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The trap-loaded cylindrical antenna is a cylindrical
antenna having one or more traps located in its arms.
The traps are either parallel inductor-capacitor circuits
or short-circuited transmission line stubs that are

de
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irmed to be anti-resonant (have essentially an infinite
input impedance) at some particular frequency. The location
and the anti-resonant frequency of the traps are selected to
enhance some property of the antenna.

Historically, two types of trap-loaded cylindrical
antennas have been given specific names. A trap-loaded
cylindrical antenna designed to give a radiation pattern
and input impedance similar to that of a half-wave dipole
on several frequencies that are approximately integral
multiples of one another is called the trap antenna. A
trap-loaded cylindrical antenna with traps spaced at approxi-
ma{ely integral multiples of one-half the wave length
corresponding to the anti-resonant frequency of the trap
is called a Franklin antenna or Franklin array.

This study was confined to the properties of trap-
loaded cylindrical antennas that.contained only one trap

in each arm. The effect of the length of the outer section,



length of the inner section, diameter of the cylinder,
characteristic impedance or inductance-capacitance ratio
of the trap, feed-gap width and trap-gap width on the input
impedance, radiation pattern and current distribution
were studied both experimentally and with the aid of two
numerical solutions of an integral equation for the
current distribution.

The conclusions drawn from this study are that the

~ procedure for the trap antenna described by Green-
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berz (1956), adjusting the anti-resonant frequency of the
trap to control the upper resonant frequency and adjusting
the length of the outer section to control the lower
resonant frequency, is indeed valid. Graphs suitable for
designing trap antennas using this procedure are available
Jor the Zirst time in this thesis. Furthermore, it was shown
that the characteristic impedance or inductance-capacitance
ratio of the trap can also be adjusted to vary the lower
resonant frequency of the antenna. Design graphs using this
orocedure are also available for the first time in this
Ttnesis. This study also showed that a relatively wide

range of upper to lower antenna resonant frequency

ratios can be obtained while still maintaining radiation
pratterns and input impedances close to those of a half-
wave dipole at both frequencies. Graphs are available
showing the trade off in pattern shape and input impedance
that must be made to obtain resanant frequency ratios

other than 2 to 1.



T+t was discovered that the Franklin antenna must be

operated somewnat below the nominal design frequency,
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pacing between traps shortened somewhat, or
v0ssidly (this was not fully expiored in the thesis) have
ths trap tuned somewhat above the nominal design frequency
for it to have a radiation pattern similar to a co-linear
array of half-wave dipoles. Furthermore, the thicker the
antenna, the more pronounced this effect is. While the
nominal design was discovered to give an input impedance
nearly resistive and near 70 ohms (for a dipole), any of
tne above modifications studied resulted in a non-resonant,

highly capacitive input impedance.

Greenberg, Arthur (1956), "Simple Traﬁ Construction for
the Multiband Antenna," QST, v. 40, n. 10, pp. 18-19,
120,
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I

INTRODUCTION

1.1 Statement of Problem

The problem of this dissertation is to determine
the current distribution, input impedance, and radiation
pattern of the trap-loaded cylindrical antenna as
functions of the antenna length, trap location, antenna
radius and characteristic impedance or inductance to
capacitance ratio of the trap. Figure 1-1 illustrates
a typical symmetric trap-loaded cylindrical antenna.

The antenna has a total length of 2L, the traps are
located a distance, s, from the center, and the diameter
of the antenna is 2a. The surface of the antenna is
assumed to be perfectly conducting and both the source
and the Trap are assumed to be very small. The trap, ZL’
is either a parallel inductor-capacitor circuit or a
short-circuited quarter-wave transmission line. The
trap is usually adjusted to be anti-resonant when s is
a quarter of a wavelength.

If L is approximately three quarters of a wave length,
tﬁe antenna is more commonly referred to as the Franklin
array or the Franklin antenna. Its radiation’ pattern
1s assumed to be similar to that of a colinear array
of three half-wave dipoles. If L is approximately half

a wave length, the antenna is what is usually referred to

w

as a trap antenna. The radiation pattern of the antenna is
ascumed to be similar to that of a half-wave dipole both

1



L
4y,
S
|
v
-»J -l 22
Zy,

i

Figure 1-1:Illustration of the Symmetric Trap-Loaded

Cylindrical Antenna



whon the trap is anti-resonant and also at approximately one
half the anti-resonant frequency of the trap. To avoid con-
Tusion throughout the remainder of this dissertation, the
tern "trap antenna" will be used specifically to refer to
an antenna where s is a quarter wave length and L a half
wave length when the trap is anti-resonant; the term
"Franklin antenna" will be used to refer specifically to

an antenna where s is a quarter wave length and L
three-quarters of a wave length when the trap is an open
circuit. The general terms "trap-loaded antenna" or "trap-
loaded cylindrical antenna" will be used to refer to the
general antenna depicted in Figure 1-1, of which the trap

and Franklin antennas are special cases.

1.2 History of the Problenm

Various types of trap-loaded cylindrical antennas have
been used almost from the conception of radio. The Franklin
array 1s a typical example of a trap-loaded cylindrical
antenna used in the early days of radio as a wireless
telegraphy antenna (Williams, 1950). Even today it is
frequently used as a radio amateur antenna (ARRL,1968 ),
Thé trap of a Franklin array is usually constructed out
of a shorted transmission line stub. The input impedance
of the array at resonance is believed to be about 300 ohms
(ARRL, 1968) and the current distribution is assumed to be
sinusoidal and of equal amplitude on both the main

section ( Izl < s) and the parasitic elements (s < lzI < 1)



Ciilliams, 1950),
Harrington (1968, Sec. 6.2) has obtained the current,

input impedance and radiation pattern of an antenna very

]

similar to a Franklin array by numerical means. The
antenna consists of an asymmetrically driven cylindrical
antenna with one shorted transmission line segment used
as a load impedance. Harrington's results indicate that
the current distribution is approximately sinusoidal but
that the current amplitude on the parasitic element is
somewnat less than on the driven element.

ARRL (1968), Bell (1963), Shafer (1958) and Greenberg

(1956) have all described how to construct trap antennas

1

or the short wave amateur bands. A parallel inductance-
capacitance circuit 1s used as a trap. Some experimental
data on the input impedance are presented in these refer-
ences, but generally the articles are written to instruct a
radio amateur on how to design a specific antenna which
the authors "cut and tried" until it operated as desired.
Indeed, the authors are interested in multiple trap antennas
that resonate at several frequencies.

