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ABSTRACT

EXCITATION AND PROPAGATION OF WAVES
BETWEEN TWO PLANAR INTERFACES

by
Yu-Ping Liu

Co-Chairmen: Chen-To Tai, Chiao-Min Chu

The theoretical study of wave propagation in the free space region be-
tween two parallel planar interfaces is presented. The upper part of the
region is bounded by a perfectly conducting plate while the lower part is
bounded by a lossy dielectric earth, The dyadic Green's function for this
geometry is developed as an Ohm~Rayleigh type of expansion in terms of the
Hansen vector wave functions, This dyadic Green's function is used to obtain
the field expressions for Hertzian dipoles of electric and maghetic type with
different orientations, Methods of evaluating the integral expression for the
fields are studied in great detail.

The pole contributions from the integral representation of the field
yield the modal picture of the surface wave, The excitation factor and the
mode function for the wave expressions are derived. The dependence of the
real and imaginary parts of the poles on the property of the lossy dielectric
medium is discussed.

By means of the deformation of integration contour and the saddle point
method, the far field expressions for the waves excited by different elementary
sources are derived. The proper choice of branch cut in performing the con-
tour integral is discussed.

Some numerical results are presented in graphical form. The results
obtained by using the Leontovich impedance boundary condition on the lossy
interface are compared with the exact results obtained by using the continuity
of tangential fields across the interface. The symmetry properties of the

dyadic Green's function in a two layer problem are investigated.
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ABSTRACT

EXCITATION AND PROPAGATION OF WAVES
BETWEEN TWO PLANAR INTERFACES

by
Yu-Ping Liu

Co-Chairmen: Chen-To Tai, Chiao-Min Chu

The theoretical study of wave propagation in the free space region be-
tween two parallel planar interfaces is presented. The upper part of the
region is bounded by a perfectly conducting plate while the lower part is
bounded by a lossy dielectric earth, The dyadic Green's function for this
geometry is developed as an Ohm~Rayleigh type of expansion in terms of the
Hansen vector wave functions, This dyadic Green's function is used to obtain
the field expressions for Hertzian dipoles of electric and magnetic type with
different orientations. Methods of evaluating the integral expression for the
fields are studied in great detail.

The pole contributions from the integral representation of the field
yield the modal picture of the surface wave, The excitation factor and the
mode function for the wave expressions are derived. The dependence of the
real and imaginary parts of the poles on the property of the lossy dielectric
medium is discussed.

By means of the deformation of integration contour and the saddle point
method, the far field é%;?l*éssions for the waves excited by different elementary
sources are derived. The proper choice of branch cut in performing the con-
tour integralri—s“ discussed.

Some numerical results are presented in graphical form. The results
obtained by using the Leontovich impedance boundary condition on the lossy
interface are compared with the exact results obtained by using the continuity
of tangential fields across the interface. The symmetry properties of the

dyadic Green's function in a two layer problem are investigated.



CHAPTER1
INTRODUCTION

"The purpose of this thesis is to theoretlcally study electromagnetic wave
propagation in the vicinity of two parallel plates of different material., In par-
‘ticular, one plate considered is the lossy ground plane; the other is the per-
fectly conductlng screen above it.

Two major steps are 1nvolved in the calculation of the far-zone field of

/

a transmitting antenna. First, the integral expressions for the electromag~
netic fields need to be derived by using the dyadic Green's function technique.
Secondly, the integration involved is carried out by the saddle point integra-

tion method,

The geometry of the problem considered is illustrated in Fig. 1-1. The

FIG. 1-1: GEOMETRIC CONFIGURATION

dipole is located at a height zo above the earth The earth is “considered to be

a homogeneous medlum with finite conduct1v1ty as in Sommerfeld's problem [16]

The distance between the perfectly conductmg top plate “and the earth is L which



is larger than Z,- The medium in between the plates is free space.

The problem of finding the electromagnetic wave propagation between the
ionosphere and the earth has been discussed by many authors. Watson [1] con-
sidered it as a propagating waveguide of electromagnetic wave. He employed a
waveguide approach (between an idealized homogeneous earth and a concentric
reflecting layer) in which he devised the celebrated transformation in rapid con-
vergence. The same model w1th certaln refmements{has been dlSCUSSGd by

“/rnany others, in particular, Bremmer [2] Budden [3 4] Wait [5] complled /

many useful results in book form ut111z1ng either mode theory or Hertzian
potential technique. In general, they considered the earth as highly conductive.

The problem discussed here, unlike the ionosphere problem of low fre-
quency and large distance, involves high frequencies and a very short sepa-
ration distance. However, both have similar configurations.

In this dissertation the method used to calculate the fields is that of the
dyadic Green's function, The derivation follows the scattermg superposition
scheme suggested by Tai [6, 7]. The use of the dyadic Green's function tech-
nique to solve the wave propagation problem provides a general treatment of
both excitation and wave mode at the same time. The exact integral represen-
}ibfnrof tigirfieldi_i‘é obtained by using composite dyadic Green's functions. The
integration is treated by the saddle point method. Thus, the solution at a ‘
large distance from the source is investigated. In contrast, the mode theory '
approach requires consideration of the excitation factor separately or a
special source function must be chosen to obtain the right kind of potential.

‘—W—ﬂl Chapter II the dyadic Green's functions for mixed boundary conditions
are found. Two kinds of Green's functions are needed for two different sources.
When the material is highly conductive, an approximate impedance boundary
condition is imposed on the lossy earth. The usage of the Leontovich boundary

condition replacing the exact tangential continuous condition is termed as the

approximate solution. A symmetry property is derived for the two layer prob-



lem in our research,

In Chapter III the fields due to Hertzian dipoles are derived, The dipole
sources considered are of electric and magnetic type with both horizontal and
vertical orientation. The far-field is evaluated by means of the saddle point
method. The results obtained by the method of Green's functions are com-
pared with the mode theory of the waveguide,

Chapter IV contains the results of various computer aided numerical
caiculations. The ground parameters were chosen to be representative of
those actually encountered in practice. Several frequencies were chosen to
study the nature of the ground, Some overlooked comments on wave propaga-
tion in the literature are discussed. The error in the results when using the
impedance boundary condition is found. The advantages of using the dyadic
Green's function technique are shown by eliminating the determination work
on the choice of Hertzian potentials and the excitation factors. A general
discussion of I‘I—lrodi.rer distribution is included.

In Chapter V the conclusions as well as suggested areas where future

efforts may be productive are discussed.



CHAPTER II
DYADIC GREEN'S FUNCTIONS

2.1 General Remarks o —

The dyadic Green's function technique for treating electromagnetic
boundary-value problems was first formulated by Schwinger [8] in 1943.
Levine and Schwinger [9] used this method to solve the problem of diffraction
by an aperture. In their book, Morse and Feshbach [10] introduced the free=-
space dyadic Green's functions by way of the vector ﬁe_iin:holtz equation, In
1954, Tai [1 1] collected his work on these functions into a report which was

developed further and published in book form in 1972 [6]

The general procedure for finding the Green's function related to a par-

ticular problem is discussed in great detail in Tai's book. In this thesis, we

apply the method of Ohm-Rayleigh to a configuration as shown in Fig. 1-1. We

consider only harmonically varying fields., The time factor e ~lot is applied in

this work.

2.2 Free Space Green's Functions

In dealing with the integral representation of fields in free space, the

cylindrical vector wave function used has continuous eigenvalues in the A-domain
as well as in the h-domain, where A is related to the radial eigenfunction and h

is related to the longitudinal eigenfunction., The free space Green's function for

the same type of problems is developed by Tai [6] The method used is the

Ohm-Rayleigh or eigenfunction expansion technique. In cylindrical coordinates,

the free- space ce dyadic Green's functlon is s given by [6] [7]

==

M, (h) M' (=h) +

2- 6 na n)l
"o dx 0 )
G (R/R) f z M )T (b +

Onk gnl
+ 'N‘e (h) ﬁé (~h) z > z!
obd  oni i s(R-RY)
+Ne (-h)ﬁ;e (h) b2 z < 2!

ni nl e
0 o

(2.1)

|
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h "f
where t

k:the free space wave number = /7\2+h2

X :eigenvalue pertaining to the radial function

h:eigenvalue Ppertaining to the longitudinal function

1 n=0

60={ Kronecker delta function
0 n 7‘ 0

and the vector wave functions are defined as:

M (+h)=V [J () 7 cos " nf iihz'z‘]

e
on)t

n¢§_ cos ’Mﬂ tihz

[ nJ (Ar) .- - 8J_(rr)
70 sin _n
r cos or

¥ (h)==VxM (+h)
k e\~
ni oD

O e |
—E<+h)—a‘;——§fjn¢f“( )nm)sm ¢¢+ua °§Sn¢z 202 ()

The subscript ¢ corresponds to even angular functions, and (+h) corresponds
~ odd

+ - SR
to e~ ihz and J (Ar) is the ‘nth order Bessel function,

A s1mp11f1ed { notation for the sum has been adopted
M (W) M (-h)= M— (h) M (-h)+M—(h)M' (~h
en)t() gnk( h) Men)t( )Menlg ) Mon)f) on>& )

o

Nonl(h) Nénk(~h) =N _ N _(-b)+ Nd-n}th) N b

The M' and N' functions are defined in the primed coordinate system, the

source coordinates R'. For these vector wave functlons, the sign of

h=+ 2_ >L is chosren so that the 1mag1nary part is always positive throughout

the calculations; this insures that the radiation condition is always sat1sf1ed

The free space Green's function is the basic building block in the method )




of scattering superposition [6], [7] . _ 77

2.3  Composition of Green's Function for Electric Dipoles

The plane earth is assumed to be a homogeneous lossy dielectric with a
permeability My equal to that of free space, a relative permittivity EE , and a

finite conductivity o_. Associated with the lossy earth is the followirEbropaga-

E’ e
tion constant, - e_ o
kz- k2 —E+i—£ where k =w u €
E o Eo weo K 0

€
2 !
2.8 %
€ we
(0]

The new Green's function can be found in the following way. For convenience,
the coordinates are picked so the perfect conductor is at z =0 while the lossy
earth is located at z = L. - Applying the technique of scattering superposition,

the dyadic Green's function of the first kind with perfect ’conductqli at z=0 is:

Gl(R/R') = GO(R/R') + Gl—S(R/R') z>0 (2.3)

where 'G—'O is as previously defined and

0
. 2«56
= i di o| = — — -
G..=—f — aM ()M (h)+bN (h)N* (h)
by e e €
=0 oD oA oA  gni

Here a and b are two unknown constants which are specified by the
boundary conditions. The posterior elements are guided by the expression of

the anterior cle-

f}__o which has to be the same as the part of =Go when z <z' and

ments are dictated by the nature of the reflected outgoing wave. Notice that the

singular term at source point has been dropped since the'singular nature of

—Gl is taken care ofby%—;

