equation has been treated in a manner analogous
to the Dirichlet by Ar and Kleinman (1966).

Cf. M. M. Schiffer's work in '"Lecture Series on Partial Differential
Equations, " The University of Kansas Press, 1957,



The equivalent concept of a scalar Green's function in the vector case
is the dyadic Green's function. After Levine and Schwinger (1950), we define

it as follows: 3

1) vxvxGR|R)-KG ®|R)=-T®|R ) i v (5)
2) Either -
£xG=0 on S (6)
or
AxVxG=0 on S (7
9 Jdim R (vxG-ikRxG) = 0. (8)

We have in reality defined two dyadic Green's function depending on whether
we choose the boundary condition (6) or the boundary conditioh (7). (That the
Green's function must be a dyadic instead of, say, a vector is necessitated by
the fact that we wish to obtain a linear relation between the field vector in V and
the field vectors onthe scatterer, and the most general linear relation between
two vectors is a dyadic,) Using these dyadics (one at a time) in the dyadic
form of Green's theorem we can find two sets of two integral equations each
for the scattered fields E® and ﬁs. The suitable form of Green's theorem in

this case is

f [VxVx Q)+ B-Q- (VxVx Bj]dV= f % [Ox(vx By H(vx Q)x Pds ,
\' S+5"S,, (9)

where S' is the surface of a small sphere centered at the singularity atR! ,
SOo is the surface of a sphere with infinite radius, and 1 is the wnit normal
always directed out of V. The vector Q stands for either of the scat-
tered fields while the dyadic P usually stands for one of the dyadics

defined above. In our case, however, we wish to use dyadics which

Arrows (=) over letters denote vectors while double bars (=) denote
dyadics, Carets () over letters denote unit vectors.



are derivable from potential functions. At this point one must exercise care
in defining these dyadics. They must have an appropriate singularity
to make (9) give a desirable result (i. e. evaluate the field at
the singularity) and they must satisfy appropriate conditions on S so that
together wiih the natural boundary conditions of the electromagnetic fields
they will make the integral over the scattering surface S in (9) a known term.
The boundary conditions on S are readily determined by inspection of
the surface integral in (9). The appropriate singularity was found by noticing
that vector wave functions for the equation Vx VxK -kZK =0 are formed by
letting A=Vx (& V), ¢ being a constant unit vector and { a solution of the
Helmholtz equation. In our case we let ¥ be the free space Green's function
for the Laplace equation. Fromunow onthe road is open and we can reachthe |

following result (with respect to the geometry defined at the outset).

If
1) f{é”: Vx E —ET]+ ﬁg) , (10)
ar|R-R| r ,
Eg:: VXE __I_——_.-}'i' EI(I? , inV (11)
- I ar| R-R 1 r
ﬁ(l)
er .
2) VxVx{ . =0, inV (12)
}=3(1)
m
r
3 AxED- 0, AxvxiW = 0 , onS 13
m e
2A = 3_ =
9 |rR°RxB)| <o, |R’VxA|<w, asR >, (14)
where A stands for either H( (1)

orE

>

5) E and H regular inv (15)



6 |vx RE)|<w, |Vx (RH)| <, asR >, (16)
then |
V'xf(ﬁ')=—f(Vx VxE)- ‘ES}’ dv+f(ﬁxﬁ)- (Vxﬁr(nl))ds, (17)
v S
and

VixH (ﬁ' )=—f(VxVxH ﬁ dV+fE1x(VxH] dS (18)
A%

This is the principal result of Ch. I. (The notation used for the two dyadics will become
clear |when we recognize their physical significance.) Wilcox' (1956) expansion
theorem makes it obvious that the scattered fields defined in (1) - (4) satisfy

condition (16) and we can therefore write

ES(R")=-ikZ f s ﬁfel)dv- f BxEY- ﬁil) ds (19)
S

ikzZHS R )= -szﬁs- Eg)dv-f(ﬁx'ﬁi)- (VXESI)) ds. (20)

and

The last equation can be written m a better form. To do this we need
the explicit representation of ITZ( b in terms of potential functions which leads
us to the question of how to determmep the dyadics defined by (10) - (14) . This
problem may be attacked t:rom a purely mathematical point of view, We had the

feeling, however, that these functions should be related to the electrostatic
and magnetostatic fields of infinitesimal electz‘ic and magnetic dipoles, In-
1)

deed, we can show (for our geometry) that H is the coefficient of k in

the low frequency expansion of the total magnetlc field of three orthogonally
crossed infinitesimal electric dipoles at the point R' of V. -Similarly, Iziig)
is the coefficient of k in the low frequency expansion of the total electric

field of three orthogonally crossed infinitesimal magnetic dipoles at the point



ﬁ' of V. After this the determination of the two dyadics becomes an easy
matter. In Chapter II we derive these dyadics in their explicit form. In
Chapter III we start with Eqs. (19) and (20) and modify them in a way that

will render them amenable to iteration. Finally, in Chapter IV we apply
our method to the sphere.



Chapter I

THE DERIVATION OF TWO INTEGRAL EQUATIONS

In this chapter we proceed to derive in detail the integral equations (17)
and (18) of the Introduction. To do this we need the divergence theorem in
its dyadic form, 1

If V is a volume bounded by a regular surface S (S € Ly, where Lp is
* the class of surfaces whose equations have continuous derivatives up to and
including p'th order and whose p'th derivatives satisfy a Holder condition?)
and if A is regular in V and on S A e C(D (n)

, where C" " is the class of functions

with continuous derivatives up to and including the n'th order), then

fv-de=fﬁ~st, (1.1)

\' S

where ﬁ is the unit normal directed out of V.

The proof of this theorem follows immediately from the corresponding
theorem for vector functions. Attention should be drawn to the fact that the
dot product in the surface. integral is not commutative.

By writing A in the form

K=§x(Vx§)+(Vx6)xf’ , (1.2)

we obtain the following Green's identity

f [(vx vxQ)- B-Q+ (Vx Vx B ] dv= f 8. [Qx(vx B +vxQ)xP ]ds , (1.3)
Vv S

lA11 dyadic identities that will be employed subsequently may be found in
Van Bladel (1964). -

2A functmn f(R) is said to satisfy a Holder cond1t10n at R if there are three
positive constants A, B, C such that If(R) f(Ro)l < A|R-R B for all points R
for which |[R-R | < C.



10

where, in arriving at (1.2), we used the dyadic identity

V. (axb)=(Vxa).b-a+ (Vxb) . (1.4)

Equation (1, 3) is the form of the divergence theorem that we will use to

derive the two integral equations.

The First Integral Equation

- Let S be a closed, bounded, regular surface, This surface separates the
whole space into two regions: the finite region V; enclosed by S and the rest of

the space V, Let }=3£r11) be a function of position defined in V and on S by

=(1) I =(1) -
E'=Vx |- —T———| +E '~ , (1.5)
m [ MER My

=(1)

where Emr is regular in V and on S and satisfies

Vx Vx Eﬁ}l)rw, inVandon S. (1. 6)
Moreover,
/1\1x E(l)= 0, onS, ' (1.7
m
and

A = -
RZ(RX'ESI))]«D and |R3VxE§111) <w, asR—=> o, (1.8)

A

where R is the radial unit vector and R the distance from the origin of a

rectangular coordinate system to a point in V. For convenience, the origin
RS

of the coordinate system is located in V; . Let, finally, E be a regular

. X > D =
function of position in V and apply (1. 3) in V with Q substituted by E and P
by ESI) .

(1)

m
: N
V centered at R' with radius r and surface S'. Eq. (1.3) then becomes,

. = =Y
Since the dyadic E_ ° is singular at R', we exclude a small sphere from
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m
1
\'% S+S +S(D

A = = =
f (Vx VX E)- EHav - f ds - [ﬁ x(Vx Eg))+(Vx E)ng):l , (L.9)
where S o is the surface of a large sphere, with center at the origin, bounding
the volume V at infinity (see Fig.1). We now proceed to examine the surface
integrals one by one. First we examine the integral over S. Using the dyadic

identity,

(gxg)'ﬁ= g?(gx

i

311

) = -b * (axA) (1.10)

and the boundary condition (1. 7), we have that
I =f(ﬁx§)- (vx 59 ) as (1. 11)
s m
S o

Next we examine the integral over S', where we take S' to be the

>
surface of a sphere of radius r centered at R' . We intend first to evaluate
the integral and then let the radius r of the sphere go to zero. In the process,

=(1)

the integral involving the regular part of Em will go to zero and we are left

with the following expression

IS,= ?_r,nofﬁ ExVxVxlj—" —-_I_—_‘-lﬁVxE)xVx [— —-I-_;——:-] ds.
. a7 lR-R" 4 lR—R'l

(1.12)
A A
Since on S' n= -r and since

Vx VXE - __]=vv -— ‘}Tvz [} ——i—:J
sarlR-RU L 4glR-RY an [R-R!
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we have that

_ lim . = __1_ = - _T_.

IS"rE'rof( Q.[ExVV( 47”._)+(VxISJ)xVx( 4”)] ds , (1.13)
Sl

where

r =|R-R| , (1.14)

Now

Vx (8b)=(Vx3)b -a xVb . (1.15)
Substitution of this relation in (1. 13) leads to

- -lim A 2o 1y uelBwr. Lo
IS’ r-> oj‘r EVXE)V( 47rr) VX(EV( 47rr) +
Sl
+ (VxE)xVx(- —Tﬂ as. (1.16)
. 4 n.r . .
A

By Stokes' theorem the part of the integral involving r. Vx vani_shes and by

(1.10) _
T {(VxBv(- 4—1&)+(VX E)x V(- ZyTIr s

=(r+ VxE) V(- 4—;-1, )~(VxB) - [ Fxvx(- 4:-7Ir_r}] =
3.V xF) V(- {%‘)—(Vx E) -{;x [w- 2117& )xI] } -
~(r VXE)V(—E(—lr)-(VxE)- {V(-Mir)(?-f)-f ]::? V('Zl?&ﬂ} =
(- Vx-ﬁ)V(—é'T—I)— E'VXE) : V(-M—l-l:)] e V(—ﬁ;)(fo) -
=(Vx~§)x[V(—‘Erl—r)x£] +1/'\- V(—4}%)(VXE)=§' V(—4_;—r) (Vxﬁ)- ,

] | (1.17)

'where, above, we made use of the dyadic identity,

Ax(bxA)=b(a-A)-Aa-b) . (1.18)
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Equation (1. 16) then becomes
__lim | 4. _ L =
Sl

v KN

. R SR S
= -lim f ds (—@ =-V'xER") . (1. 19)
r-»0 2
St 4wr

We are now left with the evaluation of the integral over Soo . To do this
-we draw a sphere of radius R and center at the origin of the coordinate sys-
tem, We then let R go to infinity and we require the integral to vanish in the

A
limit. I R is the unit vector in the radial direction we have that (see Eq. 1. 9)

ATe =)o os =)
1 - f R [Ex(vxE. )+(VxBxE, | ds .

Sw
By (1.10)
T 27 '
=(1 T A = 1
Ism=f f stm9d9d¢[_RXE) (VxE £ )) ~(VXE). (Rfon) ﬂ
0 ¥0

' from which we can write
T 27

lim lim 2 g0
R> @ [I S | < R—)—oof sing do dg IR (RxE)* (VxE +
0 %0

+ le(VX E) (B Egl) )| . (1. 20)

In order that this integral vanish in the limit we must have

m 2 @x ). xE| <o,

and

hm lR (Vx E) - (RxE() ] 0

2



15
which, together with (1.8), imply that

A o a
|RxE|<o and|RVXE| <o, asR>w. (1.21)

Since

> A A | S
Vx(RE) = RXE +R VXE |
Eq.(1.21) can be written
|Vx(RE) <@ asR>w . (1.22)

This is the regularity condition on f if the integral (1. 20) is to vanish.
Collecting our results from (1.9), (1. 11) and (1. 19), we can then state the

following theorem:;

Theorem A;
If V is the volume exterior to a closed, bounded, regular.surface S and

E isa régular function of position in V and on S satisfying the regularity con-

dition |Vx (R E)k ®, as R - o, then E satisfies the integral equation

. = T - =(]_) . A > =(1)
V'XER") = -] (VxVXE)- Em dv+ J(nxE)- (VxEm) ds, (1.23)
\S
S
where Eg) is defined in (1.5) - (1.8), and A is the unit normal on S directed

out of V and into the interior of S.