0f course, below the anti-resonant frequency of the trap,
thé trap acts as an inductance. Hence, the trap-loaded
cylindrical antenna acts as an inductance-loaded cylindrical
antenna. The inductance-loaded cylindrical antenna has
teen used for many years as a foreshortened antenna.

Tre inductance loading permits a“symmetric
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cylindrical antenna to resonate at a frequency lower than
that corresponding to a half wave length. (See ARRL, 1968
for example.)

While the center-loaded cylindrical antenna has been
studicd extensively (See Harrington, 1968, Sec. 6.3 for
example and additional references) and a stﬁdy has been
made of resistive loading used principally to produce a
short traveling wave antenna (Altshuler, 1961), there has
been very little done to develop the theory of the trap-
loaded cylindrical antenna or to make systematic measurements
of its proverties. Schelkunoff and Friis (1952, p. 236)
discuss the general theory of an impedance-loaded antenna
very briefly. However, they confine their discussion to
observing that the loading is usually assumed to be small
enougn so that the current is constant through the impedance.
Hence the voltage drop across the impedance can be expressed
in terms of
(1.1)
where VL is the voltage drop across the impedance, ZL'
and I(s) 1s the current at the impedance.

Lin et al., (1970) have looked at reactance loadings

fof short antennas (L less than 0.1 wave length.) Lin

\]

o3

nd his associates solved the integral equation for the
current based on the King-Wu difference kernel and used
the solution to determine optimum load impedances. The

selection of optimum loading impedances was based on the

criteria of "enhanced" radiation, the radiation being



enhanced when the input impedance was either purely
rosistive or the maximum input resistance possible, or

when the directivity was a maximum.

1.3 Soclution of the Problem

Plots illustrating how the input impedance and
resonant frequencies of a trap-loaded cylindrical antenna
vary as functions of length, radius, trap location and
characteristic impedance or inductance-capacitance ratio
of the trap were obtained both theoretically and experi=-
mentally. Comparisons of theoretical and experimental
radiation patterns and current distributions were also
made.

The theoretical solution was obtained by formulating
an integral equation for the current distribution on the
antenna by using the compensation theorem to obtain an
equivalent voltage source for the trap and the slice
senerator approximation for the sources. The integral
eguation was solved numerically by two techniques. The
first technique, which seemed to produce the more accurate
results, was the method of subsections using a constant
cufrent assumption in each subsection and point matching to
evaluate the unknown current distribution. The second
techriique was the polynomial current approximation using
point matching to evaluate the coefficient of each term of

the polynomial. “



II

THEORETICAL SOLUTION

2.1 Derivation of Integral Equation

Maxwell's equations for a homogeneous isotropic

medium specialized to e+jwt time dependence may be written
as
V xE = -jwuH (2.1)
VxH= jweE + 7 (2.2)
veD=p (2.3)
and ‘
Vi=0 (2.4)

where E is the electric field, H is the magnetic field, J
is the current density and p is the charge density. If
the terminals of the trap are small enough, the compensation
theorem of circuit theory may be applied to the impedance;
that 1s, the impedance may be replaced by an equivalent
voltage source, Vi assigned the value

vy = ~ZLI(s) = -ZLI(-s). (2.5)
Flgure 2-1 illustrates the assumed polarity of the voltage
source and the direction of the current. Thus an integral
eqﬁation for the current distribution on the antenna can
te written in terms of the three voltage sources: the
driving voltage, V, and the two sources associated with
the impedances, VL'
The integral equation for the current on the trap-

lozded cylindrical antenna can be derived from Maxwell's
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Figure 2-1: Application of the Compensation Theorem to

Trap-Loaded Cylindrical Antenna



cqguations by first defining the vector potential as
E=put v xX (2.6)

where A is the vector potential. It can be shown that

the vector potential satisfies the following wave equation,
VA + K= -u7 (2.7)

orovided the Lorentz condition holds, and that the

solution of this wave equation is

_ " 3 e-jkl}—?-—R‘l
A= — dv? (2.8)
LT JR=-R'I

where the prime coordinates indicate those associated with

the current density. It can also be shown that
= -jo (X + x2VV.3) (2.9)
(See Van Bladel, 1964, Sec. 7.8, for example.)

tg]

Consider the case of an antenna constructed out of
2 perfect conductor. Figure 2-2 illustrates the orienta-
Tion of the circular cylindrical coordinate system used
to study the antenna. Assuming that the currents on the
ends of the antenna can be neglected, then only currents
on the lateral surface of the antenna need to be considered.
The driving points of the antenna will be considered to be
infinitesimally small gaps so that the fields in the gap
can be expressed in the form

E=-v§(lzl ~s) 2 (2.10)

where V is the voltage across the gap and §(z) is the
delta function.

As a result of these assumptions, it follows that

the vector potential has only
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Figure 2-2:Geometry of the Trap-Loaded Cylindrical

Antenna
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axial component. Thus the axial component of the vector

ootentlal may be written as

-. —- '
p Jg(z') o JkIR-R'I
, B — S ds'
Y S IR - R'| (2.11)
wihere J_(z) is the surface current density on S', the antenna

s
surface. The axial component of the expression for the electric

field may be written in terms of the vector potential as
-2 aZAz

3 5 . (2.12)
A

E, = -jw Az + k

On the surface of the antenna, the electric field is
everywhere zero, since it is tangential to the surface,
except at the sources, where it is =v§(z), -VLS(z-s) and
-VLS(z+s). Thus equation (2.12) becomes

-v8(z) - VL[K(Z -s8) + §(z + s)] =
-jw |1+ k72 ?_; A, (2.13)
0z
where the vector potential, A, is evaluated on the surface.
Substituting equation (2.11) into equation (2.13) and

noting that IR - R'l is evaluated on the surface results in

an integral equation for the current,

Ve(z) + Vo [8(z - ) + 6(z + 8)]= (2.14)
. 2
Jw - 0
fo 1 +k 2 — K(z,2')J_(2') 45°
L Tr 22 . S
S
where -3kiR - R
K(2,2') = ———— . ‘ (2.15)
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Up to this point, IR - R'l has not been written

explicitly to avoid confusion. The term can be written as

IR - Rl = \/éaz(l-cos g') + (z - z')2 . (2.16)

This makes K, the kernel of the integral equation, very.
complex. The assumption usually made at this point is
that a, the radius of the cylinder, is much smaller than
a wave length. Thus the retardation effects across the
diameter of the cylinder can be ignored and the integral

equation becomes

vé(z) + VL [5(2 -s) + §(z + sil = (2.17) -

jco,uo -2 d® L
1+ k — K(z,2') I(2*') dz'
L dz -L

e-jk\/a2 + (2 - z')2
K(z,2') = (2.18)
v/az + (z - z')2

where

and I(z) is the current on the antenna. The current satisfies

the boundary conditions

I(L)

]
o

(2.19)

=

P
3]

~
1]

I(-2). (2.20)

In spite of the simplification of the kernel, the
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P

ntegral equation (2.17) is not in a very

convenlent form to solve numerically even though it has
deen solved for the case of VL = 0 by Harrington

(1967, 1968.) Equivalent forms of equation (2.17) can be
formulated which will drastically reduce the computer time
necessary to obtain a good solution.