Ti1e bc;unda:;'y condition at z = 0 requires that:



XxG.=0 . (2. 4)

Substituting Eqgs. (2.1), (2.2) and (2. 3) into (2.4) yields:
a=-l b=1

Thus the complete expression for the dyadic Green's function of the first kind is:

& 2~ [T FE*(-h) 7 () 3E" () + (1) " (-h) +
= "'_v ._1- dx
Gl(R/R 47r£ 2 =

* =0 B\ M () W () - M () B () + N (=) F(h) +
+ N(h) N' (h) z >z
+ N(h) V' (h) 0<z <z

where the abbreviated form of Me (h) and N (h) represented by M(h) and i
———— Onl onl [ — -

N(h) have been used to snnphfy the notation.
Now the dyadic Green's function of the third kind needed for the problem

can be constructed from that of the first kind, using the method of scattering
superposition. In order to satisfy the radiation condition and the boundary con-

ditions at the interfaces, the Green's function is assumed to have the following

form . ,
F - M M'(=h) - M! N N'(- ENG

/ (11) _ O 278 | Mh )[:M( h) M(hﬂ+N(h) [N( h)+N(hﬂ+ \‘

(R/R") =1 2 |

47 h —
M(

M(-h) - M(h) | M'(h) + Eﬁ(—h)m(h)] N'(h) +

+§e[’1\'4'(-h)— h) &/I_‘(-h)-ﬁ'(hﬂ+§m[%\f(-h)+ﬁ(h;} [ﬁ'(-h)ﬂ‘\f'(hﬂ L>z>2
+R [M‘(—h)—l\‘a‘(h) Eﬁ'(—h)—M’(h{l+’§m[ﬁ(—h)+ﬁ(hzl [Eﬁ’(-h)+T\I"(h—)J 2'>220

! | (2.5)

®

:(21)__1 ..i. Qlt t(— 1

G, (R/R)-47rf l M(h) M(ha
0

+ T Nlhy) N'-h)+N'(h)-] z>L

b“



where

The first superscript (2) implies that R is in medium 2 and the second super-

script 1 means that ﬁ-' is in medium 1. Re , Rm, Te and Tm are four un~

known coefficients to be determined. The buundary conditions at the dielectric

surface which are used to determme the unknown coefficients are:

’z‘xﬁéll)(ﬁ/ﬁ') =2x G<21)(R/R'
z=1
2 xVx (11)(R/R' xVxG( (R/R")
z=L .

We have assumed u = u1= 73

5" Subst1tut1ng (2.5) into the above equations we

obtain: . - - ———
1hL +R [e 1hL ]

hhL, o [ h -ihL h ihL|_ hg ihgL
k k k

1

Lol o E{e-IhL+keth:]=T e E
m

{‘{These linear equations yield

(h- h )

e ﬁlcos(h_) -ih sm(hL:l (2.6)
-ih_L
E

he (2.7)

Te = hcos (hL)-i hE sin(hL)



(h k; - hEk2) oL
Rm= 5 5 (2.8)
2E{ h_cos (hL) - ik_h sin(hL;J
E E
-ih_L
hki_e E
Tm= 2 2 ’ (2.9)
Kk hE cos (hL)—lkEh sin (hL)

Knowing the complete expressmn of G3 s we can calculate the electrlc

fleld» due toa known current source by

E(R)= iuu_ fff Wam)-T@av L2230,
E[R)= iwuofff (21)(R/R' J(R") AV Z_§_L .

2.4 Composition of Green's Function for Magnetic Dipoles

In principle, once the appropriate dyadic Green's function is known, the
electromagnetic field due to any arbitrary current distribution can be found by
evaluating the definite integrals involving the current distribution. In practice,
for currents in the form of small loops it is more convenient to use the alter-
native choice of boundary condition. By introducing an equivalent magnetization

vector m in place of the current J, the vector wave equation for H becomes

VxVx H- k2ﬁ= kzm ) (2.10)

The magnetization vector m is defined as

m=1IA ,

where I denotes an equivalent loop current and A the vector1a1 area of the loop :

— g —————.

To solve Fq (2 10) d1rect1y, 1t is convement to construct a G2

function which satlsﬁes the boundary condltlon £ x Vx G = 0. TheprTedure

is exactly the same as before The dyadic Green's functlon of the second kind
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with a perfect conductor at z =0 is

G,(R/R) =T (R/R)+C (R/R) 220 (2.11)
where
= i d C 2_60 T RE Y ST
G| 2 E:M(h)M'(h)erN(h)N'(h‘)J.
n=0

The boundary condition at z =0 requires that

%xfof 0 . (2.12)

Substituting Eqgs. (2. 1), (2.2) and (2. 11) into (2. 12) yields the constants ¢ an'd,’,,‘
a

c=1 , d=-1 .

Thus, the 52 function 1s,g1\77_95by |

o 2, [T T () + () I (k) + ) ) - K R
T
b n=0 M(-h) M'(h}+M(h) M'(h) + N(~h) N'(h) - N(h) ¥'(h)
o . o z >z
z'>z>0 .,

Now, with the dielectric earth on top at z = L, the Green's function of the fourth

kind must have the form

o bYi (- ! N/ N'=h) =N
"_G(ll)(ﬁ/fﬁ i @2&5_0 M(h)EVI( h)+M(hﬂ+N(h)[ (<h) N(hﬂ
: in] * n=0 B ) [FEC-h)+ )| E(h) + [N(-h) - F(h) | Fech)
S [M(—h)flﬁ(hﬂ %’(-h)fﬁ‘(h) +8, N(~h) - N(h) [;;\I-'(-h)—ﬁ'(h) L§z>z'
S EM(-hHﬁ(hﬂ[M'(-hHﬁ'(h) +8, |N(-h) - N(h) [%'(-h) -Ni(h)| |2'>2>0

(2.13)
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S m/my-L i"—i—z-% P fih ) | h)+ﬁ'(hﬂ+P Neh )| F'(-h)-N'(h)
4 d4r A h m E ) e E Ing
n=0
z2L

where I

=4 -
b= fio-X

The boundary conditions at z = L. require:

A =(11) _ A 3(21)

x G Z X
4 4 z=L
‘;];/Z‘XVX—-E(411)= 6—1' /z\xVx_—G.fD
1 2 z=L

Substituting (2.13) into these equations we obtain:

. . . ih L
JhL, ¢ E-thJremq:P JE
m m

. . h_. ih_L
b hL, [_eh_ 1hL+Le1hI]=P e E
€1 1 1 m €2
: ih_L
feIhLJ’SeL& —1hL__k_eth]= ol .
1 1 €1 € °©
Hence: : T
(hE—nzh) e1hL
s =T - (2.14)
2[in hsin(hL)--hE cos (_hL—,)]
2 e"ihEL S
P = (2. 15)

m hE cos (hL) - in2h sin (hL)



12

(h-h_) e ihL
e 2l_hcos(hL) -ih sm(hL] (2.16)
-ih L
E
nh e (2.17)

e ElCOS(hL) -ih sm(th

2
where n” = 62/61.

4 En apphcatlon of Green's 1dent1ty

gives an integral form of the magnetlc f1e1d due a constant current loop distri-| /

bution
HR)= szffréill)-ﬁ(ﬁ')dw L>z>0 |,
H(R)= nzszf‘[;éf”- mERNdV' z>L

2,5 Symmetry Property of Dyadic Green's Function

Thus, knowing the expression for G

Analogous to the scalar Green's functions, the dyadic Green's functions

have certam symmetry properties which are described in detail by Tai [6]

h1s book only problems involving two medla have been d1scussed It is not o :
difficult to extend the multi-media problems. In this section, we extend one

~of Tai's relationships to a two layer problem,
|

f Let us consider the problem in our research., The functions Eé 1
G, 5, a0t 57 saisty the fonloving equations: |
VxVx G( 1)(R/Rﬁj K2 (11)(R/R) Tol( R-R)
Vx Vx G(2 )(R/R ) - kz_(zl)(R/R )=0
VxVx G(ll)(R/Rb) k2=(11)(R/Rb) T6 (R~ Rb)
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2—-{21)

vaXﬁ( )(R/Rb) kg (R/Rb) 0

where R and Rb are assumed to be in region 1, At the 1nterface z=L,

these functlons satlsfy the boundary conditions that

A —‘(11) A '—G‘—-(Zl)

n x G3 =nx 3
iﬁ xVx;(—}(ll)= "l—ﬁ xVx:é(Zl)
3 7 3
1 2
(2.18)
AxGi 2 p G
4 4

iﬁxVx__G-r(llk —lﬁxVxﬁ(zl) .
61 4 62 4

The vector Green's first 1dent1ty has the form

fff VxP (VxQ) Q VxVxP-JdV ﬁQxVxP) ds

We form two vector functions defined by

Q= vxG, R/R ) T

An application of the Green's first identity in region 1 yields:

/_\_/
R /R )-7-7 vx Gt )mb/R) B+

fﬂ' V mm)- ]J [‘”’(3/3) ] [VxGunR/R)
T [ w5 pav-

3. Vx-—(ll)
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n

l:v (11)(R/R) AXVxG ”(ﬁ/ﬁb)-ﬁ]-ﬁ
1

where 7~ as before means the transpose of the dyad.
The volume integral in the above equation can be changed into a surface

integral by means of Gauss' theorem since it is equal to

2 f f f v. Eff”(ﬁ/ﬁb)-ﬂX[Eg”%ﬁ/ﬁa)-%}dv .

