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ABSTRACT

THE RADIATION EFFICIENCY OF A DIPOLE ANTENNA
ABOVE AN IMPERFECTLY CONDUCTING GROUND

by
Peder Meyer Hansen

Chairman: Chen-To Tai

Theoretical expressions for the radiation efficiency of three types of
antennas are derived. It is assumed that the antennas are located above an
infinite plane earth having a finite conductivity. The dyadic Green's function
for this geometry is developed as an Ohm-Rayleigh type expansion in terms
of the Hansen vector wave functions. The dyadic Green's function is used to
find the fields due to three assumed current distributions. These assumed
currents correspond to the case of the vertical Hertzian dipole, the hori-
zontal Hertzian dipole and the vertical half-wave thin dipole. Expressions
for the radiated power are found by integration of the Poynting's vector over
two plane surfaces; one above the antenna, and one below the antenna. The
integral over the upper plane represents radiated power while the integral
over the lower surface represents power lost. These expressions are
reduced to integrals that lend themselves to numerical evaluation by digital
computer.

Extensive numerical results are presented in graphical form as plots
of antenna efficiency versus feed point height. The calculations have been
done for various values of ground parameters that are representative of
conditions expected in practice. Also, radiation resistance plots and antenna
patterns are included.

It is shown that location of the antenna very near the ground results in
very inefficient operation. Short vertical dipoles have a pronounced peak

of efficiency at a height of . 15 wavelengths, while the vertical half-wave



dipole has a peak of efficiency when its center height is .25 wavelengths.
The location of the efficiency peak for the horizontal Hertzian dipole de-
pends upon the ground parameters and it is not so pronounced as the peak

for the vertical dipole case.
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CHAPTER I
' INTRODUCTION

The purpose of this thesis is to theoretically study the radiation
efficiency of an antenna system including a lossy ground plane.

The calculation of the radiation efficiency of a transmitting antenna
near a lossy object involves two major steps. First the expressions for the
electromagnetic fields need to be derived in order to obtain the Poynting's
vector. Secondly, Poynting's vector must be integrated over appropriate
surfaces in order to obtain the power relationships necessary to calculate
the efficiency, namely the power radiated and power dissipated.

The geometry of the problem considered here is illustrated in Fig.1-1.
The dipole is located at a height z, above the ground. The integral of the

z directed Poynting's| vector over the surface above the antenna (surface 1)

is called Sy, while the integral of the -z directed Poynting's vector over the
surface between the antenna and the ground (surface 2) is called S_. Since Sy
and S_ are independent of z; and z,, as long as the upper surface is above

the antenna and the lower surface is between the antenna and the ground, the
term S,+S_ represents the total output power of the antenna and is proportional
to the radiation resistance while S_ represents the dissipated power. Accor-
dingly the radiation efficiency 7 of the dipole, as defined in Ref. 1, can be

expressed as S
+
nse—— . (1.1)
S++S_

Historically, the problem of finding the electromagnetic radiation
from an elementary Hertzian dipole in the presence of a flat earth|bounded
by a smooth plane interface has been considered by several authors.
Sommerfeld (Ref. 2) was the first to consider the problem. He found the
fields due to a vertical electric dipoqul@gvé on the interface by expanding
the Hertzian potential in terms of cylindrical wave functions. The horizontal

Hertzian dipole was treated by Horschelman (Ref. 3) shortly afterwards .
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FIG. 1-1: Geometric Configuration.

The general vertical dipole was probably first treated by Elias (Ref.4).
The Hertzian potential may also be expanded in terms of inhomogeneous
plane waves. This method was used by Weyl (Ref.5) and Kruger (Ref.6).
Solutions for all four cases of vertical and horizontal electric and magnetic
dipoles were published by Sommerfeld (Ref.7) in 1926. Recently, Ban0s
(Ref. 8) has collected most of the work in this area and presented it in a
concise manner along with some of his own results. He gives general
integral representations of the fields due to all four configurations of
Hertzian dipoles as well as closed form approximations.

In this dissertation the method used to calculate thé\ fields is that of



dyadic Green's function. The dyadic Green's function for this geometry
with a perfectly conducting boundary was first presented by Levine and
Schwinger (Ref. 9 and 10), while the dyadic Green's function for mixed
boundary conditions was found by Tai (Ref. 11).

In order to calculate the radiation resistance and the efficiency of
an antenna near a lossy object the power relationships must be studied.
Sommerfeld and Renner (Ref. 12) published a paper in which they derive
the exact expressions for the radiation resistance of two types of antennas.

The antennas they studied were thevertical Hertzian dipole and the horizontal

Hertzian dipole . The radiation resistance expressions do not occur in

closed form. Consequently Sommerfeld and Renner turned to approximation

techniques in order to evaluate the expressions. Their approximation in-

volved the assumption that the complex index of refraction is strictly

imaginary. As far as numerical results are concerned, they have only

dealt with the case of sea water z; 40~—méters wavelength. Thc_a radiation
resistance curves for this case as well as a summary of the paper are
contained in Reference 13.

W. W. Hansen and J. G. Beckerley (Ref. 14) have derived a method
for calculating total power radiated from an arbitrary current distribution
above a plane lossy earth as proportional to the sum of the squares of

- expansion coefficients of the current. J.R.Wait (Ref. 15) presents an
integral expression for the radiation resistance of a vertical magnetic
dipole, while Bhattacharyya (Ref. 16) uses Wait's expression and'Sommerfeld'ws_“
expression to calculate radiation resistance curves for the vertical mag-
netic and horizontal electric dipole for the special case wheng > €.

In Chapter II a derivation of the dyadic Green's function for mixed
boundary conditions is presented. The derivation follows the scattering
superposition scheme suggested by Tai (Ref. 17). This Green's function
is used in Chapter III in order to derive the fields due to a vertical and

horizontal Hertzian dipole. These results are then verified against the



original results of Sommerfeld, and then used to derive expressions for
the radiation resistance and the efficiency of the above two antennas.

In Chapter IV the Green's function is used to derive the fields due
to a vertical antenna with an arbitrary length and a sinusoidal current
distribution. From these expressions the radiation resistance and radiation
efficiency formulae for a half-wave dipole are derived.

Chapter V contains the results of various computer-aided numerica.l\,
calculations. The most important of these are the plots of radiation resis-
tance versus height for the three types of dipoles. The ground parameters
were chosen to be representative of those actually encountered in practice,
and the frequency was;arn;d— f;ver a broad range. Other numerical results
included are radiation resistance curves and far field power patterns.

In Chapter VI we discuss the physical interpretation of the numerical
results as well as suggest areas where we feel future efforts would be

productive.



CHAPTER II
DYADIC GREEN'S FUNCTIONS

2.1 Definition of Dyadic Green's Functions and Some Properties

We are seeking solutions to the inhomogeneous vector wave equations

(2.1) and (2. 2), subject to certain boundary conditions.

- 9- -
VXVXE-K E =iwud (2.1)
- 9. -
VxVxH-K H=VxJ . (2.2)

The time dependence is assumed to be of the form enmt and the propagation

constant is defined by
2_ 2
k=o' pel+is)
W
The dyadic Green's function for the vector wave equation is defined by
= 2= = - -
VxVxG -k G=16(R-R") (2.3)

where E is the dyadic Green's function which, as we will show, may be
used to integrate (2.1). The unit dyadic, T , sometimes called the idem-
factor, is defined such that

T-3a=3-1-2

where a is any arbitrary vector. The delta function is defined by

fffa(ﬁ-ﬁ')dv =1 R'e V (2.4)
\'

§(R-R") = 0 R #R' . (2.5)

A dyadic may be presented as the conjunction of two vectors

3
55-) i;eﬁ if

i=1

Qi

where A and B represent two vector functions and the §i are unit vectors.

Thus, it is apparent that E may be represented by a matrix with elements
~

Gij' The transpose of E is written G and is defined as follows
5



N)

G.XX=BA
cy T

QIR
n
i

The above definition of G may be used to demonstrate that

= &
a-G=G- (2.6)
or - o
G'a=a+G 2.7

where a is any arbitrary vector.

The solutions to (2.3) depend upon the particular boundary conditions
arising from a particular problem. In general the boundary conditions
applied to (=} are very similar to those imposed upon E.

The radiation condition, due to Sommerfeld*, is used as a boundary
condition for infinite domain problems. The corresponding condition ap-
plied to the dyadic Green's function is given by /

lim R[Vx E—li/liﬁxé}o . (2.8)
R» o

At a boundary between a dielectric and a perfectly conducting material

the tangential E field vanishes. The corresponding condition on the dyadic

Green's function is given by

Qi

nxG=0. (2.9)

An important property of the dyadic Green's function is the so-called

symmetry relationship given by

GRIRY = CRIR) . (2. 10)
77777 -

" The proof of this 1dent1ty follows from the vector Green's theorem ™"

| (2. 11) and the differential equation for G

| -
| e

See Ref. 18, pages 485-486
i See Ref. 18, pages 464-468



fﬂE Vx (VxB)-B- Vx (VXK):] dv

Y = #Eﬁx(VxK)—KX(VXE):'- n ds , (2.11)
S

where ﬁ is the outward directed unit vector normal to the surface. The
surface integral of (2.11) may be written in a more convenient form by use

of the scalar triple product identity giving

JIJE - vx @xB)-5: vx (7xK)]
\'

= #EVXK) * (nx B)-(Vx B) -(nxK)] s . (2.12)
S
If we substitute for A and B in (2. 12) the vector functions

GRIRY -3 and G ®IRM-a"

and integrate over the volume by use of (2. 3) w;,obtain
3 GRIR"-GR"RY - &) =
gﬁw GRIRY - &) - @xGEIR"- 37
-(VxGRIR" - &) - AxGR R - 7)) ds (2.13)

where the surface of integration williincludg any perfectly conducting objects
and the surface at infinity. The surface integral is seen to vanish on the
perfectly conducting objects by (2.9). The integral over the surface at
infinity may be shown to vanish by the radiation condition of (2.8). Thus

the entire\surface integral is zero and Eq. (2. 13) is seen to imply (2.10)



