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This study considers an analysis of the trags_;gt}t behavior of the total far
zone field when an electromagnetic pulse is incident upon a uniformly moving,
perfectly conducting wedge. The solution for the total field is obtained using
the concepts of the Special Theory of Relat;\;;ty An integral solution for the
total field in the primed or moving frame is obtained as a contour integral along
the \if:ell known Sommerfeld contours by means of Laplace transformation tech-
niques. This result is then transformed to the reference frame of a stationary
observer by means of the Lorentz Transformations. The total field is deter-
mined for three different incident fields; the time harmonic plane wave, the

unit step plane pulse and the cyhndr1cal 1mpulse
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Chapter I
INTRODUCTION

The scattering of electromagnetic waves by moving bodies has received

some attention by researchers; however, little is known, and to the @.;thqr's‘
knowledge, nothing has been written concerning transient problems in rela-
tivistic electrodynamics prior to this thesis. Sommerfeld tics (1964)was the first

to consider the scattering of a time harmomc plane wave by a uniformly moving

object when he examined the infinite flat plate or infinite sheet. Cole (1958)

con51dered a similar problem. Not until 1967 when Lee and Mittra (1967) con-
sidered the infinite right circular cylinder and Restrick (1967) considered the
sphere was any other work published on scattering by a moving object. Just

two months ago Ott and Hufford (1968) presented their v\%rk on the scattering
of a time harmonic spherical wave by an arbitraril;% shaped moving object and as
recently as last month Tsandoulas (1968) published his work on the edge diffrac-
tion field when a plane wave is scattered by a moving wedge. There are two
papers in the literature dealing with aperiodic solutions of the wave equation

for moving surfaces but both of these are concerned with the a’c;tgtm problem.
In 1930, Morgans developed Kirchhoff's integral solution of the wave equation for
moving surfaces. The application of this technique is hampered by the necessity

of knowing the surface fields. In 1964, Lewis presented the Progressive Wave

Formalism which leads to an asymptotlc series solution of the wave equation.
Lewis' work is concerned only with problems involving reflection and refraction.
It should be noted here that only Lewis (1964) and Restrick (1967) deal with

acceleratmg obJects

Tnterest in studymg the clasis of problerﬁs glefmed as electromagnetm
scattering by moving bodies has come about as a result of the interest in radar
detection and the fact that man-made objects are now capable of much higher
velocities. Current radar analysis is made on the basis of stationary objects so
the question naturally arises as to what exactly is the effect of a moving object. It

has been assumed in the past that the effect for any realizable velocity is negligible.



In this thesis some simple problems involving moving wedges, for which a
rigorous solution may be obtained, are investigated in some detail with a view
to determining the effect of the velocity.

The problem considered in this research effort concerns fn}amg the total
far zone field when a known incident field interacts with a uniformly moving, per-
fectly conducting wedge. Three incident fields are considered; the plane time har-
monic wave, the plane unit-step pulse and the cylindrical impulse.

Chapter Two includes an explicit statement of the problem along with

the development of an irntegral represehtafion fof the tortial field EZ(Y, D,t) :
as seen by a-stationary observer. In Chapter Three the time harmonic plane
wave is considered and the resulting expression for the total field is given by
equation (3.17). For the special case of a half plane;ﬁ;e total field may be
expressed in closed form in terms of Fresnel Integrals as given 1neau;1t10n
(3.20). These _13§u1‘ts reduce, as they should, to known results for the
stationary wedge (3. 21) and half plane (3.23) when the velocity is set equal

to zero. Sommerfeld's result for the infinite ﬂat‘pvlratve is also obtained. In
Chapter Four, the plane unit-step pulse is considered and the resulting ex-
pres51gn?or the total field is given by equation (4.19). This is a closed form
result Awhich also reduces to known solutions, i.e. the stationary half plane
7(4. 28), when the velocity is set equal to zero. This result, (4.19), is also

e
— — S —

obtainable in the case of the infinite flat plate as the inverse Laplace

e ——— — |

transform of the time harmonic;SO_lqt‘igg (3.17) multiplied by the spectral

function of the unit stefp pulse. In Chapter Five the cylindrical impulse is
considered and the resulting expression for the total field is given by the sum
of equations (5.12) and (5.32). For the special case of the half plane the result
may be written in closed form as the sum of equations (5.12) and (5. Ii'o:)‘ As
expected, these results égféé with the known results for the respective sta-

tionary scattering problems when the velocity is set equal to zero. Chapter
Six glsgﬁésggthe salient features of the results which are incorporated at the
end of each chapter and lists some recommendations for future work in the area

of transient scattering by moving objects.



Chapter II

TRANSIENT RELATIVISTIC ELECTRODYNAMICS
IN THE CASE OF UNIFORM MOTION

2.1 Introduction

The determination of the scattered electromagnetic field in cases where
the scattering object experiences a uniform motion can be accomplished using
the concepts of the Special Theory of Relativity. The concept of the invariance
in form of the equations of electrodynamics, when subject to the Lorentz trans-
formations relating reference frames moving with uniform velocities, allows the
solution of these equations in whichever reference frame is most convenient.
Appendix A gives a brief mathematical summary of these invariant forms and
the transformations which relate the respective reference frames. The most
convenient reference frame in which to solve the electrodynamic equations is
the one which is fixed with respect to the scattering object since then the
problem reduces to that of scattering by a stationary object. Following the
convention of the Special Theory of Relativity the laboratory or stationary
reference frame will be referred to as the unprimed frame while the reference
frame fixed with respect to the scatterer will be referred to as the primed frame.
The analysis procedure which will be followed is to obtain an expression for the
incident field in the primed frame, then to solve the electrodynamic equations

for the scattered field in the primed frame and finally to transform this expression

back to a retarded reference pOSi;Cid—ﬁ in the unprimed frame. It is the purpose of
this chapter to explicitly define the problem and then to follow the stated procedure
arriving finally at a contour integral representation for the scattered field as seen
by a stationary observer in the unprimed reference frame.

Two features of the problem and its solution are worth noting at this point.
First; the incident fields in the stationary frame are so chosen that they may be
written in terms of a variable which is invariant under the Lorentz transformations.
Thus the shape of the incident pulse fronts are retained in the primed frame. Second;
when the primed frame result is transformed back to the unprimed frame it is ex—
pressed in terms of the retarded reference position described in Appendix B. This
latter transformation has the advantage of presenting the result in a form which is

more easily interpreted in a physical sense.




2.2 Statement of the Problem

The scattering object studied in this work is a perfectly conducting, infinite
wedge which has a interior angle _2”Q'V‘rand which is oriented such that the edge
coincides with the z' axis. The velocity of the wedge in the laboratory frame is
V. At the moment t =t'=0 the coorc{iilate axis of the primed and unprimed
frames coincide and the incident pulse front makes its initial contact with the
wedge. For each incident field considered the direction of propagation will be
assumed normal to the edge thus, the problem becomes two diméqsional in space.
The situation at t =t' = 0 is shown in Fig. 2-1. o

The scattered field will be determined for three different incident fields
and in each case the electric field vector will be linearly polarized in the 2
direction. The incident fields are:

1) A Time-Harmonic plane wave

—ikl:ct -Rcos(f - ¢o)]A
- Tz

E (R, f,t) = E e (2.1)
where w
k= —
c
2) A Unit step plane pulse
E'(R,0,t) = H [ct-R cosi¢-¢oﬂﬁ (2.2)

In both of these cases ~\¢o defines the direction of propagation with respect to
the positive X axis.
3) A Cylindrical Virmpulse
i H[jcz(t+ ECQ)Z—IRZ]
ER, 0§t = = =z (2.3)
ch(t+ To)-? - ]R2

where

2 _ 2 2 |
R = R +R_ - 2RRocosi(¢—¢o) . (2.4)

The cylindrical impulse is the field radiated from a line source located at

(R0 , ¢o) which has been excited by an impulse of current & (t + Ro/c).



FIG. 2-1;

PROBLEM GEOMETRY AT t =0.
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2.3 An Integral Representation for the Total Field

A contour/{ntegral‘ representation for the total field (incident pluse scattered
fields) seen by an obsefver in the laboratory frame will now be developed. This
particular result will be applicable only to the Sommerfeld class (half plane,
wedge, infinite sheet) of scatterers, however, the approach may certainly be
applied to other scattering objects.

Once the incident field in the unprimed frame is specified £ (R, @, t) the

f ‘_i'
incident field in the primed frame E (R', @', t') may be found using (A. 36)

E =7[E+Vx§:ll (A.36)
where signifies the component of the field perpendicular to the velocity
vector, the only field component present in the problem being considered. It
will be assumed that only the far zone field is being considered so that if the

unit vector p represents the direction of propagation of the wave the relation-

ship between E and B in free space becomes:

- pxE) (2.5)

los]]

Substitution of this into (A. 36) leads to the expression

B = v [1-8G- P E, (2.6)
where

p=Y ., y=a-p7?

The right hand side of this expression is still in terms of (X, y, z, t) or
(R, §, t) and must be transformed to primed variables by means of the Lorentz

transformation (B. 1) to (B. 3).

by means of the Lorentz transformations into ¥(1-fBcos ¢O)[ct' -R'cos (@' - ¢O)]
in the primed frame so that a plane wave transforms to a plane wave and a plane
pulse. See Section 1 in Chapter III and Chapter IV respectively.
o s 22 _2 22 2 2 2
Note alsothatfor the cylindrical wavestheterm ¢t -R =ct -x -y -z

is invariant when subject to the Lorentz transformations. The invariance of

Notehere that for planewaves and pulses the term l ct -R cos(ff - ¢0) transforms



this quantity is, in fact, one of the basic properties upon which the Lorentz
transformations are based. This means that the cylindrical impulse in the
transforms to a cylindrical impulse in the primed frame.

With E'i' (R', @', t') known the scattered field ESC’ (R', §', t') will be

sought which satisfies the homogeneous wave equation

2 =sc'
2 1 1 ! 1 1
EV'W —Esc ®, ¢, 1) - E (R, (,t")

- YT =0 (2.7
c
| "the boundary conditions
W,;" —-SC' _il
+ = '
n x (E E )lery 0 (2.8)
the initial condition
=sc' _
E™ | g =0 (2.9)

as well as the physical radiation and edge conditions. The radiation condition
|
assures that the wave is propagating and, in cases where the sources are confined

to finite volumes, diminishing in energy density. The edge condition assures that
the energyw(itéar}éity at the edge of the wedge is finite. The Dirichlet boundary con-
dition waé considered here since we are considering a perfectly condﬁct{né mh/
body.

. ) o
The solution for E-C

can be found using the Laplace transform. This

integral transform is defined as:

@ -st
i (s) =j' F(t)e dt (2.10)
0
1 A+ ioo st
Fs) = 5 4 (s)e  ds (2.11)
A-1io

where A is chosen such that *F(s) has no poles to the right of the contour in
the complex s plane. With this transform and making use of the initial con-

dition (2.9) Egs. (.7) and (2. 8) become



. 2 '
v'2 R, ¢, 5) - & 5“(3' ,8) = 0 (2.12)

and

Ax (%4 g = 0 (2.13)

ary

'
&>° (R', ¢', s) must also satisfy the physical restrictions corresponding to the
edge and radiation conditions.

-t
In the case of time harmonic plane wave incidence 81 (R', @', 8) becomes:

sR'
1 ¢ - —— cos(§'-¢')
51 (R', ¢'. 8) = E:) e ¢ ° d(s+iw') 2 (2.14)

where R', §' and ¢;) are relatedto R, § and ¢o by the expressions -
given in Appendix B. Customarily the function 6 (s + iw) is not carried along
when discussing the time harmonic problem. The solution for gsc'(R', @', s)
which satisfies the above stated conditions is, in this time harmonic case, given

by: [Tuzhilin (1963)]

_sc \6 + -—CO08 =i’
£ g, s (715—‘{'—)8 e s, dde-& ®, 0,9
('11+C2
(2.15)
where
V't = 27 - 29 (2.16)
and where

2V 2V

27 -a-@'+ ¢ 2Q' -a-¢ - ¢
Sp(¢',a) = cotl: o] - cot [ O:I (2.17)



with the subscript p indicating plane waves incident. The contours C1 + 02

‘are the Sommerfeld contours shown in Fig. 2-2.

N

/

-7 0 // T 2m // 3r

(Y 7

FIG. 2-2: THE SOMMERFELD CONTOURS

If a plane pulse having arbitrary time dependence is being considered, the

—il .
expression for &~ is given by

- _S(?— cos (¢v _¢10) | ,_

gi' R', ¢,s8) = e (9% (2.18)

and the corresponding expression for the scattered field becomes:

'

— sc" %(s) A" E\\ -——cos@ -

¢ R0 e s (¢, Q)de-& (R, ¢, 5) .
dmp'i P

Vi e+,

(2.19)
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.
The solution for E°C (R', §', t") is given by the inverse Laplace transform of
(2.19).