As a result of the radiation condition and the boundary cond1t1on at the
perfectly conducting plane, the resultant surface integral exists only on the

interface SL. Thus, we have

/(—1}/ oS _
(R /Rb) - VxG, (Rb/R) b

ff =(11)(R/Rb) b] (_( 1)(R/R) ] .dS+

f Vx:é(ll)(R/R) axVxG (R/R.b) b dS . (2.19)

XY

Similarly, by letting

21)

(R/Rb) b

3, va2)

) (//R)- 2

and applying Green's first identity to region 2 covering the entire domain z > L,

we obtain
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fﬂ{&xG (R/Rb)b] [ (321)(R'/§a)-] [:VXG(ZI (R/R)
:;J [ 2512 1)(R/Rb) %}dv -

=#[ —(21)(R/R) axVxG R/Rb) b]

2

As a result of the application of Gauss' theorem to the volume integral
and the radiation condition at infinity, the only surface integral left is on the

interface S Thus:

ff (21)(R/RID [—(2 )(R/R) ] 5 -
f f “2”(3/3 axVxG(2 )(R/Rb) b] & . (2.20)

f In view of Egs. (2,19) and (2. 20) and notlcmg that k2— n2k2 we have |

I et =

=(11)(R Rb) -3 —(11)(Rb/R) 5
Lszj{: (11)(R/Rb) d [—(11)(R/R) ]}«E’
+k2ff{[(2l)m/ﬁb) b
S
+ff[v (11)(R/R) ] [VXG(l )<R/Rb) b
L

L O‘AJ

L
X [(21)(R/R) ]} ds
L
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2 f I [}xréézl)(ﬁ/ﬁa)- %x[:vxéfl%ﬁ/ﬁb)-ﬁ]- &
n SL

When the boundary conditions (2. 18) are applied, the surface integral

over the interface SL vanishes. Thus

1 /’\—-/
1 =\ — =(11) —
b-Vin1 )(Ra/Rb) a = VXG(3 (Rb/R) b .
. =(11),= =\ _ ==
Putting ~ VxG, (Rb/Ra)= AB , gives
7.vxGy, (R /R )T -3 BA)-F= @ B XD

=06 (B-2)=b"(AB)7
=b. VXG(ll (Rb/R )=

Since @ and b are arbitrary constant vectors,

W)wiﬁ“”(‘ /")
4 aR'b 3 Rb a

Replacing ﬁa by R' and ﬁb by R, we obtain

=;11)(§/§') . (2.21)

w xﬁiu)(—R'/ﬁ) = VxG

Here the ~~ covers the whole dyadic functlon according to Tai's notation.

e —_— e

In examining the multi-reflection coefficients Rm, Re’ Sm and Se’ it is

found that the following relationships exist:

Thus, the 53 and 64 functions derived for our problem have the symmetry
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property as is clearly seen in Eq. (2.21). This procedure could easily be ex-

tended to other multl-med1a problems. ]

2.6 Impedance Boundary Condition

During the early 1940's, a large number of Russian papers were published
dealing with various aspects of wave propagation over the earth. An attempt
was made to take into account the actual properties of ground materials by speci-
fying an 1mpedance boundary condltlon at the surface These conditions are

attrlbuted to Leontov1ch (for example, see Fock [12] and were descnbed

' to Leontovich [13]. Application of these boundary conditions to propagation

\

| problems has been discussed by Feynberg [14] A straightforward and com=-

| prehensive study was done by Hiatt et al [15] they obtained the followmg results

‘when n| >1 aEZ ”
Eat
BHZ
_az_=_1anz -0

where the 1nterface is located at z = 0 and the pos1t1ve zZ d1rect10n is upward

toward the free space.

2.7 Approximate Dyadic Green's Function Satisfying the Impedance Boundary
Condition

Analytlcally, when the impedance boundary condition is used, the

formulation becomes different from the one presented in previous sections,

The impedance boundary conditions at the interface z = L imply that there is

no wave propagating beyond the interface, The method of obtaining the Green's

|
' function remains the same. Using the dyadic Green's function of the first kind

——— _—

B & 2-5 | M) [ﬁ'(-m —ﬁi@mh){'ﬁ'(—m @mﬂ N

= i
G,.= 7= —2
g L& h [x—vr(-m-n'(ha'ﬁ'(hn[‘m-hnmhﬂmh)+

] as the baS1s ‘and, applymg scattermg superpos1t1on technique, we obtam
et .



+R EW-h)—'M'(hi' EM'(—h)—M'(hﬂm E\f(-h)+ﬁ(hﬂ E\T’(-h)ﬂ“—ﬁ"(h;‘l
el ml >

+R [M(—h)—'ﬁ(hil [M-'(-h)-ﬁ'(h)]+R [ﬁ(-hhﬁ(h)] [T\I"(—h)ﬁ\l"(hﬂ
el ml

where R
el

and R
m

I

B
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are unknown coefficients and the subscript I

j
L>z>z'

z'>22>0

J
(2.22)

is used to \

‘denote the modified coefficients under the impedance boundary condition,

The Leontovich boundary conditions mentioned before correspond, at

!
‘|z=L, to

—_—

—_—

Z

-—+

0z n

-0H

-—24iknH =0
0z Z

ik

E =
VA

0

—

Under the assumption that H0= M = /.t2 , the impedance boundary conditions in

dyadic form are:

oG
31, ik=
- (- +—=G_)=0
0z n 31 2=1
s o (2.23)
Z e (-a—z VXG3I+1anx G31)= 0
z=L
Substituting Eq. (2.2) and (2. 22) into (2. 23) yields:
. . [ . o .\ . —T
—iheth+R (ihe-th—iheth)+ ik 1hL+R (6 1hL+ eth) -0 |
ml n ml g
ihL -ihL .. ihL ihL ShL  ihL]
-ihe" " +R _(ihe +ihe T)+iknl|e  +R _(e - )] =0
el L el .
_ — T T T T Ty
Hence, —— f
ihL
¢ _{k-nh) (2.24)

I?mI= 2 Enh sin(hL) -k cos (hL]
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R = AL 1k -1) 7
el 2[ikn sin(hL)-hcos(hL)|

(2,25)

The same procedure carries over for G A It yields:

oY Y1 N Yl N N _h) - N!
= . N @Zﬂ M(h)ﬁvl( h)+M(hﬂ+N(h)E\I( h) N(h;}+
] . h E‘w‘(-h)ﬂﬁ( ﬂM'(hHE\I(—h N(h )_)N'(h) +

n:
+8 Elvf(—h)ﬁvx"(h-):\ E\Z’(—hHM‘(ham [ﬁ(—h)-N( j‘ N'(-h) - N'(h] L> 2> 2!
ml el
+8 [ﬁ(-—h)+ﬁ(h)] [ﬁ'(—h)+_1\7f'(h)}+s [':N(-h) -N(h ] [ N'(h] z'>z>0
ml el -

(2.26)
The impedance boundary:conditions at z=1L are:
. a?l _
o (= +1 =
z* ( Py ikn G4I) 0 (2.27)
z=L
1A 0 =  iko . HF
-7 (-— +—=VxG )=
oz ( 8ZVXG4I m 41) 0 (2.28)

1 z=L

Substituting Eq. (2.2) and (2.26) into (2.27) and (2. 28) we obtaln

o | | 1
~iheli s line 1hL+1he1hI]+iknEeth+SeI( L JhLy_ o

el |
. N~ o e o)
—iheth+S ihe 1hI"-ihethi\+ Ik eth+S (e th+eth) =0 .
ml n ml g
The above two equations can be solved for the two ﬁ;k;;—wns
g = ——th-kn) et (2.29)
el 2l_h cos (hL)-ikn sin (hITZ] ’

ihL -
S (nh-k) e (2.30)

me 2|lkcos(hL)-ihn sin(hLﬂ
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Thus we have obta1ned the expressions for two approx1mate dyadm Green S func-

tions by applying the Leontov1ch 1mpedance boundary cond1t10n to one problem. /

2.8 Relationship Between Exact and Approximate Green's Function

The difference between the exact Green's function and the approximate
Green's function is that the former uses the continuous property of electric and

magnetic fields at interfaces while the latter imposes the Leontovich boundary

conditions at interfaces. Thus, the structure of Eqs (2 5) and (2 22) is 1den-

tical with the exception that the multiple reflection! coefﬁclents are dlfferent

To determine how close the Leontovich boundary condition am'ates
the exact boundary condition, it is necessary to study the physical meaning of
the impedance condition. The fact that such an impedance exists at the inter-
face between two medium can be clearly seen by considering a plane wave inci-
dent on the boundary from the direction of free space. Application of Snell's
law shows that the transmitted wave is deflected ﬁoWa;d the normal because of
the refractive index n, For a fixed direction of incidence, the angle between
the d1rect1on of the transmitted field and the normal of the interface is in the

| ——

‘order of /1 L wh1ch 1mphes that the rad1a1 elgenvalue )L of the transm1tted

field is in the order of sin ( / nl) For a value of the refract1ve index |n| large

compared to unity, the eigenvalue A is negligible. Thus

"hEc.V. kE=nk (2.31)

The same relationship holds in our problem., When the approximation
hEﬁ nk is put into Re and Rm, simple algebraic manipulation gives rise to
the expressions for R _ and R

T el mI’

between S S and S eI’ §;11: Thus, it is clearly seen that the larger the value

of n, the closer the two solut1ons | In other words, when the refractive index

Similar arguments hold for the relationship

is in the order of unity it is not suitable to use 1mpedance boundary cond1t10n



CHAPTER II
FIELDS DUE TO HERTZIAN DIPOLES

3.1 Introduction

The dyadic Green's functions needed in our problem have; ;);én given
explicitly in Chapter II. These Green's functions can be used to find an integral
form for the fields in the region in between two interfaces for any kind of current
source. In general, any current source can be decomposed into elementary
Hertzian dipoles. So only the fields due to x-directed and z-directed Hertzian
electric and magnetic dipoles are considered.

In general, the exact form of the field is rather difficult to find. However,

an asymptotic solution can be found using saddle point integration which has been

discussed in great detail by many authors [13] , [14].

3.2 z-directed Dipole

3.2.1 Integral Representation

For a z-directed infinitesimal electric dipole located at a height Zo above

the interface z = 0, the current distribution can be expressed as

TR =26(x'-0)6(y' -0) s(z' -zO) | 2 (3.1)

The antenna current distribution is assumed to be uniform with a magnitude I,
If the length of the antenna is £ then in the limit as £ goes to zero, the current
I goes to infinity and the dipole moment I is assumed to have a finite value.

Smce the Green's functlons derlved before contain posterlor terms of the

ﬁ' (+h) and N' (+h) the followmg two relatlonshlps whlch arise from
ﬁnk Onk
the explicit expressions for the M and N functions given in Eq. (2.2), enable

us to write: o o e

M' (+h)- J(R")dV'=0
€ni
o

r 6o)l +1hzO

N (+h)- J(R')dV'-Il —¢
€na~ k
o

(3.2)

21
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Equation (3. 2) implies that the final expression for E will contam only terms of

-N—eOA type, because the M functions have no z corpponent.