For a two medium problem such as illustrated in Fig. 2-1, we

define the dyadic Green's function as follows:

11 == -
- ®IR?) R in medium 1
GRIRY) = ¢ _oq _ _ _
G RIRY R in medium 2

Here we have assumed all sources R ) are in medium 1. The differential

=11 =
equations that G~ and G2_1 satisfy are

1) 2=(11)

vx Vx G (RIRY- e ®IRY=16 ®-RY

(2.14)

=(21) = =(21)

Vx Vx G (RIRY)- k G 7RIRY =0

At the boundary between the two media the fields must satisfy the so-called
mixed boundary conditions. These insure that tangential E and H are con-

tinuous as long as o and 0, remain finite. The corresponding conditions

for the dyadic Green's function are

=(1) = =(21)

AxG RIRY =x G RIRY R on interface

A
2 xvxG al)(RIR') =— x Vx G( D RIR") R on interface .
M W
1 2
For sources in medium 2 we may define a E}( ) —( 2 similar to (2.14)

but interchanging the roles of k1 and kz . The symmetry relationships for

the two media case are:

(=}(11) (11)

RIRY) = R'1R)

LE®gREy - L G(lz)(R'lR)
) Ky



Medium 1, k1

AN

FIG.2-1: General Two Media Problem Geometry.
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2.2 Integration of the Vector Wave Equation

The integral expression for the field due to a known current source J
can be derived by substituting the vector functions E and E—_} - a respectively
for A and B in Eq. (2.12). We then apply (2. 1) and (2.3) in order to in-

tegrate over the volume. Interchanging R with R' we obtain

{E(ﬁ)-iwu ffff(ﬁ') . GR'IR)av! =

Vl

#EVX E) (ﬁxé)-(ﬁxﬁ)'(VxE)] dS})- a
S

where the vector a may be factored out as it is arbitrary. If the domain
is infinite including only perfectly conducting surfaces, the surface integral

vanishes. By use of the symmetry property the final result for the field is
ER) = fff GRIRY - TR" av* : (2. 15)
V!

For the two media problem the result is similar. Substitute for A and

B of (2. 12) the vector functions E(R) and E(ﬁ]ﬁ') - a2 . Integration over medium
1 yields

El(ﬁ)-iwul fff IR - 5(11)(ﬁ|§') av'

1
Vi

. ﬂEvX f:l)'(r?x(zi(u))—(ﬁxﬁl)' Vx E(”))] ash. 3
S (2. 16)



11

Integration over medium 2 where there are no source currents yields

ﬂ[(:vx E,) (ix g\ _ax E,)" (Vx E(Zl)ﬂds -0Y-3 . (2.17)
i

The surface integrals of (2. 16) and (2. 17) are reduced to integration over
the interface between the two media by the radiation condition. Applying

the boundary conditions on E and (=} we obtain

ffEVx Ez)' (ﬁxa(u))-QxEl) : (Vx(z}(Zl)):I ds=0\-13

Boundary

Using the scalar triple product identity, we obtain

[ﬁx (Vx Ez)' (E(m)-ﬁl- nx (Vx (=}(21)) )] ds=0) -3 .
Boundary

Again applying the boundary conditions on Vx E and Vx G we obtain

ff[ﬁx (Vx :E-l)' (E(H))-El-(ﬁx (Vx (=}(H)) Z—_l dS=0}-3a ,

Boundary

and again applying the scalar triple product we obtain the identity

ffEVX El)- Mx E(u))— (ﬁxﬁl)- (Vx 5(11))] ds=0}- 2

Boundary

This identity implies that the surface integral of (2. 16) vanishes,

implying:

B,® -, [[f SV®RY FRYav | 2.18)

1
Vl
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Similarly it can be shown that

B, @etun, f f f DREN-TERY avt . @.19)

1
V1

Equations (2.18) and (2. 19) are fédﬁimgto
a®=mu£f GEIRY - T®Y av

Thus, once the dyadic Green's function for a particular gometry has been
found, the fields due to a known current source J _ @be directly ex-

pressed in integral form.

2.3 The Vector Wave Functions

W. W, Hansen“‘\(Ref. 14) \first introduced a method for generating

solutions to the vector\wave equation making use of three so-called vector

—_—

wave functions. These functions are defined in terms of a scalar potential

Y which satisfies the scalar wave equation as follows

L=Vy
M=Vxay
- 1 _ =
==V
NKxM

where ¢ is a solution of

viy-kly=o . (2.20)

—

Note that K{s— an arbitrary constant.

In order that M and N be solutions or eigenfunctions of the equation

Vxfo-K2F=0

Senior (Ref. 19)and Spence\and Wells (Ref.20) have shown that a must be a
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linear combination of the radial vector R with any arbitrary constant vector.
These functions are presumed to be complete and therefore may be used to
expand any arbitrary wave function *. If the wave function is solenoidal then
the expansion need only contain terms of Mand N .

For the cylindrical coordinate system the solutions of (2.20) may be

written in the form

cos tihz
. nfe
sin

¢gm(h)= Zn(?ur)

where Zn is an appropriate solution to the Bessel's equation and >L2+h2= K2.

Zn is usually chosen to be the cylindrical Bessel function Jn . If the Hankel

function of the first or second kind is chosen then the vector wave functions

IVI(I)

are written with the appropriate superscript; i.e., represents the vector

wave function where Zn has been chosen as the Hankel function of the first kind.
The sign of ih is chosen to give an outward traveling wave in the +z direction
in order to satisfy the radiation condition.

The vector wave functions are sometimes classified according to what

vector a is actually used for their definition. For example, if the unit

)

vector X were used then the vector wave functions would be written M

=(x)

and N* . The same is true for a equalto y, z or R . The various

—=(x)

types of vector wave functions are not independent. For example, M

=(z) =(z)

can be represented in terms of the M'~ and N' functions . For the

(z) (z)

following we will be dealing mostly with the M " and N~ functions and thus

the z superscript is implied unless otherwise specified.

“See Ref. 21, page 393

""See Ref. 23 .



14

The specific vector wave functions that we will be using are expressed
below.
- sin A BJ COS 1hz 7\
Mem(h) = ‘J O\r) S opr - — ¢ ¢ \ (2.21)

8r
0

aJ S N
h_(M)c:os ¢ +__ J Or ) in ¢¢

- 1
N () —— [
o \a24p2 :

27 (>ur)°°S ¢’jeihz . 2.22)

These two functions satisfy

M| 2\M| _
Vx Vx{ﬁ} -k {ﬁ} =0 (2.23)

when

K2 =nZ 2 . (2.24)

Note that Eq. (2.23) @iﬂvthe definition of the M and N functions implies that
the following relationships hold.

Vx

ZI ZI

=k
=k

EI Zi

Because of the orthogonal properties of the scalar wave functions\w the
vector wave functions also exhibit orthogonal properties. These orthogonality
relationships facilitate the expansion of certain functions in terms of the
vector wave functions. Some orthogonal properties of the cylindrical vec-

tor wave functions have been discussed by Stratton (Ref.21) and more com-

pletely by Tai (Ref.17). The relationships that we will use are given below.
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fffM 0 - N Ty T 20
ff f Mgm(h)-ﬁ - (-h) aV = fff -Fren, (=) av

= 26 (1+6 )7r ké()u—)x')&(h-h') (2.25)
where 60 is defined by
1 n=0
§d =
o |0 n#0
and 6 _, is defined by
nn

1 n=n!

nn' |0 n #n'

2.4 Delta Function Expansion and Free Space Green's Function

We wish to find an expansion to the unit dyadic'ii'edlt—a\function of Eq.(2.3).

The method of expansion used 1S\the Ohm-Rayleigh or / elgenfunctlon expansion

method. First ‘we write the delta function as an expansmn over all possible

l R I

\ elgenvalues (n A h) of the eigenfunctions M and N .

?RR’)fD fdh (h)A (h)+N (h)B (h)
n=o O

(2.26)

with A and B being unknown vector functions to be determined. The KMT\
gration is only semi-infinite because J (Kr) is not independent of J (-lr)

In order to find A and B we multiply (2. 26) by Me ’A‘(-h') and integrate over
n
0

all space. As a result of (2.25) we obtain

- 2-6 —
A ()= — M (-h)
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where the M! indicates the vector wave function is defined with respect to
the primed coordinate system (r',¢', z'). Similarly, multiplication by

- s
Nen'k'( h') yields
0
_ 2—60 _

FJ— 1 -
B (h) 5 Ne (<h)

oM 47%  §mA

Thus the final form of the expansion may be written

(49] o)
dA
dh f ~ i (2—60)
0 n=o

Ts@-R)= — f
4r

-0

M (M _(-h)+4N_ (N (-h)}

{ omA gmh omA A
The free space dyadic Green's function (=}0 !s/mi;ﬁés (2. 3) as well as

the radiation condition. Expansion of Eo in the form of (2.26) and substitution

into (2. 3) yields

Qi

0 0] [0 0]
1 f " f & i A
0 47r2 A n=o h2+)\2-k2
-0 0
M M'  (-h)+N N' (-h ) 2.217
{ Mgnk(h)Mgm( h)+Ngm mmgm( )} (2.27)

The integration over h may be accomplished by@ting' h as a complex

variable and making use of Cauchy's theorem. The result is

m s
. 2-6
oL [ ) o
L [ 8 55
0

n=o

Me (h)I\_/[é (-h)+ﬁe (h)ﬁ:e (-h) z> 7!
onA 0 0 onA
1\716 m(-h)l\_llé (h)+ﬁe (-h)ﬁé (h) 7 < z!
0 OM Om On)L
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where
h = ﬂ kg-kz .