U

At+io -——cosa ,
(R' gt = Zlis 2 4’?(8')1'[ e ° S (§",0)d o e™'ds
Tda-1w [TV cre, P

1 SA+1®

A-i

e VR, 0, 0 ™ ds (2.20)

Interchanging the order of integration on the first integral and performing the
second integration obtain:

sc! A1 A+im’7 s(t‘-—c—cosa)
E (R,@,1) = — Z| = (s)e ds|S (¢ e)da
47rv i Cl+C 2wi A-im p

[\V]

o ) (2.21)

it
where the term in the square brackets is recognized as El (R', o+ ¢:), t') . The
solution for the scattered field in the primed frame due to a plane pulse with

arbitrary time dependence can thus be written:

_sc' i _i'
ECR, ¢, t) = — ok (R, a+ @', 1) S (§",0) da-E (R, ', t")
. 47p'i o p
C+C,

(2.22)
A similar argument can be made for cylindrical waves. In this case the

time harmonic incident field transforms to:
-
§ @, 9,0 = Hf)” [‘im] 6 (s+1w)2 (2.23)

and the expression for the scattered field becomes [Tuzhilin (1963)] :
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is]R
Fse! . o . 8(s+1uw) A (1) ' o
&7 (R, ¢, 8)= T j'c vo o [ ]S (", a) da - 5 (R #,s)

12 (2. 24)
where
IR.z(ar) = RZ+R2 + 2RR cosa (2.25)
1 o o
and where
7r—a-¢'+¢:) 1r-a-¢'-¢g+2§2'
1 = JR—
Sc (@,0) = cot 5 cot[ 5o (2.26)

with the subscript ¢ indicating cylindrical waves incident.
For the arbitrary time dependent cylindrical pulse write the Laplace

transformed incident pulse as:

RN R [is”‘] Hs) % (2.27)

then the corresponding scattered field can be written:

— A isR (a) -
ER g, 6 - zf:‘_(f)_j (1)[———]5 @, da-&" R, ¢, 5)
C, +C °

47v'i 0 c
2

(2.28)

and the time dependent scattered field becomes; after changing the order of

integration:

Sc'(R', ¢',t')-

A pAtio 1s]R(a)
C.+C

A-im

- @, e, ) (2.29)

Now consider the interior integration. Comparing the integrand with Eq. (2.27)

1
- the difference is that :lR1 is present instead of R. Since Ei is a function of
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' 1
the variable R it may also be written in terms of IR1 and E1 when such a

. U
substitution is made will be designated as 'Eli . With this notation the result

of the interior integration is Ei1 (R', a+ ¢'o, t'). For cylindrical pulses
incident on the wedge the scattered field is given by:

1 i

E‘SC'(Rq ¢l t') = 'E
1T 4ny'i 1
Cl+ C2

(R', o+ ¢:), t') 8, (', ) da - Ei'(R', g, t"
(2.30)

In both representations (2, 22) and (2. 30) for the scattered field the incident
field may be combined with the scattered field to give an integral representation
for the total field. Equation (2.22) becomes:

=T' i .-sc'= 1

= —_— =1 1 (Y] 1
E E +E 4”"'110 v E (R,a+¢o,t)Sp(¢,a)da (2.31)

1 72

A similar expression for incident cylindrical waves involves 'Eil

The final step in the development of a contour integral representing the

and S .
(¢

field scattered by a uniformly moving wedge is to transform (2.31) back to the

!
unprimed frame. The expression for ET can be transformed to the unprimed
frame using the transformation (A.36). Making use of the far zone field

relationship (2. 5) the far zone field in the unprimed frame may be written as:
=T _ Ay An T
E = v[1+8& ] E| | (2.32)

. 1
where ' is the direction of propagation of the field. ET will be resolved ‘r
/ into three components each of which propagate in diﬁfferrentﬂdiirections, so that |

the expression (2. 32) is understood to mean:
T « LA i’ [ A, A ] =r'
E.l. 7[:1+B & pi)]El.+ v{1+B ' p') E.L

+ oy [1 +B (x' ﬁa)]‘ﬁi' (2.33)
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where i,r,d stand for incident, reflected and diffracted fields respectively.
The scattered field is the sum fs l— fr'+ Ed . Since the only electric field
component present in the problems being considered is perpendicular to the
velocity we may write ET— ET

In transforming a f1eld quantlty in the:)rlmed frame, ET (R', ¢' t') to the
variables (R, §, 1), i.e. E (R f, t) in the unprimed frame experience has shown
that the result is unnecessarlly complex. In order to circumvent this difficulty
this research makes use of the concept of a retarded position for the scatterer.
That is, the position from which the scattered field appears to come at that
moment. Doing this results in a change of variables by which the field being
observed at a fixed position and a given time is described i.e.

E TR, 0.0 =E TR ®.0.9, B®R,0,0, - E o R.B.0) .
The change of varlables is given by equations (B. 7), (B. 8) and (B. 9) in Appendix
B. Our experience shows that EZ(‘ﬂ\,(I) t) is a simpler form to use in making
physical interpretations than the form E (R f,t). For a further discussion
of the reference frames the reader is referred to Appendix B.

Substituting (2. 31) in(2.32) and making the change of variables from
(R',0",t) to (R,D,t) defined by Egs. (B.17) to (B.19) the expression for the total

field becomes:

T _ a1+ 86 By i )
E (R0, 0= ——— - E(R.0, ;008 (§,0) da
17 %9

(2.34)
The functions denoted by the tilda, 'ﬁ; and §p represent Elz and Sp
respectively with the above mentioned change of variables. When dealing with an

incident cyhndrlcal pulse the functlons under the integral are E 21 and §c

respectively



In order to accomplish the transformation of Sp(¢‘,01) [and SC(¢',01)]
it is necessary to decompose the cotangent functions and obtain Sp(¢‘,oz) in

terms of sin¢', cosf', etc. which can then be transformed. Using the identity

sin(a-b)

cota-cotbh = - Sina sinb

(2.35)
along with the identities for the sine or cosine of the sum {ifference) of two
angles, the expression (2.16), and transformation (B.16) the expression for

Sp(¢',a) becomes gp@, a) where:

D (D)
S (9,0 = P (2.36)
P ) o
A(@)COSF'F B(@) sin7,+Cp((b)

with

Ald) = A (@) sin -+ B ((I)) cos—- (2.37)

B(Q) =-A (Q))cos +B ((I)) sin (2.38)

since v, Q and ¢o are constant:

p
Al((I)) = [sin( (D) B(sin2 - sin;g):l(l—ﬁcos;(2 ) (2.39)

g
Bl((I)) =-[72(cosgl-/3)(cosg -p)+ sin ) sin ](1 Bcos — v° (2.40)

¢
Cp@)=- v sm-—-—(l Bcosq))(l -B cos—) (2.41)
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p
D(@) = -27%(cos —2 - B)(1-Beos 2 ) (1-peos ) . (2.42)

- The expression for § ((1) a) is identical to (2. 36) except that C ((I)) and D ((I))
now become C ((I)) and D ((I)) where:

g g
Cc((I)) = [72(008 ";/9 - B)(cos %2_ - B)+ sin -;2 sin -i—z](l -Bcos_% ) (2.43)

| i -a
Dc@)=-2'y|:sin( 0

g
)- B(sin—l-lg-sm ](1 Bcosq) . (2.44)

The integration variable o and the contours C1 + C2 are independent of any

variables which require transformation and are therefore the same in both the

pr1med and unprlmed reference frames.

/ g The contour integral expression for the total far zone field in the vicinity
f

a umformly movmg, perfectly conducting, infinite wedge is thus:

E'zr (R,0,t) = vlie B(x.'~p')"] J. Eiz(ﬂ,(I),t;a) S(D,0) da  (2.45)
C.+C

474
2

where

g(@a Q’) = . a . D(@ a
A(Q) cos —y+ B(D) sin —+ C (®)

with the proper C,D being chosen depending upon whether the incident field is
a plane or cylindrical wave.
The determination of the appropriate ﬁ; and the evaluation of the far zone

scattered field for the several different incident fields are carried out in the

following chdpters.



Chapter III

SCATTERING OF A TIME-HARMONIC PLANE WAVE

i
3.1 The Determination of Ej

The time-harmonic plane wave is represented in the unprimed frame by

expression (2.1)

{ ikR cos (f - § ) - iket
EZ(R, g,t) = E e : (2.1)

The incident field seen by an observer stationary with respect to the wedge is
found by transforming (2.1) to the primed reference frame using Eq. (2.6) and
(B.1) to (B.3). This becomes

ik'R' cos (f' - ¢B) -ik' ct'

Eiz'(nv,w,t') = 7(1-Beosd )E e | (3.1)
where
k' = 'y(l-Bcos¢o)k (3.2)
and
cos§ -B
cosf' = 1_Bc°os : (3.3)

The expression required in the integral (2.22) follows directly from (3. 1) when

the substitution @' - ¢'0 = a is made.

ik'R' cos a-ik' ct'

Eiz'(R', a'+¢'o,t') = y(1-Bcos ¢o) E e (3.4)

The desired 'ﬁ; can then be found. by making the change of variables defined by
(B.9) and (B.17) to (B.19). The expression for ﬁlz in this case is:

16
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i:"z(ﬂ, Q.t;e)=v(1-Boosf ) Eoe""(*"b"OS 2 (3.5)
where

a = [ct—B'Y 'R(cos(D-B)](l-Bcos¢o) ('3.6)
and

b = v R(1-Beosd) (1-Beosy,) (3.7)

3.2 The Integral for the Total Field

The contour integral representing the total far zone field in the vicinity of
the wedge when the incident field is a time-harmonic plane wave is obtained by

substituting Eq. (3.5) into the integral expression (2.45). The result is:

-ikEi-bcosaf]
E;r (€, §,t) =KS € da (3.8)

(04 a
Cl+02 ACOS;}—'+ Bsin?+C

where

'yz [1 -Bcos ¢0] [1+ B(x'- ﬁ')]

K = ryer D(d) E, - (3.9)

As a first step in the evaluation of this integral consider the poles of the integrand.

3.3 The Poles in the Complex o« Plane

The poles in the complex « plane are located at the roots of
Acosafv'+ Bsinafv'+ C. These roots can be found using the quadratic

formula and are given by:

@ a4+ 2, .2 2
cos—f—.= AC-B?‘JA;B C

(3.10)
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where arp indicates the pole location. An examination of (3. 10) reveals that

the periodicity of the roots is 27v. Within one such period two roots exist
which can be shown to lie on the real axis. To see that these poles do, in fact,
lie on the real axis note that the functions defined as A, B, and C in Egs. (2. 37),
(2.38) and (2.41) (or (2.43)) are all real. The quantity A2+ B2 - C2 is
always positive and this for either function C as is shown in Appendix D. That

is to say cos afv'= [a real number|, Further, straightforward algebra re-

veals that

1
-AC‘ﬁBVAzﬂa?‘-c2
A_2+B2

-1<

<1 (3.11)

from which it can be concluded that ap Jv' lies in the interval [0 , 2 ﬂ] on the
real axis. The location of these poles on the real axis is a function of several
parameters: @, ¢0, Q2 and B. Changing any one of these parameters while
keeping the others fixed will shift the poles along the real axis. The physical
significance of the poles is discussed in association with the evaluation of the

integral (3. 8).

3.4 Evaluation of the Integral Representing Erzr

The evaluation of the integral (3. 8) representing the total field Eg(ﬁ, Q,t)
will now be considered. Once the locations of the singularities of the integrand
have been established the contours of Fig. 2-2 may be continuously deformed
into the contours of Fig. 3-1. Depending upon the values of Q), ¢o’ Q, (Q—»v)
and B the poles indicated in Fig. 3-1 may or may not be present in the interval
[0, 27r] on the real axis. For purposes of calculation at this point both poles
will be assumed to be present in the interval [O, 27r]. Note also that the integrand
has saddle points located at ¢ =n7+io for n=0,1,2, etc. The only saddle
points of interest are those at = 0+i0 and @ =27+ i0 through which the

contours D1 and Dz pass.
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FIG. 3-1: CONTOUR DEFORMATION FOR TIME HARMONIC
PLANE WAVE

The contributions due to the integration around the poles are computed

using Cauchy's Residue Theorem. The residues at the poles are given by:

. V'e-ik[a -b cos ap]

4%+ %7

(3.12)

Residue

so that the contributions to the total field made by these integrations are -27i

times the residue and the expression for E'zr (R, $,t) may be written:

-ik|a-bcos ap]

T r 2wV
E, RDt) = —H————pr IS e
VA +B -C

(3.13)

X KJ‘ e—ikEa-bcosa] da
D,+D

Acosg+Bsin—q+ C
1 72 v v
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Examining the expression (3.13) it may be noted that the terms resulting from
“the residue integrations represent plane waves. The negative sign is associated

with o . and when the expression for cosa . is substituted the plane wave is

P1 pl
found to represent the incident field. The positive sign is associated with ap2

and when the expression for cosea . is substituted the plane wave is found to

represent a reflected field. Againpizt is emphasized that either one or both of
these plane waves may be absent depending upon where the poles apl and apz
lie on the real axis. A more detailed discussion of these incident and reflected
planewaves will be given in connection with the specific examples to be considered
later.