The Second Integral Equation

The deriyation of the second integral equation follows closely that of the

first and for this reason we shall be brief,

The geometry of the problem remains the same. We define the dyadic

I={S) as follows:

7. vy E —3:]+ A (1.24)
e | ar |R-RY r
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=(1)

~where Her is regular in V and on S and satisfies

VxVx ) =0, inVandons, (1.25)
r
Moreover,
RxvxEP =0, s, (L.26)
and
A = =
[RZRxE) | <o and [R3 vx A | <, asR>o. (1.27)

Letting in (1. 3), P be flil) and 6 be H (ﬁ regular in V) we have that
f (Vxvxil) - BVav - f 4. Lﬁx(vxﬁ(l))+(VXﬁ)XI=‘I(l)J ds. (1.28)
e e e ¢
A" S+S'+S‘00_

By (1.26) and the dyadic identity (1.10), the integral over S becomes
A o > =(l
I f [Bx (v D) ] illgs, ~ (1.29)
S .

The integral over S' is evaluated as in the previous section yielding

°

> b o
Iy, = - V'xH®) . (1. 30)

Similarly, the integral over Soo vanishes in the limit as R 9 o provided

IVx (Rﬁ)|<oo asR > . (1.31)

Collecting these results we can state the following theorem;

Theorem B.
If V is the volume exterior to a closed, hounded, regular surface S and
-

H is a regular function of position in V and on S satisfying the regularity con-
s . -
dition IVx (RH )l <, as R %> mw, then H satisfies the integral equation
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v'xi RY)-= _f (VxVx 1) - ﬁg’dv +fx'§x(Vxﬁ) . ﬁg)ds , (1. 32)
\' S
(1

e
out of V and into the interior of S,

where H" is defined in (1.24) - (1.27), and # is the unit normal on S directed

At this point we conclude Chather I, the main results being Theorems A
and B, The integral equations (1.23) and (1. 32) will be subsequently employed °
to find integral representations for the scattered field defined in (1) - (4) of
the Introduction. Our immediate concern, however, is the explicit represen-
tation of ﬁg) :E&)

potential functions. This we proceed to do in the next chapter.

and , the dyadic kernels of these equations, in terms of



Chapter II

THE FIELDS OF INFINITESIMAL DIPOLES AND THE SOLUTION OF
THE TWO DYADIC PARTIAL DIFFERENTIAL EQUATIONS

As mentioned on p. 7 of the Infroduction, the problem of finding explicit
solutions in terms of potential functions for the dyadic kernels I:ig) and Egl)
can be dealt with either from a mathematical point of view (i. e. without taking
recourse to the physical significance of the dyadics) or by recognizing the
relation between these dyadics and the fields of static electric and magnetic
dipoles and proceed to determine them by utilizing the available knowledge on

potential theory. We chose the second course of action.

Let S be a closed, bounded, perfectly conducting surface immersed in
vacuum, This surface separates the whole three dimensional space into two
regions; the finite region V; enclosed by S and the rest of the space V.

It is, moreover, regular m the sense that it satisfies the requirements of
Green's theorem; S € Lo, where Lp is the class of surface whose equations
have continuous derivatives up to and including pth order and whose pth derivatives
satisfy a Holder condition. For later purposes, erect a rectangular coordinate
system X, y, z with origin in Vj . Let J be the volume dyadic current density

in a finite region of V. We let J have a harmonic time variation e_iwt which

we suppress throughout this work. Then the electromagnetic fields in dyadic
form satisfy “

1) the dyadic Maxwell's equations

Vx E = kzH ’ : (2.1)
VxH=J-ikyE (2.2)
Z = 1[Y, the free space characteristic impedance,

2) the dyadic wave equations
VxVxE -k*E = ikZ J 2.3
VxVxH-K2H=Vx 7 , (2.4)

18
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3) the boundary conditions
fxE=0, f.H=00ns, (2.5)

ﬁ the unit normal on S directed out of V and into Vi .

Moreover, these fields satisfy a radiation condition in which we are not pre- 4
sently interested.
Except for the harmonic time variation we have left the current distribution

J completely unspecified. We now turn our attention to two types of'it, namely:

3 =-iki 5 (R|RY , (2. 6)
and

5 ==y va[Ts® Ry), @.7

where I is the identity dyadic defined by
1

= AA AN AA
I=aa+a2a+ a

13,182,183, (2.8)

The current distribution in (2. 6) is that of three harmonically oscillating in-
finitesimal electric dipoles situated, each along one coordinate direction, at
the point ﬁ' of V and of dipole moment

1A
ﬁe; a,, =123, (2.9)

c being the speed of light in vacuum, Similarly, the current distribution in
(2.7 is that of three harmonically déciﬂaﬁng infinitesimal magnetic dipoles
situated, each along one coordinate di}ection, at the point ﬁ' of V and of
dipole moment

-

A . '
Pm;* -Y a, i=1,2,3 . (2.10)

Let now Ee and }=Ie be the fields due to the current distribution (2. 6) and

expand them in a power series of k;

=il

[00]
- (ik)™ Eg‘) - ﬁe = X(ik)n ﬁ(en) i (2.11)
n=o0 n=0

1 . A A A AAA .
For conveniénce we use aj, a4, a3 instead of X, y, z for the rectangular unit
vectors. '
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Substitution of these equations together with (2. 6) in (2. 1) - (2. 5) leads to

the following relations

Vx E(O) 0

(n+1) ZH( D 0,12,
VxH(O) 0
Vx H(1)= Is@®IR) -Y Eio)

(“+1) YE( N 123
VxVx E(O)= 0
VxVx E( )-
Vx Vx E(2)+ E(O) -1z s RIRY
Vx Vx E(n 2) ‘(“) =0, n=1,2,3,...
Vx VxH(O) =0

=(1)

VxVxH’ = -vx [ s (RIR"]

Vx Vx H(n+2) ()=0, n=0,1,2,...

xE " =0, n-ﬁe =0, n=0,1,2,..., on S.

Repeating the procedure for the fields

n= (n)
m Hy = (ik)" H

n=o0 . =

<o

of the current distribution (2.7 we obtain

Vx E(O)

+ =
VXE(n . Hgi), n=0,1,2,...

(2.

(2.

@.
@.
@.
@.
@.
(2.

(2.

(2.
(2.

(2.

(2.

(2.

(2.

(2.

12a)

12b)

13a)
13b)

13c¢)

14a)
14b)
1l4c)

14d)

15a)
15b)

15¢)

16)

17)

18a)

18b)
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VxH( = -y vx([Ts ®IR")] (2. 192)
Vx H(n+1) Egi), n=012,.. (2. 19)
Vx Vx E(O) (2. 202)
VKVKE l - -vx[Ts(®IRY) (2. 20b)
VXVXE(n 2) _(n) =0, n=0,1,2,... (2.20c)
Vx Vx ﬁ(o) - -y vxvx [Ts (Rl ) | (2.21a)
Vx Vx H( ) (2.21b)
vaXﬁfn) +ﬁ(mn) =0, n=0,1,2,... (2.21c)

ﬁxﬁ(n) A I={(n)
m m

=0, n =0, n=0,1,2,..., on S . (2. 22)

At this point we offer some relief to the reader by saying that, of all this
-( D ong 50

- multitude of equations, we are only interested in those involving H " and E
These two dyadics are directly related (if not identifiable) with those defmed in
Egs. (10) - (14) of the Introduction; By (2. 15b), Hi) can be written in the form
(10); by Eq. (2.13b) and the boundary condition (2. 16) on E( 0

Similarly, by (2.20b), E(l)

, it satisfies (13).
can be written in the form (11); by (2.22), it

satisfies (13). Our next step is to find explicit forms for H( ) (1)

and E
terms of potential functions. Subsequently, we will verify that these solutions
satisfy the regularity condition (14) of the Introduction and, therefore, they
qualify as kernels of the integral equations (17) and (18). In effect, we will
have shoWn that the kernels of the integral equations can be obtained from the

solutions of electrostatic and magnetostatic problems.
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The Dyadic ﬁil) in Terms of Potential Functions

Let
70 vy [- ——_{—] S (2.23)
e -~
4r|R-RY r
where
' VxVx-}:I(el) =0, (2.24)
r

The dyadic ﬁil) satisfies Eq. (2, 15b), namely

=(1) _ = 22 Y

VKX = - ve[Ts RIRY] , (2. 25)
and is related to Eio) by (2.13b). Equation (2.12a) permits us to write ELO)
in the form '

3 . .
EL -z E (V¢((,») 2. (2.26)
e, ei/ 1
i=1 o

Substituting this expression in (2. 13b) and taking the divergence of the re-
sulting equation we have

3
2(0) A _= . .L.L'
| Z vy ai-I-Vé(RlR) : 2.27)
i=1

We wish then to find solutions to the problem

2 A Ay
v ¢$)=ai-V6(R|R'), i=1,2, 3. (2. 28)

.

By virtue of (2. 16), these scalar functions satisfy the boundary condition

’ﬁxv,¢$) =0onS, i=1,2, 3. (2. 29)
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For the tote! field ¢$)v we can write

(0)_a (0)
¢ V=g . V[ _J+¢ (RIR') , (2. 30)
o ‘ ! 41rlR R'I 'y
where ‘
v @l - 0. | (2. 31)
r

Stokes' theorem together with the boundary condition (2. 29) implies that ¢$)

is a constant on the surface S. From (2. 30) we can then write

¢‘°’ (Rg | R)= -5 [———i—;] Cyp Ry e, 2. 32
47 |R -R!

(0)

where C , a constant, is the value of ¢ on S. We now employ Green's
ei

theorem and write

g0 (RlR' f ¢(°) R R = (e)(ﬁsl R)ds, (2. 33)
where G(e) is the exterior Dirichlet Green's function for S:
GORIRY = - — L +G(e)(R|R') (2. 34)
ar |R-R
with
v2 (e)(RIR' =0, mV, (2. 35)
and (e) -~ > -
(Rg|R =0, Ry esS, (2. 36)

Substituting (2. 32) in (2. 33) we have
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(O)(RlR') =@, v')fl: 1 *‘Jaa GO IR as +
g arlRGRU

a (e)> >
+C_, f g © (RyR)ds

S

1 ) ] (e)
--(a V)G (R|R)+C fans (Rg IR) ds .
S

By a simple applicé.tion of the divergence theorem we find that

fan [ ]dS=O;
47rlR—R

therefore,

(O)A-N_ A. 1 <e)-‘)l- _2_
¢eir(R|R)- -(a; V)G (R|R)+Ceif

(e) NG
o G, (RJR)ds

Substituting (2.39) in (2.30) and taking (2. 34) into account we have

¢(0 (a V‘)G (R|R')+C f ans @ (RS'R) das .
' S

In order to determine the constant Céi we employ the relation

f ngV, ¢f§) ® &) as = 0.

r
S

2.37)

(2. 38)

(2. 39)

(2.40)

(2. 41)

This is a consequence of (2. 13b) and Stokes' theorem. It is a mathematical

statement of the physical fact that the total induced static charge on the per-

fectly conducting surface must be zero. Substituting (2. 39) in this expression

we have that
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Aoy | =2 ORR
(3. V") f s s (Rl R"d

- S 2 R
- =@y V) D (R)  (2.42)

C .
° f dTé—@- f (e)(RlRT)
Js T S s |

f (RIR') ds
. (2. 43
de ——fds G (R| :

The electric ﬁeld dyadic (2. 26) can then be written
3

. where

D (R') =

50 @ljn-z Zv lEQ.-V')G(e)(RIR') -C f as 2 ¢@@ Iﬁ] 4
e 1 8ns T s
i=1 S (2. 44)
or by (2. 42)
5@ Ry- z vvr [c@@RIRY-D (B f 2 g R R .  (2.45)
e s S r
and if we let
(0) 21, (e) . ; 0 (e)zx =
v, ®RIR) = ¢ “®RIRY -D_®Y f o, Cr R |R), (2. 46)
then
E?(ﬁlﬁ»: AA wg’) ®IRY . 2. 47)

In passing we note that this is the electric field due to three orthogonally
crossed electric dipoles with moments defined by (2.9). Now that we have

determined E( ) we return to (2. 13b) and substitute our result in it:
Vx H(l) -1 5 ®IR) - vw wg)) . (2. 48)
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Substituting (2. 23) and (2. 46) in this expression and employing the identity
dyadic
vxvx ([ )=vvy -I V2y (2. 49)

we obtain

VVE < M] -iv? E—j—:i]*VXH(D
4r|R-R 47[R-RY r

- -16(R RY)- W'[(e)(RIR‘) -D (R') f s =2 - (e)(R | R:I

S (2. 50)

By taking into account the definition (2. 34) of G(e) and that

VZE -——i ‘] = sRIRY | (2.51)
47r|R-R'
[ ] -V E -J (2. 52)
ar|R-R anlR-R|

Eq. (2. 50) reduces to

vx il ver E‘e’(ﬁlﬁw-n (& f as 2 (e’(RIRZI . (259
e T € s

r

(0)

I‘

-wWty o, (2.549

where g _ )(RIR') is the regular part of )(R|R') This dyadic equation can
be broken into three vector equations of the form

Vx ﬁ( )

(a V) Vw(O) . (2. 55)
From (2. 40),'(2. 42) and (2. 46) we can relate ¢f§) to x//g)) as follows:

¢ . e y©, (2.56)
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and cons equently,

¢(0) A v') w() . ' (2.57

e e
Equation (2. 55) can then be written
vt = vg@ (2.58)
ei ei
Stevenson (1954) has shown that the necessary and sufficient conditions for

(2. 58) to have a solution are

240 _ .
v ¢eir =0inV (2. 59)
and '
A 0 o
fns' Vo d5=0. (2. 60)
S r .