The sign of k2-7L2 is always chosen in such a way that the imaginary part
of h is positive, therefore, insuring that the radiation condition is satis-

fiedasz =T .,

2.5 Flat Earth Dyadic Green's Function

Assume that space is partitioned into two halves as illustrated in Fig.
1-1. The upper medium is assumed to be air while the lower half space
is assumed to be a homogeneous lossy dielectric with a permeability equal
to that of free space. The boundary between the two media is assumed to
be a flat plane of infinite extent located at z =0 . This type of configuration
corresponds to that of a flat earth. We assume that the constitutive con-
stants of air are the same as free space ('uo, € 0" 0 ) while the earth is

characterized by the constants ‘( ﬁ;eE, 65;}77& 0. The propagation constants

in the two media are thus

2
k2=k =w2ue
0 00
2 €
Ko=kd (241 )
E 0 € we,

— (0]

where the subscript E stands for in the earth. The complex|/index of

refraction may also be used to describe gﬁc/h a boundary. It is defined as \

. E _—
=2 ¥ i) (2. 29)
€ - WeE
(0} 0

The electric field must satisfy

SN
v
o o

- 92— -
VxVXE-KE= ipqu
Vx Vx E-klz*3 E=0

IN



18

where we have assumed\that there are no current sources in the earth.

The field satisfies the following conditions on the boundary:

The Green's function for this geometry is constructed by the scattering

superposition method. We assume the Green's function has the following

form:

c"EIRY - & @7 +E VR 20

s @iE) - 3 @Iy 2<0

The two scattering terms will be assumed to have the following forms:

> X\ 2-6

= 11 i | - — — - -
G(s):}f % Z -hQ~ aM(le (h)M('e (h)+bNe (h)N:3 (h)

T 0 =0 Om Om onA. Om
oy . (0 o © g s _ _ ) _
Gs =4_ X Z —h—0 cM (—hE)M' (h)'*'dNe (-hE)Né h) ,

U DN

where
]2 2
hE = kE -

The imaginary part of hE must be greater than zero. This in turn implies

the sign of the square root function and eliminates any ambiguity.~

We have chosen M(h) and _N.(h) as the anterior elements of Esl D because
they will have to satisfy the radiation condition at z % o0. Similarly, we have
chosen ﬁ(-hE) and ﬁ(—hE) because they are solutions to the vector wave
equation in the earth and satisfy the radiation condition at z =+ -0 . The
posterior elements are taken to be the same as those of (=}0 when z < z!' in

order to satisfy the boundary conditions at z = 0 . The functions a,b, ¢ and d
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are to be determined such that (=} will satisfy

x G =25 5@V

ND>

£xVx E(ll) = 72x Vx C=;(21)

on the boundary z=0 . The necessary functions are

ﬁjh;\‘
a~= Tl_'l‘l—l_ (2.29)

9 E
n h-

5 hE (2.30)
n h-l-hE

2h
C = (2.31)
h-fhE

d= Zznh . (2.32)
n h-l-hE

b=

=(1 =(21
The complete expressions for G( D and G( ) are given below:

00
R R W o
4 A h
0 n

8

-

(]

W

(_ - - - ~ -
M (b [M' (-h)+a M! (hﬂ-*-N (h) [N' (-h)+bN! (}_IEI z> z!
En) Enr En) En) Sn) En) -

E\’Igm(-h)-laMchm(hﬂ M'g n()}:).'-E\ISn)L(-h)-'-bNg nx(hﬂ Ném(h) 0<z< z!
J

v (2.33)




Q0

m >—
@D _1i dx z %
47 A & h
0

{cﬁ (-hg)M! (BN (-h )N (h)} 2<0,
&nr e Sm E Smy

Qll

(2.34)

where a,b,c and d are given by Egs. (2. 29) through (2. 32) and h and hE
are defined below.

h = k2-7\2 Imh>0

[ 2
hy —JkEx Imh, >0

Thus knowing E the integral form of the fields due to a known current

source, as given in Section 2.4 may be written

E@=wi [[f M@ 7R av 2> 0
E®-=tun, [[f & ®IRY- @) av 2<0
where it has been assumed that the current source is in the air. This

dyadic Green's function will be used in Chapters IIT and IV to derive the

field expressions for various types of antennas.



CHAPTER III

HERTZIAN DIPOLES

3.1 General Remarks

From this point on we will be dealing with various sources located
above an imperfectly conducting ground. The geometry and assumptions
are detailed in Section_g._lﬁ where the dyadic Green's function for this case
is derived. The Green's function will be used to find integral expressions
for the fields in the region above the earth due to an x-directed and a
z-directed Hertzian dipole. The fields below the earth are not needed for
our calculations.

The fields will be shown to be equivalent to Sommerfeld's original
results and then used to find the z component of Poynting's vector.
Finally the integral expressions for S . and S_ are obtained by integration
of Poynting's vector over surfaces above and below the antenna as outlined
in Chapter I.

3.2 The Fields Due to a Hertzian Dipole above a Flat Earth

3.2.1 z-Directed Dipole. From Chapter IT we know that the E field

may be found from a knowledge of the currents and the dyadic Green's

function. The specific relationship is repeated here.

B- 1o [[fERIRY- T@) av 2.15)

For a z-directed infinitesimal dipole located at a height z, above the

ground, the current distribution can be expressed as

TRY=2 6(x*-0)6(y'-0)6(z'-z ) U (3.1)

21
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The antenna current distribution is assumed to be uniform, with time de-

pendence ™! | and having a magnitude of I. If the length of the antenna

" is { then in the limit as £ goes to zero the diporle moment I/ is assumed to

have a finite value.

Since the Green's function for this case (2.33) and (2. 34), —copiim pos-
terior terms of the Ménh (*h) and ﬁé (*h) type, the following two relation-
ships, which arise frc?m the explicit %xpressions for the M and N functions
given in (2.21) and (2.22), will enable us to write the expression for the

fields due to this source.

ff M' (Zh)- J@R")AV = 0 (3.2
en)

1) )lz +ihz

fffﬁém(ih)-i(ﬁ')dvqu °k e ° (3.3)

Equations (3.2) and (3.3) imply that the final expression for E will contain

only terms of the -ﬁe o type. Since the M functions have no z component,
(3.2) would hold for any z-directed current source and implies that the
field for these type currents would be represented in terms of the N type
functions only.

The E field above the earth is found by substituting Egs. (3.2) and (3. 3)
into (2. 15),where G is now the part of the Green's fu.nction/Eq. (2.33) that

applies for z > 0, and is expressed below.

o -ihz ihz
N . (h) Ea °the OJ 2>z
eOA o

ﬁ:-w” 14 H (3.4)
47k h . _ ihz0
0 quOh(-h)wNeox{h)]e 0<z<z

\

The magnetic field in the same region is found by use of one of Maxwell's

equations:
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1

—— VXE .
lwu
o

o=

This equation plus the relationships between M and N (given in Sect.2.3),

enable us to write directly:

00 M _(h) Ea e j z> 1z
eOr o

- il4 ] |
H“’?fd}‘}'l{ ' thz_ 3.5)
0 Ew o (BT Ok(}]  0<a<s

Sommerfeld originally derived the field from the Hertzian potential.
For the z-directed dipole he found that a z-directed potential would work.
- This potential is expresrsred»';below.

00

ih [z-z | ih |z+z|
. A 0 |a
1f dvJ O\!)[ +he ]z z>0 .
O .

The electric field is derived from the Hertz potential as follows:

— A
I1=1I z
Z

‘E =VxVxII
Note that

1 | +ihz
4y L Tihz A
N 0)\(_h) r Vx Vx (JO (?ur)e z)

Then Sommerfeld's expression for E may be written directly in terms of

N functions as

0 ([ N . (h) e_lhzo-ibeihzoj 2>z
_ , N eOA )
E= ikf dx h < ihz
0 Eﬁé 0h(-h)+bﬁeo>t(hﬂ e ° 0<z<z
.

——

This equation agrees with (3. 4) with the exception of Sommerfeld's nor-\
47k2 , )
WHq 14

malization factor which is (
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3.2.2 x-Directed Dipole. For an x-directed infinitesimal dipole at

height z, with unit current moment,the current distribution may be written
as

TR = R6(x'-0)8(y"-0)8(z'~z )

The following equations arise from the definition of the M and N functions

in Egs. (2.21) and (2. 22).

‘. 1ihz
f f f M' () -T@ENAV' =6 . Ne ° odd parts only (3.6)
em - nl 2 '
- - + 3 -1hz,
fffN' (}h)- TRYAV!'= I 6 zih y-te even parts only .
(e)m nl k 2

(3.7)

Equations (3.6) and (3.7) imply that only terms involving vector wave
functions of the ‘type I\_Leﬁ(i' h) and ﬁe 1A( th) are needed to represent the
field in this case. The E field is derived from Egs. (2. 15), (2.33), (3.6)
and (3.7) and is

» -ihz0 ihz0] h
wu 1L 0 Mo lk(}l) [e tae

F=o2 ol k >

47k h - _ ihzo

0 E“o M naﬂ © )

-

o -hzO ihz =)
N .. (h) [:-e the ° ] z> 7z
el

+i(

. _ ihzo
[, ol 1>t(h):\ e ]| osecs,
\.