The problems with the form of equation (2.17) are as
follows. 1) It contains delta functions which, because
they are not well behaved, are difficult to expand in
a raplidly converging series of functions. 2) The equation
contains a Green's Function (the kernel is a Green's
function) whose behavior is almost singular when 2z' is
in the vicinity of z. 3) It contains derivatives which
for some methods of solution can contribute to round off
error. 4) The boundary conditions on the current are not
included in the integral equation, thus making the computer
»rogramming rore complex.

The first, third and fourth inconveniences can be

alleviated somewhat by setting

. L

J(o

F(z) = fé ./[ K(z,2') I(z') dz'. (2.21)
4 J-L

Thus F rust satisfy the differential equation

..2 d2
k > + 1 F(z) = VL[S(Z-S) + 8(z+s)] + Vé(z).
dz “ (2.22)

A homogeneous solution for F(z), Fh(z). is
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F..(z) = 4 sin kz + 3 cos kz . (2.23)

¥
EXY

4 particular sclution for F(z), Fo(z), can be written

in terms of the homogeneous solution by means of variation

ol parometers. The result is that

VA
Fp(z) =k ‘/C [VS(z') + VLS(z' -8) + VLS(z' + sﬂ
sin k(z - z!') dz' (2.24)
where ¢ is some constant. Thus the total solution for F(z) is

F(z)

Fh(z) + Fp(z)

z
k / [v6(z") + Vitat-s) + vi8(zt+s)]
c
sin k(z - 2z') dz'
+ A sin kz + B cos kz . (2.25)
Since the current, I(z), is symmetric with respect
to z and the kernel of the integral, K, has the property-that
K{z,2')=K(-2z,-2'), then F(2z) must also be symmetric with

respect to 2. Thus

vA
F(z) = k /g [VS(z') + VL8(z'-s) + VLS(z+sﬂ
sin k(z - 2') dz' + B cos kz. (2.26)
Assuming the delta function at 2'=0 is split equally
between the positive and negative axes, equation (2.26)
can be rewritten as
kv
F(z) = — sin klzl + Bcos kz , s £ 2 =5 (2.27)
2

= — sin klzl + kVL sin k(1z(-s) + B cos kz, Izl = s

cr as

?(z) sin klzl + u_l(lzl -s) kVL sin k(1z1=-s)

+ B cos kz (2.28)



.(z) is the unit step function.

-1

where u
Hence the integral equation becomes

-jonv ja4my
———— sin klzi -

L
sin k(lzl - s) + C cos kz = J/’ K(z,2') I(2') dz’
-L

L

u_,(lzl - s) (2.29)

where RO is *he intrinsic impedance of free space and C
is a new arbitrary constant. Substituting equation (2.5)

into equation (2.29) and rearranging terms gives

-jamv Jumz I(s)
sin klz| + ———— u_l(lzl-s) gin k(/zl=-s)
n, L Mo
+ C cos kz = j/- K(z,2') I(z') dz* (2.30)
-1, :

where the left hand side of the equation is the inhomo-

geneous term.

2.2 Solution of Integral Equation

Zquation (2.30) can be solved numerically by either
of the analytic techniques pointed out by King (1967):
iteration, Hallén's method being one method of iteration,
and Fourier series, which is the classical way of solving
inhomogeneous Fredholm integral equations of the first
kind. Equation (2.30) can also be solved numerically
by the method of moments, of which the Fourier series
solution can be shown to be a special case (Harrington,
1967, 1968.)

The general case of the Fredholm integral equation of
the first %ind has been solved rumerically by Ullman and

Ullmen (1966) both by iteration and by Fourier-trigono-



16

ciric series. The Fredholm integral equation of the first
Xind arising from the scattering of a plane wave by

a cylindrical antenna has also be solved by iteration

and Fourier-trigonometric series by Harrison et al. (1967).
In both cases, the kernel was approximated before solving
by iteration. Ullman and Ullman, not too surprisingly,
found that the Gaussian quadrature method of numerical
integration gave the most efficient method of solving

the problem.

Other techniques of numerical solution have also
been used to reduce the amount of computer time necessary
0 obtain acceptable answers. Richmond (1965) improved
the behavior of the Green's function by making the
substitution of the form

z -z' =a tan o' (2.31)
in an integral equation with a kernel similar to the
Xernel in equation (2.30) and then used the Newton-Cotes
method of numerical integration. This seemed to reduce
conputation time since it improved the behavior of the
Green's function.

Hickman et al. (1966) reformulated the integral
eqﬁation by adding and subtracting /CLL K(z,2') I(z) dz’'
and then performing the integration by Gaussian quadrature
using a point matching method. They report that 19 sub-
divisions gave adeguate convergence. Although not made
clear in the reference, it does appear that the solution

is a first order iteration method.
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A1l of these techniques can be thought of as different

)
"3
o]

lications of the method of moments. Using the jargon

of the method of moments, equation (2.30) can be put in the form
Lf =g (2.32)

where the unknown function, f, is I(2z); the known function,

g, 1s the left hand side of equation (2.30); and the linear

operator, I, is defined by

L
Lf =/ K(z,2') I(z') dz* . (2.33)
-L

A suitable irner product between f and g, <f,gY, can be
defined as

L
f,g) = //’ f gdz . (2.34)
-L

The unknown function, f, can be expanded in a suitable
set of basis functions, {fm}. with the aid of the inner
product such that

f = % “m fm (2035)
where

AR CT R (2.36)
Substituting this approximate representation of f into
equation (2.30) gives

}; « &r, = e (2.37)

EZxpanding both sides of this equation in a suitable set

of weight functions, {wh} , gives

% % O(m <wn'ifm>= Zn'_ <wn'g> (2.38)
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and solving equation (2.38) for the -@xm} and substituting
into egquation (2.32) gives the approximate solution for f
(Karrington, 1968), Sec. 1.3).