We recall that the électric field may be found from a knowledge of fhe 7

current distribution and the Green's function, The specific relationship is:

E= iwuofffﬁ'(ﬁ/ﬁ') - J(R")dv"

Substituting Eq. (3.2) into the above equation, we obtain

( -ihz ihz
>L(h)Ea %Le °| +

ihz
(h) N - l(hﬂe °4

~~ihz ihzﬁ\

gl
"
1
£
1.8
(@]
AR
—
>
=l [=N
>
o
e o

+R [N - (h)+N (h;J e %+e % |L>z>z
mg_ L J - 0
~ ~-ihz  ihz )| ) (3.3)
+R [N - (—h)+N (hﬂ e %+e °llz>z>0
m| e eO\. . _ J) o -

The electric field representation is in the form of a semi-infinite integral. \

Under certaln condmons to be stated later, we can find the asymptotic expressmn\

l
|

by the method of saddle point integration. To derive this expression we shall ‘g
first transform the integral as given by (3. 3) from semi~infinite path to an infinite
path in the A-plane. Applying Sommerfeld's half-circuit relation [_16] between

the two kinds of Hankel functions and the circulation relation of Hankel functions:

J (kr) == { é”(}f) + H(Z)(ﬂ}

(2) ( )

(Ar)=- (-Ar)

to our integral, we obtam J
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o

o (1)
® . o

N Ok(h)2cos (hzo)+Rm{:_(l) h)+N

'J )
h){2 cos (hz )
_ WH It A o}
5 f B, L) 0 [<(1), .\, (1)
Yo [ ( h)+N ﬂe +Rm[NeO)$-h)+ NeO)Shﬂ 2cos (hzo)

J
(3.4)

-~

where (1 (+h) =V x [ (l)(lr) Zihz {l

This is the exact integral representation of the electric field due to a z-directed

infinitesimal electric dipole. The final task is to evaluate this integral,

3.2,2 Asymptotic Solution

When Ar is large compared to unity, corresponding to a far-zone field,

the Hankel function in ﬁ(l) and 'N-(l) can be approximated by its asymptotic

1
n+ / .
Hill)(n r) o~ /—7;21- (-1) 2 et

=(1) (1)

Accordingly, the functions M~ and N ~° become:

expansion

3

+ /2 .

—(1) ~ ol 2 i(nrthz) cos
+ oo (a3 —_—

Menn(‘h) (-1) 1 ™MT © sin n¢a ’

n+ /2 . _
_i ) (+h) = (-1i) n |2 el(nrihz) cos g [(+h?+g’z\)-J
T Kk

sin
Onn

Then, the far-zone electric field is represented by

-wu It / A LA
0 dr . 2.2 [2 (z-hr) i(xr+hz)
Ik f Y (-1i) h‘/—'irhr {ZCOS(hZO) - e (1+Rm)+

'}ij< ~Q0

. A A —
+R 2cos(hz )emr hz)m} L>z>z
m o k - o)
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®
wu 11 I ihz ]
0 dA , . /92 [ 2 0
- == (- ﬁ +
Ik f " (i) e x - E 2Rmcos(hzo) X

=0

[i(hr-—hz)()ﬁ+h9) i(w+hz) (2 -hd)
xle —'——-k +e K

z >z>0 (3.5)
o 22

It is desirable to introduce a new complexf ;riafiable“B to e>7<meieute the
integration. This variable is much easier to interpret physically than the
eigenvalue A in the presentation of the wave propagation problem. The tech=
nique used here is the same as the one used by Budden [3], Felsen [_17] and ,‘;
Nomura [18]. 7 | f

To facilitate the function-theoretic manipulgtions involving integrals of A

the type occuring in Eq. (3.5), the new variable B is introduced through the

transformation
A =ksinf

which makes A=+k a pair of regular points in the 8 plane rather than two

- branch points in the A plane, since the transcendental function sinf is single

valued.

The paths of 1ntegrat10n in both complex A and B planes are shown in

Figures 3-1 and 3-2. The reflection coefflclent R in Eq. (3. 5) is a function

of h=+ /kz-kz and hE =+ nzkz— Az . Corresponding to the four combina-

‘tions of signs of *, /kz- )Lz and * / n2k2- 7L2 , the integrand is four-valued

and its Riemann surface has four sheets, These sheets are connected with

o [ (77 2
~one another by branch cuts along the line Re,/k - 12 =0 and Re\,/nk =X =0

from A =tk or A =tnk to infinity as shown in Fig. 3~1. The choice of branch-

cut is discussed in detail in Appendix A, The branch cut startmg at the origin

is due to the Hankel funct1on of the first kind. Because of th1s part1cular choice

of branch cut, the d1agram of F1g 3-1 is the upper-most sheet among the four

Riemann sheets. It is then deﬁggd_ as Re, /kz A >0 and Re\ /nzk2 k >0,
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complex A plane

n

pole " branch
// cut
® ® 4

Rex

_

FIG, 3-1: PATH OF INTEGRATION IN COMPLEX X PLANE.

P

> Ref

FIG. 3~2: PATH OF INTEGRATION IN COMPLEX 8 PLANE.
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where the shaded reglon represents that imaginary part of the exponent1a1 term

wh1ch is greater than zero. The transformed d1agram is shown in Flg. 3-2,

Through the transformatmn A= ks1n B the four Riemann sheets in the

A domain become four adJacent sections in B domaln W1th a per1od of 27r The

region of concern is that between —7r/ 2 and 7r/ 2 as shown in Fig. 3-2 which

—_—

corresponds to the uppermost sheet as shown in F1g. 3-1, The branch

cuts starting from A=+k in l domam are shown in dashed lines as regular

lines starting from B=+7/2 in B domain, Since the integral path C no longer
circles around these dashed lines, the introduction of the transformation is now
easily realized. -

There are poles arising from the denominator of the reflection coefficient
Rm. These poles are closely related to the surface wave, A detailed study of
the pole characteristic will be given later.

In applying the transformation A =ksinfB to Eq. (3.5) the counter trans-

formatmn pair h=+kcosf ex1sts The choice of the sign agam follows the rule

that the integral must be convergent in order to satisfy the rad1at1on cond1t1on.
For the exponential term in the integrand having i(Ar+hz) the positive sign
has to be chosen, while for i{Ar-hz), the negative sign has to be used. Thus,

the integral in the complex B domam becomes

. i IR P« es
- I
wue 1L @ ? ?
0 . —57 ) )
&= k2 sip? A -
ark |k sin®B f TRoin 0 {2008 (kz cos B)(sinBz-cos fr) (1+Rm)
\“"\ "'2'+i ®
\ - Rm2 cos (—kzocos B) (sinB2-cos ﬁﬁ)} olKRcos (6-B)
[
E { ] -
; F g (3.6)
R -1kz cosB
o~ 0 k sin B -2i +2R cos (kZ COSB)’
dmk \ \ 7Rsin 6 o g
"—+ioo
i 2 —— ikz cosP
ikRcos(6-B)

— L (smBz cosBr)+[ ° +2Rmcos(+kzocosB) (sinBQ—cost')

zZ >z >
..o =
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Now the saddle point method is applicable in the complex S plane. The

path of steepest descent is shown in Fig, 3-2 as CS . The deformed path of

integration passed over the saddle point at

ij- cos(8-B)=0
1lr

where 6 = tan.- ;

which gives B=60 as a saddle point.

If the path CS does not pass near a singularity nor cross singulérities

when deformed, the asymptotic solution of the integration is

wuoll eikR
'E'( )ﬁ- isiné R cos(kzocose)(1+Rm —Rm ) x
z T kcosg ~kcos @
. A A
x(smGz—cosBr)} L>z>0 (3.7)
(h k; -hEkz) olhL

where Rm = 5 5 -

h=+k cos 6 2E{ hE cos (hL)-1kEhsm(hL)
h=tkcos 6

This is the far-zone electric field solution for the problem of concern. Under
our assumption that no singularity is crossed, this far field contains the geo-
metrical optics reflected and direct waves. However, when we deform the path

from C to C_, it is possible that it sweeps through either poles or branch cuts.

S 2
These singularities contribute the so~called surface waves and lateral waves

respectively., They are discussed in more detail in Appendix A,

3.2.3 Comparison with Mode Theory Results

Previously mentioned references L2, 3, 5] approach this waveguide
problem using mode theory. Section 3, 2,2 mentioned that the poles contribute to

the surface wave. Thus, the relationship between the dyadic Green's function



28

technique and the mode theory approach should be pointed out.
The characteristic equétioilifbr the existence of a self-consistent mode \

in the mode theory is L , o

R(G)RE(G) exp(2ikLcos6) =1 (3.8)

\

| where 6 is the angle between the plane wave normal and the interface, R(9) is \

\

the reflection coefficient at one plate z =0, and RE(G) is the reflection coefrficiie‘qt

“cient at the other plate z = L,

—
—

-

For the TM waves travelling in the waveguide, the Fresnel reflection

coefficients at the perfect conductor plate and the earth plate are given by:

R(0)=1
1
- nzcos 6= (n2 ~gin’ 6) 2
R(6) = — TR
/2

n2 cos 6+ (n2 - sinz 0)

Putting the transformation A= ksin6, h=kcos 6 into the above equations and
substituting the results into (3, 8) yields
1
n’h - (n2k2->t2) L < o 2ihL

| n2}}+ (n2k2-)L2)]7,2

;hich is é&uivalen?tér,

h

—2£ = itan (hL) (3.9)
nh

1
where hE = (n2k2- )\2) /2 .

The mode equation (3.9) is identical to the equation of the poles in Egs, (2, 14)
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and (2. 15),

Similarly, for the TE waves,

R(6) = ~1

1
cos 9~(n2- sin2 0) /2

1 >
cos 6+ (n2- sin2 g) 2

RE(G) =

and the mode equation can be found as

'hL= itan(hL) . (3.10)
E
This ﬁode condition is identicaﬁb fhe éduéfio;l wc;f ;};e poles in Egs, (2.6) and
(2.7),

Hence, the poles of the dyadic Green's functions are directly related to
waveguide modes. Thus, the discussion of the mode theory only constitutes the
pole contribution part of our approach. This important fact implies that when
- the pole contribution, which is the surface wave, is not dominant among the
~ waves, mode theory alone cannot describe the wave propagation problem com=

- pletely, o
 3.2.4 Leontovich Approximate Solution - g

When the impedance boundary condition is applied at the lossy dielectric
surface, the solution is referred to as the approximate solution. As derived '
previously, the approximate Green's function has the same form as the exact
Green's function with the exception that the multi-reflection coefficient has a

- different value, so the above procedure can be used without change in this sec=
tion. There is no need to repeat the entire discussion here, The asymptotic
solution is as follows: R

wu IL ikR
isin6

-R
kcos 6

E(z)I— - cos (kzocos 6)(1+RmI ) x

I -k cos 6

x (sin6%-cos 6%) (3.11)
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. R - (k-nh) il
where ml|cosg 2 [inhsin(hL) -k cos (hL)]

tkcosf

Again this field contains only the direct and reflected waves defined in geometri-

cal optics,

3.3 x~directed Dipole

3.3.1 Exact Solution

For an x-directed infinitesimal electric dipole with current moment I

and placed at z = Zo , the current distribution may be written as

TR =Rs(x'-0)6(y'-0) s (z'-zo)I! o

Then
— 3 iihz0
M' (+h)- J(RNAV'=I4 6  Te odd parts
€n nl 2
)
(3.12)
+ih 5 Zfihz
Nt +h)e T(R? 1 = -2
Nenl(_h) J(R') dv Ilanl =5 e even parts
0
1 n=1
where 6 .= .
nl