(3.8)
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The magnetic field is found using the method of Section 3.2.1 and is

-ihz ihz 5 N

(- 1

[0 N (h)Ee tae 0]
ol

=+l f a
47
0

[=n -y
e

1hz

N

Er NG -h)+aN 1x(}‘):] )
M (h) [ z 1hz \] - s,

+i<

_ 1hz
k@elx('h)“oMel;\(h{] e 0<z<z .(3.9)

—

For the x-directed dipole Sommerfeld found a Hertz potential with both

A A . .
x and z components , which can be written as

_ £ ihlz-z)  ihiztzlq
IoI=i dr - (J ()Lr)[_g © tae O]X
h }O
0

ih(z+z,)
s J (\r)cos @ (a+b) e

A
VA

The following two identities will be used to find E:

>§:§)))L(-'h)— Vx VXE (\r)e fihz }?]

1 tihg ,«]
+h)= =
N (1h)=¢ Vx Vx EIl(Ar)cos Pe z

where the ﬁ(x) are cylindrical vector wave functions of the x type. The

7 f1e1d is found from the Hertz potential as follows

r.
o) —(x) (h)[: ]

§=VxVxﬁ=ilif dk% < 1hz
0

E\I(x) (DR ]

ih _ 1hzO
+ = {(a+b) Nel)t(h) e } , (3.10)

Py
J
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where the upper line of N &) terms applies for z > Z, and the lower line applies
for0<z<z . The -I\-Ie 1>L(h) terms apply for z> 0 .
The x type vector wave functions are related to the z type functions in

general (see Ref.23). Specifically it can be shown that

—S&(h) N (h)+;-t M o
If this identity for NS?)\ is substituted into (3. 10) the result is
-~ _ -ihZO ihz0
_ o ) M oln (h) [e +ae :J
E=ik dA i _ _ :
[, 1 -hhadt 1>\(hi| e
- -ihz  ihz -
. N m(h) [—e ° tbe o:l z> 74
-’-‘IE -1hz
-h)+bN 1A(h):l ¢ 0<z<z
- 2
which agrees with Eq. (3.8) except for the normalization constant (—————47[1; y ).

Thus the Sommerfeld result and the Green's function result are the same as
it should be.
3.2.3 Far-Zone Fields. The asymptotic form of Egs. (3.4) and (3. 8)

as kR becomes very large are determined by the saddle point method of
integration. This method and its limitations are discussed in detail in
Appendix B. The asymptotic é@rgsﬂsjan for the z directed dipole is

ikz cos6
. y K i A
1quI ol R 1kzocos(9_l_b(9)e 0 ]9

27 sinf R

and the asymptotic expression for the xd1rected(d1pole is
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iwp IL ikR ikz cos6 +ikz cosf A
- o e . 0 (o .
E= - — i E +a(6)e ]smjb )

o R
-ikz cosf +ikz . cos A
0 0
+ Ee +h(H)e cosf cosf 6

where a(f) is the plane wave reflection coefficient for horizontally polarized
waveg’v?ﬁifé b(6) is the corresponding coefficient for vertically polarized

waves.

V 2 ' 2 " '
a(o) = 228 6-Tn -sin29 b(6) = 2 cosb- n2-sin26

cos 9+‘n2—sin29 n200s9+Vn2-sin20

The power patterns given in Chapter V are normalized plots of R2 | E‘z

where the E was calculated by using the asymptotic expressions given above.

3.3 Radiation Resistance and Efficiency

3.3.1 Poynting's Theorem. The time averaged z—dlrected}Poyntmg s

vector may be written

P -iR l—ngJ z--EH¢+EH¢a. (3.11)

The integral of P over an infinite plane surface parallel to the ground will
be called S, or §_ depend%ng\on whether the surface is above the antenna

or below it. Poynting's theorem states that the surface integral of the

time average Poynting's vector over a closed surface corresponds to the
time average energy flow through the surface or the average power dissipated
within the volume. The total power dissipated by the antenna is equal to S,
+ S_ plus the integral of the r-directed Poynting's vector taken over a
cylinder of infinite radius placed between the surfaces of integration used

for St and S_ . This integral is ZEero, because'_ég we shall show, the

integrals S and S_ are independent of the location of their respect1ve surface /

of integration as long as z > z0 for S+ and 0 <z < Z, for § . Thus the
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radiation resistance R defined as

#P-ds S++S_

R:=% = (3.12)
2
Z ]

o

will be proportional to S A + S_ (where Io is the RMS value of the antenna
input terminal current).
If we enclose the earth with an infinite surface, part of which is a
surface directly on the earth air interface, then the integral of the normal
Poynting's vector over thisrsurface will be the power dissipated in the earth
and is equal to S_ since the value of S_ is independent of the location of the
surface of 1ntegrat10n for0<z< z0
Smce the total antenna output power 1s S + + S and the power d1s-
7s1pated in the earth is S ,the radiated power must be equal to S Refevrenee”

1 defines radiation efficiency as the ratio of r_a_q;gqeq power to antenna input

power. In this case radiation efficiency n will be

(1.1)

Thus we see that both radiation resistance and radiation efficiency may
be calculated from a knowledge of S A and S_. Therefore in the’?ollf)iving
sections only expressions for S + and S_ will be derived. These expressions
will be independent of the height of the surfaces of integration but dependent

upon the source height Z s and when evaluated may be used to find [ R and

n as a function of Z -

3.3.2 z-Directed Dipole . The fields that make up the z-directed

Poynting's vector are Er’H¢’ E¢ and Hr . For the z-directed Hertzian
dipole these are found (using Eqs (3.4), (3.5) and the definitions of the M

and N functions) to be
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iwuoIl > 9 ih Iz-z(l) ih[z+z(!
- +
Er -4—71_1{2—-‘[ dA X JIOLI‘) l;e +be :]

0
iop 14 £,
- f A X"J, (), (b, z) )
D) 1 1
47k 0
0 ih [z—zJ ih fztz |
_ iy 2 _ e '*‘be
H¢—+4ﬂ’f dA A JIOH') [ h
0
_, i14 2
= A 1"J, )iy, z)
0
E, =0,
g
H =0
r

where the upper sign corresponds to the region z > z and the lower sign
corresponds to the region 0 < z < Z, - Thus the integral of the z-directed

Poynting's vector over a plane surface can be written in this case as

0] 2m o)

o+ 1 = =% A|_ 4+ %*
Si'— -éRe]‘ rdrf dg EEXH -z]—_w_Ref rdr ErH¢
0 0 0

Substituting for Er and H¢ we find

+wN012f2__ f00) . 00 . aﬂ
s,=f—=—Re [ an’[ ate| rar[50m5 )]
- 167k b 8

0
[f,02, )ylhy 2, ]

where { is used for one variable of integration instead of A, and h ‘ is

defined by

2 .2 2
By =k"-1° .
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Since the plane of integration is at a fixed height, say z +> z for S A and
0<z_< z for S_, fl(h, z) and f2(h, z) are evaluated at Z,Or Z_ depending
upon whether or not S L oT S_ is being calculated. The notation z + implies the
use of z + for S L and z_for S . Applying the general orthogonality relation-
ship for Bessel's functions™

00
_ o(x-1) !
fJn(Ar)Jn(lr)rdr— m (37.71737) \
0

we obtain the following

2 2 00
_+ O 3
s, =7 5 Ref A l:fl(h,zi_)fz(h,zi_)] . (3.14)
0

This equation may be shown to agree with Sommerfeld and Renner's result
again excepting the normalization constant™" .
From Chapter II it is recalled that the spectral variable\ h is defined

as

h =Yk2-)2 Imh <0

Re h< 0

In our case/ k is real and thus h will be real for X <k and imaginary for

A> k. Therefore,

« Jo <k
h-h* = =
{% A>k (3.15)

"\See, for example, Ref. 13, page 111.
sksk 2

Sommerfeld defines the spectral variable u = )xz-Rz . Thus, the
verification procedure involves the substitution of 4 = -ih in Sommerfeld's

equations. See Ref. 13, page 272,
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These equations will be used to simplify the expression for S of Eq. (3. 14).
Expand the function [flfz]

[fl‘*’:zi"f”é(h’z_t)] i .
-ih"‘|z+ -z -ih (z +z )

tih |z, -z | ih(z +z ) * +
h

i(h-h") |zi+z | b" ihlzi—zol -ih (zi_+zo)

=1 l—d,e e o
= 5 |
ih(z, 42 )-ih|z,=2}, . % i(h-h™)(z 4z )
+ y
e O - OB . o (3. 16)
h h

The real part of the first term of (3. 16) may be reduced using (3. 15). \
i(h-h™ z, -z + ] A<k

+ "o “h -
h" 0 >k

Note the independence of z L Similarly, the real part of term four of

Eq. (3. 16) may be written

T bb*
bb>.< l(h-h )(Z+ZO) —h— A E k
Re -5 € =
h 0 1>k

Again there is no dependence on z 4 In order to reduce terms two and
three they are combined,but|separate consideration must be given to the
z> z, and 0 <z < z,, cases. First, we consider the real part of terms two

and three for z > Zo
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ih( ;+-zo)-ih (z++z0)
Re{— e t= e

h' h
B i(h-h>:7z+—iﬂl+h>:3zo b i(h-h:")z_l_-l-i (h+h"’)zo

=Re =€ +-—=,<e
h'l hn

ih(z 2 0)-ih*(z +—zo)

=Re - +h e

( i(h+h")z, . -ith +h"‘)zo) i(h-h"')z_‘_
be e
h

The term in brackets is real because it is the sum of complex conjugates

and in light of (3':”1-5) this term may be written

=l B2

2ihz, . -2ihz,
be +h’e > A<k
0 1>k

This expression is again independent of z,_ . Now consider terms two and

three of (3. 16) for 0<z < z, -

ih(z -z_)-ih (zo+z) b ih(z +z_)-ih (z -z )

Re - = e + = e
h h
—ith+h™z +H(h-h¥)z ith+hz +i(h-h)z
_ - O, b - 0
=Re (- — € +—e
h* b
] i(h +h*)z_ -i(h-h*)z_ i(h-—h*)z0
=Re { — be -b*e > e . (3.17)
e

In this case the term in brackets is imaginary since it is the difference of

complex conjugates and in view/of Egs. (3. 15), Eq. (3. 17) becomes

. 2ih*z
= [b-b e A>k

0 A<k
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Define S as
T
271' Z+

S, =rljinmf f rdf dzP, .
0

Then from Poynting's theorem the total output power of the antenna is

Power output = S ++S +Sr= constant.