Three observations on the quality of the approximate
solution can be made at this point. First, if the weight
and basis sets are complete sets, then the approximate
solution will become exact if enough terms are used.
Second, using a finite number of weight and basis functions
is equivalent to finding the approximate solution by a
Rayleigh-Ritz variational procedure (Harrington, 1968,
Sec. 1.8). Third, the better the weight and basis functions
apporoximate the unknown function, the quicker is the conver-
gence of the approximate solution to the exact solution.

Two solutions were obtained by the method of moments:
one by the method of subsections and point matching
using delta functions as the approximating functions, and
the other by polynomial series and point matching. Each

will be discussed in a separate section.

2.3 Subsections and Point Matching

The method of subsections and point matching consists
of‘dividing the range of the variable into equal subsec-
tions and then assuming that the unknmown function is some
simple type of function in each subsection. The unknown
coefficients are then evaluated by point matching.

In this dissertation, the functions were assumed to be

delta functions located in the center of each subsection.
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This is similar to one of the approaches used by Mei (1965)
ond Harrington (1967, 1968) although with a slightly dif-
Terent boundary condition. Liu and Sengupta (1971) have
also used subsections and point matching but have assumed
that the unk¥nown functions were simple polynomials.

The set of basis functions, {fm?. has the form

£fo=1 a2z 6(z-2) (2.39)
where §(z) is the Dirac delta function,

az = 2L/, (2.40)

2, =maz - Az/2 - L ' (2.41)

-

and ¥ 1is the total number of subsections. The index, m, is
assumed to start with m=1. The set of weight functions,
{wh}’ has a form similar to the set of basis functions and
thus ’

W= S(z - zn) (2.42)
where

2, = 2. (2.43)

This choice of basis functions can be thought

of as equivalent to dividing the range of the integral in
equation (2.30) into intervals and then assuming that 1)
both the Green's function and the current are constant in
the interval and that 2) they both take on their values at
the midpoint of the interval. The choice of weight functions
corresponds to forcing both sides of equation (2.30) to
azree at the midpoint of each section. This approach
ciffers from Mei's method in that instead of assuming that

the current is constant and integrating the Green's function,

an approximate value of the integral of the Green's function
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is obtained by assuming the Green's function is constant
and multiplying its value by the length of the interval.

An advantage of both sets of functions is that
the integrals produced in evaluating the unknown coefficients,
{Im}, are closed form analytical expressions. Therefore no
numerical integrations need be performed.

The experience of others using the Mei solution is
favorable (Mei, 1965, Harrington, 1967, 1968). Since the
delta function solution is really the Mei solution with
the modification that the integral of the Green's function
is replaced with the approximate integral of the Green's
function, an approximation that becomes more exact as the
numoer of subsections is increased, the delta function
solution would also be expected to give good results.

Furthermore, both the weight and basis sets are complete
sets (Earrington, 1968). Thus convergence is assured if
enough terms are taken. The rate of convergence can be
estimated by increasing the number of functions in the
set and observing the amount of change in the solution.

Expanding the current in terms of the basis set of
functions gives

| I(z) = Z I_az 8z =2) . (2.44)
Substituting this into the integral equation gives
~2TrjV JUMI(s)2

sin kiz| +
Mo o

L

sin k(1z1-8) u_,(1z1-s)
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+ C cos kz = Az zi K(z,zé) I, - (2.45)

Expanding equation (2.45) in terms of the weight functions

and taking the inner product using 20 for z& gives

-2V JHMI(s)2y
> sin klznl + ———
m

Ry Mo

sin k(le - 8)

u_,(iz | - s) + C cos kzn:} =82 2 ¥ K(z2.) I,
nom (2.46)

which is the matrix equation for the approximate expression
for the current.

A careful examination of equation (2.46) will reveal
that it is indeterminate. In addition to the set of unknowns
{Im}-, there are also the unknowns I(s) and C. One of the
additional equations needed to make the {im§ unique is
the boundary condition on the current,

I(L) = 0.
Note that equation (2.46) cannot be satisfied exactly
by equation (2.47) since to require the current to be
zero at the end of the outermost subsection would require
that the current be zero in the entire subsection.
Therefore an approximation of equation (2.47) is used.
The approximation should become exact as the number
of subsections becomes infinite.

The simplest approximation is, of course, to set
the current at the first sample point equal to zero,

that is let
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I1 = 0. (2.48)
This is the technique used by Harrington (1967, 1968) and
el (1965). For the number of subdivisions used by Mei
and Harrington, on the order of 40 to 80, this is a reason-
able approximation. However, for a number of subdivisions
on the order of 20, as was used in this dissertation for
reasons explained in Chapter 4, the error introduced by
this approximation may not be insignificant.

If the current on the first two sample points,

I(zl) and I(zz) is taken as I1 and I2; respectively, then
by linear extrapolation the boundary condition can be

expressed as

I,-1I I
25 = Z Z, -
or 2 1 1

where z, and 2, are the first and second sample points.
The condition that I(~L)=0 is not needed because of
symmetry.

The final equation needed is merely the identity

I(s) = I(z) |,y - (2.51)

Since there is in general no reason why s need be one of
the sample points of a finite set of basis functions, the
exact relationship given in equation (2.51) could prove
disastrous if used in the approximate solution. The number
of sample points could conceivably be very very large and
?et it is probable that the direct use of equation (2.51)

would require that I(s) = 0, a completely unsatisfactory
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result. 0f course as the number of points becomes infinite,
<he probability of I(s) taking some non-zero value would
approach one.

This problem can be avoided by using an approximate
deTinition for I(s) that becomes exact for a complete
set of basis functions. The simplest approximation is

I(s) = I(zg) (2.52)

where Zy is chosen to be the 2y closest to s. However,
a more accurate approximation and one more in keeping

with the end condition used is

S - 2
o~ -— ————-———-—m - ~
I(s) = Zn -z [Ifﬁ-i-l Iﬁ] + Im (2.53)
m+l
or
(zﬁ+1-zﬁ) I(s) - (s-zﬁ) Igeq = (zﬁ+1-s) Ix = 0 (2.54)

where 2~ and 2z are the sample points closest to s. In

m+1
effect, I(s) is found by a first degree interpolation poly-
nomlal passing through the sample points closest to s.
If equation (2.46) is rearranged as
j2mv J4rI(s)Z
Z sin klznl = Z ——————= sin k(lznl
n n n o

o)
- s) u_l(lznl - s8) + C cos kzn - AZ % K(zn,zm) Im},
(2.55)

then I(s) and C can be treated as unknowns along with {Im} .