The remaining integral in (3. 13) will be evaluated using the saddle point

method. In particular, consider the integral I;

da

-ika
I = Ke
o . Q
D.+D, Acos—+ Bsin—+C
1 72 v v

ikb cos a
€ (3.14)

Recalling that it is the far zone field which is of interest the integral will be
evaluated for large R. Note that kb is given by:

kb = ‘ysz(I-Bcos(I))(l-Bcos%) (3.15)

and even though the terms in parenthesis are small R may be chosen suf-
ficiently large so that kb will be large. In practical situations where B is
small R need not be chosen as large to allow the asymptotic evaluation of (3. 14).

Performing the asymptotic evaluation of I to the first order results in the

expression:
T T
-i- 2A_ sin — -ik(a -b)
I~Ky2re 1 v ¢ (3.16)
A2 sinzlr— - (B, cos =+ C)2 l{—k—l;'
1 v
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Examining the expression (3.16) it is found that I represents a cylindrical wave
emanating from the edge of the wedge - a diffraction field. A detailed discussion
of the diffraction field will be left to specific examples.

Finally the expression for the total far zone field when a time-harmonic

plane wave is scattered by a uniformly moving, perfectly conducting wedge may

be written:
2
~ v (1-Bcosy ) D(P)E -ikla-bcosa
E':(ﬂ:q):t) = - — ° -E-}-B(ﬁ'ﬁi)"’]e [ pa
2,IA2+ 82 - 2

-ik|la-bcos a 2]
+ E+B(§'-6;)‘E]e P

3mi
72(1-Bcos¢ )[:1+B(ﬁv.ﬁa)~]D((I))E A sinf-,e 4 e-ik[a-b]
+
A/27r v {A sin2 l-(B cos——+ C) } VR‘

(3.17)

where, as has been noted, there may or may not be plane wave terms present
depending upon the observers location.

In the special case of a uniformly moving half plane the integral I may be
evaluated exactly in terms of Fresnel integrals. For this situation the integral

I, since v'= 2, is given by:

I =

. ' ikbcos a
K e"kaj i (3.18)

a a
+ - =
D1 D2 Acos 7t Bsin ) +C

The evaluation of (3.18) is given in detail in Appendix D. The result of that .

integration is-that I may be expressed as:
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] |
iZ 2 2
—~. 4 -1k[a-b]J' - 21kbp ~2ikby
[ = YrKe e te zFo(tuzmwe IFo(tpltth‘:)
: e s |
- fa 8% G2 l
| (3.19)
where
[¢) 1t2
F_(z) S ot (D.23)
z
and where
GG )
_ BC+A 'IA2+B2—CZ
Hy = Y (D.12)
A+B -
) laxc-Aﬁ/A2+Bz-c2
My = 5 5 (D.13)
A°+B

are both real numbers. The upper signs in (3. 19) correspond to ul(uz) positive,
the lower signs to ul(u 2) negative. The expression for the total field when a
time-harmonic plane wave is scattered by a uniformly moving half plane is

given by

'yz(l -Bcos ¢0) D((I))E0

-ikla -bcosa
E: R, 9, t) = ' -[1+B(ﬁ'-ﬁ;)'je u{ - pl]
21/A2 + 132 -C 2
-ikla-bcosa , -ikl'_é-b]- i-7£ _
+|:1+B<9c'-ﬁ;)"]e pﬂ-[uﬁ(ﬁuﬁa)“]e o 12
] -2ikbuf —2ikbu§
Fe F (tpf2kb) te F (¢ p-zﬁﬁ') (3.20)
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with the samé sign convention as in (3.19). As previously mentioned, His Hoo
‘apl and apz depend upon the observers position. When apl and/or apz lie
outside of the interval [O, 21r] on the real axis then the corresponding plane wave
term(s) are not to be included in the representation (3.20). Correspondingly the
values of u i and Hy will change and thus determine which set of signs to use

in representing the field at that observation point.

3.5 Physical Interpretation of Total Field

In order to gain some insight into the effect of the velocity it will first be
noted that when B =0 the representation of the total field given by (3.17) re-

duces to:

-1k[ct-Rcos(¢—¢o)] -ikE:t-Rcos(ZQ-¢-¢o):l

T -
E (R, g, t) = E e E e
r ¢ 3
Eosin1 2c0s — sin (Q—;Q) ‘
+ v < 1 &

‘[—| 2 g 72
1 - -
vifen [sin-’-r;sin(ﬂ)il —[cosl'-cos Q—-g+ sin —9-]
v v v v v
. J
-ik[ct-R] + i-}

- (3.21)

ey

which is the well known asymptotic expression for a plane wave scattered by a

wedge. The pole locations (already substituted in Eq. (3.21)) are given by

apl

g-¢

0
(3.22)

a

p2 g-(2Q- ¢o)

one representing an incident wave propagating in a direction ¢o and the other

a reflected wave propagating in the direction 22 - ¢o' If the observation point §,
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where < @ < 27 - Q is such that either apl 02 lie in the inter-

val [0, 27r] then the plane wave term is included, otherwise it is not

and/or o

included. The diffraction term is present for all values of §. The exact ex-

pression for the half plane (3. 20) reduces for B =0 to

—ik[ct-Rcos(¢ -¢o)] -ik[ct-Rcos (¢+¢0)]

T -
E (R, g, t) = E e E e
T
e-ﬂ(Ct-iZ ichos(¢-¢o)' L —
+E = {: t
Eo V? +e€ Fo [ yl 2kR:\
ikR cos (§+¢ )
+e ° Fo[tpz;]zm}' (3.23)

where -

r

]

1
2]
de
=}

—

(D. 32)

sin (

=
]

Tlﬁs is exactly the expression for the stationary half plane as given in Born and
Wolf (1964) p. 569 when consideration is given to the locations of the poles and
the signs on My and Mo ‘If the asymptotic expression for Fo(z) is used
Eq. (3.23) reduces to Eq. (3.21) with v' set equal to two.

 The effect of a scattering obje<;t moving with relativistic speeds is most
easily seen by considering Eq. (3.17) for the case of an infinite sheet i.e. a
wedge with interior half angle Q'=7/2, Setting v' =1 in Eq. (3.17) the
diffraction term disappears completely due to the term sinz. The total field is

due entirely to the sum of the incident and the reflected waves and is given by
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v2(1-Beosd JD@)E,
E, * -[HB(:“:’-ﬁ;)

z
2‘/A2+ B2 - 02

+ [1+B(?c'-1'5;,)"'] e

~] e-ik [a -bcos apl]

-ikja-bcosa_,
[ 52 . (3.24)

In the primed frame the vectors ﬁi and f); may easily be determined as
Ao v Qo4 o v M '
By cos¢o & sm¢o y (3.25)
Ay -= _ v & 4 ging'
p,, =-cos ¢0 & sm¢0 ¥y (3.26)

so that using Eq. (B.17) it is found that

[1+3(§'-ﬁ;)"f:| - —_ (3.27)

v “(1-Bcos ¢o)

and

B (1+82)—23cos¢0
[1+B(§'-ﬁr)]= TFoasf) (3.28)

In order to evaluate the remaining functions note, since Q'[/v' =7 /2, that

= B ) sin

cos 2 .1 (3.29)
v v Y
and the functions A, B, C and D become
1 ® 0
A = - . - - —
B1 ~ sin ” (1- Bcos ” ) (3.30)
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B =4 = (cos% - B) (l-BcosT’g) (3.31)

C = -%sinTO(l-Bcos%—) (3.32)
g, )

D = —2(cosT-ﬁ) (I—Bcos-;) . (3.33)

The pole locations may now be found by substituting these expressions into
Eq. (3.10) which yields

g

sin%) sin-v—° t ‘Yz (cos%-ﬁ)(cos—;l -B)

cosa = ; (3.34)
d 211 )1 9)
v -30087)( -80087

The exponential term [a -bcos ap] will now be evaluated and expressed in the
unprimed coordinate frame. In order to do this Eqs. (B.7) and (B.9) may be

written as

R(cosd-B) = x- vr (3. 35)
and used along with (B. 8).

Rsin =y . (B.8)

Substituting a, b and cos ap in [a- b cos ap] and using (3. 35) and (B. 8) obtain

a—bcosxarpl =ct - xcos¢o-ysm¢0 = ct-R cos (¢-¢0) (3. 36)

and

a-bcos @ 0" l_:Yz (1+32) - 2372 cos ¢o]{ct-Rcos (¢-¢r)} (3.37)
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where

2/3-(1+32)OOS¢0
cosf = 5 . (3.38)
[(1+3 ) - chos¢o]

The upper sign in (3. 34) determines o the lower sign, @ . The coefficient

pl’ p2
in Eq. (3.34) becomes - 72(1 -Bcos ¢0)E0 when the substitution for A, B, C
and D is made. Finally then the field scattered by a uniformly moving sheet

~may be written

-ik|ct-R cos(f-¢ ) -ikQlct -Rcos (¢ - ¢)
E'(R, 0, 1) = E e [ o]-QE e [ °]
z 0 0
(3.39)
where
2 2
Q = v [(1+B )-2Bcos¢;] . (3.40)

This is the result obtained by Sommerfeld (1964). Examining (3. 39) it is found
that the effect of the velocity is to

1) Change the frequency of the reflected wave, i.e., the doppler frequency:

k =Qk (3.41)
r
2) Change the angle of reflection as indicated by Eq. (3. 38)
3) Change the amplitude of the reflected wave as determined by the factor

These are well known results and are pointed out here only to serve as
basis for comparison when the results of the pulse scattering are analyzed in

Chapters IV and V.
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The field scattered by a half plane provides a second special case

through which the effects of a moving scatterer may be studied. The exact

representation of this field is given by Eq. (3,20) when €' is set equal to

zero and v' equal to 2, The various terms in (3, 20) will now be evaluated,

First note that for the half plane

cos9-=l s sin9—=0
v v

so that the functions A, B, C and D become

A = A1 = -'y(l-B)sin% (1-300870)
B - B, - -7 (1-8) cos L -B) (1- B cos=2)
C = —y(l—B)(l-Bcosg) sin —

v v

g
D = -272(1-3)(1- B cos q))(cos—vg- B)

v

(3.

(3.

(3.

(3.

(3.

With these expressions for A, B, C and D the various factors in

Eq. (3.20) are computed as

v (1-Beosp )D@E, .

————— = - v (1-BcosP ) E
l24a% 52 % °°
e +B -C

[1 +B & 'E\)'i)N:lz [1"' B & )~:| ) 72(1-;cos¢0)

1
72(1- Bcos )

LB -

(3.

(3.

(3.

42)

43)

44)

45)

46)

48)

49)

50)
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’YZ(COS@-B)(COS¢ -B) t sinQsing
cosa = 5 ° ° (3.51)
v “(1-BcosP)(1- Bcos¢0)

o

1-cos(d @) 12
= 5 (3.52)
2y (1—Bcos@)(1—Bcos¢o)

H1,2

so that the exact expression for the total field when a time harmonic plane wave

is scattered by a uniform velocity half plane becomes

- —ik[(l -Bcos ¢0) ct -}?i(_cos ®-B)cos ¢o —;Q\sin d sin ¢o]
Ezm,{p, t) = E e :

-ik (1-Bcos ¢o)ct -Hicos D - B)cos ¢o + fl'sin P sin ¢o

-E e
o

m
\‘ ‘1_— cos¢0) o 4 -ik(l—Bcos¢o)(ct—ﬂ)
+ E (S

" %o [T-Beos®) 47
-ikﬂrl—cos((l)-(d) ¢ -
;e - O] Fol} sin ( 02 )l/Zkﬂ]

-ikﬂpl—cos((I)—qi ) g +@
- O] Fo[f sin(—gz—)lJZkﬂ} (3.53)

-1

Te

The two plane wave terms take on a more familiar form when written in the

regular unprimed variables (R, () rather than in the retarded variables

(R, D), i.e.
-ik I:ct -Rcos (¢ —¢0):|

i -
EZ(R, g, t) = EO e (3.54)
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and

-ik|ct - R cos (-d+¢ )
E e [ — 0]. (3.55)

r
E_(R, g, t)

The incident field appears as expected and the reflected field reveals no
difference between reflection by a stationary half plane and Laf by a moving
half plane. This fact was pointed out by Sommerfeld (1964).

Consider the expression for the total field in the shadow region where

the plane wave terms disappear and the diffracted field is the total field, i.e.