Since S, and S_ are independent of z + and z_, then Sr is also independent
of z, and z_. Its value is seen to be zero if both z, and z_ are allowed to
approach Z Ifz + 18 allowed to approach infinity before r is increased
the result for S, may be different. However the sum of S;. and S; remains

unchanged.

The § , terms are all 0 for A >k and therefore the A integration of
(3. 14) will have limits of 0 and k for S n While for S_ there will be two
integrals, one with limits of 0 and k, and the other with limits of k and o .

The resulting expressions for S_and S_are

on? 3| o 2"
S=xu-2_ | AZ{1tbb™he 4be (3.18)
+ %) h
167k" 1
0
wuori K \3 @ 3 - 2Zhz, -2ih*z0
§=-_ 00 f A (1+bH+] D= Ee -b¥e :]
- 2 2 h .
167k 4 0 " h

(3.19)

function b and the exponential terms are given in terms of h. There-
fore, it is convenient to transform the integrations to the h variable.
Thus in (3.18) let

‘AZ = k2 - p2

then
A3d) = - (k2-h2) h dh
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and the respective limits will go from k to 0 . Reversing sign and limits we
have

! 2ihz -2ihz

wp I

g =2 | an@2-nd{1b e e %} . (3.20)

+ )
167k £° ),

For the S_ expression of (3.19) we use the same substitution for A . The
first integral transformation is the same as the one for S " however the second
integral has different limits and will be handled as follows

00 ico
3
f A f (*-h%)dn
k h 0

Thus the equation for S_ becomes

2 k ioo
wH, I 2 .2 " 2
S =-—2 dh(k®-h®) (1-bb™) + dh(k%-h?)
167k242

0 0

2ihz -2ih*zo
(o) %

(be -b"e ) . (3.21)

In order to identify the free space and perfectly conducting parts of the ex-
pressions for S N the function b will be written in two parts, a constant plus

a term with a li_mit of zero as perfect conductivity is approached.
[ n%heh . %h,
bE— =l-— =1-B. (3.22)
h+h +
n I nh hE

Note that B approaches zero in the limit of perfect conductivity (i.e., n2= io).

Substituting (3.22) for b in (3.20) and (3.21) and using the following

changes of variables K

h = ku forf
0
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and ioo
h = ikv forf
0
we obtain
22 1
wu kT4 2 . ig
S~ f du(1-u?){ 2+2cos Eu + |B|” -(B+B™)-2RE (Be™") },
0
2 2 1 00
wp kT L \ 2 2 ~EV
S = - — du(1-u2) EB+B") - |8l ]+2 Im dv(l+v“)Be
0 0

where £ /1'7=>2kzo and it is understood that B has been transformed from a
function ofk‘h——to a function of u or v depending upon the variable of
integration. In the perfectly conducting case the only two non-zero terms
are the first two terms of S+ . These terms may be integrated in closed

form to give

2 2

4
lim - LO“okI 143 sin £-€ cos &
n2s o ot 127 £3

For the perfectly conducting case S_ is zero and the radiation resistance

will be S N divided by the RMS value of input current squared (12/ 2) or

2
. wu kL . e
R==2—{143 sin€-Ecos& = 708 (1;’)2 143 sin€-Ecos&
ot g3 A g8

This expression agrees with the result obtained by integration of the far
field Poynting vector due to a dipole above a perfectly conducting ground.

Note that the variable part approaches zero as z_ goes to infinity and the

0
constant, or free space term agrees with Kraus' result (Ref. 24, pg.137).
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The final results for S A and S_ are normalized by this free space radiation

resistance times IZ/ 2 and are given below

1

sinf-Ecosé 3 2 *
8,=1+3 % +‘If du (1-u?)([BI*-(B+BY )

0
1

o ;)
-g Re f Be'*Y(1-u?)du (3.23)
0

1 00

s_=-§ f du(1-u?)(| Bl 2-(B+B™ )-gIm f av(1+IBe " . (3.24)
0 0

These results are used in Chapter V to obtain numerical results for
radiation resistance and efficiency.

3.3.3 x-Directed Dipole. The fields necessary to find the z com-

ponent of"ﬁb?nﬁﬁg—'g vector are Er,H¢, E¢ and Hr . For the x-directed

Hertzian dipole they are found from (3. 8) and (3. 9) to be

wu L - J. () ih|z-z0| ih(z+z.)
E=-—2] adf L [ +a °
r 47k h—r €
‘ 0
“+h dJl(Ar) [ihlz-zol ) ih(z+zO
N - e -be cos §
wuol’g, J 1 (Ar) 0J 1 (Ar)
T | Wy LAt 5 ko) ¢ cos
&
J.(kr) ih)z-z | ih(z+z )
_I¢4 1 + o 0 :]
H,= - — dx [_e +ae +
g 4r r
0
. 8J1Qr)E ihlz-zol ih(z+z)
el A -be _] cos §
y 0 3,0ux) 83, (ur)
=_ 47_[ dx - f3(h, z)+ = f4(h, z) } cos

0 _
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wu Il & 8J.(\r) - ihjz-z | ih(z+z )
_ 0 k 1 Y 0
=+ dryg - - e +ae
h or

0

b Jl(kr) ihlz-—zol ih(z+zo)
e e -be sin §

00

W uOI . dJ 1Otr) J 1()xr)
=+ d f (h, z)+ f (h,z)} sin §
2 or 1 r 2
47k
0
00 Y . .
aJ. (\r), ih|z-z,| ih(z+z ) —
14 | 0 o
H=-=— dx te +ae [ !
r 47 or '
0
J. () ihfz-zo]  ih(z+z )
r— e Tae ] femg
10 » 3J10tr) JI(M)
- d — f3(h, z)+ " f4(h, z) } sinf .
0

For this case E¢ and Hr are not zero and therefore the integral of the

z-directed Poynting's vector over a plane surface will be

o 2
_+ 1 % %
8, =-5Re f (ErH¢ E¢Hr) r dr dp
0 70

The § integration is easily done since

27 —
cos p/ -
f sin® @ @ =a
0

leaving
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2 2 00 00 00
w“OI‘e %
0 0 0

JIO\r) Jl(lr) 8J1()\r) 8J1(£r)

r r + or or

JlQr) an(ﬂr) BJler) 8J1(1r)

99, (r) 9 (r) Jl(kr) 83, (£r)
+f2 o, zi')f3 <h1 ’ Zi') or r + r or

N 9, (Ar) 9J, (£x) Jl(m J ()
+f2(h, Zi)f4(hl’zi-) 5 - + - - ’

(3.25)

where we have used £ instead of X for one variable of integration and
define h, as follows

J/
2 _2 2
hl_k -1 .

In order to proceed with the r integration of (3.25), we need to

know the result of the following two integrals:

> 03,0) 3)(tr)  3,0x) B er)
rdr + - — )} =0
.L- or r T or
® 00 3 x) 83 0w) o7 (tr)
f r dr + =\ S(\~12)
r r or or
0

The first integral may be evaluated from the fact that

9J.(\r) Jl(lr) Jlar) aJl(er)

1
or T +r or

% % {Jlotr)Jl(lr)} =
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Therefore the integral will be

o0

00
f g—f {Jl(?xr)Jl(lr)}dF Jl()\r)Jl(JZr)l =0 .
0 0

The second integral may be evaluated by using the following identity:

+
4r r or or

JIOxr) Jl(Zr) J 8J1(7Lr) 8J1(1r)
=M JO()\r)JO(lr)

1d
e Jl(kr)Jl(fr)
Therefore the integral becomes
[09) 00

Mf dr r JOOxr)JO(ﬂr)-Mf -(,?I—'{Jl()tr)Jl(lr)} dr
0

0
(04}

SU-NNL 0 Er) | = YA L 6 N
0

Ry

AL

Thus the integration of (3.25) yields

00

Re f OB [_El(h,\zp £, 2,0, 2 ), (0,7, )]
0 (3.26)

2 2
wuoI £

327k

S =
o

The contents of the brackets can be expanded as follows
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£, +f f _] +|k.h el(h-h) 7% fk % b ihlz-z ) -ih " (z+z, )

Eaa+l-(bb

+&k b } 1h(z+zo)-1h \z-z) ‘ak % R *} i(h-h )(z+zo)
- e e .
The real part of each term is examined using the féc?i that h is real for

A< k_jand imaginary for )t>;k . First consider the real part of term one.

i(h-h;:’)lz.p-z | -
kK h o]
+ -t = T
‘Reih+k ie X

An examination of term four yields
Y p g ieh) stz Ela+2ni° A<k
Re(- lal + (bl") e o=
0 A>k

Terms two and three are considered together and yield a different result for

and z_ . First, consider the z, case

Z+ +

72 -l-(b }-‘la-/l-;b e

i(h+h ™z -i(hth ™)z iz, -i+h Mz )
k 0 ““o\ h -7 %
= E(ae +a"e : )-l-(-(be +H e

i(h-h")z,
e o

{k . } i(h-h"z4 it )z +§k T } i(h-h"z bz,

Since both terms in brackets are always real, the real part of terms two and

three reduces to
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K Zihz0 b Zihz0
2 Re i ae " be A<k

0 A>k

Now we examine terms two and three for 0 <z < z,

k % h -1(h+h::’)z_+i(h-h>:‘)z0 Kk h i(h+h*)z_ -l-i(h—h*)zo
{Ea "Eb 1 -{Ea-l-;b}e
oo iRz i)z itz iz
={ = <ae THa'e ) Q’e -b%e )
i(h-h™)z
. 0