Zquations (2.50) and (2.54) can be added to the matrix
equation in equation (2.55) to produce a matrix equation

of the form
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jbmz .
Yn = sin k(lznl - 8) u_l(lznl - s) (2.58)
Mo
Y = cos kz (2.59)
? ? -'k\/a2 + (2_-2z )2
_ e d n “m
Knm = =AZ K(zn,zm) = =A% \/ - - (2.60)
a® + (zn - zm)
and
N = M. (2.61)

This augmented matrix equation can then be solved for the
{Im}, I(s) and C.

The input impedance can then be determined from the
current distribution given by the {Im} by

\Y

i

where i1 = (M+#1)/2 if M is odd, However, if M is even,
none of the points is located at the origin. The value of
the current in a subsection adjacent to the origin could
oe used to calculate the input impedance, but a more
accurate approach for M relatively small is to do a
ilinear extrapolation through the points closest to the
origin. This approach has the programming advantage that
it reduces to equation (2.62) for I odd. However, since the
current distribution can have a cusp at the origin, the
extranpolation must be done through the two points closest

t¢ the origin on the same side of the origin. The result is

- i - .
L =13 . (I3 = Ij4q) (2.63)

-
N

L}
N



(M + 1)/2, if M is odd
is= ' (2.64)
(M/2) + 1, if M is even

3
g
0.

(2.65)

~
]
H | <

“in
in

2.4 Polynomial and Point Matching

The polynomial approximation consists of approximating

th degree polynomial with undetermined

the current by an M
coefficients. The coefficients are then determined by point
matching. This is an approach first used by Popovic (1970)
to determine the current distribution on a cylindrical
antenna.
The set of basis functions, {fm}, has the form

£,= 1 (1 - Izl /1)™ (2.66)
where m is greater than zero. This form of the basis func-
tions has the convenient property that each basis function

satisfies the boundary condition at z=L. The set of weight

functions, {wn}, has a form similar to those used in Sec. 2.3,

W= 6(z - 2) (2.67)
where

2, = (n - 1)az (2.68)

az = LN (2.69)

and ¥ is the total number of points. Note that for con-

venience all z, will be taken as greater than zero since

the current is symmetrical.



An advantase of the polynomial approximation 1s that
a fairly low order polynomial can accurately approximate
the current distribution on a linear cylindrical antenna.

]

"his reduces the number of simultaneous equations that need

+3

to be solved. Another advantage is that both the basis
and weight functions are complete sets of functions. Thus
convergence is assured if enough terms are t§ken and the
rate of convergence can be estimated by increasing the
number of functions in the set and observing the amount of
change in the solution.

A disadvantage of the polynomial approximation is
that integrals produced in evaluating the unknown coef-
Ticients do not have a closed analytic form and must
therefore be evaluated numerically. This numerical
integration is very time consuming for accurate evaluations
of the integral. Indeed, as a result of the lengthy numer-
ical integrations required, much of the time saved by
solving a smaller matrix equation may be lost evaluating
the integrals.

Expanding the current in terms of the basis set of
functions gives

W
I(z) = 2. I (1~ lz1/L)" (2.70)

m=1 m
lNotice that the boundary condition on the current at
z=L and symmetry are automatically satisfied by the choice
of vasils functions.
Substituting this into the integral equation gives
-jamv Jhrz

sin kizl +

sin k(1zi=-s) u_l(lzl-s)
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L

Z I, (1-s/L)™ + C cos kz = 2. I, [L K(z,2')
(1-12'1 /1)™ dz'. (2.71)

Sxpanding equation (2.71) in terms of the weight functions

Cives

S [-jemv sz,
= sin klznl + sin k(lznl - 8)

%o Mo
u_,(lz t - s) 2; I, (1 - s/L)™ + C cos kzn}-
L
= 2;_ 2;. I, /(; K(z,2') (1 - lz'l /L)™ dz'. (2.72)

By suppressing the summation signs, equation (2.72) can
be rearranged as

j2mv L .
sin kiz | = 9 - K(zn,z')(l-lz'l/L) dz'
L/ -L

(o}

jL’rTTZL m
+ > sin k(lzg -s) u_l(lzn!-s) (1-s/L) }-Im
)
+ C cos kz, (2.73)

if C is treated as an unknown along with the {Im}. Note
that no additional relations are needed since each basis
function vanishes at the end of the antenna and
the value of the current at the trap is determined
explicitly in the expression. However, there are M+1
unknowns and therefore the number of sample points, N,
rnust satisfy the relationship

N=»M+ 1, (2.74)
Zquation (2.73) can be put in a more explicit matrix form

by rewritting it as



I’ L] ’yq C m
1 Km N Y ki
where
L m
Kom = - /(; K(zn,z ) (1 - 121 /L) dz (2.76)
jume
+ L sin x(1zt -s) u ,(lzl -s) (1-s/L)"
n n -1 n
0
fh = cos kzn (2.77)
jenv )
mn = sin klznl. (2.78)
ny

There appears to be no known optimum sampling strategy
so the {zn} viere chosen to be equally spaced along one-
half of the antenna. Once the {Im} are known, I(0) can be
evaluated directly from equation (2.70) and the input
impedance, Zin' can be obtained from

\'
Zin = ;?6; . (2.79)

Zvaluating the coefficients of the matrix introduces
the problem of numerically evaluating integrals of the form

e-jk \/a2+('z.--z')2

L
I = -//1 (1-1z' /L)™ dz'. (2.80)

V%z + (2 - z')2

Richmond's (1965) approach works well for m=0, a case
not of interest here. Only eight*to ten point Gaussian quad-

rature formulas were necessary to evaluate the integral in
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eauation (2.80) to within 1% of what appeared to be
o Tinal value for m=0. However, for m#0, even a 64 point
Gauosian quadrature formula did not appear to give adequate
convergoence.

The best approach, discovered after much trial and
error, 1s to add and subtract a term similar to the
real part of the integral in equation (2.80) that can be
analytically integrated in a closed form. The difference
between the integrand of equation (2.80) and the additional
term can then be adjusted to suppress the near singularity.
Hence the difference term can be numerically integrated
rather rapidly.