‘But ¢§) was constructed to satisfy Laplace's equation and (2, 60) is automati-
cally satisfied if Cei is chosen according to (2.42). According to Kleinman
(1965b), a particular solution, H( P , of (2. 60) may be cast in either of the

iy
following forms:

dv +

vyl Ryl
ﬁ(l)p (-ﬂﬁ')- 1 Vx
eir - 4

L RRI

VN(l) @ V)

(2. 61)
IR -R|

\'
i

where Vi is the volume interior to S, or

0) 2 12, D20 ] A
[Etei (R JR)-N; (RS-)] 2

.n(l)p - e 1 ) T 8
He; (RIRY= 7= vx | ds — : (2.62)
’ S Rs"R
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The function NSi) (ﬁ), R interior to S, is a potential function satisfying

2 (1)(R) 0, R interior to S (2. 63)

with
A (i),>~. A (0) > = =
: =n - V_ ¢\ ' :
n.V N (R)=n_-V ¢eir(Ris), R € S. (2. 64)

This is a standard interior Neumann problem and has a solution provided that

f ng: V (1)(38) as=0, (2. 65)
s

which is satisfied by virtue of (2. 64) and (2.60) .
=(1)

can then be written:

_ 3

g0 vy E—%—J + FOR, w4, (2. 66)

© 47l R-R! °r L el
i=1

The complete solution of H

()

where VN is a solution of the homogeneous part of (2.58). The functions

( ) are exterlor Neumann functions and can be uniquely determined from the
boundary condition (2. 16) on H(l) S
’
VzN(‘?) =0 inV
( ) regular at infinity } (2. 67)
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The Dyadic Eg‘l) m Terms of Potential Functions
Let 3
arlg-mild  ™r
with
vxvxED = 0. (2. 69)
m

r

=(1)

The dyadic }_Em satisfies (2. 20b), namely

Vx Vx E -Vx [5 (RlR} . (2.170)

and is related to H(0

"()

by (2.18b). From (2.19a) and (2.21a) we can write

in either of two forms: Either

(0) Yis@®[R) +H(0) (2.71)
or _ _
(0) - YVx Vx[ ] 70 2.72)
ar| R-RY '
where
vxﬁli?) =0 and Vx Vx 5(0) (2.73)
r I‘

From (2. 18b) we see, however, that if we are to be consistent with (2. 68) we
must choose ﬁ( ) accordmg to (2. 72) Thus substituting (2. 68) and (2. 73) in

(2. 18b) we obtam

=) _ , 50
Vx E m, - Hmr (2.74)
The first of (2. 73) permits us to write ﬁﬁg')r in the form
=(0) 0 .
Hy = -Y i( v¢§nfir) & 2. 75)

i=1
and by taking the divergence of (2. 74) we see that

2.0 __ .
v ¢mir =0, i=1,2,3 . (2. 76)



30

=(0)

From the boundary condition (2. 22) on ﬁm and (2. 72) we can write

Yﬁs-va x[— :] FQ-0, ons. (2.7
s 8 Hpy
4r [Ry-R'| r

vaXl: J |: ] IV [:—II-:J . (2.78)
4r|R-R ar|R-R ar [R-R?

By (2. 75) and (2. 78) the boundary condition (2. 77) becomes
' A
ng V.V [:-——1——] E ¢(0) a, =0, (2. 79)
S's -~ Dy’ s
47f RS—R'

(2. 80)

But

or

or

(2. 81)

The last rélation gives us

81? (O) (Rsl RI) = (a <—- —__Ll——.b—-ﬂ’ i=1, 2, 3. (2. 82)
ng 4r[R,-R|

We now employ the scalar Green's theorem and write

(0) ) ® | Ry
¢(0) ®IRY = f N @ |B) 5 s, (2.83)
r g
S .
where N(e) (ﬁlﬁ') is the exterior Neumann Green's function for S :

NORIR- - —}:—I— + Nie) ®IRY , (2. 84)

47|R-R'
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with
zNie)(ﬁlﬁ') =0, inV, (2. 85)
and ‘

e

(e) .
8ns RJR) =0, R € 8. (2. 86)

. Substituting (2. 82) in (2. 83) we have

(0) 212 (A (e) = 1
g (RIR')=<a.-v')f BglR) 2 A= {—-.—:—] ds
My L s | 4R R

(e) (@)

= @ V) NO®RIRY. (2.87)
Equation (2. 73) then becomes
3
| VXE(I Z (v )a— v (e)(RlR') (2. 88)
' i=1l

The necessary and sufficient conditions (2. 59) and (2. 60) for the equation

X -Ek(l). = - V¢$_)1

mi (2.89)

r

to have a solution can be seen to be readily satisifed; ¢$lr satisfies Laplace's

equation (2. 76) and it also satisfies the condition

A (N '
fns VS ¢m‘r dS=0 (2. 90)
S
by virtue of (2. 82) and (2. 38). According to Kleinman (1965b) a particular
solution, -E(l).p , 18
mi

2It is interesting to note that substitution of this expression in (2. 76) and then
in (2. 71) gives the total magnetic field of three orthogonally crossed static mag-
netic dipoles of moments defined by (2. 10) as

_(0) -y vwNO_yis®R|R ) .
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EJ(O) (R IRY) N(l)]

Eg)ip(ﬁlﬁ'h - L vx]as (2. 91)
T 4w
R -R
S 8
The function N( )R (R) R interior to S , is an interior Neumann function satis-
fying
2 (1)
(R) =0, R interior to S (2.92)
with
A (1) - _A (0) R S
n VN (Rg)=ng: Vs¢mir(RS|R') , Rg €S, (2. 93)

This is a standard interior Neumann problem and has a solution provided

f -V (‘) Ry ds=0, (2. 94)
S
a condition guaranteed by (2. 90).

=(1)

can then be written

4r|R-R| r m

i=1

The complete solution of E

where V Gixe1)i is a solution of the homogeneous part of (2.89). The functions

G(e)_ are exterior Dirichlet functions that can be partly determined from the

mi
boundary condition (2. 22) on E(l)

N
vze(e)i =0inV
( ©) ; Tegular at infinity ) (2. 96)
. A A
ﬁs X VsGiz)f -nsx[vs <. ___3_;_> xgi -n_ X Egp , onS
4r|Ry-R| r
) >

gii we employ the additional condition

fns [‘gi‘; VG(e)]dS 0, i=1,2,3. (2.97)
’s |

To completely determine G
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This condition arises from (2. 19b) and Stokes' theorem over a closed surface.
N .
Since Egl)ip is the curl of another vector (see 2. 91), by Stokes' theorem again,
r

its normal component integrated over a closed surface is zero. Equation

(2. 97) then becomes

f A v al®as=o0, =12, 3. (2. 98)
S s mi
S

At this point we conclude Chapter II. In summary, we have derived ex-
(1) and E(l)
e m
the chapter, in terms of potential functions. These dyadics satisfy Egs. (10) -

plicit expressions for the dyadics H , defined at the begihnmg of
(13) of the Introduction. They also satisfy the regularity condition (14) as
shown in Appendix A. It is of interest to note that in order to determine the
two dyadics we employed more boundary conditions than those specified in
D) e used (2. 16) (- ES)= 0) and (2. 41); for
we used (2. 22) (ﬁ . }Tg = 0) and (2. 98). The question then arises

Eq. (13). Specifically, for H

)

whether the boundary conditions (13) together with the regularity con-
dition (14) of the Introduction determine uniquely the two dyadics, as

| specified there. If the dyadics are determined uniquely, one should

be able to show that the two boundary conditions, together with the

regularity conditions, imply the additional ones mentioned above. This

question has not been answered as yet. The only statement we can make

(from Appendix A) is that the boundarir condition (2. 41) implies the regularity

condition

_lR3 (VxI:{'S))I <w , asR>w .



Chapter III

INTEGRAL REPRESENTATIONS OF THE ELECTROMAGNETIC
SCATTERED FIELDS

In this chapter we employ theorems A and B of Chapter I to find integral
representations for the electric and magnetic fields scattered by a perfectly
conducting surface. We start by defining the geometry of the problem and
the properties of the scattered fields.

In the three-dimensional free space (vacuum) we have a closed, bounded,
perfectly conducting, regular surface S which separates the whole space into
two regions: the finite region V; enclosed by S and the rest of space V. A
time harmonic source of electromagnetic waves is located in V and its elec-
tric and magnetic fiélds are denoted by Ei and ﬁi, respectively. The time
dependence e~1wt jg omitted. The presence of the perfectly conducting sur-
face S gives rise to an electromagnetic wave whose electric and magnetic

vectors we denote by ES and ﬁs, respectively. These vectors satisfy

1) Maxwell's equations
A5 g A5 g '
VXE =ikZH , VxH =-ikYE , (3.1)
1
=¥ the free space characteristic impedance,

2) the homogeneous vector wave equation

8 =23
VxVx[ ctelthe0, mv, (3.2)
H H-
a consequence of Maxwell's equations,
3) the boundary conditions

K -1 - &9
AxE = -nxE , N-H =-A+H onS§, (3.3)

where 8 is the unit normal on S directed out of V and into Vi’ and

34
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4) the radiation conditions

i,t’_i © R[ﬁx(Vx Es)ﬂkﬁs} 0,
uniformly in R, (3.4)

lim A =Nk
R+00R[Rx(VxH )+1kHJ—0,

A
R being the radial unit vector and R the distance from the origin of

a rectangular coordinate system with origin in V; to a point in V.

Our intention is to substitute E- and H® in the integral equations (1.23)
and (1. 32) of Theorems A and B, respectively. In order to do this, however,
we must show that IVx (RES) |< o and I Vx (Rﬁs)l <o, as R » w. This
follows from the following expansion theorem by Wilcox (1956): |

Theorem C

Let X(ﬁ) be a vector radiation functiqnl for a region R > ¢ where (R, 6, §)

are spherical coordinates. 'Illgan K(ﬁ) has an expansion

ikR 2, A (6, f)

> € n

AR) =—g— 5

‘ R
n=o

(3.5)

which is valid for R > ¢ and which converges absolutely and uniformly in the
parameters R, 6, @ in any region R> ¢ + € > ¢ . The series can be dif-
ferentiated term by term with respect to R, 6, and ¢ any number of times and
the resulting series all converge absolutely and uniformly.