In this case both terms in brackets are imaginary and the entire term will
be real only when h is imaginary or for A > k. Thus the real part of terms

two and three for z_ becomes

2 Im{-l-{a+¥-lb

2ihz
o
h k }

A>k

0 0< A<k

As in the vertical dipole case all of these expressions are independent of z .
This fact implies that the surface integral of the r-directed Poynting's

vector over an infinite circular cylinder will be zero. The above terms are

nowﬁs_gbit{tuted in (3. 26) to give
2 2 !
quI £ k K
S+:-—§2—7r—k—Re dx A +(1_1 E)+ l' + ,b'
2ihz

k o}
+2Re(Ea—l-{-b)e (3.27)
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ou 1212 k
__ o k h, k, 2  h 2]
S T Re du\:(h+k)+ﬁlal +k|b|
0

Q0 .
K h 2ihz
+2 Im dnl:--a+-b:|e ot (3.28)
ha'k
k

The function a may be expanded into a perfectly conducting part plus a per-

turbation similar to (3.22) for b.

h-h

E 2h

g=e——=14 ———==1+A (3.29)
hthg hthg

b=1-B, (3.30)

where h% = klzg —)t2 = n2k2 -)L2. It is seen that A approaches zero as n2 ap-

proaches i 0. If (3.29) and (3. 30) are substituted in the equations for Sy

and the variable of integration is changed from A to h we obtain

2 2 k

wu T4 2ihz
" k h k. h o:]
S+ Tk Refdhh 2(1-1+k)—2 Re (E+l-{-)e

0

2ihz

’]

k 2 bS h 2 * k h
#£ (1a-a%) + 1 (1BP-(B+B7 ) +2Re [ (Fa+] Ble

2.2 k
! k2 s vy 012
5= -5m Refdh h[}-l (AI°-(A+A™ )+E(|BI -(B+B))]

0.,
i ®

" 3 K h 2ihz0
Imf dh h |( hA_kB)e
0 .

Note that the first two terms of S are integrable in closed form as
k

k h, 4 2
fdhh(E+E)—§k R
0
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k

2ihz 2 .\

Ref by ol gy - g2 € -Dsing +E cos €

Bk 3
0

where

£ = 2kz0

Using these two equations plus the following changes of variables

k

f-orf h dh use h = ku
0

io

foxf h dh use h = ikv
0

gives
2 .
g ={1 _3 (E -1)sinf+Ecos&
+ 2 53
1
+ g f du @Alz-(A+A”°) V(B (B+B]) ) +2 Re {(szB)eiEu}]
A _,
(3.31)
1 ,
8 =- gfdu E|A|2—(A+A*) ) +u2(IBI2-(B+B"')ﬂ
O .
-g Imf dv (A-VZB)e-Ev ; (3.32)
0

where both equations have been normalized to the free space radiation

resistance times (12/2) or

9 2

798 (=) -12—

>~
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This means that the radiation resistance of this antenna is
L2
R =798 (X) (S++S_) ohms . (3.33)

The portion of (3.33) that corresponds to the radiation resistance of a
dipole in free space is in agreement with the result quoted by Kraus, while
the term that corresponds to the perturbation due to a perfectly conducting
ground checks with Sommerfeld's result.

These expressions have been used to obtain numerical results for the
radiation efficiency and radiation resistance of a horizontal Hertzian dipole.

The curves are given in Chapter IV.



CHAPTER IV

LONG VERTICAL DIPOLES WITH SINUSOIDAL CURRENT DISTRIBUTIONS

4.1 The Fields Due to a Vertical Dipole of Arbitrary Length

4.1.1 General Field Expressions . The geometry for the case of a long

center fed vertical dipole is illustrated in Fig. 4-1.

Dipole

“I7
1

Zg

Z

Air

INARAERAS

FIG.4-1: Geometry for the Long Vertical Dipole

The center, or feed point, of the dipole is assumed to be at the point

(0,0, zo) while the total length of the antenna is assumed to be 2d . The

center height of the antenna is always greater than or equal to the half

length of the antenna so that the antenna never enters the earth. Also it is
assumed that the antenna is infinitesimally thin, hence the current distribution

is sinusoidal. The assumed current density| will have the following form:

45
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(21 61-0)6(y*-0)sink(d-1z'-z ) for |z-z,) < d
3=
0 for lz=z | >d . (4.1)

In order to find the fields for this case by the Green's function method it

will be necessary to find the volume integral of the dot product of M' and

N' functions and the current distribution of Eq. (4.1). These integrals fol-

low from the definitions of the M' and N' functions in Chapter II and are

fffﬁém(i b - JRY) dv' =0 (4.2)
[0}

_ - ‘ +ihz
f_ffN (Fh-T@E)v =6 21PO,de ©° (4.3)
em - o

where we have defined the function P(h, d) as

P(,d)=coshd-coskd . (4. 3a)

As previously mentioned in Chapter III, the M functions do not contain a
z-component and therefore the fields due to an arbitrary z-directed current
will only contain N type functions.

It is appropriate at this point to consider the function P(h, d) for two
special cases. The first case to be considered is where the antenna is as-
sumed to be a half wave dipole. For this case d = )LO/4 , where X _is the
free space wavelength. Since the half wave dipole is the special case to be

considered in this chapter, this expression for P (h, —)\f) will be used in

X Y
P(h,-4—)=cos (Zgh) . (4.4)

The other case to be considered is the limiting case when d becomes
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very small. The resulting expressions for P(h, d) will be used to compare
the fields due to a very small dipole with a sinusoidal current distribution.
The method used to obtain this limiting expression is to expand cos (hd)
and cos (kd) in a'MQE‘fé@Vriq series and disregard fourth and higher order

terms. The resulting expression for P(h,d) is

d2 2 d22

im 5y - L -h2)=-2-?t . (4. 5)

d> 0 2
It should be pointed out that the X of (4.5) is the spectral variable X and
not the constant A | which represents the free space wavelength .
In order to better compare the fields due to a Hertzian dipole and a

very small dipole with a sinusoidal current distribution, the concept of

current moment will be used. Current moment is defined as
M = f I-dL
Ji

The current moment of the current density of Eq. (4.1), in the limit as
d approaches zero, is obtained through the use of Maclaurin's series and is
given by

M, =Ikd2 (4.6)

where the subscript s indicates a small dipole with sinusoidal current dis-
tribution. The Hertzian dipole is often_}t\lﬁ;@ of as a dipole of length £ ,
with a uniform current distribution I, in the limit as £ approaches zero and

I approaches infinity where the limit is taken such that the product I{ remains
constant. The current moment of such an antenna is

MH =14 , 4.7

where the subscript H indicates a Hertzian dipole. In order to compare
the values of Mg and MH one must recall that the short dipole has an input

current magnitude of Ikd where d is the half length of the antenna, while
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the Hertzian dipole has an input current magnitude of I and a half length of
£/2. If the input current to both antennas is assumed to be equal it may be
seen that

M:
S

M

Dol =

q
Equations (4.6) and (4.7) will be used to compare the fields of a short dipole
to those of a Hertzian dipole.

The fields above the ground plane due to the current density of (4.1) are
found by substituting (4.2) and (4. 3) into (2.33). The electric field for this

case is given by

5= tun . ] f GRIR) - TEY av*

( [-ihzo ihzO]
op 1 o NeOA(h) e +be zZzo+d
o Dopp )
27 Ah - _ ihzo
0 sE\IeO)\(_thNeO)\(hﬂ e 0§z§zo-d
(4.8)

The field within the earth may be easily derived by the same method but is
not needed to find S A and S_, and therefore it is not included here. The
magnetic field may be found from the electric field by Maxwell's equations

and the relationship between M and N functions, and is given by the following:

(‘

- 1 -
Z —
H= = X E ihz
o

_ -ihz0 o
M (h)E +be ] z>z +Hd
ik I d\ e0A -0
= - P(h,d)ﬁ .
T )Lh ihz
0

— - )
g [MeOA(_h)-HOMeO)L(hﬂ e 0<z f_zo-d

(4.9)

As a check, we substitute fb__rj P(h, d) the short dipole limit given in (4.5) and

then use the definition of the current moment given by (4.6). The electric
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field expression reduces to

C_ -ihz ihz
ou M 100) NeO)L(h) e +he ] z> z0+d
IT:'-‘- O 8 d}\,>-t»<
47k h - _ ihz0
0 k [ _@/(\-h)-l-bNem(h)] e 0<z<z -d |

This expression is exactly the same as Eq. (3.4) except for the different

current moment.

4.1.2 Far Zone Fields. The asymptotic form for (4. 8 ) as kR be-

comes very large is determined by the saddle point method. The method
is exactly the same as for the short dipole cases and is'diriscufgéég further

in Appendix B. The result for a half wave dipole is

_ iwuoI eikR cos (ﬂ/z cos 6) -ikz cos6 ikzocose A

7k R sin 0
(4. 10)

where b(6) is the plane wave reflection coefficient for vertically polarized

waves.

nzcos 6 - Vnz-sin29
n20059 +yn2-sin20

=, .12 i
Equation (4. 10) normalized was used to obtain the plots of |E(6)‘ llgiven in

b(6) =

Appendix B.