. T

_ (1—Bcos¢0) e'IZ -ik(l—Bcos¢0)(ct-'ﬂ)
E, (1-B cos ) ' © ‘

B (R, §,0) -

e

2

_ikﬂ[l -COS@+¢O)—JF [sin(¢+¢o) VEE&J

) N2kR | . (3.56)

-€

-1kR[1-cos(<1)-¢o)]F [ (¢0-<1) -

This expression represents the diffracted field not only in the shadow region but

also in the illuminated regions. The expression (3.56) can be written

\(1 - Bcoé;ilo) ik B cos ¢o (ct-R) q

T-Beos D) © E (R Q1) (3.57)

d
E (K. .t =
where ESO (®, @, t) is precisely the expression for the diffraction field in the
stationary half plane case provided the edge of the half plane is located at the
origin of the retarded reference frame.

The effect of the velocity is included méiay in the coefficient of

d
Ezo(ﬁ, ®,t). When B is reduced to zero this coefficient becomes unity.

Examining the coefficient
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(1-Bcos¢o) ikBCOS(ZO(Ct-'f\))
e (3.58)
(1-Bcos @)

it is apparent that oth the amplitude and phase of the edge diffracted field are
affected by the motion of the half plane. Let (1-fScos ¢0)/(1 - Bcos Q) be called
the '""Amplitude Pattern _fzicrtrdxt‘?'i Figure 3-2 shows a sketch of this pattern
factor after it has been normalized with respect to the constant (1-[Scos ¢0).
The effect of the motion is seen to be to increase the intensity of the diffracted
field in the direction of motion and to reduce the intensity of the diffracted

field in a direction opposite to that of the motion. The pattern of the field
diffracted by a moving half plane can be found by a pattern multiplication of the
field pattern of a stationary half plane with the Amplitude Pattern factor. If B
is zero the Amplitude pattern factor reduces to a unit circle. The phase change
due to motion is seen to be proportional to the factor (ct-#). This means that
the equal phase surfaces remain circles, however, the value of the phase angle
on a given equal phase surface is different from what it would be in the stationary
case. The constant phase circles have their centers at the location of the edge
corresponding to the position of the edge at the time at which that phase front
was diffracted. Since the edge is moving the constant phase circles are not

concentric but offset giving rise to the well known changing doppler frequency.
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FIG. 3-2: AMPLITUDE PATTERN FACTOR FOR DIFFRACTION
FIELD.



Chapter IV

SCATTERING OF A UNIT STEP PLANE PULSE

4.1 Determination of ﬁ;

The incident field which is a unit step plane pulse is expressed mathe-
matically in the unprimed frame by Eq. (2.2)

E; (R,0,t) = HE:t-Rcos(¢-¢O):| (2.2)

where H(x) is the Heaviside unit function defined in Appendix E. Figure 4-1
illustrates the conditions which exist at t = 0,

El=1 E =0
] o X
fo QO x'
A
B

FIG. 4-1: PROBLEM GEOMETRY FOR PLANE PULSE

33
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The incident field as observed in the primed frame is found from (2. 2) through
the use of Eqs. (2.6) and (B.1) to (B.3). The description of the incident field

in the primed frame is thus

Eiz'(R', ¢, t') = v(1 - Beos §)H {7(1 -Beos ¢o)[ct' ~R’ cos (g -¢'O):|} .

| (4.1)
For use in the contour integral representing the total field in the primed frame
set ¢' -¢6 = a in (4.1).

EZ(R', a+ ¢'0, t') = 1 -Bcos ¢0)H{'y(1 -Bcos ¢o)|:ct' -R'cos a]}.
(4.2)
Finally, the desired expression for EZ('R » @, t; @) is obtained from (4.2) by
the transformation (2. 32) and change of variables (B.9) and (B.17) to (B.19).

and becomes

ﬁi(ﬁ, ®, t;a) = 'y(l-chs¢o)H [a-bcosa] (4.3)
where

a = [ct-B'yz mcos@-ﬁ)]u-ﬁcosgao) (4.4)

b = yzﬂ(l-ﬁcgs@u-ﬁcos;zo) : 4.5)

4.2 The Integral for the Total Field

The integral representing the total field when a unit step plane pulse is
scattered by a uniformly moving wedge is obtained when (4. 3) is inserted into
expression (2. 45) giving ‘
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T Hla-b cosald
E (R, §, 1) KS [a = "’]a" (4.6)
C,+C_, Acos—+Bsin—+C
1 72 A V!

where

v*(1-Beosd ) [1+8G 1] D)

K= 47p'i (4.7)

4,3 Cuts in the Complex a Plane

The Heaviside function which appears in the integrand of Eq. (4.6) can be
thought of as a function which is analytic in the entire @ plane and also single
valued provided certain cuts are introduced. Appendix E discusses the analytic
representation of H(z) and the cuts introduced in the @ plane by the mapping
z =a-bcosa. Th‘e feature of such a representation which is useful is that
H(z) = 0 on the cut. The branch points for these cuts in the « plane depend
upon the ratio a/b which in turn is a function of (R, @, t), ¢0 and B. This

-means that even for a stationary wedge (8 = 0) the branch points in the complex
a plane will move. When the wedge is moving the motion of these branch points
is altered by the influence of B thus introducing one aspect of the effect of the
velocity upon the scattering problem. Knowing that the integrand is zero on
these cuts facilitates the visualization of what is happening in the evaluation of
the integral. Figure E-1 shows the cuts in the complex @ plane for different

ranges of the ratio a/b. .

4.4 Evaluation of the'Integ'ral Representing E;r

The evaluation of the integral (4. 6) involves the same poles of the integrand
as were discussed in Section 3.3. There the poles were shownto lie somewhere
on the real axis in the complex a plane, With a knowledge of the cuts of the:
Heaviside function and the location of the poles the contours C 1 + C., shown in

2
Fig. 2-2 may be deformed to those shown in Figure 4-2.
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iii - Case 3 :[b < a<oo]

FIG. 4-2: CONTOUR DEFORMATION FOR THE UNIT STEP PLANE
PULSE.
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The significance of the intervals corresponding to each of the three cases shown
in Fig. 4-2 can be obtained by considering the problem of a stationary wedge.
The branch point @y is given by

cosdb = %— (4.8)
For the stationary problem this becomes
a _ct
cosarb "R - (4.9)

Case 1 corresponds to large negative time, that is, from a/b = - up to

a/b = -1. This is a time interval t = -wtot = -R/c. The time t=-R/c

is recognized as the earliest possible time an observer can see the incident
field. The branch point when a/b = -1 is located at @ =um +1i0 where n
is odd. Prior to this time (t = -R/c) the branch point has been moving along a
vertical line in the « plane toward the real axis. This means that prior to
a/b = -1 the entire contour C1 + Cz lies on the cut of the Heaviside function
where the integrand is known to be zero. Thus case 1 corresponds to the time
interval during which the observer does not see even the incident pulse and the

evaluation of E: along C1 + C, in this interval correspondingly yields zero.

2
Case 2 includes the interval -1<a/b <1 or for the stationary problem

-—< t < = (4.10)

The time t = R/c is recognized as the earliest possible time at which an
observer will see the field diffracted by the edge. The location of the branch
point at this time is cos a = 1 or @ =ur +i0 where n is even. This
means that the moving branch points (and thus cuts) have "uncovered" the real
axis in the interval [0, 27r]. If either of the two poles lies in the uncovered

interval of the real axis that means that the observer sees that particular
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contribution to the field during this time interval. However, as mentioned above,
the edge diffracted field is not observed during this time interval.

Case 3 corresponds to 1 <a/b < or in the stationary problem

%<t<oo . (4.11)

This is recognized as the time interval during which an observer sees the edge
diffracted field and possibly the reflected and/or incident (pole contribution)
fields. During thié time interval the branch points move along vertical lines
in the o plane away from the real axis.

Consider now the evaluation of EZ (R, O, t) as given by (4.6) for each
of these three cases. In case one the integrand is zero on the entire contour

and thus
T
E (R, 0, t) =0 (4.12)

for [—oo_ <afb< -1__].

In case 2 the branch points have moved to "'uncover" a portion of the con-
tour along the real axis. The two branch points in the interval [0, 27F_| may be
described by @, =x, +i0 and @, o= (21 -x,)+i0 where cosX, = a/b and
0< xb.<1r. If one of the two poles ap, lie in the interval abl < ap < ab2 then
a contribution is made to the value of EE which is given by -27i times the

residue at the pole. Such a contribution is given by

27v'i Hl?.-bcosap]

E:(R, $.t) = £K (4.13)

1

{a2+ 2 - 2

where the upper sign corresponds to «_. and the lower signto o _. If neither

pl p2
pole lies in this interval then the total field remains zero. Examining Eq. (4.13)

the pole contributions are seen to be in the form of unit step pulses. One of these
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pulses corresponds to the incident pulse and the other to the reflected pulse.

The total field may be written as

' : 2
¥ (1-Bcosd )D()
T _ 0 Ay, Ay -
E A, 0, t = — {-[HB(X ﬁl) ]H[Ei bcosapl]
2\/A +B°-C
+ [1+B(ﬁ'-ﬁ;)~] H[a-bcosapz]} (4.16)
provided @ < ap < ab2 otherwise

E @ 1 =0

during the interval [—1 <a/b< 1] . That is either one or both or neither pulse
will be seen depending upon where the poles lie.

In case 3 the real axis portion of the contour is completely uncovered. If
the observers position is such that the poles lie in the interval [0, 27r] then
(4.16) represents pole contribution to the total field seen by the observer and the

expression for the total field may be written

2
T v“(1-Bcosd ) D(@)
E (R 0t - - [1+B(ﬁ'-f)!)"‘] H[a-bcosa ]
z 2 2 2 1 pl
2‘/A +B -C
| af;l da
+[:1+B(ﬁ'-ﬁ;)~] HE.-—bcosar 2]}+ KS = =
P a Acos—+Bsin—+ C
bl 'V' V'
a
+KSb2 — da - . (4.17)
* — ——
g Acos v'+BSinv' +C



40

where @ and @ q are shown in Fig. 4-2. The integration around the branch
points can be shown to contribute nothing to the value of the integral. The
integrals in Eq. (4.17) can be evaluated using an integral identity tabulated by

Gradshteyn and Ryzhik (1965) [Eq. 2.558 (4)].

X
- —+
dx -2 -y |(C-Altan g+ B
= tan . (4.18)
Acosx+ Bsinx+ C —2———2-——2\ 2 D) ﬁz
fa+8%-c cZ-a2-8

The total field when a plane unit step pulse is scattered by a uniformly moving

wedge can now be written down as

T 72(1-BcOS¢O)D((D)
E, (R t) =

‘/2 - = -[1+B(>'t'.ﬁ;)~] H[a-bcosapl]
2YA " +B -C

iy

+ [1+[3(§'-ﬁ'r.)~] H[a—bcos apz] -

T
a a* a a +27
(C-A)tan—+B | bl (C-A)tan—+B| bl
-1 2V -1 2V
 [tan + tan
2 2 2 V 2 2 2 ¥ «
- - - - +
"/C A -B abl C -A -B abl 27
(4.19)
where
o = icosh () (4.20)
bl b" - )

Recall that this represenfs the field in the time interval 1<a/b <. Setting
a/b =1 the range of t is seen to be

{i <t <. © (4.21)
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so that (4.19) is valid for times after the edge diffracted pulse front has passed
the observer located at (77, ). The arctangent terms are always present
while the plane unit step pulse terms may or may not be present. The inter-
pretation of (4.19) is given in the following section as it relates to some

speciﬁc examplés.

4.5 Interpretation of Results

In order to gain some insight into the effect of the velocity upon the field
scattered by a wedge when the incident field is a unit step pulse, two specific
examples will be considered: the half plane and the infinite sheet.

Consider first the infinite uniform velocity sheet for which v' =1.
Examining Eq. (4. 19) which represents the total field it is seen that the
arctangent terms representing the diffraction field disappear. This is evident
if one first interchanges the limits on the second arctangent and then evaluates
the functions at the limits. Since tan (3%2—1) = tan % the arctangent terms
exactly cancel one another. The total field is thus given by an incident step
pulse and a reflected step pulse. Comparing Eq. (4.19), excluding the arc-
tangent terms, with Eq. (3.24) they are seen to be identical except that the
exponentials functions are replaced by Heaviside functions. The evaluation of
the terms in Eq. (4.19) thus will exactly parallel those of Eq. (3.24) so thht
Eqs. (3.27), (3.28), (3.36) and (3.37) may be used in the rewritting of Eq. (4.19).
As a result the total field when a unit-step plane pulse is scattered by a

uniformly moving infinite sheet is given by

E;F(R, g,t)=H [ct-Rcos (¢-¢O)]- QH{Q[ct-Rcos(¢-¢r):|} (4.22)
where

Q = 'Yz |31+32) - 2Bcos¢o] (3.40)

and
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(3.38)

26-(1+32)COS¢
cos = °

r Ii(1+32)-2Bcos¢o]

The reflected unit step pulse has an amplitude given by Q. Note if ¢0 is
zero that Q approaches zero as S ap;roaches plus one, i.e., the incident
pulse never catches the moving sheet. As [ approaches minus one the
amplitude of the reflected field becomes infinite. Looking at the argument of
the Heaviside function it is seen that when ¢o is not zero the reflected @liis
the same as in the time harmonic plane wave case. This is reasonable if the
Fourier Synthesis of a unit step pulse is considered. That is, when Eq. (3.39)

is multiplied by the spectral function of the incident unit/step pulse and the

inverse Fourier transform taken the result is precisely Eq. (4.22). The factor

Q in the argument of the '@i}isidé function is always positive and thus has no

effect upon the reflected pulse.