0 n#*l

"The terms involved in the calculation of the field are of the type 'M'on(_-t h) and |

‘i T\fe 1A(i h). It implies that for a horizontal dipole, it can no longer represent ‘

the electric field with one vector wave function alone. This result agrees with

| Sommerfeld's derivation [16]. Thus, the electric field due to a horizontal

|

| electric dipole is:
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{M (h) [21 sin(hz ) ]+Re [m-oll(_h)—ﬁolh(h;} E-2i sin(hzo;J
0
+ % [ﬁen(h)[Zisin(hzoﬂ+R E—em( hHN l)t( )“\ Ei sin(hzoﬂ

E(X< L>z>z
| - o

1 . ihzo ~ _ o
dk -1-1- [Iylolk(-h)—Mol)t(hﬂe ~1_Re Mol)t(nh)-Mol)L(h) —21s1n(hz0)
+ﬂl (-hHN __ (h) ihZ°+R N _ (-h)+N__(h)||2isin(hz )
- ell el |® m| elX elx “_\1s1n %o

2 >z>0 (3.13)
0

where subscript (x) means fl;f_tfle fieid i—s’ due to aln i:éifg;édidirpole

The basic structure of Eq. (3,13) is the same as Eq (3 6), hence the

'procedure used for the vertical dipole case is apphcable to the hor1zonta1

dipole case. After the application of half-circuit relationship, the path of

integration changes to an infinite path in the A-plane, Substituting the asymp-

totic expansion of Hankel function and changing the variable of integration into

B we can again apply the saddle point method, Thus, the asymptotic solution

for an x~directed dipole is foupd to be
_ quou eikR

E(x)= T R

+R ) sin¢6\+

sin(kzocos 6)(1 --Re o
kcos @ -k Ccos 6

+cos O cos P sin(kz cos 6) (1+R - R )(sin@lz\—- coseb
o m
- kcos 6 -kcos6
L>z>0 (3.14)
(h-h_) e thL
Whel'e R = ]
e 2[hcos (hL) ih;sin (hL)]

h=+kcos6 h=+kcos 6
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3.3.2 Leontovich Approximate Solution

Again, following the previous derivation, it is apparent that with the sub-
stitution of ReI and RrnI into (3. 14), we obtain the approximate solution due to
a horizontal dipole:

wuoI! ikR

e A
E, o~ ~—— (sin(kz cos8)(1-R +R ) sinf @ +
(x)1 4 R © el kcos @ -kcos 6
A
+ cos 6 cos Bsin(kz cos §) (1+R -R )(sin 62 - cos61)
0 mlI ml
kcos 0 -kcos 6
(3.15)
where R = (h - nk) eth
el 2[h cos (hL) -ink sin (hL)]
h=tkcos 6 h=t+kcos 8

3.4 Horizontal Current Loop

As shown by Stratton [20], a convenient measure of the strength of a

loop carrying a uniform current is in terms of the magnetic dipole moment,

Hence, a small hor1zonta1 current loop carrymg a current I with area A

located at (0, O, zo) can be represented by a magnetic dipole with moment

E(R')=’z\5(;"~0)6(y'-0)6(z'-zo) 1A .

We recall that the magnetlc f1eld can be determlned w1th the aid of the follow—

ing equation:

H= ki[ffﬁ(ﬁ‘/ﬁ') CE(RY) AV .

The analys1s is exactly the same as that for a z-directed electric dipole. With
the changing of Green's function and excitation factor in Eq. (3.11) the result

is given
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K eikR
—ﬁ(h)’g i — sin @ sin (kzocos 9)(1~I-Se --Se )
k cos 6 -kcos @
. (sin 62 - cos 67) (3.16)

where Se is represented by Eq. (2.16). The approximate solution is obtained

by replacing Se with SeI in Eq. (2.29).

3.5 Vertical Current Loop

For a small vertical current loop carrying current I with area A located

at (0, 0, z ),
[e]

m(R") = R5(x'-0) 6(y'=0)6s(z'~ zo) IA

Thus
ikR —~ A

“(V)?—-LAE = cos(kzocose)(l-S +8 )sin @ @+

4 kcos 6 -k cos 6

o
+cos fcos P cos(kz cosh) (1+8 -S ) (sin 62 - cos 6T)

0 e e
kcos6 " |~kcosé
L>z>0 (3.17)

where Sm is represented by Eq. (2.14).

The replacing of Sm by Sm gives the approximate solution. Thus, the

I
asymptotic expressions of the fields due to various ?iﬁple dipoléé ;1re 7

derived. The similarity of the fields of the electric and magnetic dipoles was
expected because of the duality principle. The fields patterns and the detailed

results will be presented in the next chapter.



CHAPTER IV
CALCULATION AND DISCUSSION OF RESULTS

4,1 General Remarks

In this chapter we present a computational study of a particular problem
involving the wave propagation above lossy earth. The height L of the particu-

lar structure is chosen to be 30 meters. The env1ronment of the ground will

/

vary from good to poor earth The refractwe 1nd10es ass001ated with these 1‘"

grounds at dlfferent frequenmes will be cited later. The results based on the .

Leontov1ch 1mpedance boundary condition at the lossy interface are studied.
The errors associated with these approximate conditions are calculated. For
a given elementary point source, the excitation factor is investigated. The

advantages of using the dyadic Green's function approach are discussed.

In the following sections, three d1fferent types of curves are presented

They are the reflection coefficient modulus pos1t10n of the poles in complex

0 domain and the far-field pattern for different earth material and frequencies.

4,2 Percentage Error by Using Impedance Boundary Condition

At the very beginning of Chapter ITI, the Leontovich impedance boundary

condition is discussed. This condition is valid only under the assumption that

l ] >> 1. However no uuantltatwe cr1ter10n was set for the values of n. The7
/ bound of n can not be ascertained in general, since the exact criterion depends
" on the geometry and the material constant of the earth, In this section we
" attempt to find the difference between the approximate solution and the exact
solution for different values of n.

Let us assume that oE and eE are independent of frequency, The com-

' plex index of refraction n is represented as

nz_{m_}

In general, on and € are functions of the water and the salt contents of the

earth Here we categorized earth into two kinds: good earth and poor earth 7

- 1

34
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The refractlve 1nd1ces as functlons of frequency are given below.

frequency used good earth poor earth

for calculation -2 -4
= =10 U = = U
(6r 10, op 1 /m) (er 4, on 10 /m)

f n n
60 KHz 10 + 13000 4+1i30
600 KHz 10 +1300 4+i3
6 MHz 10+1i30 4+1i0.3

Table 4-1: Refractive Index for Different Frequency

In our problem the dlfference between the exact and approx1mate solu-

tions is due to the different values of the multi-reflection coefficient. Since the

|
calculations for different types of sources involve different expressions for the |

reflections it is therefore suitable to plot and discuss the coefficient modulus
first. The coefficients R_ and R__ of Eq. (2.8) and (2.24) which relate to

mI
both electric d1poles can be written in the form

(nzcos 6- \n 2 sin 9) ikL cos 8
2 Vn -sin 9 cos (kL cos 6)-1n cos Gsm(kLcos 9]

ikL cos 0

(ncosf-1)e

R __= 2
2 |cos (kL cos6)-in" cos 6 sin (kL cos Gﬂ

The coefficients R and R o’ of Eqs. (2 6) and (2. 25) relating to the hori-

zontal electric d1pole can ‘can be wrltten 1n the forml

(cos 6 - ‘42_ sin2 6) e1kL cosf B
2 [cos 6 cos (kL cos0) - i \A - sin2 6 sin(kL cos Gzl

ikL cos 6

R =
e

(cos6-n) e

2 |cos @ cos (kL cos 6) -in sin (kL cos GE'
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Before showmg the curves for the reflection coefflc1ents, 1t is worth—

/;' Wh11e to mentlon that the cut off frequency of the gulde is 5 MHz, if both plates /"'
f {

are perfectly conducting. Thus, 60 KHz is far below this cut-off value., The
spatial region of concern is the far zone, thus the direction of observation 6
f is greater than 82 degrees and less than 90 degrees, hence, the s1gmflcant l

range of cos@ is extremely small,

Studying Figs. 4~1, 4-2, and 4 3 1t is found that the reflection coefficient

Rm line gets more perpendicular Wlth both interfaces as the operating fre-

quency gets lower. At low frequenc1es the earth acts hke a perfect conductor
implying that the two interfaces look much alike. Thus the R curves are

more symmetrical with respect to both interfaces. The dlfference in R ’s for

good earth and poor earthlbecomes smaller as the frequer;om\;e‘rEd N 7 /

However, these properties do not apply to R The reason is that there is a
pole at 6 =7/2 as shown in the figures. The difference in the Re's gets much
larger as the frequency is lowered. Even though the earth surface has a very
large refractive index as is the case for f =60 KHz (Fig. 4-3), there is no
symmetry property. Thus, the geometry of the structure as well as the
nature of the material affects the results

The following table gives the percentage error in the results when using

the impedance boundary condltlon.‘

f n cos 6 % error of R__| %, error of R
ml el
6 MHz 4+1i0.3 0. 039 1.38 0.84
6 MHz 10+1i30 0,039 0.35 0,07
600 KHz “ 4+13 0. 004 0_652_ 6,925
600 KHz 10+1300 0. 004 0. 0084 0.016
60 KHz 4+1i30 0. 0004 0, 002 0,358
60 KHz 10 +13000 0. 0004 0.0 0, 0041

Table 4~2: Percentage Error of Reflection Coefficients
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The percentage error for Re at n2= 4+i3 is very large. The reason

for this large value is the fact that tIhe reflection coefficient Re has a pole near
this particular combination of n2 and cos 6. While for the same combination
the approximate function ReI has the corresponding pole not as close as the
exact one, Thus, for all points of observation near the poles of Re , the error
of using the impedance condition is large. Other than those particular points
in general for ‘nzl > 5, the error is less than 1 percent. For very large
values of n the difference is negligible. The far-zone field is directly'propor-

e

tional to these coefficients so that the error in the far field in using RmI and

R, is of the same order of magnitude. They will be shown in the next section. |

4,3 Far-Zone Field

The far~zone electric fields due to the vertical and horizontal electric

dipoles are presented in this section. There are the E_ and E_ components

‘ corresponding to the vertical dipole and only the E ¢ component corresponding
to the horizontal dipole. They are shown in the same figure (with only § = 90°
shown for the horizontal dipole case). Due to the use of the saddle point method,
the fields obtained are in the far-zone. The definition of the far field in our

' research is r > 151, Thus, the range of the far-zone varies with the frequegcy.w

 Hence the hﬁagnitudés of the fields are not in the same order of magnitude for

1 El;lzge frequencies.

| All curves of Er’ Ez and E¢ tilted forward near the dielectric surface

~ compared to that at the conducting plate. Figures 4~4 and 4~7 show that E g
is stronger for the poor earth than for the good earth. As the frequency is
lowered the difference in E g with good earth and poor earth increases greatly.
But the differences in Ez and Er get smaller, This is directly related to the
properties of Rm and Re as discussed before. Figures 4-5, 4-6 clearly show
that the curves of EZ and E¢ are almost perpendicular to both plates. In

these two cases, the index of refraction of the earth is so large that it appears

' to be a perfect conductor.
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In Fig. 4~7, the dipole source is located near the perfect conductor at
2= 5m, all three electric field curves tilted forward more than in the case of a
symmetrically located source. Figure 4-8 shows the results when the source
is located near the dielectric surface. A much stronger E b is found, Since
the separation distance L between the two plates is very small, there is no
drastic change in the far field patterns as shown in the figures for different
source locations.