The integral to be added and subtracted, Ia’ that

gave the best results is

L (1 - 1z1/0)"
Ia =/ dz' (2081)
L \/a2 + (2 - z')2

which can be integrated analytically with the help of

entry 38, p 1070 of Westman (1964) into the closed form

" (z+L) + \/(z-t-L)2 + a2
I.=(1-121/1)" 1In . (2.82)

(z-1) + V(2-1)2 + a2

Addition and subtraction of Ia in equation (2.80) gives

-jkVa2+(z-z')2

L (1-121/0)" - (1-lzl /)™
I :/ dz'
-L \/az + (z - z')2

+ I, . (2.83)

Since the value of z significantly affects the number
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of terms required to evaluate the integral in equation (2.33)
to a given degree of accuracy, the computer program itself
was written to select the number of terms needed to supply

& given degree of accuracy. The trapezoid rule is more
ammenable to this kind of automatic programming than
Gaussian quadrature. Hence the trapezoid rule is used to
perform the integration even though more terms are required
to obtain a given degree of accuracy with it than with
Gaussian quadrature.

The procedure is to select an initial number of
intervals (10), perform the integration, then double the
rumber of intervals, perform another integration, and
compare the change in the value of the integral. If the
change is more than a given tolerance (1%), then the
number of intervals is doubled again, a new value of the
integral calculated, and a new comparison made, and so on,
until either the desired accuracy is achieved, or a maxi-
mun number of intervals is surpassed (640). If the latter
condition prevails, Richardson's rule (Carnahan and Wilkes,
1968) is used to improve the estimate of the answer.
Specialized to the case of two estimates for the integral,

- -
e

. and Iz, where I2 is based on twice the number of

intervals used for Il’ Richardson's rule reduces to
L 1

I= -1, - -1

378 3

where I 1s the best estimate of the integral.

1 (2.84)

The procedure also takes advantage of the property
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oI the trapezoid rule that doubling the number of intervals
to 2N only requires N additional samplings of the function
10 be integrated (Carnahan and Wilkes, 1968). Thus some of
the efficiency of Gaussian quadrature can be retained

without the necessary storage of the Gaussian coefficients
and sample points.

A problem arises in evaluating I, for (lz-Ll/a) greater
than 100; most computers will give an error return indicating
attempted division by zero. The problem lies in the deno-
minator of the logarithmic term which is very small,
tut not zero. An excellent approximation can be used that
prevents error returns by expanding the radical in the
derominator in terms of the binomial expansion and then
retaining the first two terms. The result is that

a2

\/(Z-L)2+a’2 =]z - L| + —m— . (2.85)
2lz - 1l

Substituting this approximation into the denominator gives

a2

(z - L) + \/(z - L)2 + a2 = —_—, (2.86)
2|z - 1l

Thus Ia becomes

2)z-Ll [(z+L) + \/(z-c-L)2 + aZJ

a2 (2-é7)

I, =(1- Izl /)™ 1n

Por lz-L|/a = 100, the error in this approximation is on
the order of 0.01% and decreases rapidly for lz-Ll/a

greater than 100.
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2.5 Radiation Pattern

The far zone electric field from a linear radiator

is given by

Jh sin e L s
= ——9——;—-//' I(z) e”JkZ cos e 4 (2.88)
2 R -L

)
(Jasik, 1961) where the current, I(z), is a complex
expression. This integral can be evaluated in a number of
ways, but probably the easiest, and the one most in keep-
ing with the first method of solution for the current

Cistribution is to assume that the current has the form

given in equation (2.39). Substituting this into equation .
(2.88) gives
jn. sin e M iy
Eg = — Az .2: Im e szmcos °. (2.89)
2R A m=1

The power radiation pattern, P(e), is proportional to
M . 2
P(e) = sine zi I e ~JKZ,C0S o . (2.90)
m=1
The power radiated at any angle can be calculated for a
number of angles and the results normalized to the largest
value.

This method of calculating the radiation pattern can
be interrreted physically as assuming that the current
distribution is an array of small dipoles. For the poly-
nomial method of solution for the current distribution,
the resulting distribution is evaluated at a convenient
number of points along the antegpa and the result is substituted

into equation (2.90) to obtain the radiation pattern.

-



III
EXPERIVENTAL PROCEDURE

Two sets of trap-loaded cylindrical antennas were
constructed so that measurements of the input impedance,
radiation patterns and current distribution could be
compared with the theory. One set of antennas was constructed
out of 3/8 inch 0.D. copper tubing and used several
transmission line traps. All three types of measurements
were made on this series of antennas to determine how
its properties varied as the length of the outer section,
length of the inner section, trap impedance, trap gap
capacitance and feed gap capacitance were varied.

The other series of antennas was supported on 2x4
frames and used inductor-capacitor traps. The input
impedance was measured on this series of antennas to
determine how the input impedance varied as a function of
the diameter of the cylinder.

If the dimensions of the two series are measured
in terms of wave length, the two series overlap, although
they were designed to operate in different frequency ranges.
The copper tubing antennas were measured from 0.3 to 2.0
GHz. and their traps were designed to be anti-resonant at
1.5 GHz. The 2x4 frame series, however, was measured
over a frequency range of 30 to 130 MHz. and the traps
were designed to be anti-resonant at 100 MHz. (Photographs
c¢f the two series are included iﬁ Appendix D.)

-
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3

he copper tubing models were constructed out of

3/8 inch x 0.040 inch semi-hard copper tubing. Each mono-
pole was constructed in two sections, one of which con-
tained a trap. Figure 3-1 illustrates the construction of
the trap. The interior of the trap was filled with paraffin
(€r=2.25) so that both the inner and outer lengths of the
trap were a quarter wave length at 1.5 GHz. and the impedance
looking in the terminals of the trap was essentially an
open circuit at that frequency. Traps with characteristic
impedances of 18.5, 34.8 and 62.5 ohms were constructed
using, respectively, 3/16, 1/8 and 1/16 inch brass rod
stock for center conductors. 10-24, 5-40 and 0-80 NC

screw threads were used, respectively, for the threaded
ends of the center conductors. The short circuit was con-
structed out of 19/64 inch brass rod stock that was
soldered in place with 60-40 lead-tin solder. Both ends of
the plug were drilled and tapped to accept screw threads,
one end to accept the center conductor and the other

end to accept a 10-24 NC thread that was used to facili-
tate mounting.

The trap sections were used both as inner and outer
sections. The non-trap section was constructed out of the
3/8 x 0.05%0 copper tubing and had a 19/64 inch diameter
1/ inch long plug soldered in place at one end to accept
the threaded center conductor of“the trap. If used as an

inner section, another plug was soldered in place at the
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opposite end of the non-trap section. This additional

vlug was drilled and tapped to facilitate mounting. All

2]

ections were constructed slightly longer than necessary.

v3

“heir end faces were then turned down in a lathe until the
length was within 0.005 inch of the stated value.