Consider now the uniform velocity half plane for which v' = 2. The
representation for the total field given by (4. 19) may be rewritten for the half
'plane by making use of the Egs. (3. 42)£}£o@ (3.51). Recall that the presence
of the plane pulse terms depends upon the presence of the poles ap in the

interval [O, 27{] of the real axis. With this in mind Eq. (4.19) becomes

Eg(ﬂ, (_]5_, t) = H[a-bcosafpl] - H[(a-bcosapz)]

e
>R

(1-Beosf ) | 2X(Atan g + B) b1
- tan ‘
m(1-Beos ) x? +[(C+A)tan%+B]EC—A)tang-B]
4 abl
(4.23)

where

TS o5 9\
X = }/C2—A2-B2
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and ‘abl is given by Eq. (4.20). Examining the unit step terms with cos o

given by Eq. (3.51) it is found that they represent incident and reflected pulses.

They may be expressed either in terms of retarded coordinates (77, @)

Eiz(?ﬁ), d, t) = H[(l -Bcos ¢0)ct - ﬂ(cos(p—ﬁ)cos ¢0 - ﬂsin@ sin ¢o]

(4.24)

EZ (*k, 0. t) = H[(l - Bcos ¢0)ct - R(cos ®-B) cos ¢O+ flsin § sin ¢o]

(4.25)

or in terms of (R, §f)
EiZ(R, g,t) = HEt-Rcos(¢—¢0; (4.26)
E; (R, @, t) = H;t—Rcos(¢+¢0; . (4.27)

As in the case of the time harmonic plane wave there is no change in the
reﬂected field due to the motion of the half plane. If a wedge were being con-
sidered as an example one would find a reflected pulse which has a changed
amplitude and a changed angle of reflection such as depicted by the infinite
sheet considered earlier (i.e., the wedge with interior half angle Q'=7/2).

In order to facilitate the examination of the diffracted field consider the special
case where ¢0 = 0. That is, the plane pulse front is n‘cﬂ'ﬁto the surface of
the half plane in addition to being normal to the edge. For this condition the

pole a/pz moves out of the interval [0, 27r] and the reflected field disappears.

The total field in the region 7/ < ct may then be written

T _,__20-p) -1[fT-B fct-&'
EZ (ﬁ: @: t) 1 m tan I:Sin% v 2{] . (428)
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To reduce the argument of the arctangent term in (4.23) to that in (4. 28)

¢0 set equal to zero. The argument may be transformed to the primed frame
for simplification and then transformed back yielding Eq. (4.29) as a repre-

sentation of the arctangent term in Eq. (4.23).

2tanh Ja—b|-

2tan” ) 11'% 4a| (4. 29)
SIS (1 - tanh® -—:-’—)

Using the expression for the sum of two tangents obtain

-1 /JT?E . _Iilll ey |
2tan sinh ) (4.30)
@;— 2 SRASEN
Now
o} cosh |, | -1
sinh I;" - ’/ lzb‘- (4.31)

so that when (4. 20), (4.31) and (4.30) are used Eq. (4.23) becomes (4.28). It
is convenient to note at this point that when S in Eq. (4.28) is set equal to zero
the totalvfirc;l?(vi'i‘epresentation is exactly that for the stationary half plane as
given by Friedlander (1958). Now consider the diffraction term in Eq. (4. 28).
Recall that (4. 28) describes the field in the retarded reference frame. The
effect of the motion is to change the argument of the arctangent by the factor

‘/1 -B where

0 < y1-8" <qy2' . (4.32)

Figure 4-3 illustrates the arctangent function.
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FIG. 4-3: ARCTANGENT FUNCTION.

When the half plane moves to the right S lies in the interval [0, 1] and the
effect of the factor §1-B' is to reduce the argument of the arctangent function
and thus reduce the diffraction field in a given direction @ The coefficient of
the diffraction term 1/(1-Bcos() serves to redistribute the field intensity in
the direction of motion and is the same normalized amplitude pattern factor
which was discussed in Chapter III.

To obtain the transient field seen by a stationary observer recall the
definition of the retarded reference frame. At the time the incident pulse front
is diffracted 7 (location of the origin of the retarded frame) equals zero. As

time passes an observer location (R,¢) takes on different values (7, Q)) due to

changing 7. This is illustrated in Fig. 4-4.
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FIG. 4-4: VARIATION IN (%, §) WITH TIME.

To evaluate the transient EZIE at (R, §§) select a value for 7. Using
Egs. (B.7), (B.8) and (B.9) determine (A, ) and t. The Eq. (4.28) may
then be evaluated to determine E: (R, ¢, t). Select a new value for 7 and
repeat the procedure. The total influence of the motion is thus reflected in

the amplitude pattern factor, the factor 1 - B' and the variation of A and

@ with time.
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Chapter 5

SCATTERING OF A CYLINDRICAL IMPULSE

D-éiiermination of ﬁu

The 1n01deﬁt field con31dered in this chapter is due to a line source

located at the point (R ¢ ) and running parallel to the z axis in the stationary

frame.

The excitation of the line source is an impulse in time 6 (t+ R /c) SO

that the field radiated by the line source, the incident field, is given by

2 2 _2
H[c t-t) -R (¢—¢)]
: ° ° (5.1)
2 2 _2 K
1/c (t—to) - R (¢—¢0)

i _
EZ (R, §,t) =

5 o i
where t = - Ro/c and R” is given by Eq. (2.4)

2 2 2
R =R +R_ - 2RRocos(¢-¢o) : (2.4)

The geometry of this problem is shown for t =0 in Fig. 5-1.

FIG. 5-1: PROBLEM GEOMETRY FOR LINE SOURCE.

47
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Note that ¢o here defines the location of the line source rather than the
direction of propagation of the pulse front as in the plane wave cases. The
incident field in the primed frame is easily found from (5.1) if we recall that
2/ 2
c |t

and Eq. (2.6) the incident field in the primed frame becomes

2
- R 1is invariant under the Lorentz transformation. With this fact

v[1-86, 9] u [ e -mig g

-' ! —_—
E (R, §,t) = (5.2)
’ E 2 2 o
1 _ ¢t _TR! '
et -t]) -R" (-0 )
For use in the Sommerfeld contour integral this equation is written
). 2
o 'y_[l-B(f)i-?c)]H[cz(t'-tl)) —IR'lz(oz)]
E (R, atf,t)= ———0 (5.3)
2o 2.2 2
-t )° R (0

2
where ]R1 is given by Eq. (2.25). Upon making the transformation of (5. 3)

back to the unprimed frame (retarded coordinates) the desired expression for

E; (R, D, t; a) is obtained

B (R, 0.t;e) - Y[I_Y(ﬁi'ﬁ)]H [aﬂcfa] (5.4)

1/a—bcos a'

where

a = c,’lf; —ZBctﬁ(cosI)—B)— "ﬂz(cosé—B)2

Yo

- ﬁzsin2@+ 2ct ﬂo(l—Bcos(bo)

- 28 'yzﬂﬁo (cos O -p) (1—Bcos@o) (5.5)
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and

b = 2'}'2‘ﬁﬁo(1-BCOSQ)) (1-Bcos@o) . (5.6)

5.2 The Integral for the Total Field

The integral representing the total field when a cylindrical impulse is
scattered by a uniformly moving wedge is obtained by substituting Eq. (5.4)
into Eq. (2.45). The result is

ET(ﬁ, B, t) = KS H[a—bcos;z]da
z c.+C (Acos—q-+B sin——+C)r\’a-bcosa
1 2 V' V'
(5.7)
where

2 A A { A A\

yo{1-Bx-p)| [1+BE" - p')” (D(D)
R L R »

dqv'i

and A, B, C and D are given by Egs. (2.39), (2.40), (2.43) and (2.44)
respectively. The contours C1 + C 9 in the complex o plane may be
continuously deformed from those originally given in Fig. 2-2 to those shown
in Fig. 5-2. The choice of this contour deformation is based upon the locations

of the cuts in the complex « plane.

5.3 More Cuts in the Complex o plane

that were discussed in Section 3.3, the /cuts of the Heaviside function that were

discussed in Section 4.3 and in addition the branch points and cuts of the

irrational function 1 Ha-bcos a. Notice thatthe branch points of the irrational function,
cos czb =a/b, arepreciselythe branch points of the Heaviside function. Recall that ais

,afgtlction of (R, @, t), ¢0 and (3 (differentfor cylindrical waves than for plang_waves)

so that the branch points move. The motion of the branch points as a function

|



50

-

(a) -w<a/b<1

(b) -1<a/b<1

bl

% | ‘

() 1<afb<ow

FIG. 5-2: CONTOUR DEFORMATION FOR CYLINDRICAL IMPULSES.
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of the ratio a/b was introduced in Appendix E and discussed in detail in
Sections 4.3 and 4.4 for plane waves incident. The irrational function will be

made single valued by the choice of cuts from the branch points «, to infinity

B b
as shown in Fig. 5-2. The significance of the three different intervals
corresponding to the values of a/b as shown in Fig. 5-2 is discussed in the

next section.

5.4 Evaluation of the Integral Representing Eg (%, ©. 1)

In this section the evaluation of the integral given by (5. 7) will be cpvpnv-‘_
sidered for each of the three intervals of time shown in Fig. 5-2. As an aid
in interpreting the resulting integration we will first consider the physical
significance of the three intervals for the ratio a/b. This will be done as in
the plane wave case discussed in Section 4.4 by examining the ratio a/b when

B =0. For cylindrical waves incident and 8 = 0 the ratio a/b becomes

2
02 t + 2ct Ro - R2
= SRR . (5.9)
3 0

o] e

The two critical points in time correspond to a/b equal -1 and +1
respectively. If we set a/b = -1 then by (5.9) we have that t = -R/c. This
is recognized physically as the earliest possible time at which an observer can
see the incident field. The motion of the branch points in the interval

—Ro/c <t<-Rfec, R< R is along a vertical line @ =n7+1iy (nodd) to the
point @ =n7+i0 when t=-R/c or a/b=-1. In this time interval the
observer does not see even thei?x?:ﬂféht pulse. If we set a/b =+1 then by
(5.9) we have that t = R/c. This is—recognized physically as the earliest
possible time at which an observer can see an edge diffracted pulse. The
motion of the branch points in the intervalrh-R/c <t<Rfcor -1<afb<1
=n7+1i0 (nodd) to @, =n7wr+i0 (n even).

b b
Prior to t = R/c only incident and reflected fields (pole contributions) may

is along the real axis from o«
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may be observed. Subsequent to t =R/c the diffracted field will be observed.
Also subsequentto t = R /c the branch points move away from the real axis
along the lines e¢=nn+iy (n even).

Consider now the evaluation of the integral representing E’ZI‘ (R, @, t)
in case (a) where a/b < -1. In this interval the branch points are located such
that the entire contour Cl+ C2 lies on the cut of the Heaviside function.
Recalling that the integrand is zero on the cut as discussed in Appendix E we

have that the total field during this time interval is zero;i.e:

E:(ﬂ, d.t) =0 (5.10)

for a/b<-1.

The value of the integral in case (b) is due entirely to the contributions of
the poles on the real axis. In the interval -1<a/b <1 the branch points have
~I\flgvﬁegéuch that a portion of the contour along the real axis has been "uncovered"
with »x»;eygard to the cut of the Heaviside function. The value of the integral is
determined by the integration around the branch points and the poles. The

branch point integrations contribute‘nothing while the pole contributions are

easily shown to yield

F 72[1 -8&- )] B -p&-$"]p@ Ha b cos o]

E (R, 9,0 -

2

2 A2+ B2-C ,\/a—bcosap

(5.11)

in the interval -1<a/b <1.