The percentage error in the far field when using the impedance boundary

condition is given below.

e 5 /
] 2 0/0 error o/o error /o error
’ f n cosf | 2o of E of B
r , z | B
j 6 MHz | 4+i0,3 0. 039 1.140 1,122 0,232
| 6Mmz| 10+i30 | 0.039 | 0.240 0.221 0.065
600 KHz 4+i3 0.004 0.091 0. 093 1.417
600 KHz | 10+i300 0, 004 0. 0037 0. 0027 0. 0157
60 KHz 4+i30 0.0004 | 0,0019 0.0078 0,357
60 KHz | 10+i3000 | 0,0004 | 0.0 0.0 0,0043

Table 4-3: Percentage Error for Far Field

4.4 Excitation Factor for Various Sources

Several difficulties have to be treated carefully when the problem involves
lossy media. They are: how many components of the Hertz vectors are respon-
sible for the field and what is the excitation factor for a given source. The ad-
vantages of using the dyadic Green's function technique is that it systematically
solves electromagnetic problems in such a way that these questions are easily
answered.

The dyadic Green's functions are chosen so that when applying the vector
Green's theorem to the region concerned, the surface integral equals zero as a

result of the boundary conditions and/or the radiation condition. Thus, the two

field equations are
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E= iwufffﬁs(ﬁ/ﬁ')- J@RYAv'
oo df[fm s

The dot product in the 1ntegrand shows explicitly whlch Hertz vector is

involved and what is the excitation factor. For example, in Eq. (3 3), 1t 1s
clear that for a z-directed electric dipole, only the NeO)t function is needed
to specify the field. This is in agreement with Sommerfeld's result; however,
he used physical considerations to find this particular vector function. For an
x~directed electric dipole, it is seen from Eq, (3.13) that the N ol) and M 1
functions, both of higher order, are necessary Th1s ‘again agrees w1th Som-

merfeld's discussion on t11gch01ce of the Hertz vectors for a horizontal dipole.
For a detailed discussion, see Chapter 8 of reference [6]

As discussed above, the excitation factor for a given source is built 1nto
the Green's function, Since the radiated wave is composed of several different
component waves, the excitation factor has several components. These compo-
nents are directly related to the results of the integration as derived before.
The excitation factors of the electric field for different kinds of sources are
shown in Table 4-4, The pole location, G;il-i"e; is discussed in the next section.,
For completeness, the propagation factor of the surface wave is derived in Eq.
(A-1),

Thus, both difficulties are solved at the same time. These features,

which avoid all the determination works on how to choose the potential functions

and the excitation factors, show that the dyadlc Green S functlon techmque is

more systematic.

|
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4,5 Distribution of Poles in the Complex 6§ Domain

When considering wave propagation, it is necessary to discuss the pro-
perties of mode poles. For guides with perfectly conducting walls, the poles
are either on the real axis of the complex 6 domain, corresponding to propa=
gating modes, or on the imaginary axis, corresponding to evanescent modes.
These poles can be found from the fundamental equation of mode theory. For

example, the equation satisfied by TM waves is

kLcos 0 = +t mw where m = integer.

When one plate of the waveguide is not perfectly conducting, the mode

equation is represented by Eq. (3.9)

h |
—5E—=itan(hL) .
h

By using Newton Raphson's method (Appendix B), the solutions for the propa-
gation constants of quasi-evanescent modes can be obtained, The impedance
boundary condition is used to get an approximate solution for the modes in

Eq. (3.10) which yields

i =jtan(hL)

The iocations of these poles are also obtained here. They are shown in the
following table for comparison, In general, for the same operating frequency,
the higher the value of the refractive index n the closer the approximate solu-
tion is to the exact solution. This points out again the necessary assumption
for the proper application of the impedance boundary condition. In the case of
the poor earth at 60 KHz (n2= 10+13000), due to the large value of n, it is
logical to assume that the poles will be located very close to those of the per-
fectly conducting case. However, the imaginary part of the pole is very large
compa_rgtwi_ to zero as shown in Table 4-4. Notice that particular frequency is

very far from the cut-off frequency, 5 MHz in our study. Thus, the electric

length between the guides plays an important role as well as the refractive

index n.
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(n2= 10+1 3000)

frequency | mode complex 6 (6R+ iGi)

number | perfect conductor exact approximate

6 MHz 0 1,5708+1i0 1.447+i0,1930 1.448+i0.1949
(n2=10+130) 1 0.585+i0 0.6457+10, 08229 | 0.6463+10. 0822
2 0+il,094 0.0176+11,086 | 0.0178+i1, 086

600 KHz 0 1.5708+1i0 1,425+1i0. 3568 1.426+10. 3569
(n2=10+1300) 1 0+i2,81 0.00144+i2.808 |0.0016+i2,808
60 KHz 0 1.5708+10 1.346+10,619 | 1.346+i0, 619

- ~
Table 4-4: Location of Poles for Good Earth (o =10 2 U/m)

frequency | mode complex 6 (6R+ iei)

number | perfect conductor exact approximate

6 MHZ 0 1.5708+1i0 1.289+i0,1713 1,267+i0. 169

(n -4+1O 33 1 0.585+i0 0,6021+i0,2817 | 0,5913+i0,2927
| - 2 0+i1.004 0,0745+i1.101 | 0.0611+i1.102
600 KHz 0 1.5708+10 1.106+10,8015 | 1.078+i0,8752
(n =4+13) 1 0+1i2.81 6.0575+i2.775 0,0166+i2.805
60 KHz 0 1.5708 +1i0 1.153+11.481 1.180+i1.514
(n= 4+ 130)

Table 4-5:

Location of Poles for Poor Earth (o= 10"'4t

O/m)

Since the path of integration in the complex 6 plane is deformed when

evaluating the integral, it is convenient to plot the pole distribution in the same

x plane for the dlscussmn of surface waves.
4

are shown in Figs. 4-9 and 4-10,

The pole locatlons for our problem.

Note that the number 1 pole for the good earth case in Fig. 4 -9 has a

much smaller imaginary part than that of the number 0 pole. The opposite is

L

true for the poor earth case as shown in Fig. 4-10 The steepest descent line
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has an 1ncl1nat1on of 45 w1th the real axis for any po1nt of observatlon Thus,
when the observation point is beyond 6 41.8, for the good earth case, the
contribution of the number 1 pole has to be taken into account. However, since

the number 0 pole is on the right hand side of the steepest descent line, this

" pole contributes nothing to the field for any observation angle. Thus, the

strength of the surface wave depends only on the imaginary part of pole number
one, The dependence of the surface wave upon the location of the pole is dis-
cussed in Appendix C,

In the case of poor earth both poles, number 0 and number 1, enter into

7the p1cture when the observatmn angle is larger than 49. 8° and less than 90

Because the imaginary part of the number 0 pole is much smaller than that of
number 1, it is evident that the number 0 mode is the dominant one, However,
if the observation angle is greater than 49. 8° and less than 83. 60, only mode
number 1 contributes, so it is the dominant mode. Thus one has to be careful
in discussing wave propagation when lossy media are involved. The zeroth
order mode does not always supply the dominant contribution to the surface
wave as suggested by some authors. It is possible that during the deformation
of the integration path no pole is swept through until 9 has a certain value,
Then it is clearly seen that no significant surface waves exist when the obser=
vation point is less than certain angle. For example, for 6 5410 in our two

cases, only the direct and the reflected waves exist even in the near zone.



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

5.1  Conclusions

In this thesis we have developed the technique of using the dyadic Green's
function method to Solve ra 7prz;117'ticurlér probiem irin”warvér propé;;fioﬁ. V&;e have
found the exact integral form of the fields due to various simple Hertzian
dipoles in between two parallel plates with different material and the asymptotic
solution associated with them.

The use of the Leontovich impedance boundary condition at the lossy
interface is discussed. The percentage error in using this condition compared
to the use of the exact boundary condition is calculated. Except when the point
of observation is near a mode pole, the higher the refractive index the lower

the percentage of error.

( " The pole contribution of the Green's function technique is shown to be the
|

same as the mode contribution of the waveguide theory. A detailed study on the '
pole distribution in complex 6 domain leads to the conclusion that it is prema~- |
|

ture to predict which mode is dominant before actually examini_ng tihe pole location. ;
The symmetry property of the dyadic Green's function in a tv;c; layer
problem is proved. The same procedure could easily be extended to other

many-body systems.

5.2  Areas for Future Study

In the present investigation the exact integral formulation of a parallel
plate waveguide problem is derived. The far-zone field is calculated by the
saddle point method, which is only the asymptotic expression. When the time
domain solution is needed, the high frequency, intermediate frequency and the
low frequency solutions are required for the application of Fourier transform.
Thus, the exact integration for all frequencies needs to be derived, The tech-
nique of performing this infinite integral is an interesting problem and worth

further investigation.

54
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Another area for future work would be the efficiency problem. Accord-
ing to the study in section 4.3. , the far-zone field is slightly affected by the
source location Z However, the portion of energy entering into the lossy
dielectric is directly related to the source location It is very useful for the

sirhuléfion te& designer to understand the distribution of power and the efficigﬁc?:; |

of a simulator [21] .
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APPENDIX A
GENERAL DISCUSSION ON SADDLE POINT INTEGRATION

In Chapter III, we discussed the situation where the path of steepest des~
cent does not cross over a singularity. In general, when we deform the integra-
tion path to that of the steepest descent, it sweeps through some poles and
branch cuts. In this appendix, we discuss the general characteristics of the
field d1str1hhtton due to these two kinds of singularities. It is found that the
contribution to the field of these singularities under our assumptions is negli-

gible prov1ded that kr is greater than 207,

Since the saddle point integration always involves mu1t1-valued functions

it is ﬂ/worthwhﬂe to consider several often neglected pomts about branch cut

integrals and contour 1ntegrat10n. / We follow closely the method dlscussed in

!reference 17
The reason we chose the branch cut along the lines of Re / k2-7t =0

and Re /nzk2 A 0 in section 3,2.1 was that we could have unique analytic
property in each quadrant of the complex A plane. The analytic property of

\ /{;2~ A~ on the uppermost Rlemann sheet in the complex )t domam is
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Recall that the integral converges only when the imaginary part is greater than
zero, Thus, it is clear that the path of integration must pass through the 7
second and fourth quadrants only. There is no way that we can close the con-
tour along a semi-infinite cireie; hence the Cauchy residue theorem can never
be applied. 7

In the discussion of multi-valued functions, in general the roots of one

equation have to be checked to assure that some roots are 1ndeed the poles of

that equation. The advantage of this kind of choice of the branch cut is to in-

sure that the roots of the reflections coefficient equation are indeed the poles on

thlS partlcular Rlemann sheet [18:] An alternative way of choosing the branch

2
cut is along the line of Im /k - )L = (0, The analytic properties of /kz- Az in

the complex X domain are shown 1n Flg. A- 2.