It immediately follows from this theorem that

| vxRE%)| <@ and |vx(RE®)| <o, 28R >w. (3.6)

- Letting then f{s and ﬁs stand for E and H of Egs. (1.23) and (1. 32), respec-
tively, and at the same time, employing (3. 1) - (3. 3), we obtain

1A vector radiation functipn is one that satisfies Eqs. l (3.2) and (3. 4).
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kZH° (R =k f ES-‘E“) av- f(ﬁxﬁi)- (fo:g)) ds G
s

and
ES(RY=-ikZ f f AxE)- H (3.8)
v

~ Equation (3.7) can be written in a better form. By Eq. (2. 68)

VxE( 1), vv< 1 ) +VxE(l) fi+§', (3.'9)
m =
ar|R-R) P’
and by (2. 81)

ingl"-’ = Vv (- S > - v Nw’ &R
| 41 R-RY|
--voN® ®|Ry, R+RY, (3. 10)

(e)

where N' ' is the exterior Neumann's function for S defined in (2.84). Em-
ploying the identities '
@xh) - A=2- (ExK)

aIld - -~ -~
Vx (3b) = (Vx )b -ax Vb

we have “
(Ax Ei)'(VX Eg) )=h -[_-ﬁix (Vx Eg))] =-he [ﬁix VA% N(e)] =
- [Ex By vx@ v v (3.11)

The second term of this last expression vanishes by Stokes' theorem when in-

tegrated over the closed surface S, Employing (3. 1) in the first part we have
that |

f (ﬁxﬁi)-(Vxﬁg))d& ~ikZ f & ih)vrn©as | (3.12)

S S
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Substituting this result in (3. 7) we have that
ag . g :(l) , A > (e) S
H(R)=iky | E-E " av+v' | B HIN' (Rg|RY ds. (3.13)
Vv S

We can then state the following theorem.

Theorem D

The fields E- and H° defined in (3.1) - (3.4) satisfy the integral equations

H (R = kY f o E&’ av + V" f G- BINO@ | Ry as (3. 14
s
and '
ES(RY)= -ikz f i, ﬁil)dv- f @xE) - ﬁg) as,  (3.15)
v s
where ESI) is defined by (2.95), ﬁil) by- (2. 66) and N(e) by (2. 84)-(2. 86).

Equations (3. 14) and (3. 15) constitute a system of two coupled integral
equations for the scattered fields E> and f° . They can be written in operator

iorm by delining

_ =) a2, . =) 2|
Ll—lkaE JE; ®|Rnav, L,= 1sz C J-&; ®|RY av

v (3. 16)
and

- A i - |~ KS g _-—_-1) - |
H?O)=V' f (n-Hl)N(e)(RSI RY)dS, ES)= - f (ﬁxEl)'Hg (Rg|R" s

(o
S S (3.17)
- With these definitions, (3. 14) and (3. 15) becomes
H =L Es+ i , (3.18)
1 (0)

and s s s
= ) 3.19
E L, H +E ©) (3.19)
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For the wave number k sufficiently small we can solve these two equations by

S >S5 .
0) and E(O) be the first ap

proximation to ﬁs and ﬁs, respectively. The first correction to this solution

K
the method of successive approximations. We let H

is

=25 =3 =S
H =L E, +H s . 3.20
@ = 10 o) (.20

By = LyHgtEq (3.21)

and the second one

=3 -~ =S S =S =S

% -l B 48 =L L i +L E 4., 3. 22
@~ E1 P o L Koyt L E o o) (3.22)
ES =L B 4+F =L L E +L I +E (3.23)

2 27 (0 27170 2 (0 (0’
and so on. In this manner we generate two sequences of functions {ﬁ?m }
and -ﬁ(SN) , which we must show to be convergent for a certain range of
values of k and, also, that they converge to the desired solutions, i.e.

-

5S. lim  #S s_lim ps
H=30 0 Hg o BN By - (3.24)

We strongly suspect, however, that this approach would lead to divergent
volume integrals quite early in the process. The reason for this is the
following;:

The incident fields of the zeroth order iterates (3. 17), be they dipole
fields or plane waves, are independent of the primed coordinates. This fact

(e) __.=(1)

together with our knowledge of the natlu‘e of N'" and He from Chapter II

leads us to the conclusion that ﬁ?O) (ﬁ') and E?O)(ﬁ') do not contain the exponen-
3 1
tial e1kR . In fact, by a simple inductive argument it can be shown that none

of the iterates contain the eikR' as a factor. From (3.5), however, we know
that the scattered fields should contain this factor. We are then led to the
conclusion that elKR' appears in the iterates expanded in a power series in
k. As the iteration proceeds there will come a point when positive powers
of R will appear in the volume integrals of the operator and these integrals
will diverge and this is preéisely what happens when applying Stevenson's
method. |
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To avoid this difficulty, we must remove the troublesome eikR factor from
B KN
E® and HS. Accordingly, we propose to use the following vector functions in
the integral equations

ES -1 >S5 ES -1 -
e=e1kRE and h=e1kRHS. (3.25)
The motivation for doing so lies in (3. 5) of Wilcox' expansion theorem. From
- this equation we see that, at least in the region where the expansionholds, the
new fields € and ﬁ do not contain the troublesome factor elkR. Our next

step is to rewrite the integral equations (1.23) and (1. 32) in terms of & and

~

h . That these two fields satisfy the regularity conditions

le(RE) |<oo and IVx(Rﬁ)|<oo, asR+» o , (3. 26)

80 as to be admissible in the integral equations, is obvious from their definition -
and Eq. (3.5).
Interms of & and h Egs.(l.23) and (1. 32) are written
— =0 o [ =)
Vxe(R)--J (VxVxe)+ E " dV+ | ( xé)-(VxEm )ds , (3.27
S

and

v'xh(RY)= - ] (Vx Vxh) ¢ ﬁil)dv+ f [fx(vxi) ] -ﬁil) ds.  (3.28)
v s |

From the definition (3. 25) the functions & and E satisfy:

By (3. 1)
S 2 A \
Vx € = ik (Zh -Rx¢) , (3. 29)

K'Y .~ A ‘.s

Vxh = -ik (Ye+Rxh) ; (3. 30)

and by (3. 2)
VxVx & = k2(8+ ZRx h) -k Vx(Rx ) | (3. 31)

s ~ A A >

Vx Vx h=k%(h-YRx ) -ik Vx (Rxh) . (3. 32)

Substituting these expression in the integral equations we obtain
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A A > R A 4 =
ik [Zh(R")-R'x 3R |- [ (8+zRxh)" Eflll) dv +

| v
+ik f [ox (fxe)) * Eg’ v+ f (ﬁxé}-(fo:g) )ds,  (3.33)
v S
and
-mﬁfé(ﬁ')+ﬁ'xﬁ(ﬁ'ﬂ -1 f (h-YRxd) - Eil)dv +
v
+ik f [ox(fich] & av-ik f [x(vaai]- B as. (3.4
v S

The second of the volume integrals in each of these expressions may be
written in a different form. We start with that of (3. 33);
By the dyadic identity

Ve (2 xA)=(Vx3) s A-as (VXA) (3. 35)

we have ' | )
f [vx (Rxd)] - Eg) dv= f v Bﬁxax 'E'g)_]dw f (Rxd) « (Vx Eg’ )dv .
v v (3. 36)

By (2. 66) and (2. 88) and application of the divergence theorem to the first in-
tegral on the right, (3. 36) becomes; |

f EVx(ﬁxéj- ’Eflll)dv= f ﬁ-[(ﬁ;:é)xﬁgjds- f Rxd) v Ny, (3.3
v StS! v -

Using the boundary condition i x E(I;) = 0 on S and the identity

Ve (§b) = (V+ A)b+4 * Vb (3. 39)

@ In the discussion that follows we will use the notation of Chapter I: S' de-

notes a spherical surface over the singularity at R' and the volume enclosed by
~ this surface is excluded from V. Integrals over the surface at infinity (S,
will be omitted if it is clear that they vanish. A knowledge of the properties of
the dyadics and the notation of Chapter II will also be assumed.
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we can write (3. 37) as follows:

m
\ St

f [ ()] - Eav-= f he [(RxdxE Jas- | v-[(Rod vin ] av+ f ve (ixtyvFav-
v v

- a-Eﬁxaxiﬁf]ds- f ﬁ°|-$ﬁx$)v'N(ede+ f 3. vxR-he vxSlvN@av -
5! StS! v

- ﬁ-[(ﬁxé)xig-(ﬁxa)v'N(e) St fl‘Eﬁxé)V'N(e)JdS -

S S
A A
-ik| Re[zh -Rxd N av | (3. 39)
V .
where, above, we made use of (3.29). Notice now that the part of the integral
over S' involving the regular parts of fg: and N (e) will vanish in the limit. We
then write
A = A =
E7x (Rxé)]' E(l) dv= /1\1- (Rxe)x{V |- L xI ) -
n sa| R-RY
' s' g
A A
- (Rx?) V‘(— - ) ds + fRa['gﬁxav'N(e) ds -
47r|R—R'I S ‘
. A s (e
-ikZ § R*hVIN' " dV . : (3. 40)
\'

The evaluation of the surface integral over the singularity proceeds in the same
manner as the corresponding one of (1. 16) of Chapter I and for this reason we

omit it. The form of (3:40) with the integral over S' evaluated then is

| f[vx (ftxé)]' Eilll) dV=-f{'x3(ﬁ')+fﬁ- EﬁxaV'N(eI]dS—ikaﬁc ﬁ V'N(e)ds,
. 4 S

v v (3. 41)



Substituting this expression in (3. 33) we have that

kZH(R) = K f (&8-+2Rxch) - Eg’ v+ zv'f ina +

Vv V
A \ =
+ik f R-[@xé)v'N(e) S+ f (hxe) * Vx Eg)ds. (3.42)
S S
According to (3. 11) the last integral above can be written
f (Axd) » Vx E&)ds = -f R.vxd v as (3. 43)
S S
and by (3. 29) : ,
= & A a
f (Axd)» Vx Eg) ds=-ik| 8- (zb-Rxd) v' N©ds = -ikz f &) vin©as -
S S S
A .
-ik | R+ [(mxd) v N(e)JdS . (3. 44)
S

Substituting this last expression in (3. 42) we have that

ﬁ(ﬁ')l=il:[ (v&+Rxh) * E(l) dv- 1kv'f Renn®ay - Vf A Hn®as |
\' - ‘ VvV S
' (3. 45)

This is the first integral equation for h and 8 .
We now proceed in the same manner as above to modify the second

volume integral of (3. 34). The result is

f E7X(Rxh)] _(ldv— _Rixh@EN+ ﬁ.[(ﬁxﬁ)xﬁ(l)_(ﬁxﬁ) ngo)] Se
v

+kY vf (R* &) w(O) (3. 46)
\'
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where Wio) is defined in (2. 46). Substituting this expression in (3. 34) we have

iKYS(RY) =k f (ﬁ-Yﬁxé)_- f{(el)dv-sz v f R awio) dv -

v o ' v
° -ikv'f ﬁ-(ﬁxﬁ)wgo)ds—ikY f(ﬁxé)-ﬁg)ds. (3.47

S : s
(0)

-
But on the surface S gl/e = —De(R') so that

(0) A Ao a A s '
f (Rxh)dj dS=-D (R') fn' (RXh)dS=-De(R') f Ve (Rxh)dV =
S . S

A
=D (R')f e VxhdV = -ikY D (R')f Re & dV .(3.48)
\' \'

Substituting this result in (3. 47) we have

(R =-ik f (zﬁ-ﬁxé) . i‘ig)dv-ik v:f R 3 [wio) +D;|dv + f (Bxd) o ﬁg) ds
\'s \' S
(3. 49)
This is the second integral equation for e and i .
Employing then the relations in (3. 25) we can state the following theorem;
Theorem E “
The scattered fields H- and E° defined in (3. 1)=(3. 4) satisfy the integral

equations
13 (R =ikye 2 f kR 2SRy 0 O (RIR')dV+

' keikR'f e-ikR ﬁxﬁs(ﬁ) -, @i AP @] @|Rofav

ikR! -lkRB A A A S
+ R g f e [hH@RINRJRY as, (3.50)
s
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and
"f:s(ﬁ')=-ikZeikR' f IR 38 &) H(l)(R|§') av +
~ v
ke B f R B ) 5L i [ E° ] o O R[R +
+D (R]
| R B dJRres,  @s
where E&) is defined by (2.93), ﬁ‘el) by (2.64), N'® by (2. 84)-(2. 86), Wio) b

(2. 46) and De by (2. 43).