4.2 Radiation Resistance and Efficiency Expressions for a Vertical Half

Wave Dipole
The field expressions for a long vertical dipole, as given by Egs. (4.3)

and (4.4), are very similar to the field expressions due to a vertical Hertzian
dipole. Therefore, the following derivation of the equations for S A and S due
to the vertical half wave dipole follow very/cloééilir the derivation given in

Section 3.3.2
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The fields that comprise the z-directed Poynting's vector are Er’ H¢,
E¢ and Hr . They are found from Eqgs. (4. 8) and (4. 9) and the definitions
of the M and N functions to be

iwp I @ ihiz-z]  ih(z+z )
E d» P(h,d){te - +he J1(7\r)

r= 27k
0
iquI ©
g f dkP(h,d)fl(h, z)Jl()Lr) , (4. 10)
0
0] ih lz-zol ih(z+zo)
_ilk e +he
H¢ 5 f dx P(h,d) - Jl(kr)
0
1)
ik
i f d\» P(h,d) £ (h,z) J.Q\r) , (4.11)
27 2 1
0
E, =0,
g
H =0

Since the general function P(h_g is still present, these equations represent

the fields due to an antenna of arbitrary length. The upper sign in (4.10) and
(4.11) corresponds to the region where z > zo+ d , while the lower sign cor-
responds to the region where 0 < z < Z," d . These field expressions are not

valid for values of z such that
lz-2z) <d,
o

or for the region within the earth itself where z <0 . In the definition of S v
and S_ we must include the fact that the respective planes of integration are
located either clearly above or clearly below the antenna. Let S N be the in-

tegral of the z-directed Poynting's vector over a plane parallel to the earth's
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surface located at a height z + such that
z +Z z, +d
Similarly, define S_ as the integral of the negative z-directed Poynting's

vector taken over a plane surface parallel to the earth's surface but now

located at a height z_ such that
0<z <z -d.
- =—0

It will be shown that both S N and S_, as defined above, are independent of
the height of their respective planes of integration. It will also be shown
that the expression for S+ +8_as zO becomes infinite is identical to the
result obtained by integration of the R-directed Poynting's vector over a
closed surface surrounding the antenna. These two facts imply that the in-
tegral of the r-directed Poynting's vector over a cylinder of infinite radius
and finite height is zero. Hence, it is seen that the radiation resistance of
the antenna is proportional to S A +8_ while power dissipated in the earth is
equal to S_. In the case when E¢ and Hr are equal to zero the expressions

for Si' are
2T

= + w
8, = = Reffrdrdy) (;ErH¢‘)
0 ¥

We are considering the case of a vertical antenna, consequently there is no

DNt =

(-dependence and the expressions for S:t become

00

:i sk
Si' ﬂRefrdr (ErH¢ )
0

Subst1tut1on of (4.10) and (4. 11) for E and H¢ gives the following result:

wp L
=_ ° f f fdéJ (Ar)J (67)P(h,d)P* (h d)

[, 1502, )]
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In order to avoid confusion, the variable of integration in the expression
for H¢ has been changed from X to 6 and h 5 is accordingly defined as

2 2 2
hy=k™- 6" .

If we apply the general orthogonality relationship for Bessel's functions
as given in (3. 13) and integrate first over r, and then over,§_, the following

result is obtained:

2
wu I "

_+ _ 0 da 2 g ¥
5, =% " Re f Sipm,af bo)  Fzg)], @12
0

where the functions f1 and fz s

same as the bracketed functions of (3.14).

defined by (4.10) and (4.11), are exactly the

If the limiting expressions for P(h,d) as d\ Hé_q'glﬁ;é;'s_ very small, is
used in (4.12), then the radiation resistance expression implied by (4.12)
will be that of a small dipole with a sinusoidal current distribution. Com-
parison of this equation with (3.14) shows that the Hertzian dipole has a
radiation resistance equal to four times that of a small dipole with sinusoidal
current distribution.

We have previously stated that the brackéted terms of (3.14) and (4.12)

are exactly the same. Consequently, the same treatment applied to this term

in Section 3. 3.2 may be applied here. The resulting expressions for S +and S_

are 2 k

wa I 2ihz
g =2 Ref % lP(h,d)lz{l-t-fb12+2be °}
0

+= 47

° 2ihz

2 (0]
wu I 2
S == il IP(h,d)l E—1+[b|2:l+2 Im d—ka,[P(h,dﬂz be °t-
- 4:77 Ml Xh’p
0 0

v
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| From Sec 3.3.2 we \fmd that the dependence on z_ and z_ conveniently

co T +
cancels out and the expressions for S N and S_ are independent of the height

of the plane of integration, with the stipulation that the plane for S N is above
the antenna and the plane for S_ is below the antenna.

These expressions will now be reduced to a form that is more convenient
to handle numerically and lends itself to the physical interpretation of the

various terms. First, we change the variable of integration from A to h

giving 9
wu I 2ihz
2
S =—2—Re | dh P(h d)‘ 1-1p1% +20e  °Y, (4.13)
+ 47
(k -h )
Wy P
5 = -——4ﬂ° f |P(h d)| [1+|bl2]
0 (k -h )
ioo
2ihz
-2Re dh ‘Pﬂ;—d“z- i Im[b]e °) . 4. 14)
(k -h")

0

Consider the case of a half wave dipole where d = A / 4 . The appropriate
expression for |P(h — ) l can be obtained from (4.4) and,by using the

fact that h is real or imaginary but never complex, the result is

A A
lP(h,4—0 )|2 = cos2 (—h) . (4. 15)

4
| In order to examine the physical meaning of the terms of S A and S _, the
function b will be divided into a constant part plus a variable part which
vanishes in the perfectly conducting case. The division of b is explained in

Section 3. 3.2 and the result is

b=1-B. (3.22)

Substitution of Eqs. (3.22) and (4.15) into (4.13) and (4. 14) and application of

the following changes of variables
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dh (4. 16)

dh (4.17)

gives the following result

2

quI cos (zu) ifu i£u
S,~—Re | du——"—{2+2""-2Be +B°-(B+8" }  (4.19)
0 1-u

1qu !

cos ( u)
4C7)rk f du ——s— [Bl -(B+B)]
0
0
cosh ( -V)
-if dv [B B] , (4.19)
0

where the function B is assumed to have undergone the appropriate change of

variables, as defined by (4. 16) and (4. 17), depending upon whether the variable

of integration is u or v.

The expression for S . may be further reduced by making use of the fol-

lowing identity ™

1-€

lim cosfu . _lim [cosf s1nB/
€>0 — du=__ o 5 {In ) Cin(2f) +=-' Si(2p)
0 2.20)

1-u

'PThe Si and Cin functions are defined in Kraus (Ref. 24, p.535). For a
derivation of the result of this integral with 8 = 7/2, see Kraus, p. 144.
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IfB=n g (where n is odd) the function cos fu/ 1-u® has a limit of nm/4 as

u approaches one and therefore the integral of (4.20) will be finite and equal

to

1-u

lim cosBu , _ 1 _.
e—)Of 5 du =5 Si(2R)
0

The first term of (4. 18) may thus be reduced as follows

. € 0082(7-7 u) . 1-e (1+cos 7u)
hm 2 - hm ——2—- d
e>0 1-u2 >0 1-u

0 0

lim 1 1+x 1 2.44
"0 3 2 Ln—2-5 1in ( 5 Cln(27r) = 7 Cin(22F"—
Thus the entire first term of (4. 18) reduces to
2
Wk I 2
e Cin(27) = 73. 2—— ohms . (4.21)

For harmonic time dependence the rms input current to a half wave dipole
is1/ J? Division of Eq. (4. 21) by rms input current squared implies
that the constant term of the radiation resistance is 73.2 ohms which is the

well known value of the radiation resistance for a half lwave d1pole in free

sl.

space .
If Eqs. (4.18) and (4. 19) are normalized by the factor (73.212/2) of (4.21)

the final result is

“See Tai (Ref. 26, p. 3-2) .
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1 2.7 1 2.7
! cos (iu) 5 cos (iu)
S P —_— +
S e f 5 costudut f 3
1-u 1-u
0 0
cosz(”u)
2 4 ifu 2
(lBl -B-B")du- Cnen RefBe — du (4. 22)
1-u
0
1
2 2 s’ 0052 (gu)
S_- mf (‘B‘ -B-B") -——2——du
1-u
0
m V%
2i (B-B") -tv 2,7
-Re Cin(27r)f — e cosh (§) dv . (4.23)
0 1+4+v

When an antenna is placed above a perfectly conducting ground plane
the input impedance and the radiating characteristics of such an antenna
may be calculated by the assumption of an image antenna located at an equal
distance below the plane of the ground but now in free space. Several
authors have attacked the problem of finding the mutual impedance between
two such colinear dipoles*. Since the radiation resistance is proportional
to S N +8_ and recalling that the function B vanishes when the ground is per-
fectly conducting the real part of the mutual impedance of two colinear
dipoles RM is represented by the second term of Eq. (4.18). This term

may be treated as follows:

“See Refs. 24, 25 and 26 .
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1-¢ 2, 1-€ 2,

) cos (=u) ., , cos (=u)
lim Re 2 e1§ud = lim -—-—2——-cos§udu
e»0 2 w0 2

l-u 1-u
0
_lim 1
Y f (cosEu+coswucos Eu)
lim 1 2 £u+cos(E +7) u+cos(E-)
E_’04 COS u-+CoSs T)juTCco mu
0

Application of (4.20), cancellation of terms, and division by the square of the

rms input current gives the following result.

RM: 15 cos (&) {-20in(2§’)+Cin(2§+27r)+Cin(2'g"-27r)}

+15 sin(®) {i2'Si(25);si(2§+27r)-81(2§-27r) } .

This result is identical to the result obtained by Carter (R_e£2§) using the induced
emf method. This same result may also be obtained by integration of the
R-directed Poynting's vector over a hemisphere of infinite radius and dividing
by the square of the rms input current.

Equations (4.22) and (4.23) have been numerically evaluated for various
ground constants and the resulting curves of radiation resistance and radiation

efficiency versus center height of the antenna may be found in 'Chaptéi' V.

il? The Physical Significance of Terms of Sy and S_

This section attempts to attach physical significance to the terms of
4. 22}_énci ?4 23).\ The physical interpretation of the terms of S+ and S_ for

the Hertzian dipoles follow quite easily from the discussion in this section.
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The right hand side of Eq. (4.22) contains four terms. They will be
referred to in order of their proximity to the equals sign (i.e. term 1 =1).
The two terms of (4.23) will be called term five and term six respectively.
Note that terms three and five are equivalent except for a minus sign.