Inner sections 63/64, 1-61/128, 1-31/32, 2-59/128 and
2-61/64 inches long (1/8, 3/16, 1/4, 5/16 and 3/8 wave
lengths at 1.5 GHz.) were constructed to determine how the
properties of the antenna varied as the length of the inner
section was varied. Outer sections 63/128, 63/64, 1-61/128,
1-31/32, 2-59/128, 2-61/64, 3-57/128, 3-15/16 and 4=-55/128
inches long (1/16, 1/8, 3/16, 1/4, 5/16, 3/8, ?7/16, 1/2
and 9/1% wave lengths at 1.5 GHz.) were constructed
to determine how the properties of the antenna varied as
the length of the outer section varied.

The outer shell of the trap and the non-trap sections
were electrically isolated from each other by 1/16 inch
thick G-10 epoxy-fiberglass laminate (€r=#.0) washers.

All measurements (unless otherwise stated) were made with
one washer at both the trap and the feed (two at the feed
for dipole measurements.) The study of how the trap and feed
gap capacitances affected the results was made by adding
additional washers.

The 2x4 series of antennas were all supported with
2x4 fir supports. Both trap and Franklin antennas were
constructed in four different diameters. The antennas were

constructed using number 35 AWG (5.615 mils) copper wire,
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nunber 14 AWG (64.08 mils) tinned copper wire, 5/8 inch
diameter by 0.058 inch thick 5061-T6 alloy aluminum tubing
and a 5-5/8 inch diameter "birdcage" constructed out of
nunber 14 AVG copper wire. ,

The "birdcage" consisted of eight number 14 AVWG
copper wires equally spaced on a 5-5/8 inch circle with
copper foil end caps on both sides of the feed and trap
gaps. Because of the narrow spacing between the wires,
the "birdcage" is electrically equivalent to 5~5/8 inch
copper tubing, which was impractical to use.

The "birdcage" was strung between 1/2 inch exterior
plywood disks 6 inches in diameter that were glued in
position on a 2x4 support with hide glue and gluing blocks.
The gluing blocks were nailed in position with brads
which were all located interior to the antenna so that
the nails would not affect the antenna performance.

The outer and inner sections were constructed separ-
ately and bolted together with four 1/4 inch nylon bolts.
The bolts, all located interior to the "birdcage," held
together a flush lap joint in the 2x4 supports. Separate
outer sections were built for the Franklin and trap antennas
aﬁd a common inner section was used.

The inner and outer sections of the 5/8 inch tubing

antennas were also constructed separately and bolted

ck

ogether with 1/4 inch nylon bolts. The outer section was
vlaced over a 1/2 inch diameter .piece of G-10 epoxy-

fiberglass laminate tubing and bolted in place with two

-
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1/% inch nylon bolts. The fiberglass tubing was inserted

in the lower section and bolted in place with two additional
1/4% inch nylon bolts. The lower section was bolted to

an §-1/2 inch long 2x4 at the base, again with two 1/4

inch nylon bolts. Like the 5-5/8 inch diameter antennas,
separate outer sections were made for both the trap and
Franklin antennas while the inner section was shared.

Complete and separate trap and Franklin antennas were
constructed out of humber 14 and 35 wire. The wire was
nounted with Q-Dope (polystyrene disolved in a volatile
solvent) to 2x4 supports running the length of the antennas.
A1l wood used in constructing the eight antennas was given
two coats of polyurethane exterior varnish to reduce
cimensional instability.

All inner sections and the outer sections of the
trap antennas were 29.5 inches long (1/4 wave length at
100 VMHz., the anti-resonant frequency of the trap ).

The outer sections of the Franklin antennas were 59.0 inches
long (1/2 wave length at 100 MHz.).All feed and trap gaps
were 15/16 inch. Care was taken to insure that all dimensions
were maintained within 1/64 of an inch.

Thus, the 5-5/8 inch diameter antennas were scale
models of the copper tubing trap and Franklin antennas
cescribed earlier, except for the difference in trap
construction. Moreover, the 5/8 inch tubing, number 14 wire
and number 35 wire antennas were, also scale models, except

that their diameters were approximately 1/10, 1/100 and

1)
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1/1000 the diameter of the copper tubing antennas.

~he inductor-capacitor traps used on these models
were constructed out of 5% silvered mica capacitors and
number 14 AWG tinned copper wire. The capacitors were
selected to provide the desired capacitance and the
inductors were wound out of one to three turns of wire
(depending on the inductance needed) using a pencil as a
form. The inductors were expanded or compressed until the
traps were anti-resonant at 100 MHz. in a test circuit
before the traps were mounted on the antenna. Traps with
"characteristic impedances" (\/EZS ratios) of 53 and 88.5
ohms were constructed and tested. These ratios give the
same equivalent inductance at one-half the anti-resonant
frequency (which is approximately the lower resonant
frequency of the trap antenna) as will 34.8 and 62.5 ohm
transmission line stubs.

This relationship between transmission line and
incductor-capacitor traps results from noting that the

invut impedance of a transmission line trap is given by

2, =J 2, tan k1 (3.1)
wnere X is the wave number,
k= w/v = 20/), (3.2)

Z, is the characteristic impedance , w the radian frequency,
v the velocity of propagation, and 1 the line length from
the short circuit to the terminals. The impedance of a

parallel inductor-capacitor circuit is given by
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~ JCOL \

Iio = ;Ti?:;;i; (3.3)
where L 1is the inductance and C the capacitance. By
designating the anti-resonant frequency as @, noting that

w = 1/VIC (3.4)

8]
and normalizing the radian frequency to the resonant

frequency, the impedance of a parallel inductor-capacitor

trap becomes
/e .59
K- (w/w)? '

where

7= VL (3.6)
the "characteristic impedance" of the inductor-capacitor

trap.