Though these equations give directly the scattered fieldé it may prove
more convenient to work with Egs. (3. 45) and (3. 46) for the vectors ﬁ and
€ rather than the above. These equations may be solved in either of two ways
for small values of k. We can either iterate the equations to form two
sequences of functions which, hopefully, converge to the actual functions € and

>
h or we can expand these fields in powers of k of the form

. N IS s I ¢
e= ? (ik) en, h f:(lk) hn (3.52)

B (S 0) n=o

and then substitute them in (3. 45) and (3. 46) to find a recursion formula for
the coefficients. That € and f; can be written in the form (3. 52) follows from
(3.25) and a result by Werner (1963), who showed that the scattered electric
field ES tends, as k » 0, analytically to a corresponding electrostatic field.

When we use iteration to find and ﬁ we let

N _ . /\.s (e) &
h(o)--Vf(n h)N"dS, (0) J.(nxé) H dS (3.53)
S

S
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»

be the first api)roximation to h and e, respectively. The first correction

to this solution is

~ o N A o '=(1) . . A.a. (e) s
h(l) lkf (Ye(0)+Rxh(0)) Em dv lkaR h(O)N dV+h(0), (3.54)

& s '~ _A IS .=(1) . A..\. (0) >
e(l)—~1kf(Zh(0) Rxe(o)) He dv IkV'J'(R e(O))@e +D;] dV+e(0),

v v (3.55)
and the second
£ k| v smvxt e EQ av-ik v | Reir N avain (3. 56)
(2) ) Fm (M (0) '
Vv Vv

> s W~ __A I~ .=(1) . 1 A..L (0) -~
8=k f (zh R )* B aV-ik f (R e(l))[we +D;ldV+e(0),
v v (3.57)

and so on. In this way we generate twp sequences of functions, {K(N)} and
{ € ) } , which, we hope, for a certain range of values of k, converge to

S

hande respectively as N—> o .
On the other hand, when we use the low frequency expansions (3. 52) we

proceed as follows; First we expand the known surface integrals in power

series of k

o
- v*f (e AN Das- Z(ik)“f*n, f (@xe A as- f(ik)n g (359
S n=0 S

n=o

and then substitute (3. 52) in (3. 45) and (3. 46) and collect coefficients of equal
powers of k to obtain the result
£ S Y
h (R) = § .
0( y=1,, (3.59)

m

~ ..s' _ s A , _—_(1) o I\. » (e) KN -
hn +1(R) f (Yen+Rxhn) E™ dv-V'] R hnN dv+f e’ n=0,1,...
v v ~ (3.60)
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S .a.' - e .
e,(RY =g, | (3. 61)

» BN T ANES .=(1) ' A._. (O) ~
€ ®)= - f (Zhn—Rxen) H_ 'dv-v f (R*& ) E(/e +D;l dv+g

' \' \'
n=0,1,... (3.62)



Chapter IV

AN EXAMPLE: THE SPHERE

In this chapter we apply our results to the problem of scattering of a
plane electromagnetic wave by a perfectly conducting sphere. First we will
I:i(l) and }=3(1)
e m

then the results of Chapter III to determine the first two terms in the low

employ the results of Chapter II to determine the dyadics and
frequency expansion of the scattered fields.

The sphere is of radius a and its center coincides with the origin of a
rectangular coordinate system (x, y, z) (see Fig. 2). Using the notation of
the previous chapters, V; denotes the volume of the sphere while V the rest
of space. The surface of the sphere is denoted by S and the unit norma], f s
on it is directed out of V and into V;. The plane wave propagates along the
negative z—gxis with its electric vector polarized along the positive x-axis.
We shall use both the above rectangular coordinate system and its related

spherical coordinate system (R, 6, §).

ﬁl
o : v
4
V.
1 - Y
a

X

FIG.2: GEOMETRY FOR THE SPHERE PROBLEM.,

47
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We start with some expressions we shall be using rather often: The
expansion of the free space static Green's function in spherical harmonics is

Rn

- ___.:_:_.= y i’ Z mg;m;'P (cosG')Pnzcose)cosm(ﬁl - — R:Jrl p

4 _ |
n=0 m=o0
(4.1)
where R <=min (R,R"), R>=ma.x(R, R"), and € is the Neumann factor; €0=1,
em=2 for m=1,2,... . The functions P;n are the associated Legendre functions
defined by

-1 (n+m)!
2m m! (n-m)!

2
p:‘(x)= (1- Z)m/ oF (L+nrn, m-n; 1+m,1 ),

2
-1<x<I. (4.2)

This definition is according to Magnus et al (1966) and all the contiguous
relations for these functions that we shall subsequently use can be found

there (p. 171). The regular part of the exterior static Dirichlet‘Green's function
for the sphere as defined in (2. 34) - (2. 36) is given by

(6 1 X2 2n+1
= — | ) N
G "4 Z Z m (n+ )'P (COSG)P a (cose)cosm(f- ¢)Rn+1 ntl ’
n=0 m=0
(4.3)

while the regular part of the corresponding Neumann function as defined in

(2. 84)-(2. 86) is given by

(e) 1 z n (n-m)! 2n+1
= - N2 ____
N = o 2 “m o m) " ! n (cose')P , (cosdhcosm(f-f— gt
n=0 m=o0
(4.4)

We are now ready to proceed with the determination of the two dyadics.
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The Explicit Form of H( D

First we determine the constant D (1_7:') of (2. 43). From (4. 3)

0 (e) ' (e) [} =
fans (R | Rds- faR (RIR)ds

S S
1 w n (n-m)! _m ' an-l T 2"2
—EZ em(n+1) orm)! Pn (cos@") ;ﬁ;q a smesdesdgés X
n=0 m=o0 0%o ' -
m a '
x P (coses)cosm(¢s-¢' "R (4.5)
f ar 2 | as 2GR |R ) - ar . (4.6)
anT ' 8ns r s T
S S
Substituting these two results in (2. 43) we have that
n. 1
(R) “Im (4.7
By (4.5) the regular part of 'l/g)) as defined in (2. 46) is
(()) e (e) YN a
R[R") =G "(RIR") - ——— , , 4.8
Ve BIR) = 6 R (4.9
where Gie) is defined in (4. 3). By (2.“57)
0 _ A, ,[(e),**,_ a ] .
_¢eir = - (352 V") G, (&R o | 7123, (4.9)
A AN A
where a a a stand for the rectangular unit vectors x, y, z

2’,3
In order to determine the particular solution (2. 62) of (2. 58) we need
to determine first the interior Neumann function defined in (2. 63) - (2. 65).
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By (2. 64)
A, (.i)-‘ i} O _ Aonl & ©
n VNei(Rs)— 8R¢ \ = (ai A 2 Z Zem(nﬂ) X
r R=a n=1 m=o
(n-m)! n-l
X (I:Hm)'P (cose')P (cos@)cosm(¢ ¢l)R — i=1,23. (4. 10)

The interior Neumann function that satisfies this boundary condition is

(1) . n+l (n-m)! . n
N (R)= = (a V) Z Zm ()i Ta ™(cos6)cosm(g-") Rn+1
n=l m=o Rev,i=1,2,3,  (4.11)

where Vi is an arbitrary constant. We now form the difference

n
Zem(2n+l (n-m): P (cosG') X

e

0) 2 [Zn D3 o1 A oy
Pei (RJR) Nei(Bg=- 7 @V (orm)?
r n=1 m=0
m n |
p'e Pn (cos6) cosm(@-¢") - T " Veir 17 1,2,3 . (4.12)

Before proceeding to evaluate (2. 62) we note that the fact that Vg has not been

determined is not disturbing. Since, by Stokes' theorem,

A
fods % ~deVQ 1 ) xn =0 (4. 13)
A 'ﬁs-ﬁl ; ﬁs-ﬁ S

we see that the part of (2. 62) involving the constant Vei vanishes. In writing
(2. 62), therefore, we shall omit Vei . From (4.1), (4.12) and (2. 62) we have

that
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IS

Q0

-k(l)p J ' LI 2n+l, (n-m)! (£-t)!
(ﬂR) (47r) (a’V)VxZ Z Emet( n )(n+m)! (L+1)! X

(0]

n=l m=o £=0
2

X P (cose')P(cose) +]_R£+1 f f a sind d9 d¢ R P (cose) X
0 .

*‘h’

X Pz(cosos)cogm(¢s-¢') cost (§ -¢), i=1,2,3 . (4.14)

In order to evaluate the integral we write the radial unit vector on the surface
A
of the sphere, Rs’ in terms of its rectangular components,
R - A 4,15
A . ind _
RS X s1n6)S cos¢s +y sm<9S sm¢s VA cost9S , (4. 15)
and then we employ the orthogonality properties of the trigonometric and

Legendre functions involved in the integration. The final result is rather

simple in form;

>(I)p BN = Vi m (n-m)!
H (R]R)— (a V) 9 s—m—e— Z Z ~ (n+m)'P "(cos6") x
r n=1 m=l]
2n+1 n 1 (n-m)!
x p™ (cos6)smm(¢ N n+]Rn+1+ m n (otm)! P Tcos") x
n=1 m=o
2nﬂ

d6 P (cos@)cosm(¢ gn-2—

X7 , 1=1,2,3. (4. 16)

n+1R ni
We notice here that this vector is transverse to the radial direction. The
labor involved in obtaining this result is substantial and it is rather fortunate
that the operations in (4. 14) have to be performed only once and not three times
(one for each i).

We now turn to the determination of the exterior Neumann functions defined
in (2. 67). From the nature of the boundary condition these functions have to be
found one at a time, W('a will show how to find the first one and will just give
the results for the other two. From (2. 67) we write
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A B (1
B VNS = R- vs<‘- — >x ]+R (;p
. - 4l RS-R'l r
B A A A
=R vy <— _:1_: >x (Rsinescos¢s+9 cosGscos¢S—¢sin¢S):l=
L 47r|R —R'I
[ © n-1
_ 1 (n-m) ' !
_§;<Z Z - P (cose)P (cose )smlél(yl ¢)+¢s]
(n=1 m=o
n-1 © n
a (n-m+l)! ' :
X e + € rme])! P "(cosd") x
R
n=l m=o
-1 a n-l 1
3 (1) = - —
5 (coses)sm En(¢s # ¢s]R,n+1 o X
n-1 (n-m)’

(mm), P (coser)P (cose )sin En(¢ ¢|)+¢ o

< (n-m+1)!
Z(n+m 1),P e se')P (cose )sin m(¢ -gn- ¢s] e
m=]1 .

(4.17)

From this boundary condition N( ©) can be determined everywhere in V either

by inspection or by formal use of Green's theorem;

(e) Yy | (e) S (e) ‘
NS ®RRY =-] N (RS|R) N1 gs. - (4. 18)



The result is
" n-1
, 1 (n-m)!
(e)(RlR)— — Z = (2+$), P(c ose')P (cos6)sin [m+1)¢ m¢]
: n=1 m=o
2n+1 W n
1 (n-m+1) .
n+LRn+1 ¥ Z ntl (n+m—1)' ( 89 )P (cose) X
n=l1 m=1
2n+1
xs1n[m-1)¢-m¢_] r +1Rn+1 . (4.19)
In a similar manner we find that
(e) @ n-1 1 —m)!
(R'R')- - Z o] §2+m;' P ( 89')P (cosG) X
n=1 m=o
2
1 (n-m+)!
. X cos Em+1)¢ m¢] n+LRn+1 Z Znﬂ (n+m- 1)'P (cosf’) x
n=l m-=l

2n+1

P -l(c‘ose)cos Km-l)¢-m¢i| 2

—_— ), (4. 20)
R,n+1Rn+1

N(e)(ﬁﬁ'- 1 W n m (n- rln)'P ' ' 2n+1
e3 )= 5 Z Z il (orm)! (cosB)P (cose)smm(¢ ¢)_n+_1—n—4T .

n=l1 m=1 ’ RT R

(4. 21)

Equatlons (4.1), (4. 16) and (4 19)- (4 21) completely determine the dyadic

'(1) defined in (2. 66)
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The Explicit Form of I=3$Ill)

First we determine the interior Neumann functions defined in (2. 92) -

(2.94). By (2.93) and (2. 87) and (4. 4) we have

(1) (0) . -
(R = - 8R¢ R IR)R=a_
___}_(A.VI) > N (nm)P( 9')P( 0) ( ")
=-g (8 Z Zem (am)! Tn (©08 cosf_)cosm(f-f" x
n=0 m=o
' an-1 .
X —R;T , 1=1,2,3, (4.22)
from which we can write
(1) f Zn: (n- m)
(R) (a V') € P (cose')P (cose)cosm(¢ ¢') X
m (n+m! n
n=0 M=o
R "
X +v ., Rev, iz, 2,3,
R'n+l mi’ i