For the perfectly conducting case A and B vanish leaving S_ equal to
zero. The first term corresponds to the free space radiation resistance
while the second term corresponds to the change caused by a perfectly
conducting ground plane. All other terms are zero.

At infinite height the only non-vanishing terms are one, three and five.
Since three and five cancel out when calculating radiation resistance, term
one must correspond to the free space radiation resistance. Since term
five is not zero, it corresponds to the power absorbed by the ground when
the antenna is very far away. This term is the one that limits the efficiency
as the antenna is moved far away from the earth.

Terms four and six may be interpreted as the changes introduced by the

fact that the ground has a finite conductivity and the antenna height is finite.
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5.2 Ground Constants

The nature of the ground can be characterized by its complex index of

refraction n, where

(0]

2
n =e_ /e {14 £
E' o weE

The ground constants chosen for the calculations are representative of sea
water, fresh water, good earth and poor earth. The values of these constants

were taken from Ref. 28, 29 and 30 and are given in Table 5. 1:

TABLE 5.1
Type of Ground g / € op (Mhos/meter )
Sea Water 80 5
Fresh Water 80 2x 10-4
Good Earth 10 10-2
Poor Earth 4 10-4

Each of the graphs in Sections 5.3 and 5.4 contains a family of curves

2

parametric in values of n®. Each family represents one particular type of

ground because the real part of n2 is the same for each curve. The fre-
2

which arises from the definition of n2 .

18 x lO3 o)
£ = 2
MHz Im {nzl

quency implied by a given value of n“ is calculated by the following formula

where

fMHz = frequency in MHz,

o = earth conductivity in Mhos/meter.



CHAPTER V
NUMERICAL CALCULATIONS

5.1 General

o 11; {ﬂigiéhap’c’er we present four d1ff;;entt§§e; 6f curve;: kTrlilései are 717'adia-
tion efficiency, radiation resistance, reflection coefficient modulus and radia-
tion patterns. Of these the most important ones are the radiation efficiency
curves, since the primary purpose of this thesis is to investigate the radiation
efficiency of certain antennas in the presence of a lossy earth. These curves
have been calculated for a range of frequencies and ground constants that

should be representative of grounds actually encountered in practice.

mThe éfficiéncy curves in conjuriction with the radation patterns will
enable the antenna designer to choose an optimum height for the three types
of antennas treated here. In addition a knowledge of these curves will

give the antenna designer an indication of the values of efficiency to be ex-
pected from other types of radiating systems. Also these curves will help
to provide some insight into the effects of changing ground parameters,
frequency, and height on more general types of antennas.

Since the calculation of the radiation resistance is an integral part of
the efficiency calculation we have included the radiation resistance curves
for completeness. Several other authors have presented radiation resistance
curves for dipoles above a ground plane (Ref. 12, 13, 15, 16, 31). Exceﬁ(
for the work of Vogler and Nobel (Ref. 31), most of these calculations are
based upon the assumption of low frequency or high conductivity so that n2
may be approximated T)y:its imaginary part. Since our calculations are
numerical evaluations of the exact expressions for S N and S_ we do not need
to restrict the values of n2

The curves of radiation resistance and radiation efficiency were calculated

by substituting the values of S, and S_ into the two equations given below :

29
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R=KS +s n= ——
+ -
v 5, +5_

where the expressions used for S +‘and S_are given in Chapters III and IV.
Unfortunately, these expressions consist of integrals that cannot be expressed
in terms of known functions. Thus, use of a computer was necessary in order
to evaluate these expressions.

It may be of some interest to point out the effort involved in the pro-
gramming of this program. All the programming was done in the FORTRAN
IV language and the program was run on The University of Michigan IBM
360/67 system. In order to avoid roundoff error as a result of the tremendous
number of operations involved with numerical integration, the entire program
used the double precision mode.

The integration of each term of S A and S_was handled separately . A
separate subroutine was written to calcula}te\_each function to be integrated.
The separation of the program in this manner facilitates the verification of
program accuracy. To this end each subroutine was hand checked at several
points.

A major part of the programming effort was directed towards the selection
of a suitable integration scheme. Since the accuracy of a particular method of
numerical integration depends upon the function to be integrated, great care
must be exercised in the serleictrioinr of the quadrature method to be used.
Several different schemes were examined, including some of our own design.
The radiation efficiency and radiation resistance calculations have an ac-
curacy of better than three significant figures using the quadrature methods
finally chosen. Appendix A contains a detailed description of the quadrature

methods used as well as a complete program listing.



62

The frequencies corresponding to the various grounds and the values of n:2

that were used in the calculations are given in Table 5.2 . The value of 3

for sea water is the same as that of fresh water, however, their conduc-

tivities are quite different. Thus, the same family of curves applies to both

cases but the value of n2

(see Table 5.2).

implies quite different frequencies for each cgsie‘

TABLE 5.2

n2/ €.  Sea Water ‘F‘i"ejsh Water Good Earth Poor Earth

€r=80 €,=80 €.= 10 € =4

0=5 Mhos  _o= 2x10~4 0=10-2 0=10-4
14.01  112.5GHz 4.5 MHz .18 GHz 45 GHz
141 1.125 GHz 45 KHz 18 MHz 450 MHz
1+3 374 MHz 15 KHz 6 MHz 150 MHz
1410  112.5MHz 4.5 KHz 1.8 MHz 45 MHz
1430  37.4 MHz 1.5 KHz 600 KHz 15 MHz
14100  11.25 MHz  [450 Hz 180 KHz 4.5 MHz
14300  3.74 MHz 150 Hz 60 KHz 1.5 MHz
141000 1.125 MHz 45 Hz 18 KHz 450 KHz

5.3 Radiation Efficiency Curves

The following curves (Figs. 5-1 through 5-9) are the result of computer

calculations of the radiation efficiency.
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FIG.5-1: Radiation Efficiéncy of the Vertical Hertzian Dipole.
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FIG.5-3: Radiation Efficiency of the Vertical Hertzian Dipole.
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FIG.5-8: Radiation Efficiency of the Vertical Half-wave Dipole.
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5.4 Radiation Resistance Curves

All curves presented in this section (Figs. 5-10 through 5-18) have
been normalized by the free space value of the radiation resistance for the
particular antenna in question. This normalization constant has the value

73.2 ohms for the half wave dipole, and

(798) - (§>2

for the Hertzian dipole.



0

b — A

Normalized Radiation Resistance

73

Curve No.  Value of n?

IR | io
2 80(1+110)
80(1+1.01)

v
by

L ). ). L L 4

0.1

FIG.5-10:

0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0

Dipole Height in Wavelengths

Radiation Resistance of the Vertical Hertzian Dipole.



2.87

2.7t

2.6

2.5F

2.4

2.3

2.2

2.14

0.91

0.8

0.7f

0.6

~~

Normalized Radiation Resistance

74

Curve No.  Value of n?

1 ix
2 10(1 +110)
3 10(1+1.01)

\ : :
\\ G
N e
b — —-—-—\__-
o . -4 1 " I 1 N 2 L -_—

0.1 0.2 0.3 . 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Dipole Height in Wavelengths

FIG.5-11: Radiation Resistance of the Vertical Hertzian Dipole.



75

Curve No.  Value of n?

)
1.5 % 1 1 (Perfect Conductor)
- 2 a1+ 110)
1,4»-5 3 4(1+13)
Q 4 A1+1 1)
13t 5 4(1+1.01)
o
1.2} :8
'CG
1143
&
Lol F Pt Ly
9]
0.0t N '
r—
1@
0.8} &
~
01} S
0.6 — L L 1 1 N — L 1 —
0 0.1 0.2 0.3 0.4 0.5 0.6 ° 0.1 0.8 0.9 1.0
Dipole Height in Wavelengths
FIG.5-12: Radiation Resistance of the Vertical Hertzian Dipole.



0.3

0.2

0.1

16

o ———
——

Curve No.  Valuc of o’

1 io
2 80(1+11)
3 80(1+1.01)

d Radiation Resistance

ize

Normal

L 1 e " 4 i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dipole Height in Wavelengths

.

1.0

FIG.5-13: Radiation Resistance of the Horizontal Hertzian Dipole.



79

[}
o

o
Normalized Radiation Resistance

1.8

1.7

1.6 Curve No,  Value of n?
s 1 fx

’ 2 80(1+|.0§)

0.8t

0.7+

0.6 s 4 L n i it s N " s —
0.25 0.3 0.4 0.5 0.8 0.% 0.8 0.9 1.0 1.1 1.2 1.25

Dipole Center Height in Wavelengths

..

FIG.5-16; Radiation Resistance of the Vertical Half-wave Dipole.



—
3

-—
-3

—
—

—
o

0.8

0.7

0.6

0.5

o o
SH R
ormalized Radi

o
&

T

ation Resistance

=] \N
|

78

Curve No.  Value of n?

1 iz

2 4(1+110)
3 4(1+1 3)
4 4(1+11)
5 4(1+1.01)

1 0.2 0.3 0.4 0.5 0.6 = 0.7 0.8 0.9 1.0

Dipole Height in Wavelengths

.

FIG.5-15; Radiation Resistance of the Horizontal Hertzian Dipole.
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FIG.5-17: Radiation Resistance of the Vertical Half-wave Dipole.
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9.9 Reflection Coefficient Curves

The reflection coefficients, A(f) and B(6), for vertically and horizontally
polarized plane waves at a plane surface are given by Eq. (3.13). The fol-
lowing graphs <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>