FIG. A-2: BRANCH CUT ALONG 1

Again, each quadrant has the unique property in its whole quadrant range.

Since the imaginary part of the function is greater than zero everywhere on this

Riemann sheet, the 1ntegrat10n path could be everywhere in that sheet. Hence ‘,'

the contour can be closed and the Cauchy res1due theorem so applied. In
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‘general, the roots of the equation will be the poles of that equation on this
Riemann sheet 18 . - S

o In some bfiiglrlérliterature, the choice of the branch cut is parallel to the
imaginary axis. This choice is neither along the real part being zero nor along

the imaginary part being zero, The analytic properties in the complex A plane

are ihan in Flg A-3.

FIG. A-3: BRANCH CUT PARALLEL TO IMAGINARY AXIS.

/ There are two regions corresponding to the first and the third quadrant which

|
( exhibit different analytic properties, Thus, again the closure of the contour
{

" can not be used. Similarly, the transformation A=ksinB maps this mixed

property into the complex f plane. Hence, special attention has to be given

; to the region of convergence of the integral, Thus, there is no advantage at
| all for this particular choice.

We recall in Section 3. 2. 1 that when the path of integration is deformed

from C to CS in the complex f domain, it is possible to cross some singulari-

ties. In this case, the path is plotted as follows:
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FIG, A-4: INTEGRATION PATH IN COMPLEX 8 PLANE.

Rewriting the integration in the complex B domain fort_h;—c:;se of ai /

’vertical elethjic dipole:

T .
ou 1t 2 8% 3 , —
- i ,/ + -
E 47k dB k" sin’® B 2 cos (kzocosB) 7Rsin @ 1+8 kcos B S ~kcosf
~Ziio
2 elkR cos (6-5) ('z\sinB-? cosf)
(k2 -k ) e
where S=

2 2
2|k hEcos (hL)—lkEhsm(hL)
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- nzcos B cos (KL cos B) - iVn2— sinzﬁ sin (kL cos B)
~keosf Vn“- sinzﬁ cos (kL cos ) --in2 cos B sin (kL cosp)

skcosB-

The roots of the coefficient equation which are the poles of this equation on this
Riemann sheet could be found by using the Newton-Raphson's method [22] . The

pole location of the problem concerned was shown in Figs. 4-9 and 4-10 The

numerical value of the pole is represented by ) +16 Thus, the contr1but1on

Mdue by the coefflclent equatlon 1s

Res[S
Byt

The f1e1d due to the contr1but10n of the pole is:

o ]é % -2i
~-9i + +
E 1"3“011 sin (9 10)cos [kz cos(G 16] \ /nRsme
P
k cosB —kcosf_iJ} {zsm(e +19) rcos(e +i0, )}

o , B= QR+16

‘ 1chos(6 9—19) -
l.e

] . D cogB cos (kL cos B3) - iVnz- sin2 B sin (kL cos )
“keosf)  d E (Vn“-sin“B) cos (KL cosB)-i nzcosB sin (kL cosﬁﬂ

g

kcosp S

!
/
i

X 1+Res[S

From the exponentlal functlon

ikRcos (0 - GR- iei) =ikR Ecos 6 cos 9R+ sin 6 sin GR) cos h‘ei+

+ i(sin6 cos GR- cos 0 sin GR) sinh Bi-] - (A 1)

‘we find that the decaymg factor is glven by

Exp E-kR sinh Gi (sin 6 cos GR- cos 6 sin GR;_] . (A.2)

From the discussion in section 4,5, only one pole contributes significant-

ly for the good earth case at 6 MHz, The other poles have a large imaginary
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part corrésponding to highly attenuated waves., To calculate the surface wave
field due to the pole contribution, the values are read from Fig. 4-9 as

6 850, 9R+ iOi 0,64+10,08, In the far-zone region, the minimum distance
is 10 away, which implies that kR = 62,8. Substituting these figures into (A. 1)
gives the decaying factor of the order 1/55, which is less than two percent of
the total field.

For the case of good earth at 600 KHz, the number 0 pole is never
crossed during the deformation of the path of integration. Only those poles with
large imaginary part are crossed, which implies that these waves never travel
too far,

As shown in Fig. A-4, the deformed path of integration could sweep
through a branch cut. It simply means that the path of integration has to travel
along the cut to infiﬂity and cross the cut onto the second Riemann sheet. Since
this branch cut corresponds to the singularity at nk, which does not occur in
the exponential term of the integrand. This function has identical decay charac-
teristics on either Riemann sheet, The contribution due to the branch cut depends
greatly on the value of n and kr. According to Felsen 17 , the contribution
behaves in the order of (kR)—3/ 2. For the problem with which are are con-
cerned, it is of the order 1/490 in the far-zone. That means that the lateral
wave field due to the branch cut is smaller than the surface wave field; hence,
it too can be neglected,

The previous discussion holds only for the far-zone field, If the near-
zone field is considered, then some poles may contribute significantly to the
field. The same applies to the contribution by the branch cut.

When a pole singularity is near the saddle point of the integrand, the
modified saddle point integration method has to be adopted., For detailed

information, see reference [17] and [19].



APPENDIX B
NEWTON-RAPHSON'S METHOD

Newton-Raphson's method, an iterative method of solving nonlinear equa-
tions, is used here to find the zeroes of a complex valued function,

To find the zeroes of the following equation |

I B l

F(z)=0 where z=x+iy ,

'We separate the equat1on 1nto real and 1mag1nary parts

F(x,y) = fl(x, y)+i fz(x, y)=0

where f1 and f2 are real functions Then we arbltrarlly choose a pair of

trial solutions x, y, and substitute them into f1 and f_, After this iteration,

2'
a pair of increments Ax, Ay results, which is given by

2 0y 1 0y

Ax = D
A 1 ox 2 0X
y D =

where

afl 8f2 afl 8f2

9x aiyi— 83_{95

D=

'Then the next approx1mat1ons are° N

x1=x+Ax

=y+
y 5ytAy

Subst1tut1ng these values into the original equations fl and f_, we can

proceed in a similar fashion to determlne the hlgher order approxlmatlon' /

64
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Under certain restrictions [22], both functions f

1 and f2 will converge to a
certain preassigned small value, Then, this is the pair of approximate solu-

tions of the complex equation we wish to solve, The programming of this

method to our problem in the FORTRAN language is given in Appendix D.



APPENDIX C
DISCUSSION OF POLE DISTRIBUTION

In mode theory, the value of 6 for a given mode can be represented as a
point in the complex 6 plane. The real and imaginary components of 6 deter-

mine the phase ve1001ty and the attenuatlon rate of the surface wave as shown in

{Appendlx A. More importantly, the location of the pole can be used to deter-

mine whether it would be swept through during the deformation of the integra=~ ‘
‘ tion path. When a pole is swept through, there arises a Heaviside function ’
| which equals unity, implying that the pole contribution should be taken into

account. Thus, the location of the pole can lead us to the delimited regions

where the pole contribution could be observed.

In this Appendix, we discuss the pole locus of the problem of wave propa-

gation between two parallel plates, one of whloh is perfectly conductlng There

are two 1001 of poles presented for the TM waves, For each case, the frequency /

and the separation distance are kept constant
| . Figure C-1 shows the particular case at cut-off frequency correspondlng
| to a guide formed by two perfectly conducting plates. The dotted line repre-
 sents the case when one plate represents the surface of a pure dielectric media
' whose refractive index has zero imaginary component. The broken line
; represents the case where the real part of the refractive index is very close
to unity which corresponds to free space. The direction of the arrow indicates
, that the imaginary part of the refractive index is decreasing. In the limit
both curves end up at n2= 1+i0, which is the free space case. This case
- implies the absence of the second plate, hence, an open region. Thus, there
is no mode occuring when a wave propagates above an infinite perfectly con-
ducting plate,
It is clearly seen that the locus of the pole, when the other boundary
represents an arbitrary kmd of material, has to be inside the range defined

} by the above two limits, For number 0 mode, there is a turnmg point such

66
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that the attenuation rate stops increasing as the refractive index becomes
smaller. While the number 1 mode, on the contrary, rises rapidly as the
refractive index decreases.

Figure C-2 presents the case for a frequency larger than cut~off.
Except for the displacement of the number 1 pole, the shape of the pole
locus remainsiél;r/lo*st' the Same. Each locus behaves in a similar fashion
as before, It is obvious that for a frequency much larger than cut-off, there
are more than two pole loci located near the real axis, The number 2 or
higher numbered pole will behave like number 1, which has no turning point.
For frequency less than cut-off, there exists only the number 0 pole near
the real axis around 6 = 7/2. Special attention should be given to this particu-
lar pole because sometimes it will never be swept through, as the case of good
earth at 6 MHz, hence there is no surface wave related to it. In the literature,
there is the common concept that the lower order mode dominates, which
must be stated with care. InEéheral, for a fixed frequency, the number 1
mode will dominate for large refractive index material. However, when
the refractive index is vsr,rlgailer than a certain value, the number 0 mode will
dominate, It is necessary to study the locus of the poles to assure a proper

understanding and correct application of the mode theory.
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APPENDIX D
COMPUTER PROGRAM

s PROGRAM FOR THE FAR=-70NFE FIELD CALCULATION

gt Nk D= (A, R)=REFRACTIVF INDEX

sxcs | =SEPARATION DISTANCE BRETWEEN TWO INTERFACES

xex K=WAVF NUIMRER

% U=PERMEALRILITY IN FRFE SPACE

¥ 70=PONSITION OF THF SOURCE

¥x R=BRSERVATION POINT IN R-DIRECTION

x%x W=FREQUENCY USED

% EZ=FAR FIELDND IN THE Z-NDIRECTION

k% ER=FAR FIELD IN THE R-DIRECTION

wxx EMZ=AMPLITUDE QF EZ

wxx EMR=AMPLITUNDE 0OF ER

**#‘EPHI=FAR FIELD IN THE PHI-DIRECTION(ONLY FOR PHI=
90 DEGREES) '

xxk EMPHI=AMPLITUDE OF EPHI
wx% AEZ=APPROXIMATE FAR FIELD IN THE 7Z-DIRECTINN

x%% AER=APPROXIMATE FAR FIELD IN THE R-DIRECTION
AEPHI =APPROXIMATE FAR FIELD IN THE PHI-DIRECTION
RM=REFILECTION COEFFICIENT '
RE=REFILECTINN CNEFFICIENT

RMI=APPROXIMATE REFLECTION
REI=APPROXIMATE REFLECTION

REAL KyLyKLyKZO

COMPI_EX pySMUL,N’ER,EZQEC’ASMVEPHI9AER,AEZ,RM“L?ARM
*yRMyRMI 4 EXPRyRE,REI yEXPCyAEPHI,PEC
PI=3.1415926

A=4,

R=0.3

K=0.125663

W=6,E6%2 %P1

R=750.