Recall that the presence of either one or both of these pole contributions
depends upon the presence of the pole in the uncovered interval of the contour.
The function cos ozp is given in the case of cylindrical waves incident also by
Eq. (3.10) where now we realize that the functions C and D are given by

Egs. (2.43) and (2.44). Equation (5.11) may be written as
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180, H D@

EL (R, D,0) =\ — —
2‘[Az+B2 -C2

Hla-bcosa
pl]

r[l -Bp; - X')N]

,Ia—bcosa ‘
pl

H[a—bcosapj

+l:1-B(p;,-X')"’] V : (5.12)

a_
bcosap2

in order to more clearly illustrate the fact of incident and reflected pulses. An
interpretation of Eq. (5.12) will be given in Section (5. 5) for two specific values
of wedge angle.

In case (c) the branch points have moved away from the real axis so that
the Heaviside cut now uncovers some vertical portions of the contour in addition
to the portion of the contour along the real axis. The result of this is that the
integral for the total field (5.7) may be written as the sum of the pole contributions
given by Eq. (5.11) and an integral representing the contribution given by the
integration along the vertical portion of the contours. This latter integral

—

represents the edge diffraction field ES (R, D, t)

3

d s
%‘ﬂ@n)=K§3} de

—— a a7
@ Na-bcosa [Acosv,+Bs1n7+\Cl

o, +27
+ K'Y bl da _
aX +27 A/a~bcosa/ [Acos-g-+ Bsing—+c]
bl 1A V'

(5.13)
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where K is given by (5. 3) and

v s -1 %
abl 1Yb icosh (b) . (5. 14)

Several attempts at a closed form result for the integral in (5. 13) met with no
success so the following series approach was used.

Consider the function f(a) where

fla) = 1 . (5. 15)

o a
Acos17+Bsin17+ C

This function may also be written in the form

f(a)zf—é = -31+ o o (5. 16)
R 14 1 1=
_V v v v
€ -e e -e
where
1 .
a-=; [a-iB] , (5. 17)
M = —1———— (5. 18)
L, 0= ? '
(=5
1-e
and
1
N = — (5. 19)
Ny Mhas |
i(=22)
1-e

and where ; and o, are the|roots of the denominator function . Since the poles of

f(a) are known to lie on the real axis the following series form is also valid.

[ _1_1 00 1——'(01—011) —i%% ® i%l,(a—az)
fa)= & +Ne Z e J (5. 20)

m=o0

With this expression for f(@) the integral (5. 13) may be rewritten as
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o, .m

im ic—)la1 (0] i o o bl ! —170[
T B Rl |
E(R, B, 9= 5 {me Se LA
| s 4 a-b cosa
bl
a m: 01* -—_a
—1172 ®, -1-5% bl el V! da
+Ne E e
o o a-b cosa
bl
+
.y . m b1 2 ill:oz
"1—"- [0 0] —117'—0'1 e 1% da
+Me 7 ? e —_—
a-b cosa
= o
m=o0 abl 27T
.m
a, 27 117'-01
. Q9 . . m bl € do
-1 - QO -1 - ay e — (5 21)
+Ne v 2 e V Ja-b cosa
m=o0 *
+
abl 27

e
b3

abl to abl we have o = 0 + iy so that

%1 ina Y 3
v . b v
e do i e dy
I= -5 . (5.22)
, Ja-b cosa v N/ coshYp-coshy
bl b

The irrational function g(y) where

gly) = 1

- (5.23)
Ycosh Y, -cosh y

b

may be expanded in a Fourier cosine series assuming a periodicity of 2Yb .
Thus

(00)
gy)= S aycos— y (5. 24)
Y
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where the an's are given by

nw
—vyd
Yy cosY y dy

a = 2? b . (5. 25)
Yy Vcosh Yb—cosh y

Recognizing the integral representation for the Legendre function P 1 (cosh Yb)

- 4 i
which is 2 M
Yb
P 1 (cosh Yb)z JE__‘ cos Ay dy (5. 26)
-= g X Ycosh Y -coshy’
the series for g(y) becomes
(y) :\I.2_‘__1T. = ( ?.') cos n_ﬂy (5 27)
¢ Yb ..:_l. +1‘_1_7r_1_ b Yb .
n=o 2 Yp

Iz —— P ( e cos —= dy (5.28)

1 Y
‘l R B e
be n=o 2 Y b ‘

® Y, -y
V2 ri j‘ v' nry
Y

The remaining integral is easily evaluated yielding

mYlo
cos n7w sinh——T

14

I:@wie 2m P g
Vb Y, v! Z - 2 42T ) [(m)2+(31rz]

nrwi
n=0 2Y

(5.29)

T2he two integrals in (5. 21) which have limits abl+27r to ab1+27r have a value
T

of -e V I . Finally, the diffraction field given by (5. 21) may be written
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Ao
b Yb LV
4 L
i o) ® -i—a
! ' 1
Me Z Ze P 1 nm(b (
m=0 n=o - 4=
2 Yb
42 @ @© —%r—r-laz
Ne V' Z Ze V' p YL (v,
=0 n=0 -}+£11T_1 b mn b’y
2 Yp
-ig;l (o)) o) —i;—?(al—Zﬂ)
- 1
Me Z Ze 1 n7r1( ) L (Yb’y)
m=0 n=0 -s Tt
2 Yy
a
_11/'_2 [ e o) —iV-T(afz—27r) o
- - 1
Ne Z Ze Pooam (VI (v} .30
m=o ‘n=o -+ —
2 Yb
where mYb -
E)snrrsinh—yl—] (V—,)
'-- -
(Yb,v) (m)z — )2 . (5. 31)
Yy

The four series in (5. 30) may be combined yielding for the edge diffraction field

when a cylindrical impulse is i%cident

3/2 1’2'
d 2 K
E,(R & 1=-"—""""—x
o'y, @
® —ia—} (m+1) —1—(m+1) 27rr'm a
Z Me Y +Ne 1-e 7 L (Y.,v)P (=) .
mn' b 1 nrib
m=0 ‘n=o : _§+Y_
b
(5. 32)

The total field in case (c) is given by the sum of (5. 12) and (5. 32). The expression
(5. 32) is too unwieldy to use directly in making any{’phsrrsiaal statements regarding
the behavior of the scattered field. F_:("_,Ij this reason we shall attempt to obtain a

simpler representation for the two special cases of ' = 1 and y' = 2.
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Consider equation (5. 13) for the edge diffraction field when ¢! = 1, In this
case the periodicity of the integrand is 27 so that when the limits are reversed
on the second integral the two integrals exactly cancel one another. This is also
apparent from the factor
27 mi
o

1%

(1-e )

in equation (5. 32). Since v' = 1 represents a flat sheet one would expect that the
edge diffraction field would disappear.

Consider the equation (5. 13) in the case of a half plane where v' = 2, The
evaluation of this integral parallels that of the evaluation of (3. 14) for the half
plane and thus is included in Appendix D with that discussion. The result of in-

tegrating (5. 13) for the half plane is

d 27 iK 1 1
E(R, Ot = IS E— (5. 33)
z va2+p2-c2 | a-b+2bu§ { a-b +2b u?l

where u and u, are given by (D. 12) and (D. 13) respectively. The total field when
a cylindrical impulse is scattered by a uniformly moving half plane is given by the
sum of equations (5. 12) and (5. 33) where again it is recalled that the contributions
given by (5. 12) are only included if the poles lie in the interval [O, 27r] on the

real axis. The interpretation of these results are given in the next section.

9.5 inter}g'etation of Results

_I_n_ this chapter|as in the previous two the results for the total field will be
examined for the special cases of the infinite flat sheet (v' = 1) and the half plane
(v' = 2). The far zone total field will be considered for times t> ‘R / C since
then it is possible for an observer to see incident, reflected and diffracted fields
provided he is in the correct position.

Consider first the infinite flat sheet. As discussed in the previous section,
the integral (5.13) representing the edge diffracted field is zero so that the total
electric field is given by equation (5.12).
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Evaluating Eq. (5.12) for the case v' =1 we find that

i Q—l . _Sz:
sm-;—'y ; cos — B
)
A = —1—sin(—p—(1—8 cos—g)
Y 14 1
)
B = (cos%—B)(l—Bcos—Vg)
)
CC= le_ sin—v—o(l—B cos%—)
? g

D, = 2(00870- B)(l - Bcos;)

-Sin‘b??’@o I ,Yz(cos(I)— B)(cos (I)O—B )

cos fz5pl,2 =

72 (1- BecosP)(1- Bcos@o)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

The functions a and b are gi}?éa by (5.5) and (5.6). Setting =0 in these

equations and substituting in (5.12) the total field for a stationary infinite plate

is obtained

EZ (R, 0, t) = = &
4/c2(tf_7")2 - R -4)

R
2 0,2 2
H[C (t+ —)"-R (¢-¢oﬂ

R
H[cz(t+ 79)2 - 1R2(¢-Tf+¢0):]

— R L
1/c2(t+ 2 R G-n+g)

(5.40)



60

where R is given by Eq. (2.4). The Eq. (5.40) is recognized as representing

the field due to a line source (the incident field) and the field due to an image of

the line source. This is exactly what one would expect to find.

Consider the case of a stationary half plane for which v' = 2. In this

case we find that

sin 2 = 0 ; cos = = 1
v 14
¢
A= -v sin%(l'ﬁ)(l"ﬁcos_vo')
®
B = - fyz(cos% - B)(1-B)(1-B cos 70)

@)
"

0
v% (cos =2 - ) (1-B)(1 -Beos L)

D = -27 sin —Vi’(l-B) (l—Bcos%)

- yz(cos®—B)(cos @O—B)wt sin @sin@o

COS =
pl,2 0% 2(1-Bcos@)(1—6cos@o)
9 ) ’Yf(cos@-ﬁ)(cos@o—ﬁ)i’ sin(sin
Hyg = g |tt :

’y2(1 -Bcos §)(1-Bcos (DO)

 Setting B = 0 and substituting in Eqs. (5.12) and (5.33) we obtain

(5.41)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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R
2 0,2 2
H[c k) -® (¢—¢o):|

]

T
E_ (R, g, t)

2 0,2 2
1/’(3 (t+—é-) —IR(¢'¢0)

1
+

*/ <t+——> ~RAJ- ¢> 1/ <t+——> m<¢+¢>

(5.47)

which is the result obtained by Friedlander (1958) as Green's function for the

stationary half plane.

The effect of the velocity will first be noted by considering the infinite flat
sheet. Using Eqgs. (5. 35) through (5. 39) note that

= -1 . (5.48)

The total field may now be written

Hja-b
TR, .0 = o5, 3] oty 1) ]

-bcos apl

- [1+8, §')~] e beos ap2] . (5.49)

H’ -b L
\a cosozp2
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The unit vectors P represent the direction of propagation of the far zone field

and are given by

A . . A
(Rcos@- R cos ¢0) X + (Rsinf- R _sin ¢0) y

b = SEN (5.50)
A (R cos¢'—R:)cos¢:))§ + (R'sin¢'-R(’)sin¢;)§r' 5 51
Py ~ 1R‘(¢'-¢L)) '

[R'cos¢‘ R! cos( ¢']x' [R'sin¢‘-R;)sin(7r—¢;)]fr'
r R -7+0)

(5.52)

These three equations along with Eqs. (5.5), (5.6), (5.39) and the transformations
(B.17) and (B. 18) completely specify the total field (5.49) when a eylindrical im-
pulse is scattered by a uniformly moving infinite flat plate. The first term in

(5. 4%) represents the incident field the second term the reflected field. Finally
consider the effect of motion upon the half plane solution. We note 'th;a.f (5.48)

holds for the half plane also so that the expression for the total field becomes

Hla-bcosa
o1l

EL (R, 0,0 = +2[1-8¢, D] {[1+8¢- 2]

—_—
,/a -bcos apl

-[:1+B(ﬁ' ,)~] H[ bcosa/p2]
1/a bcosap2
+[1+8 By 2] R (5.53)

,/a-b+2buf | Va-b+ 2bu§

~ T

e
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where now
(R'cos@' -R' cos §')&' + (R'sing' +R'sin@')
pr = e 0 o (5.54)
r IR(¢'+¢:))
Ay 1 & s Do
py = cos' ' + sin@'y (5.55)

and f)l is the S‘Et‘r’ne as previously given (5.51). These three equations along
with Egs. (5.5), (5.6), (5.45) and (5.46) completely specify the total field (5. 53)

when a cylindrical impulse is scattered by a moving half plane. The first term

in (5. 53) represents the incident field, the second the reflected field and the

third the edge diffracted field.



Chapter VI

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

A discussion of the physical significance of the total field which results
when each of the incident pulses interacts with the moving wedge is given at the
end of the respective chapter which deals with that pulse. In each instance the

interpretation has been made for the two special cases of an infinite flat plane and

a semi-infinite or half plane. What we wish to do here is to summarize those results

for the special case of the moving half plane.