_ (4.23)
where Vi is an arbitrary constant. From Egs. (2. 87), (4. 4) and the above

result we form the difference

[0} n

(0) (Rsl R')- N(l) (R )= - = (a V) Z Zem 2:: (%i%— ?(cose')P?(coses) x
n=o m=o0
R
x cosm(fg-§") — -v ., i=1,2 3. (4.24)
8 R! n+1 mi ,

Substituting this result together with- (4. 1) in (2. 91) we have that
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n (0

ﬁ(l)p (ﬁlﬁ:)z é.v!) Vx < . € 2n+1 (n'm) (£-1)! .X
mir (47”2 Z Z ZZm t ' ntl (n+m)' (£41)!

n=0 m=o £=0 t=o

m ¢ e "y A m
p'q Pn (cosO')Pl(cose) i Th f a suné.')sdt‘)sdg&,S RSPn (coses) X
R' R 0 0

. - - i=
X cosm(¢s ¢)cost(¢s #, i=1,2,3.
(4. 25)
In this expression we have omitted the constant y . of (4.24) since, as we

explained through (4. 13),it does not contribute to the integration. Equation
(4. 25) is evaluated in the same manner as (4. 14) yielding the result '

+ 1
= omol ntl (n+m)

W n
(l)p(RlR') (a v) 3—25 Z Z m (n-m): ;n(cose') X

2n+1

x B a (cost)simm(p-p) — s n+1 n+1 9 Z Z m n+1 x

©

2n+1

(n-m)" .
(n+m)! P ( Se) a0 Ii (cose)cos m(p-") Rn+1Rn+1 ’
i=1,2,3.  (4.20

Note the similarity between this expression and (4. 16).

We now turn to the determination of the exterior Dirichlet function
defined by (2.'96). These functions have to be found one at a time. From the
boundary condition in (2. 96) and the preceding results we have that on the

surface of the sphere
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| A
ﬁxVG(e)=—ﬁ x|V (- 1 )xx-n xE()p
8 8 ml s 8 S 4 8 mi

47r|Rs-R r

n-1
=~ ‘%rﬁx é\ E L €, (n-m) En:an'P (cose')P (cos6 )s1n[m+1)¢—m¢:]x
n=l m=o _ -1
X -
R,n~i—1
0 n . ' n—l
-% Zem ((1::11111) 1),P ( ose')P (cose )sm[m 1)¢ -
n=1 m=o

(n-m )' 1 1 .
Sm@ é.vt) i}; o] (n+m)' (cose)P (coses)smm(¢ ¢)Rn+;]

A ¢l (n-m)! ' o1
+¢ 3 Z €m (n+m)'P (coset)P (cose )cos[m+1)¢ -m¢:|_ﬁ-T1 +
n=1 m=o R

n— .
1 (n-m).' m : m
2 g 2. i Tarmty By (205998, (c0s0g)cos (-1

A'V' = f 1 (n-m)! | ' "
-(x ),ngm_oem ol (o)t P (c se) P (coses)cosm(¢-¢) X

n
x a
R,n+J

. (4.27)

A theorem by Kellogg (1953, p. 143) allows us to expand G( ) in V in a series

of spher1ca1 harmomcs of the form .

(e) n P (cos6)

ml 477 Z Z m [A cos m¢+Bn’ msin m¢] , (4.28)
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from which we write

n
A () 1 A |a d m
—_— —_— +
nxVG =-—R {6 Z; Zem % Fn (cosb ) — [A ,mcosm¢-|B, smm¢;]
= m=0 8
Ay &t m 1 :
+§ STn0, ng Ig;lmPn (°°ses);fsz' -An’msm m¢s+Bn,mcos m¢s—]

(4.29)

We now equate corresponding vector components in (4. 27) and (4. 29), thus
obtaining two expressions for the unknown coefficients A and B
Using the orthogonality properﬁes of the trigonometric fun::tions invoived
there we obtain the following.

2n+l

n+l

_ 1 (n-m)! _m+tl

a
S e e——— 1
n,m 2n (n+m)! Pn (cos6) R!

sin(m+1)@'+

1 (n-mt])! _m-1 il
— = ’Pn (cosg”) 2

Pt in(m-1)§* <
on (ntm-1)! e sin(m-1)§', n>1, 0< m<n, (4.30)
B = 1 (n m) (cose') 2n+]. cos (m+1)¢' _
n,m 2n (n+m)' Rl _
2n+1
-m+1)! m- - ‘
211 ?&:; 11;' e 89') —cos(m-1)f", n>1, 1<m<n. (4.31)

”These expressions determine all the constants except A 0.0" In order to deter-

mine this constant we employ the condition (2. 98). Transforming the integral
over the surface to an integral over a spherical surface at infinity (by the

divergence theorem ) we have

A}

lim 9 (e o_ .
R>m f R (;,mi ds=0, i=1,2,3. (4. 32)
S
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Substituting (4. 28) in this expressvion we find that if the integral is to vanish,
we must have '

AO,O =0, | (4. 33

From this result and (4. 30) and (4. 31), Eq. (4.28) can be put in the form

n=
Gfs)l(RIRt)hzl;r_ IZ;'mZ 1 (n-m)! P (c se')P (coso) «

= 1 (n+m)'
2nH

X sin [(m+1)¢—m¢ ]

n
39 ‘<——< x

n=l m=
2n+1

X sin Km-1)¢—m¢']—'2'-1;‘_—i——n—+-i-. . (4. 34)
R' R

In a similar manner we find

n-1

(e) 212, 1 1 (n-m)! PR .
sz(RIR)-47r L : n+m)' (cos6 )P (cosG) X
n=l m=o
2n+1
X cos [m+l)¢ m¢]w -
W n
i L em)tom
Z i rm 1),P ( OSO)P (cosB) X
n=l m=] .
2n+1

X COS [m—l)¢ -mf ] '—111'1;‘5;1 , (4. 35) ,

© n
1 - 1
R =50 2, 2 T Pl ose . cost) sim mif-f
n=l m-=l
a2n+1
. XW (4. 36)

Notice the similarity between these three expressions and the corresponding
ones (4. 19) - (4.21) .
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Equations (4. 1) , (4. 26) and (4. 34) - (4. 36) completely determine the dyadic
Einl) defined in (2. 95). We are now ready to proceed with the scattering problem,

Scattering of a Plane Wave by a Perfectly Conducting Sphere at Low Frequencies

As shown in Fig. 2, the incident plane wave propagates along the negative
~z-axis with the electric field vector polarized along the positive x-axis. Taking
the amplitude of the electric field to be equal to one we write
COA o o r

-ﬁl:xelkz, H1=-9Yeﬂ'{z, . (4.37)
where Y is the free space charactéristi_c admittance. We shall first determine
the zeroth order iterates given by (3.53). By (3.25) and the boundary conditionss
(3. 3) we have that on the surface of the sphere

-1 M D RS -1 P 9 -
ﬁxaﬁs): o lkag ER), A-i@)=-e ikas, HR), Res. @)

Substitution of these boundary conditions in (3. 53) leads to the following ex-

pressions for the zeroth order iterates

ﬁ(o)(ii')= ye g f (e ﬁi)N(e)(ﬁsl RNdS, (439
and S
8(0)(ﬁ')= Lol f (nxEY . ﬁg’ (ﬁsl R ds . (4. 40)
- | |

By (4. 1), (4.4) and (4. 37), the integral of (4. 39) can be written

g1 Ty Z_ Z_ m pi (mrm)! n 'C ]
S n=0 m=o0 R'

2r -ika cosf .
. : : -t
X f f sing _do df e P (cos6 )sing_cos m(f - .
0 %0 :

(4. 41)
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The indicated integrations are performed by using the expansion (Magnus, et al,
1966, p. 108)

-ika cosg S
1ka cos \/;’:a Z (-1 (2m+1)d ; (@)P_(cost), (4.42)
m=o0

+_
o

and the orthogonality properties of the trigonometric and Legendre functions.

The function J 1/ is a Bessel function of half order. The resulting expression
m+ /2

Ao (e) > T m,n2ﬂ+1 ,
f (n-Hl)N (RSIR')dS-k—Z % 1;(-1) =1 J 1(ka) Pn (cosf") x

s ' - "3

is

an+2

R'n+1 ’

X sin ¢ (4.43)

Performing the remaining operation in (4. 39) we obtain

a - iYe-ika T n+2
h(o)(R)= o —R Z (-1) (2n+1)J (ka)P (cose sm¢
n=1 n+-
2
n+2
A n 2n+l d 1 . a
+0 ;( i) ) J (ka) ¥ Pn(cose)sm ) —
n= n+-
ni2
n 2n+l <1 a
sme Z( i) Jml(ka)P]n (cos6)cosf " (4. 44)
2

We now turn to (4. 40) which, by (4. 37), can be written |

. -ikz = JE -
g 0 (@) 5 o2 f e ° (6cosescos¢s+ 6 sin¢s)'ﬁil) (RJ R dS. (4.45)
S

In order to perform this integration we split the vector integrand into its

rectangular components and integrate component by component. The dyadic
g0,
e

is defined in (2. 66) and, for the sphere problem, it can be written in
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terms of (4. 1), (4.16) and (4. 19) - (4.21). Performing the dot product in«

dicated in (4. 45) results in expressions similar to those in (4. 41) which can be

integrated readily. We omit all these operations because of their great length

and we only give the resulting expressions; thus,

n+1'
1ka.s( (R),x___P Z (-i) nJ _(ka)P (cose)

+
s

(-i)"n(n-1)J (ka)P (cosG) — t
2ka/ Z n__ _
1 n+1
--‘/ Z( 1)n (ka)P (cosf) cos 2 = -
R

2

F g( ) (ka)P (cose)cosz¢
n-- R"

n+2
N 1 a
+ 1’% % Z (-)" J 1(ka)Pn(cose)cosgli 1

n+1
ol +

n=1 n-i

. © n+2
Sy :x >N )P,  (cosf)oosf 2— (4. 46)

n=1 n+-2- R

N 1 n+1
e1ka (0)(R) Y‘ ;Jz_ﬂ—‘ Z_;( 1)n J (ka)P (cose)sm2¢—— -

n+1
[00) n+l
. ];rk: nZ (- 1) J _(ka)P (cose)sm2¢

13
X n+2

i ]I 0 A1 1 a

+1J§k_a dy L (-i) - J l(ka) Pn(cose)cos¢ — -
n= n_é R

i [7 9 n n+2
- = 2 (-i)~ J (ka)P (cose)cos¢ ) (4. 47)

ka¥ 2l oy n=1 n+.. R n+1
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ika.s
(]

VP

n+l.
. 2 = F ; (- i)™ 1(ka)Plll(cose)cosqd :n+1 -

. . i n+1
= ,2ka 2. (-1) an_ —(ka)P (cose)cos¢
2
7‘. 00 n 1 ’ an+1
+ Y Z( i) J (ka)Pn (cosb) cosf |
n=1 n-3 R
. ® n2 '
[T 9 a0l 1 a
tifig 3 20 9 ) Pyleostlcosf o -
n=1 n—é R
O & n42
= Z;(_l) Jn+—(ka)P (cos®) cos¢ (4. 48)
2

Certain simplifications take place in the above three expressions, when the
indicated differentiations are performed, by employing the properties of the
IBessel functions involved. Nothing nearly as simple as (4. 44) results, however,
either in rectangular or spherical coordinates.