L=30.

Uz=1.E=T/(44%P1)

KL=K3*I,
COST=W=l/P1%10e%%4
R2=R%*%2
N=CSORT(CMPLX(A,48))

NO 10 1LLL=145¢4

20=5+ *=LLL

KZ0=K*Z0

NN 10 M=1,31

lLL=M=1
RR=SORT(R2+LL %%2)
RRKK=K%RR :

EXPR=CMPLX(COS(RRKK)4SIN{RRKK))
C=LL/RR

3%
"

3
33 3 % 3%

3 3
T

70
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S=R/RR
CKL=KL =C
CC=COS(CKL)
SC=SIN(CKL)
EXPC=CMPLX(CC4SC)
CZ=COS{KZ0=C)
P=CSORT(CMPILX(A-Sx%2,R))
RM=EXPC*(CMPLX(A'B)*C~P)/(2.*(P*CC-CMPLX(—R,A)*C*
%SC) ) e
RMI=EXPCH(N*C=1e) /(2% (CC-CMPLX(0eyl o) %N C%SC))
RMM=CARS (RM)
RMMI =CABS(RMI)
WRITE(6,20)
20 FORMAT(t'=-1)
WRITE(6451)RMyRM]
WRITE(64102)RMM4RMMI
. SMUL=(CMPLX(A,R)*C*CC-CMPLX(O.vl.)*P*SC)/(P*CC—CMP
ALX(=B4A)RCxSC)
SMMUL=CABS (SMUL)

WRITE(64107) SMUL y SMMUL |
ASM=(CMPLX(0¢y1le)%SC=C*CCH*N)/ (CMPLX(Oeyle) xNXC%S
*C-CC) ' '

AMSM=CARS (ASM)

WRTTE(OG4108)ASM AMSM

TF(LLLEOS 0)GH TO 13
RE=(C~P)YREXPC/ (2 ¥ (CH*CC-CMPLX (0491 o) %P%SC))
RET=(C=N)*EXPC/(24%(C*CC=CMPLX(0e914)%*N%SC))
RME=CARS(RE)

RMEI=CARS{RET)

WRITE(6452)RE,RFE]

WRITE(Ay102)RME,RMEI .
RMUL=(CMPLX(0ey=14) *C*SC+P*CC)/ (C*CC-CMPLX(0wyls)
*%PxSC) :

RMMUL =CABS (RMUL)

HWRITE(6,105)RMUL ¢ RMMIUJL

105 FORMAT('SUM OF RF'y3F12.5)

ARM=(N*CC—CMPLX(0.,1.)*C*SC)/(CMPLX(O.9~1.)*N*SC+
®*CxCC)

AMRM=CARS ({ ARM)

WRITE(64,106)ARM,AMRM

PEC=COSTH*EXPR*SIN(KZ0O*C)/RR

EPHI=PEC=( 1+RMUIL )

EMPHI=CABS (EPHI)

AEPHI =PEC*{1+ARM)

AFMPHI =CARS(AEPHI)

WRITE(64101)EPHI JAFPHI

WRITE(64102)EMPHI y AEMPHI

7

/
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13 CANTINUE

106 FORMAT(YARM ',3F12.5)

107 FORMAT('SUM NF RM',3F12.5)

108 FORMAT('ASM ',3E)2.5)
EC=CNSTxS*CI*CMPLX(0ae91e)*EXPR/RR
FZ==ECxSx{1+SMUL)
ER=FCxCx{1+SMUL)

FMZ=CARS(EZ)
EMR=CARS (ER) LA
ANF7==FCuSk(1+ASM)
AER=ECHCH (1 +ASM)
AEMZ=CARS(AEZ)
AEMR=CARS(AER)

100 FORMAT (1X,1242X48F12.5)
WRITE(64102)FMRyFMZ  AEMR g AEMZ

102 FORMAT(BX¢F12e5410X¢E1265910X9E12.5412X9E12.5)

51: Y FORMAT('MUL REF COEFF RM!',4E12.5)
52 FORMAT{'MUL REF COEFF RE',4E12.5)

101 FORMAT( *MEPHI ',4E12.5)
10 WRITE(64100)LLsERyEZHAERHAEL

STOP
END

[
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BNE
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NN

LR
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OO DO

G %k
20

UV
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THIS PROGRAM IS SUGGESTED TN BE USFD ON THE TFRMINA
L FOR THE SEARGHING OF POLES IN THE COMPLEX THETA
PLANE FOR 'TMY WAVES SINCE IMPROPER CHOICE OF SU
LUTIONS MAY NOT CONVFRGE

K=WAVE NIMRER

L=SEPARATION DISTANCF BFTWFEEN TWO INTERFACES

N 2=(AyB)=REFRACTIVE INDEX

LED=ETGENVALUE IN THE X-DIRECTION

HIL=EIGENVALUE IN THE. Z-DIRECTION

REAL Kyl

COMPILEX LLEDyHL

A=1,02

R=0,3

K=0.125663

.=30,

ARRI TRARILY CHONSE A PAIR OF SOLUTIONS

RFAD(5 1000)X,Y

FUAL =KL

C ok

SX=SIN(X)

SHY=SINH(Y)

CX=CNS (X)

CHY=COSH(Y)

C.S=CX*SHY

SC=SX*CHY

CC=CX*CHY

$S=SX#SHY

C=A=SCHk2+CS%%2

N=B=2%((*SS

P=SOR T(C#%2+D%*%2)

0=1./P

PM=SORT(P-C)

PP=SORT(P+C)

PMO=1./PM

PPO=1./PP

PCR==2 4% SX*C Xk (SHY %% 2+CHY %42 )

PCI=2.%SHY®CHY* (CX%%2=SX%%2)

ACC=AL*CE

ASS=AL*SS

ACS=AL*CS

ASC=AL*SC

F=1.416214% ((A%CC+RESS)ETANH (ASS )= (B#CC-A%SS)*TAN
*(AC())—PP+PM TAN(ACC)=*TANH (ASS)

=10 414214% ((AXCCHBHSS) *TAN (ACC) + (B*CC-A%SS ) *T ANH

*(ASS))—PM PPTAN(ACC) *TANH (ASS)

PREASSIGN VALUES AS THE TOLENCE FOR THE CONVERGENCE

TF(ABS(F) <LTe 0.001 .ANDe ABS(G) «LT. 0.001) GO
%70 11
FPR=14414214% (TANH(ASS )% (=AXSCH+RHCS )+ (AXGC
HARRSS )I(ACS)/ ((COSHIASS -



11

10
1000
12

4

%) )53 2) + (ASC Yk (BICC=A%SS)/ ((COS(ACC) ) %%2) +

BTAN(ACC) * (RESCHA%GS) ) =0 .5

WP PO (PCR+O% (CXPCR=DHPCT ) ) 404 55 PMO* (= PCR+Q%

% (CHPCR=N¥PCT))*TAN(ACC)

% TANH(ASS ) +P s (TANH(ASS )% (=ASC)/ ((COS (ACC ) )%

14 2)+ (ACS)IRTAN(AGEC) / ( (COSHIASS) ) %%2))
FPI=1.414214% (TAN(ASS) * (A%CS+R%SC )+ (A%CC+B
**ﬂ%)'(A%C)/((CﬂSH(ASS{) .

-------- ¥2)=(ACS) = (R*CC-A%SS)/ ((COSIACC) )**2)=TAN(AC

%)% (RECS=A%SC) ) =0 o 5%

KPP0 (PCT+0% (C*PCI+DN%PCR) ) +04 53PMQ*

% (=PCT+0%(CHPCI+N*PCR) )

3 TAN(ACC ) * TANH(ASS)+P M ( (ACS)*TANH(ASS )/ ( (COS (

*ACC)) %52+ (ASCI¥TAN(ACC)/ ((COSH(ASS) ) %2 )
GPR=1.414214%( (=ASC)*(A%CC+R*SS)/ ((COS(ACC
%)) 552+ TAN(ACC) % (=A%SC

% +RRCS) + (ACS )i (RHCC-AR $SS)/ ((COSHIASS) ) *%2) +TA

#NH(ASS)#(=B%SC-A%CS

%)) =0.5%PMO% (~PCR+0% (C*PCR=N*PCT))=0.5%PPO*

% (PCR+0%(C*PCR=N*PCT))
»«TAN(A(()4TANH(AS§)-PP°(( ~ASC)¥TANH(ASS)/ ( (COS(A

GPI—1.414214*((ACS)«(A <CC+B SS)/((COS(ACC)
#¥)xx2)+TAN(ACC) = (A%CS

#+B#xSC)+(ASC)* (R*CC-A%SS)/ ((COSH(ASS)) *%2)+
*TANH(ASS )= (B=*CS=A*SC))
#+0 ¢ 5%PMOx (PCT =0 (C*PCI+N*PCR))=-0e5%PPQ*(PC
*T4+0%(CxPCI+N*PCR)Y)*TAN

‘(AC() TANH(A%S)—PP°((ACS)*TANH(ASS)/((COS(ACC)
#)32)+ (ASCI=TAN(ACC)/ ((COSH(ASS) ) #*x2))
NN=FPR*GPI-FPI%*GPR
DX={Gx*FPI-FXGPI)/DD
NY=(F*GPR=G*FPR)/DD
WRITE(6410)X,Y4F,G
X=X+DX

Y=Y+DY

6N T0 1
WRITE(6410)X,4Y,yF 4G
LE”=K*(SC+‘OO11|)*CS)
HL=ACC+(0ey=1.)%ASS
WRITF(6412)LED
WRITE(6412)HL

GO TN 20
FORMAT(2X3F114492X9E1) o4 42X ,E10. 3,2X £10.3)
FORMAT(2F11.5)

FORMAT(2X,2E12.5)

STop .

END ‘ ,