For the half plane we have considered the incident field, the reflected

fi;1d and thé edge difﬂ‘écfedﬁfield. Tﬁe ﬁlotion of the scatterer should have no
effect upon the incident field and (fortunately) our results indicate this. The field
reflected by a moving half plane is seen to be the same as the field reflected by

a stationary half plane so that the motion of the scatter would seem to have no
effect here either. However, an observer in a fixed position will see a transient
in the reflected field as the shadow boundary crosses the observers position. The
edge diffraction field is affected by the motion of the half plane. A stationary
half plane exhibits a certain diffraction pattern for the edge diffracted field. As
the half plane moves a stationary observer might expect to see this pattern move
past him as is true for the reflected field. We find, however, vt‘hit.the shape of
the edge diffraction field pattern is changed and it is this new pattern which a
stationary observer sees moving past him. Considering the edge diffraction field

for the case of the time harmonic plane wave we find that

q (1—Bcos¢rc;)ﬁ ichos¢o(ct—‘R) q
E, (8 0.0 = 5m5oasy © E (R, 1) (3.57)

z0
where ESO ( ﬁ, ®, t) is the edge diffraction pattern of a stationary half plane .
Examining this for a given ¢0 one finds the lobes of stationary pattern increased
in the direction of the velocity and reduced in the opposite direction. The exact
shape of the new diffraction pattern can be found by a pattern multiplication of

lE:o with the pattern of Fig. 3-2.
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This is precisely the effect which Tsandoulos (1968) reports. It should be

noted that Tsandoulos considered only the asymptotic form of the edge diffracted

field of a moving half plane. He states in his conclusion that to extract any
meaningful results from the exact Fresnel integral formulation would be very
difficult. We note this here only to point out the fact that by using the retarded
reference position meaningful results (Ei (3. 56)01;(3‘57;) whave been obtained
from the exact Fresnel integral formulation for the moving; half plane.

A similar effect is seen in the diffraction field when a plane unit step pulse.

is incident. In this case the edge diffraction field is given

d _2(1-B) -1 |[f1-B Jet-R '
EA(R 0,0 = T -Poos®) PO Smgv R : (4.28)
2

Here the factor rJl -B in the argument doesnot change the shape of the diffraction

pattern but the factor (1 - Bcos @) does change its shape and, in fact, in exactlythe

same way as in theplane wave case in Eq. (3.57).

The results for the cylindrical impulse incideﬁt cannot be written in as simple
a form as the above two cases and thus their interpretation is not readily apparent.
Further analysis of the result for cylindrical waves will be required before any
conclusive statements can be made.

The present results may be used as a first step in developing a ray-optic tech-

\\nique for computing the fields scattered by two dimensional bodies moving with

uniform velocity. By considering an arbitrary body as a composite structure of
planes and edges and the incident field locally as a plane wave the scattered field
may be synthesized. The reflection by moving planes has previously been ,estéblished
Warurld the effect of the moving edge is contributed by this work. The sum of these
contributions should yield an engineering approximation to the valae of the field
at a given point. The validity of such an engineering approximation, however,
should be tested by experimentation.

Part of the original objective of this study was to investigate the effect upon

the scattered field of more general motions of the scattering body such as acceleration.
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However, due to the lack of a plausible physical explanation of the boundary
conditions which exist on an acéele»ra'tring surface no detailed investigation was
carried out except as was discussed in Appendix B. An engineering approxi-
mation to the field scattered by an accelerating two dimensional body could be
obtained using the above described ray-optics technique in connection with the
assumption that the problem may be considered locally in time as involving
only uniform motion.

Extensions of this work might include a study of the problem for the case
where the incident field is described as a magnetic vector polarized parallel to
the edge. Such an investigation would follow closely the procedures used in this
study. Another possibility is the investigation of scattering by uniformly moving
three-dimensional bodies. This would requlre first an analysis of the effect of a

moving corner; i.e., the tip of a umformly movmg cone. Following this a three-

d1mens1onal body could be considered a composite of planes edges and corners
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APPENDIX A

THE NATURAL INVARIANCE OF MAXWELL'S EQUATIONS

Maxwell's equations in free space may be V"Wfitten.‘ in terms of a stationary

reference frame as

= 0B
Vx E = Y (A.1)
V.-B =0 (A.2)
- - 8D
= + — .
VxH =17 51 (A.3)
v-D=op (A.4)

where T and D are related to B and E in free space by the constitutive

relations
— 1
“o
D=¢E (A.6)
o

The T’iflliéé{y of Relativity postulates that the laws governing natural phenomena

are invariant in form with respect to the coordinate system in which the laws

are described. This holds for reference frames in uniform or nonuniform

translational motion. A formalism exists by which @6@'8 equations may

transformations defined such that the forms of these equations are invariant.|
The following discussion is a summary'of that given by Post (1962). The f@i’i\

dimensional tensor form of Maxwell's equations, i.e., the Maxwell-Minkowski

equations are:
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where

with

and
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5F OF 9F —
By, —eB Yér__ - 0
ox%  ax! 9x
BfaB L
g = C
0X

-2— X F'yé
0 B -B E
z y
FQPB - —Bz 0 BX E
L B -B E
X
-E -E -E 0
X y Z
0 H -H -D
— VA y
o - 0 H -D
F P = Hz\ X
H -H -D
y X
D D D 0
X y z
o
C - (JX: Jy: JZJ p)

a,‘B,’Y,é =1; 2, 3;4

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)



Equations (A.1) and (A. 2) are included in (A.7), Eqs. (A.3) and (A.4)
in (A.8) and the constitutive relations in (A.9). The nonzero terms in the

constitutive tensor are

1212 1313 2323 1

X = X = X = — (A.13)
M
(0}

1414 2424 3434

X = -X = X = —€o (A. 14)
and

o 6 afBé avy6 6

X B’Y = "X B ’Y :_XB Y =X’Y aB (A.15)

A new coordinate system may now be defined such that the coordinates of

a point x ¢ are found by the transformation

! o', «a
X = X

x) . (A.16)

Consider only transformations such that

1 '
5 [ax¥ 5 [ax”
- 3 = ____B ~ . (A.17)
0x 0x ox 0X
Now, let FQB, faB, c% and XQBM/ transform according to the trans-
formations
@ B
0x ox
F oig = T — F (A.18)
a'f 8xa axB ap

a'B! -1 Bxa' axB‘ af
f = lAl — B f (A.19)
ox  0X
a,'
! -
c® = |al™ axa c (A.20)



Q' léle
P

!

= A

6!

1
-1 8xa

BxB

(A.21)

ax"‘ g

where A is the determinant of the Jacobian matrix. Substituting (A.10), (A.11)
and (A.12) into (A.18), (A.19) and (A. 20) and making use of Eq. (A.17) obtain

the Maxwell - Minkowski  equations in the primed frame:

8F,,, OF 8F , |
Ba"v r 2By Ygf' =0 (A.22)
0X ox ! ox
alB! '
of g c? (A.23)
0X
and
RS SN (A.24)
- 2 X AR\ .
Q'B'é"}"
where x is defined by Eq. (A.21). The elements of the primed

tensors are functions of the transformation and the field quantities in the

unprimed frame. If the 'eleir‘peﬁﬁfg in the tensors (A.22), (A.23) and (A. 24) are

defined by Egs. (A.10), (A.11) and (A. 12), where every term would now have

to carry a prime, the equations of electr&-img‘ in the primed frame become

V' x E'
v'

V' x

_ 9B

ot'

(A.25)

(A.26)

(A.27)

(A.28)
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with constitutive relations given by

g = H' (B, E') (A.29)

D = D'(B,E") . (A.30)

At this point it is worthwhile to note that the expressions E', B!, H',
D' were introduced on a purely mathematical basis and may or may not j
physically represent the'fiérl_d—s which can be experimentally determined. For

cases of uniform translational motion of coordinate reference frames the

transformations (A.16) are linear representing rotations of thﬁe space time
coordinate axis. The resulting expressions for E', B' etc. predict precisely
the fields which can be experimentally determined. For cases of non-uniform
motion such physical corroboration does not exist and therefore the quantities
E', B' etc. are treated as mathematical quantities which may or may not have
the same physical signifigance as in the uniform velocity case.

The problems considered in this research involve uniform motion in the
positive x direction with a velocity V= Bec. The transformations (A. 16) for

this case are known as the Lorentz transformations

x' = 7y(x-Bet) (A.31)

y =y (A.32)

z' =z (A.33)

t' = v(t--gx) s (A.34)
where

v = -

The transformation of the field tensors by the Lorentz transformation

results in the vector field quantities in the primed frame being given as



Bi=(E+ ¥ x ) (A.35)
El= y(E + ¥ x E).L (A.36)
= _ (5 __1_ _ -
B” (B (_:? ¥ x E)Il (A.37)
B - v(B-SvxE) (A.38)
C_
D' = e E (A.39)
a - L g (A.40)
uO

where 1 and | indicate the field components perpendicular and parallel to the

velocity V.



APPENDIX B

TABLE OF COORDINATE TRANSFORMATIONS

The coordinate reference frames used throughout this work are illustrated

in Fig. B-1.

y y'
R _ + ’7 .
- ﬂ R!
P ’d‘ / @\ ¢ '
\)\ X x'

vT Retarded
Reference
Position

Unprimed or Laboratory Frame Primed or Moving Frame

FIG. B-1: COORDINATE REFERENCE FRAMES

The Lorentz transformations relate the location of a world point (x, y,t) in the
unprimed frame to a work point (x', y', t') in the primed frame. These trans-

formations are

y=y (B.1)
x =9 (x'+Bct") (B.2)
t= 'y(t'+§x') (B.3)
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where B=v/c and ¥ =(1-BZ)_1/2 . Conversely;

y =y | (B.4)
X' = v(x - B ct) | | (B.5)
Y- (B.6)

In order to be able to transform from the primed frame directly to the unprimed

| / retarded reference position we note from Fig. B-1 that: _— -

ed ref  we note from Fig. B-1that:
x=Kcosd+vr (B.7)
y=Rsind (B.8)
t =T 4 R (B. 9)

c

(B.9) indicates the time t at which a field diffracted at (vr, 0, 7) is observed at

@, ).

In the primed frame obtain

x' =R' cos ' (B.10)
y' = R' sin@' (B.11)
tv - tl (Blz)

Substitution of (B.7), (B.8), (B.9) and (B.10), (B.11), (B.12) into (B.1),
(B.2) and (B.3) results in the coordinate transformations from the primed to

the unprimed retarded coordinates.

_ cos@'+B
cos @ = m (B.13)
R = v (1+Bcosg') R! (B.14)
T =yt - l:-') ‘ (B.15)
or
t = ’Y[t' + E;— R' cos¢'] . (B.16)
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And the inverse

, . cos®-B
cos ' = T-Beos § (B.17)
R' = 7(1-3003@)1{ - (B.18)
t' = -E,-+g- (1-Bcos )R (B.19)
or
vos L EYR (cosp-) . (B.20)

Physically the retarded reference position represents the position of the
scatterer at the time the currently observed wave was initially scattered. By
using a retarded reference to express the results it becomes easier to obtain
their physical interpretation. The reason for this_ is that the variable t does

not appear in as many places as it otherwise would.



APPENDIX C

POLE LOCATIONS IN THE COMPLEX a PLANE

Consider the pole locations given by Eq. (3.10)

2 2 5
- 1t -
cos & = ZAC BZVA o (3.10)
v A°+B
It will first be shown that A2 + Bz - 02 > 0. By virtue of Eq. (2.37) and (2. 38),
2
A2_+ 32 = Af + Bl. Now:

9

A2 = 72(1 - Bcos7

2., 0 0 o ]2
) ) [sin; (cos = B) - sin ” (cos ” B)] (C.1)
2 ¢o 2[ 2 1) Q . § . ]2
= - —_— —_— - —_—- + 2 gin —
B1 (1-Bcos ” ) [’y (cos ” B)(cosv B) sin =" sin . (C.2)
Adding these together and making use of the identity

72(1-Bcos¢)2=72(cos¢-B)2+ sin2¢ (C.3)
obtain

A2+B2 = 74(1 -6005-139)2(1 -Bcosg)z(l -Bc:os%z)2 . (C.4)

In the plane wave case C2 is given by:

¢
cf) = 42 sin? —f(l-Bcos%)z(l—Bcosg-)Z - (C.5)

Subtracting and using identity (C.3) obtain:

7



¢
A2+ BZ-CZ = 74(1—&089)2(1 -Bcosg)z(cOSf - B)2 (C.6)

which verifies the original assertion in the plane wave case.
In the cylindrical wave case C2 is given by:

v

¢ ¢ 2
Cz = (1 -BcosQ)Z[Yz(cos—;)-ﬁ)(cosg—ﬁh sin;gsing:‘ . (.7

Multiplying this out, subtracting from (C.4) and making use of the identity(C. 3)

it-is found that A2 + B2 - 02 can be represented as:

¢
A2+B2-C2 = 72(1 -Bcos-%)-)zltsinvo(cosg -B)-sin%(cos;g-ﬁ)]z
(C.8)

which verifies the assertion in the cylindrical wave case

Since A2 + B2 - C2 >0, then

cos — = [real number] .

a
vl

Straightforward algebra shows this number to lie in the interval [—1, 1] and
hence it is concluded that o/v' lies on the real axis in the a plane and in

the interval [0, 21r] . Depending upon v', o itself may lie outside of this

interval.