From the zeroth order iterates h and &, . we can obtain the zeroth order

(0) (0)
coefficients h and e, ,respectively, of the low frequency expansions (3. 52). By

(3.53) and (3. 58)

» = . kS —-— _ 1. s - )

fo(R) = hO(R) -k{,‘}‘o h(o)(R) , (4. 49)
E whe _ a . _ l-m > . -

go(R)—eo(R) -ki’o e(O)(R) : (4. 50)

In order to calculate these limits we expand the Bessel functions involved in
(4. 44) and (4. 46) - (4. 48) in a power series of ka of the form (Magnus, et al,
1966, p.65) _

L. 24

ka n (-1) (ka)
J . (ka) =,/— (ka) E . (4.51)
- 2 =0 1! 22£P(n+1+g)
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Proceeding next to the limit we find that

> 2 A a3 A a3 a3
ho( ) = R—Bsinesin¢-6 —3 cosfsinf -6—3 cosf} (4.52)
R 2R 2R
3 3 3
x> A A A
e (R)=R 2i:sinecosgzi-e 2_ coso cos¢+¢a— sinf . (4. 53)
(] RS R3 R3

By (3.25) these are also the zeroth order terms in the low frequency expansions
of the scattered fields ﬁs and ES , respectively, and are in complete agreement

with Kleinman's (1965b) results as derived usingthe modified Stevenson method.
They can also be obtained from Rayleigh's (1897) theory.

We now turn to the calculation of the first order terms in the low frequency
expansions for h and 8. From (3. 60).

£ @y | v +rxi)  5v-v [R5 )NDav+i @y (4. 54)
1 0 o m o 1 * )
v v ‘
By (4.52) and (4. 53)

3 3 A g3
s A s JA22° Aa® 1 Aa 1 .
Ye tRxh=Y{R 2 singcos+6 —1;:—3( 5 -cosf) cosf ;”(l icose)sm¢ .
4, 55)
By (2.59) the dyadic E&) can be written
E£2=v<- _~1_~>XT+E£BP+§:VG$; a . (4. 56)
41| R-R r T |

. A
We now define the vector A as follows

- A A s l = IS A > 1
A=(Ye+RXh)'E7<' .....) x{:l:(Ye*RXh)XV(‘—[AA)’
° 0 nlR-R >0 s R

(4.57)

and we proceed to integrate it over V as indicated in (4. 55). In doing so
we use the expansion (4. 1). The integration is performed in a standard
manner; we split K into its rectangular components and we integrate using

the orthogonality properties of the trigonometric and Legendre functions. We
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will just give the results for the x and y components of A , while we show

part of the integration for the z component:

3 '
(A'J'de- - — P (cose')sm2¢' _ (4. 58)
12 2 R,s
v 3 3 ' a3 -
A,
[ @pav=- —1 Ya_p (cose')—+ P (cose') 2,
Vet 2t 3 & 3
R R R
v 3
Ya )
+ —P (cose‘)cosz¢‘ . (4.59)
22 R,a

After performing the angular integrations for the z component of A we are left

with (the Legendre functions are functions of cosg")

0 (00] 2,
3 R 3 R
XA Ya 1 . . drR o <\ Ya _1 . dR 9 <
. T o — — | — ! —_— — +
f(A 2)dV=-=3-Psinf' | - aR< 2) 30P23m¢f R aRv< 3>
a

v a Ry R,
@© 0 2
Ya3 1 dr R< Ya3 1 dR R<
P [ 5+ RS [ = —
a R R> A R R>
' 1
w1 fam 1 2vd : deR +Ya3plsm¢, sl
=5 Ppinf! | 5+ Pysind £ 5 N
a R R! a
3 R' (0]
Ya ploog| Bpel Ya f R 1 Ya' 1l dR _ 2
o P,sing SR 31>} " R 530 ing TR
1 A .
@
dR _ 2
10 zs ¢'de"'+1—Oz ¢'f — R (4. 60)
R L

The reason we present this expression is to show that it contains two terms that
behave in a very undesirable manner, namely log R' / R'2 , and that these terms
cancel each other. This is an indication (farfetched, perhaps) that the volume
integrals of the equations (3. 60) and (3. 62) involving the dyadics E( ) and H(l)

will converge for all n . Terms of the same kind also appeared in the integration
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of the y component of K and they also cancelled out. Performing the indicated

integrations in (4. 60) we obtain

3 3
f(A )dV- —3—- P (cosO')sm¢' +LP (cose') s1n¢' 3 . (4. 61)
v R R' .

Collecting our results from (4. 58), (4. 59) and (4. 61) we have that

A .
(Ye +Rxh [ ( )x]dv- ——P (cose )sm2¢' ——-? X +
j‘: 41r R R'I R'3

3
A
.+Yi 2 —+4P (cose')-— +2P (cosG')—+P (cose')cosz¢' y+
12| 2 2 N R,3
va3 [1 1 R'-a| A '
+ — |2P/(cosf")sinf' — +P (cosf")sin' — | z . (4. 62)
6 |1 PR 2 ol

We now turn to the second term of (4.56). By (4. 26) we have that

(Yéo+ﬁxﬁo) . Eg"h v Eyéo+ﬁxﬁo) . Z';] (4. 63)

r

where 3 is the vector of (4.26), i.e

N W n m (n-m)! _m ' 2n+1
= e— — N
&=\ 5m Z - o () Tn a (c0s6 P x (cos6)sinm(g-$) n+l n+l
n=1 ms= R'
A& 1 1 (n_m)' 2n+1
1y — .
+ Z Zem = (n+m)' e ose) 5P, "cosb)cosm (¢- ¢)-Tn+l
n=1 m=o
(4. 64)

From this expression and (4. 55) we form the dot product indicated in (4. 63)
and then we integrate over V to find

4

f (Ye +Rxh ) . Z; dV— (cose')sm¢' er . (4. 65)
A"
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Employing now (4. 63) we have that

. |
A > = taind@! > b
(Y8 +Rah ) EWPqy- _ Y8 o fsind'sind') a» o, (4. 66)
0 o m, 12 R'2 ()
%

where Eo is given by (4. 52).

We now turn to the last terms of the dyadic (4. 56). The exterior Dirichlet

functions G( ©)

that

are given by (4. 34) - (4. 36). With relatively little labor we find

3 3 3
a2 A a A
Z . (Ye +Rxh )e VG( )dV—z—-—P (c 89')—— y+2—3-@1- P (cose')81n¢—-l— z
1 o] o 3 3 2
i=1 R' R!
A"
(4.67

This calculation completes the evaluation of the first integral of (4.54). To
evaluate the second integral we employ the definition of N(e) in (2. 84) - (2. 86)
and the expansions (4. 1) and (4. 4). The resulting expression is

(e) 3 Ya 4
(R ‘h SN —P (cose')sm¢'-—-—P (cosf")sinf'— 2 (4. 68)
RI
\'s :

. Taking the gradient of this expression we obtain
t . > (e) Ya3 Al 3 a3 1 Al taqi 1 A' 13Y ax _Ll
v (R-ho)N dV=—(R'sing'sinf'-6'cos6"sinf'-f'cos § )-5h (RY) .

]
v 2R . (4. 69)

To conclude the evaluation of i; in (4. 54) we need f 1 From (3. 58) and

1
(4. 44) we have that

4 4.
L s A _l¥ a_ 8 §_d— a_
ikf (R)= ikah (R)}+— 2ka R5J (ka)P (cose)sm¢ 36 (cose)sm¢ 2
’ - 2 R R
As 4
-¢§ PV (ka)P (cose)cos¢ (4. 70)

[\S)
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From (4.51)
I () =2 (&2 8 L0 2 | (4.71)
5 5 '3
9 5‘1;‘
5

Substituting this expression in (4. 70) we find that

o 4

5

- A A

£ (R)-—ah (R)+ — (—Rgsin2651n¢+ecos2esin¢+$cosecos¢) . (4.72)
3R

Before collecting our results, we write (4. 62) and (4. 67) in spherical

coordinates:
3
A ES == A K
(Yg +Rxh ) E(. 1 >x1]dV+ Za.f(Ya +Rxh )e VG(e).dV =
0 0 — -‘-l - 1 0 o mi
4r|R-R! n=1
\% \%
Ya3
— —R'sme'sm¢'+9'2sm¢'+¢'200s6'cos¢ + = h (R') (4.173)

2R'

Collecting our results from (4. 66), (4. 69), (4. 71) and (4. 73) and substituting them
in (4. 54) we obtain the following expression for h, :

1°

Ya 3
h (R 2{ R2smesm¢+9(2+cos8)sm¢+¢(20059+1)cos¢}

2R Ya5 3

+ 4{ R2 sm2esm¢+ecos26s1n¢+¢cosecos¢ } (4. 74)
3R
Our next step is to determme e1 From (3. 62)
& @y=- | (@b -Ret e F%v-v | &2 Ep(o)m avig (R . (4.75)
1 0 0 e 0l e 1 T
A% A%

The procedure for finding él is analogous to that followed for ﬁl of (4.54). For

this reason we will be brief. From (4. 52) and (4. 53)
A s gt R A .
Rx2 -Zh = 1;—3 -Rsmesm¢+9(-2-cose-l)sm¢+¢ (5 -cos6)cosf ) . (4. 76)



- 68

The dyadic I=i((31) is given by (2. 66):

3
=(1) _ ( 1 > =()p (e) o
HV =v (- " XI+H 5 VN2 (4.7
¢ 4l B-R °r 1Z=; ot

Proceeding as in (4.57) - (4. 61) we find that
3 3

A 4 1 = a 1
(Rxé -Zh )-[V<— — >xI:ldV [———+-——P(cose)—- +
j;, ° 0 Y sp? 6 Rt
a3 3 al A
+—P (cose')— P (cose')cos2¢'—— x +
372 N
a3 2 R'-a |A al3 1 ' 1
+ |- 5 Polcosd)sin2g! — |y +| = P (cosf")cosf'— +
6 2 3 6 "1 2
R R! .
. '_
+ a—P1 (cosg") cos¢'M ’z\ ) (4. 78)
32 23

We mention that in deriving this expression undesirable terms (log R! / R'2)
arose but cancelled out.

The dyadic ﬁg)p is given by (4. 16)and if we define

r
0 n 2n+1
1]A 2 m (n-m)!
=-={ g = - P (cosG')P (cos6)sinm(p-gn ——
y 47r{ sing nZ=; néln (n+m)! " n , Rp+LRn+1
A Q0 n 1 (n ) 2n+1
- N —
+f nZ:I l;oemn —Y P (cose) 5P (cose)cosm(¢ ’“‘Eiﬁi
(4. 79)
we readily find that
A, s a? 1 1
f (Rxeo-Zho)' ﬁ dv = - ?Pl(cose')cos;é' —5 (4. 80)
A" R
from which .
A 4 N '
v'f(Rxéo-zﬁo)- Fav =% v (M): -2 [y . (4. 81)

\' R!
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" The exterior Neumann functions, N'(:i:), of (4. 77) are given by (4. 19) -
(4. 21). Performing the integration we find that

3 3
A
Z f(Rxe -Zh ) VN( )dV~- —P (cose')—lé X -
i=1 R!
Vv
a3 1 1 A
-—Pl(cose')cosgb'——- Z . (4. 82)

6 o’

From (4. 78) and (4. 82) we find that in spherical coordinates

Ay a
[y o i) oo 3 f G2kl -
\'

A 3

=-R'a sme'cos?]'-—é +2 e (R') (4.83)

R! 3

Proceeding to the next volume integral in (4. 75) we have from (4. 7), (4. 8)
and (4. 53)

f (ﬁ'éo)[‘/’(m +D:] dV=2a f schos@ cqy- 22 f smezosgbdv N
¢ ¢ 47R! R
\' \ \'

3
2a sinfcosf
vy f kS av . | (4.849)

\'s

Clearly, the last integral vanishes due to the cos¢ term. Employing (4. 1) and

(4. 3) for G( ° we readily find

f (Re &) [Epg))ﬂ)e]dw a3Pi(cos6')cos'¢' ﬁl-'- - a4Pi(cose')cos¢' —

2 3
v R (4 85)

from which

3 .
f (Re eo) [W(O) JdV = (Rsme'cos¢'-9'cos@'cos¢'+¢'sm¢')-ae (R')

R
v (4. 86)
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We are now left with the determination of §1. From (3. 58) and (4. 46) -
(4. 48) we have that

N - 2 4
ikél(R)=—ikaéo+i/;k—a' (ka)P (cose) 2 kaJ (ka)P(cosB)—— -
R

-+

2 4 2 4
- Q—EaJS(ka)P (cose)cos2¢ }n- 5 / Jé(ka)P (cosG)st¢ 4y
2 2
7' )3 1 a2 2 1 a4 A |
+1v/2——k: 5d (ka)P (cose)cos¢ £§+5J§(ka)P3(cose)cos¢F z + .
2

—

4
+1FV'l: (ka)P (cose)cos¢ -

247
/__‘ [J (ka)P (cose)cos¢-— . (4.87

By (4.51) .
J(ka)-/@(—)[ 240 (k222 2] (4. 88)

Substitution of (4. 71) together with (4. 88) 'in (4. 87) and a transformation from

rectangular to spherical coordinates results in

O N 3 A A 5 A
g (R)=-aé + —— (6cos- PcosOsing)+ 2 (R §sinzecosyi
! ° 9g? or* 2

A A
+9cos26cosP-Pcososing ) . (4.89)

Collecting our results from (4. 81), (4. 83), (4. 86) and (4. 89) and substituting
them in (4. 75) we obtain

2> ad| A o Al A1l .

e, (R) =_R-2- {-RZsmecos¢+9 (§+cose)cos g-p(+ icose)sm;d} +

o2 [ A3 51020 conh o0s26 cosp-f cosos 4.9
o -R3 s 6 cosp+f) cos26 cos@-@ cosd sinff } . (4. 90)
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>
In order to check the correctness of our expressions for hl and 'él we go
back to (3. 25) and expand the scattered fields in power series of ik. The first

order terms are given by
E. =Re +& . (4.91)

Substitution of (4.52), (4.53), (4.75) and (4. 90) in these two expressions leads

to
5 A3
i (R)— —_— (6 sm¢+a cosf cos¢ (- 5 sin26 s1n¢+6 cos2fsing +
R
+a cosfcosf ) , (4. 92)
a5 4 g9 A A 22 A3 A
E.(R) =— (0 cosf-§ cosd sinf)+ — (-R 5 sin20 cosp+6 cos26 cos§ -
1 2R2 274 2
A
-fcos fsinff) . (4.93)

Both expressions agree with Kleinman's (1965b) results as derived

using the modified Stevenson method.