At one-half the anti-resonant frequency (k1 = 3(m/2)=%/4),

Zy =3 24 (3.7)
and

2o =3 27/3 . (3.8)
Thus

7=32,/2. (3.9)

3.2 Inpedance l‘easurements

A1l impedance measurements in the 0.3 to 2.0 GHz.
range were made on monopoles in a 9 foot cube anechoic
chamber located in the G.G. Brown Building. The chamber
has provisions for mounting a 1/8 inch thick by 4 foot

sguare aluminum ground plane on one side of the chamber

1Y
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in place of a panel of absorber. The absorber of the
charder has a minimum reflection coefficient of =30 db.
covm 1o 0.5 GHz. and previous experience with the chamber
indicates that it gives useable results down to 0.1 GHz.
The monopoles were screwed to a threaded stud soldered
to the center conductor of a UG-58/U bulkhead type N
connector. The connector was modified by turning dovn the
shoulder on the face abutting the ground plane so that it
would fit flush with the surface of the ground plane.
The impedance was measured by the comparison method
using a Hewlett-Packard type 8410A Network Analyzer in
the circuilt illustrated in Figure 3-2. The known impedance
to which the monopole was compared was a special short
circuit constructed out of another UG-58/U bulkhead
connector modified as described above. The connector
was mounted tightly on two 1/8 inch thicknesses of aluminum
sheet, one to simulate the 1/8 inch thick ground plane,
and the other to act as a short circuit. The latter had
a hole drilled in it to accept the center conductor of
the connector with a force fit.
All impedance measurements in the 30 to 130 MHz. range
were made on monopoles mounted on top of a 1/8 inch
thick, 10 foot square aluminum ground plane mounted
9-1/2 feet above the roof of the G. G. Brown Building.
The monopoles were bolted with four 3/8 inch bolts to a
base in the form of a cross. The .arms of the cross were

23 inches across and the base was given two coats of

.



L3

L1ddng JI93 9 SABM J03909833(
s
asmod Furtpueis Te3ska)n
A
Ja1dno) I8%29N
JO3BTTTOSO [~ red >
TeuoT3o8aTd HPOZ— 3AEM
ITUN 31891
JoteTnpon
uoT3 09T Iy
15397 Joz ATeuy *Au0) °*baag ruusuy
sl 139
AT o= unydg VIOM3ON oTuouLIRY

S S A R L

Figure 3-2: Impedance Measurement Set-Up (Copper Tubing

Series)

"



iy

rolyurethane exterior varnish to minimize dimensional
ingzability.

411 monopoles were positioned directly over a bulk-
head connector which was located in the center of the ground
vlane. The number 14 and 35 wire antennas were soldered
directly to the center conductor of the connector. The
5/8 inch tubing and the "birdcage" antennas were connected
to a piece of number 14 wire that was soldered to the
center conductor of the connector.

The impedance was measured by the comparison method
using a Hewlett-Packard type 8405A Vector Voltmeter in the
circuit illustrated in Figure 3-3. The known impedance to
which the impedance was compared was the same special
snort circult describved earlier. However, it was mounted
at the end of a piece of RG-8 coaxial cable identical in
length to the cable used to connect the monopole to the
ecuipment located in a penthouse under the ground plane.

As a further control on accuracy, the anti-resonant
frequency of the trap was checked after each impedance
measurement session. If the resonant frequency had changed,
the trap was adjusted and the data retaken.

The gap and feed capacitances of the copper tubing
antennas were measured by two different techniques. The
feed gap capacitance was measured by placing a 10-24
hexaconal brass nut, which was 3/8 inch across the points,
on the threaded stud of the mount on the ground plane.

The nut held a 1/16 inch thick G-10 washer in place. The

]
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reactanice of the capacitance was then measured using the
procedure to measure the input impedance of the copper
tubing monopoles.

The value of the trap gap capacitance was measured
by constructing a structure similar to a trap attached
t0 a non-trap section, except that the brass center con-
ductor of the trap was replaced by a threaded G-10 di-
electric rod. The capacitance of the similar structure was
then measured on a Tektronix type 130 L C meter. The
capacitance was then corrected by the factor of 4/5 to

ccount for the change in the dielectric constant of the

m

G-10 washer between audio frequencies and microwave

Irequencies.

3.3 Radiation Patterms

The radiation patterns were measured on dipoles on the
50 foot antenna range located on the roof of the G. G.
Srown Building. The antennas were a minimum of 40 feet
above the roof of the building and the transmitting antenna
for this range is a log-periodic antenna with a beam width
narrow enough so that reflections are insignificant.
Figure 3=l illustrates the circuitry used.

The test antennas were mounted on a 8 inch long by
3/8 inch wide rod of G-10 epoxy-fiberglass laminate that
was 1/6 inch thick. The G-10 rod was used in place of
feed washers. The G-10 rod was holted with two 1/4 inch
nylon bolts to a 10 foot 2x2 fir mast which in turn was

bolted to the table of the antenna range rotator. All
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citerns taken were horizontal polarizations in the plane
T the clectric field vector,

The divoles were fed through an Anzac H-9 hybrid,
which is a broadband 180° hybrid. A special halanced line
Zrom the hybrid to the antenna was constructed out of
RG-58A/U coaxial cable. The cables from the opposite
output ports of the hybrid were stripped of their outer
insulation and taped together with electrical tape so that
their outer conductors would be in continuous contact.
Just short of the antenna, the outer conductors were cut
away to reveal the inner conductors, which were connected
to the antenna through terminal lugs. The faces of the
G-10 rod were machined down to accept the terminal lugs
as inserts, without disturbing the 1/8 inch feed gap
width. A 10-24 NC threaded G-10 rod was used to hold
the two halves of the dipole together, in addition to
securing the antenna to the mast and holding the terminal

lugs in place.

3.4 Current Distribution

The current distribution was measured in the 9 foot
cube anechoic chamber described in Section 3.2. Figure
3-5 illustrates how a Hewlett-Packard type 8411A Network
inelyzer was used to measure the relative amplitude and
vhase of the current distribution.

The probe used to measure the current was an

0.108 inch 0. D. shielded loop constructed out of 0.027 inch
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¢. D. coaxial cable. The probe was coated with Q-Dope to

te 1t from the antenna under measurement when they
came in contact. The antenna under measurement was supported
on styrofoam blocks in the center of the chamber. Care

was taker to level the antenna so that the probe would
neither 1ift off the surface of the antenna, nor bind

while being moved along the antenna.

The position of the probe was controlled by a selsyn
motor system which drove the probe carriage across the
chamber. Position information was obtained from the
voltage on the wiper arm of the potentiometer across which
a constant voltage was impressed. The potentiometer was
nounted on the probe carriage and was driven by a rubber
wheel resting on the top of the chamber. The probe was
swept along the length of the antenna slowly enough to

prevent i1t from oscillating like a pendulum.
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RESULTS

The trap antenna was found to produce a radiation
rattern resembling a half-wave dipole pattern at its first
two resonant frequencies and an input impedance in the
vicinity of 70 ohms at both resonances. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>