APPENDIX D

THE DIFFRACTION FIELD OF A MOVING HALF PLANE

Consider the evaluation of

I =

ikb cos @
Ke ikaj' e da (3.18)
D

a o
1+D2 Acos§-+ B sin5+ C

where D1 + D2 are the contours of Fig. 3-1 repeated here for convenience.

Z\\\U\\
N\

T 27r//
2
n

FIG. 3-1: CONTOUR DEFORMATION FOR TIME HARMONIC
PLANE WAVE

Along these contours

cosa = cos(0+iy) = cos(27+iy) = coshy . (D.1)

9
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On D

1
o . ¥y ‘
cos 3 cosh 5 (D.2)
(D.2)
e . y
sin 5 i sinh 2
and on D2
LA y "
cos 5 cosh 5 (D.3)
(D.3)
i g = -3 Qi l
sin 5 i sinh 5
Making the substitution a=0+iy on D1 and a=27+1iy on D2 the integral
I, using identities E1 - E3, becomes:
. @
[ = _iKe—lkaj‘ dyeikbcoshy 1
-® Acosh%+iBsinh%+C
+ 1 . (D.4)
Acosh%+iBsinh%- C

Decompose the integral (-co, ®) into two integrals (-co, 0), (0, ®). In the
integral (-oo,0) make the substitution y = -y thus transforming the limits to-
(0, 00). Finally substitute .

coshy = 2cosh2 I (D.5)

2

and obtain for I:
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2y
® 2ikbcosh =
-1 +
I1=-iKe 1k[a b] X dye 2 !
0 Acosh—y-+ iBsinl+C
2 2
+ 1 + ! ' + 1
Acosh%-iBsinh%+C Acosh%HBsinh%-C Acosh%-iBsinh%-

(D.6)

Combine the first and fourth terms in the braces and the second and third terms

to obtain the following two integrals

9ikb cosh® J
o dye 2 cosh L
I= -21AKe-ik@+b]j 5 2 5
0 (Acosh -32'-) - (iB sinh -;'-+ c)
2ikb coshz%
(0 4] dye cosh%

-2iAKe'ikE‘+b]j (D.7)

0 (Acosh 22’-)2 - (iB sinh % - C)2

Using the identity cosh2 y/2 - sinh 2 y/2 =1 and making the change of variable
p = sinh y/2 obtain for I:
)
© e21kbu du
2
0 a2+l -2Bou+i’(c?a?

I=-4i AK o k[a-1] S

o 2
. Soo e21kbu du

0 (a%+BYul+ siBcu+i2(c?-49

(D.8)



or

I = -4iAK o k2 'b]{

+
I 12}

1

00 . 2
I1=aIS du ™0 [-11 i -li
0 p-ip p-ip
where
a, = =
1 2 2
(ul-uz)(A+B)
and
B G
BC+A’\/A2+B2-C2
By ® 9 2
A +B
9 0 0
u = BC-A A2+B2-C:2
2 A2+B2

I, may be written

1
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and I_ . may be written

2

i +
Adding I1 12

obtain

1

1

]

(0] e 2
. S d“eZIRbM [
1 0 u

2 2iu

+ 1[.12 u+ iul]

2iu

2 2
O

2, 2
M '*'#2

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)
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Now I may be written:

gigeika-b] po o 2wy H
I - dl-le - 2 . (D.le)
2 2 2 Y0 u2+u2 U +p2
VA +B -C 2 1
Set the coefficient of the integral equal to Kl’ i.e:
-ikfa - b]
K = 4iKe (D.17)
1 2 2 2
A +B -C
then
(44] ezikbuz d (0 4] e2ikbu2d
1=K, |u E oy LA (D. 18)
1172 2 2 1 2 2
0 M +IJZ 0 v +M1

(0 4) 2ikb u
I = u € dIJ (D. 19)
3 1 2 2
0 [T
1
This integral may be evaluated in terms of Fresnel integrals defined by:
mez L2
F(z) = »43 S et gt . (D. 20)
T
0
The asymptotic series for F(z)
. 2
iz 1
(D.21)

F(z) ~F() + — + 0(5
if27 2z p
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and the relations

i T
4
F(z) + F(-z) = 42 e
(T (D. 22)
: 2 e 4
F(z) +FF (z) = —
T o0
2
where
(04] 2
F_(2) j e (D. 23)
z

will be useful later on. Born and Wolf (1964) p. 568 develop the identity

2

2 .
5 dr (D. 24)

' _ikb © e-kb'r
togn'e ™ F_(tnqkD) = ns

-o T -in

where the positive sign applies for n> 0 and the negative sign for 'n <0,
Equation (D. 19) will be put in the form (D. 24).

Let
LT
— 'IZ
T =42 e I (D. 25)
then
il T
ul he 4 e-kb'r2 eII
13 = lim 7J 37 5 — dr (D. 26)
h—0 e i_v;__l_ 2 A2
he 2 “1

or if Wy s n/V_z_‘ (D.27)



85

T .
e’iZ o e-kb'rzd
Iy = —5—n S 5 (D. 28)
-0 T -in
Now by (D.24) for n >0
4Z 2
4 -ikbn E :]
= + T
I3 + AFr"e . ‘Fo nllk—bl (D.29)
or by virtue of (D. 22)
-1.‘_175
'ikbn 1 e +
I, = tre 5" —2—F(_n!(k?) ) (D. 30)

Taking into account the relation (D. 27) the evaluation of (D.19) is given by

m

-2ikby§ 1 e-iz — :

I=1rK <e 3 - —— F(u 2%b) (D.31)
2

where u 1 may be either positive orAnegative depending upon the observers
position.

For the stationary half plane Hy and po are given by

g-9¢
My = - gin ( 20)
(D.32)
g+ ~
My = sin(— )

so that in the shadow region u 1 >0 and “2 > 0. In the illuminated region u ] <0

while u

2>O in region II and Ho <0 in regionl as shown in Fig. D-1.
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FIG. D-1: STATIONARY HALF PLANE

Since the field representation for the moving half plane must reduce to that of

the stationary half plane the evaluation of (3. 18) may be written down as follows.

In region I
. . T :
-2ikbu§ (1 e—1 4
II = -1rK1 e 3" 7 F(-yz‘JZkb)
2
- Vs -
-2ikbuf ) efiz _
- e G F(-u f20)| 7 (D. 33)
? ]
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In region II
T
2 -1=
-2ikbu, | o 4 ]
2
- 21kb ? 1 e-i% 1
+ e 3" F(#, .Jz_kB‘) ) (D. 34)
/2’
In region III
- 7l' -
-Zikbug 1 e—iz
Im = 7rK1 e 3 - = F(u2‘12kb)
11 4 % )
+ e 1 % - -e;-ﬁ—F(MI'IZkb') . (D. 35)
N2
o

Consider now the expression for the total field in terms of Fresnel integrals.
As given in Eq. (3.13) the total field is the sum of the pole contributions repre-
senting incident and reﬂected fields and the above evaluated Fresnel integrals
representing the diffracted fields. Since the poles make no contribution to the
total field there is given by Eq. (D.35). Rewritten in terms of Fo(z) the total
field is given by

m
i 2 2 :
4 -ikfa-b] | -2ikbu -2ikbp
T 447 K
EL (7, &, 1) - fr'Ke " e e zFo(uz‘JZkb')-e lFooJanzkb') )
Ya2+82- 2

(D. 36)



88

Considering the region I where both poles are present the diffracted field is
given by (D. 33). Substituting (D. 33) into (3. 13) and making use of the identities
(D. 22) the total field in the illuminated region may be written as

-il{a-bcosa]] -u(l}-bcosa ]
E: (R, @, t) = iniK -e Pt e p2
;V 2 2 2
A +B -C
m
e-ikEl-b]-iZ -2ikbu§ -2ikbuf
- e Fo( -uzizkb) -e FO(-u142kb )

Nr

(D. 37)

In expression (D. 37) it is understood that the term [1 + B (ﬁ'-ﬁ')"] in the co-
efficient K has a different form depending which component of the total field
is being operated upon. The plane wave terms cannot be combined in the
Fresnel integrals for the moving half plane because of the difference in this
operator term. In the stationary half plane problem (S8 = 0) all of these terms
afe the same and a Fresnel integral representation of the total field can be
obtained which is valid everwhere. Equation (D.37) is rewritten as Eq. (3. 20)
with the above mentioned distinction made explicit.

Consider the evaluation of the integral (5.13) with v' = 2.

a
=K S‘}bl . dx
o 'da-bcosa [Acos %+ Bsin g' +C]
_ bl

a 427

dx
+_5 bl - p (D. 38)
a’;1+21r l\’a-bcos(?z [Acos 5 + B sin -2-+ CJ

Along the contour between @, and @', we have @ = O + iy and similarly

w bl bl
between «

b1+27r and @ +27 we have a = 27 + iy. When these substitutions

bl
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are made, the limits on the second integral inverted and the two integrals

are combined we obtain

Y
e [ . .
'Va‘bCOShY Acosh¥ +Bsinh L + C

-Y 2 2

+ 1 :l (D. 39)

Acosh325+ B sinh % -C

Comparing this integral with that given in (D. 4) we see that the limits are now
finite and the exponential function has been replaced by the square root function.
Following the same steps used to reduce (D.4) to (D. 16) the integral given by
(D. 39) may be reduced to

BN
L sinh -2— " "
1= R = - (D. 40)
V U o Y o | % uidd
A +B sinh '2— -u 2

This integral may now be evaluated in closed form [Gr'éebner and Hofreiter

(1950) Eq. 216 (3a)] as

1= dmik 1Y < - 1Y < (D. 41)
242b A+B—C'\/.h2__b+2 /J_h2__b_+2
sin 5 T, sin 5 U
where
-1/a
Yb = cosh (b) (D. 42)

and fi, u, are given by equations (D. 12) and (D. 13) respectively.



APPENDIX E

THE HEAVISIDE FUNCTION

The Heaviside [or unit step] function is defined for real x as

H (x) 0 x<0

(E.1).

1]
—

H (x) x>0

and is called a generating, generalized or symbolic function. The distribution
generated by the Heaviside function is given by

®
<H,§> =S Hx)@x)d . (E.2)
-0

In cases where the argument of the Heaviside function becomes complex it is
necessary to establish the meaning of ﬁ(z) where A (z) is an analytic repre-
sentation of the Heaviside function for all points in the complex z plane except

the real axis (y = 0). On the real axis we have

H(x) = lim [ﬁ(x+ie)—ﬁ(x-ie)], XF0 (E.3)
€—~0

+
for all x. [Bremermanq (1965), p. 48].
The definition given by Bremermann for the analytic representation of a

generating function T(t) is:

I U e ) N
T(Z) = 2_7r_lx_m t_—_z dt N Im(z)f 0 (E4)
or
A (0 0)
agf’ = Z;ix T(t)z at . (E.5)
-0 (t-2z)

90
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For the Heaviside function

dfiz) _ 1 f®  Hw)
dz  2ri g dt
-0 (t-2z)
(0 0]
- '2'7171 S dt 5 (E.6)
-o (t-z)
afi) 1 r1]® 1
dz 271 |t-z 0 27wiz
Thus
i(z) = - == logz + C (E.7)
z) = 571 108 Z . .

We define C=1/2, y >0 and C=-1/2, y<0.
In order that A (z) be single valued as well as analytic we introduce a cut

in the complex z plane along the negative real axis.
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In this plane the Heaviside function is given by:

A 1 1
H(z)—--z—;r-ilogz+-2— s y>0
(E.8)
A 1 1
= - - = <
H(z) 271 8% T 3 y<o
Near the real axis we find.
Z = x+ie = rem
then for x>0
s 1 & 1 1 6 1
H(x) = 61_1_1:10 [— —2—7r_i10gr--.'5,7r + E]-[- mlogr-‘a? 2]
Hix) = 1 (E.9)
and for x<0
1 -6 1 1 -6 1
H(x) = lim li———,logr-—-—+—:\-— [————_logr%————-—:l
5—0 27i 27 2 2ri 27 2
H(x) = O . (E.].O)

Thus in the complex plane we have a representation for the Heaviside
function which is analytic for all points y # 0 and which corresponds to the
usual definition when Eq. (E. 3) is taken into account.

The particular feature of this representation which will be useful is the |
cut in the complex plane and the fact that H = 0 on the cut.

Consider the mapping z =a - b cos @ to determine the position of this cut
in the @ plane. Figure E-1 shows the location of the cut for different values of

the parameters a and b.
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Case 3 b<a<oo]

FIG. E-1: CUTS OF H[a-b cos] IN COMPLEX o PLANE