We will conclude the example by finding the terms of HZ and 52
that behave as 1/R. From these terms we can find the first term
in the low frequency expansion of the far field for both the electric

and the magnetic scattered vectors. By (3.60)

h2( f(Ye +Rxh) E( )dV V'fR th( )dV+f (R') ' (4.94)
\' A"

Employing (4. 74) and (4. 90) we have that



72

3 5
A A 2Y A
Ye +Rxh_ =-R a sinecos¢+ Ya -R 3 sin28cos¢+
1 1 2 4 2
R R
A 1 Al ,
+6(cos26-§cos6)cos¢+¢(§ cos26-cosf)sinf ) . (4.95)

Performing the first volume integration in (4. 94) as we did in the previous cases

we find that

3 3
=() ., AYa AR ¢ B
f (Ye +Rxh) E dV=-y R Pl(cose)-z = Pl(cose)sm¢ +O(R'2).
v (4. 96)
Similarly,
A Ya3 Ya5
Reh = - — sinfsinf - —- sinfcosdsinf , (4.97)
1 RZ R4
and '
i @ vad _1
Re h1 dv = - > P (cos@')sm¢'+0 ( (4. 98)
A%
from which we have that
A+ (e Ya3 1
V' | Reh N 7dV= — V' (sinf'sinf")+0 (—;) =
1 2 R'2
Vv
3 .
2R' (9'cos6'31n¢'+¢cos¢') +0 (— ) . (4. 99)

From Eq. (4. 44) it is clear that none of the Fn 's contributea 1 / R term.
Transforming then (4. 96) into spherical coordinates and substituting the
result together with (4. 99) in (4. 94) we have that

3 3

ﬂz(ﬁ) —%- 95m¢+¢cosecos¢)— —(G cosh sm¢+¢cos¢)+0(
Ya3
== 5 9 (1+= cose)sm¢+¢ ( +cos9) cos@}+ O (———) (4. 100)
R
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S

In order to determine the corresponding terms of €_ we substitute (3. 52)

2
in (3. 30) to obtain

A
Vxh =-Yé’-Rxhn,n=0,l,2,... ‘ (4. 101)
But, by (4.100),
-~ 1
Vx hZ =0 (@) . (4.102)

Substituting then (4. 100) in (4. 101) we have that

*(ﬁ—a3 2 1+L cosysing - B(L+cos 0(L) (4. 103)
g, )—i- #( 5 CoS )sing} - 5+ cos ) cos{ 2 .
To check the results we obtained for 32 and }-;2 we substitute themin (3. 25):
AQ A 1kR 4
H(R)=e S(m>2h2(R)+o(k3>I=
ikR
_Ye 3[A, 1 Al 4 LI
"R (ka) l:e(1+§cos9)sm¢+3(§+cose)cos§;_]+O(k) +Q(Ez) ;
(4. 104)
similarly,
B (®)2e iR g(ik)z 52<§) +0 (k3)} -
ikR
_e 3141 A1 ) 1
"= {(ka) [6(§+cose)cos¢ (1 +§cos6)sm¢}fo(k4)}+o(§) .
’ (4. 105)

These two results for the scattered fields are in complete agreement with

Lord Rayleigh's (1897) results.
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CONCLUSIONS

In this work we have developed a technique for determining the electro-
magnetic fields scattered by a perfectly conducting surface in three space when
the characteristic dimension of the scatterer is small compared with the
wavelength of the excitation fields. Though the method appears to work well
there are two significant questions that were left unanswered: first the
identification of the dyadic kernels of Chapter I with the dyadic dipole fields
of Chapter II; second, the convergence of the volume integrals in the higher
order approximations and in the higher order terms of the low frequency
expansions for € and ﬁ of Chapter IlI. These two questions will be part
of the work we plan to do in the near futuré. This work will also involve the
question of convergence of the sequence of the iterates when we solve the
integral equations for & and ﬁ by the method of successive approximations
as well as an example more complicated than the sphere. The most probable
candidate is the prolate spheroid which has only two degrees of symmetry. |
From the results for the prolate spheroid one can also obtain the corres-
ponding results for the sphere, the oblate spheroid and the disc by simple

transformations.
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APPENDIX A

THE BEHAVIOR AT INFINITY OF THE DYADICS H( AND E(1

In this appendix we prove that the dyadics iz(l)and Egl) as defined by Egs.

(2. 66) and (2. 95), respectively, satisfy the regularity conditions

]RZ(in)l < and‘R3VxX|<oo, as R > o, (A.1)
where A stands for either H( or E(D
The Regularity of H( D
The expression for }=I(e1) is given by (2, 66) which we repeat here for con-
venience
o, [ 1 i, R (6)
= B p e
He = V< ——:—) I+H 2 VNei QI . (A.2)
47rl R-R'I

i=1
We will now examine the behavior of each of the three terms for large R.

d N
First we expand the distance function 1/ IR—R'I in spherical harmonics for
R>R':

.. Z ‘z mgg:;l)): P (cosG P (cose' R cosm(¢ g,

R
(A.3)

where € is the Neumann factor; € =1, form=1, € =2form=2, 3, ..
m m m

The gradient of this expression is
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) A ® n (n-m
—)= R z ;Em( ntl) ——— wrm)y? ), Pm(cose)Pm(cose')——-cos m(¢ ¢)-
-R R
n=o =0
A ® n o
-0 sing 2€m ((:;;n), ;9 Pm(cose)Pm(cose' 5 cos m(f-§") -
n=1 m=o
A 2 (00] n _ ' n
- rov Z 2 m (?HJ:II)I),P (cosG)P (cos(—)')———sm m(@-g") .
= - R
n=] m=l (A. 4)
At large distances (R-» ) this expression becomes
VQJA):-%O%), R 5
R R'l R R

We now turn to the second term in (A. 2) and write it in terms of its

vector components:

3

=(1 KN

Hgih 2 Helip 2 .. (A. 6)

i=1 |
By (2. 62)
Eé‘o’ B Z]
‘(1) (R'R')- iRl [ R — n_-
g : IRS_R s

fds@“’)(n) N _)_JV<* L ) xh. (A7)
R-R|/ °

For R large we can employ (A. 5) in this expression to get

2Dp. 1 A LA [(0),2 ()2 1
Heir_ 4——,,R2 R x‘l“nS Eeir(Rs) Nei(Rs)__] dS+0 (R3) , R>m. (A.8)
S .
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In order to evaluate the last term in (A, 2) for large R we employ a '
theorem by Kellogg (1953, p.143) which says that if a function satisfies

Laplace's equation then it can be written in a series of spherical harmonics

of the form
O — ¥i, O, p
NeiT ) T @9
R
n=o
where Yy is a nth order spherical harmonic:
C m img
Y, = 2 A, P (cosple ' . (A. 10)
i i “n
n mn-

m=-n

The series (A. 9) is uniformly and absolutely convergent outside a sphere

enclosing all sources. Clearly,

A

(e A7 1
VN =-R—20. +0(—), R»> 0. (A.11)
ei ‘R2 R3

Collecting our results we have that

=0 1 A= 1 S [raros. 0 A
H = — (Rx)- z Rx f g @eir(RS)-Nei (Rs;_-l as) a, -
= S 3

47R 47rR2 n
i=1l
A 3
A
B A;i a, R>w . (A.12)
2 00
B4

From this last expression we conclude that
A =
IRZ(RXHS))'<<10 , asR>wm . (A. 13)

In order to prove the second statement in (A. 1) we turn to Eq. (2.23) and

write
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vx itk vy <- —-—l:-—_:-—>+Vx A, R4R . (A. 14)
© wlz-R]/ e

Splitting the dyadics into their vector components and employing (2. 58) we
have that

A0 . L ©
VxH = -(a; v'? v <- 4.—[——|7r = >+ V¢eir , i=1,2,3. (A. 15)

We now examine (A. 4) and we see that the n=0 term of the ﬁ-componept
.(which is the only term that behayes as 1/R2) is independent of the primed
coordinates. The rest of the terms in (A. 4) behave at least as 1/ RS, we
then conclude that

A 1 1
V1) V(- =0(—=) , R : A.16
e ) o r o 0

To show that the second term of (A. 15) behaves similarly we employ (2. 41);

Ay 690G |Rnas - | .
fns v, ¢eir(RSlR)dS—0. @17
s

This condition together with the divergence theorem imply that

lim A0 Al _ .
R->(nf R V¢ei (RIR') flS =0 (A. 18)
T
S
w
or a¢(0)
lim 2 elr
R>® dQR 3R =0 . (A.19)
S
(04}

But ¢$§l can be written in the form (A. 9). If condition (A. 19) is to hold, how-

ever, the constant Aio o in (A. 10) must be zero. We therefore have

0. & ¥y »
¢eir = 2 ;—ﬁ-— , (A. 20)

n=1
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which implies that

0(~), asR+w . (A.21)

(0)
veo .
eir R3

From (A. 16) and (A. 21) we can readily conclude that

=(1) l

| R3vx B , asR>m. - (A.22)

The Regularity of E( D

To prove thathz(RxE(l) )I <, as R % o, we start with (2, 95), which

3
=(1) 1 =(l)p (e) A
E. =V -—[——-i__ > xI+E;, PrNWVaE L, (A.23)
- < 47 ﬁ-R' , Z mj

i=1
=)

reads

The

behavior of the functions involved being the same as those for I-_-l( ), we omit

and we proceed in exactly the same manner as we did above for H

the proof.
To prove that | R3Vx E&) I <, as R » o, we start with (2. 68);

wf:&’:vv(- 1 >+Vfo2r,ﬁ7&ﬁ'. (A.24)
47rRR

Employing (2. 88) in this expression we get

vx ED - -vv'( L ) vorn® @Ry, R4R, (429
47| R-R!

or, in terms of the vector component of the dyadics,

=(1) A 1 A (e) 2>
VXE ' =-(a° V)V (— — ) - (a; V)N (R|R') )
mi 47rIR-R'I r
i=1,2,3. (A.26)

(e)

The functic;n Nr , however, is the regular part of the exterior Neumann

Green's function for the surface and it, therefore, has the property that
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fﬁs' szie)ds =0. (A.27)
g A
Transforming this integral by the divergence theorem to an integral over a

(e) .

surface at infinity and writing Nr in a series of spherical harmonics we

conclude that
(e) 1 (e)
T

:O(

Nr IT,z)’

=O(-%3), asR »w . (A. 28)

This result together with (A. 16) leads us to the conclusion that
IR%xE&’I <o, a88R>w . (A.29)



