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CHAPTER I. [INTRODUCTION

1.1 Previous Analyses of the Scattering from Wedges: A Review

The scattering of electromagnetic waves by wedge-shaped regions
has been investigated by several authors, although few exact solutions
exist [1-28]. For the case of a perfectly conducting wedge, the first
solution is attributed to Sommerfeld (see Carslaw, [1]), and to Mac-
Donald [2]. These works addressed the two-dimensional scalar problem,
and were based on an extension of the method of images described by
Carlslaw [3]. A special case, in which the included angle of the
wedge is zero, was elegantly solved by Sommerfeld [4]. This solution
for the half-plane has served as a model for investigating the effects
of edge diffraction. Clemmow [5] developed a technique for general-
izing these results to the case of obliquely incident plane wave
excitation. Modal expansions for the solution can be found in [6],
for example, while an expression for the general vector problem in
the form of a dyadic Green's function is given by Tai [7].

In the event that the wedge is not perfectly conducting, an
exact solution cannot be found. However, for the case in which the
conductivity is large but finite, Leontovich [8] has developed an
approximate boundary condition, known as an impedance boundary

condition, which allows several otherwise intractable problems to be

solved.



The major attribute of this approximation is that it replaces
the fields within the conducting body with approximate surface currents
via the boundary condition. With the interior field thus accounted
for, the number of unknowns is halved, and only the exterior field
need be determined. In particular, Senior [9] found a solution for
the impedance half-plane under normal plane wave incidence, and later
extended it to include oblique incidence [10]. This extension was
related to Clemmow's technique by Williams [11]. The results are
obtained through application of the Wiener-Hopf method (see [12]) to
the unknown currents excited on the half-plane. For a wedge of
arbitrary angle and differing face impedances, a general solution to
the scalar problem with plane wave incidence was developed by
Maliuzhinets in his doctoral thesis and subsequent works [13-15].

His method is a further generalization of the method of images,

and involves an integral representation for the field along a
Sommerfeld contour. Maliuzhinets replaces the integral equation for
the unknown by an equivalent functional difference equation. Senior
[16] and Willijams [17], following similar methods, also arrived at
the solution for the case in which the face impedances are the same.

Variations on the half-plane problem and its solution are given
by Rawlins [18], Hurd [19], and Bucci and Franceschetti [20], which
are essentially founded on either the Wiener-Hopf or Maliuzhinets'
method.

Another function-theoretic technique for solving scattering
problems in wedge-shaped regions was presented by Kontorovich and

Lebedev [21] in the form of an integral transform bearing their



names. A solution for the perfectly conducting half-plane was
given as an example. In a recent paper [22], Jones derives
sufficient conditions for the existence of the transform and a
generalized inverse. In a major extension of their work, Lebedev
and Skal'skaya [23] applied the transform to the impedance wedge and
developed a closed form solution for a special set of wedge angles.
Their method resulted in a functional difference equation, paralleling
Maliuzhinets' technique, but the equation is of second order instead
of first. In fact, Maliuzhinets [24] described the relationship
between his method and the Kontorovich-Lebedev (K-L) transform via

a Fourier transformation.

In addition to the impedance boundary condition, of which
infinite conductivity and its dual are special cases, another
approximation exists which accounts for the material properties of a
scattering body via an equivalent boundary condition. In this case,
the body is assumed to cohsist of a thin dielectric shell of a
particular shape, and is approximated by an infinitely thin, partially
transparent layer. Because it is most applicable to lossy dielectrics,
this approximation is referred to as a resistive boundary condition,
although due to the transparency of the sheet, and hence the existence
of both interior and exterior fields, it is more exactly a transition
condition, analogous to those applied at an interféce between two
dielectrics. Derivations of this condition can be found in [25,26].
Very few exact solutions for resistive bodies exist. Senior [27] and
Anderson [28] give solutions for a resistive half-plane using a Wiener-

Hopf analysis. An excellent review of the impedance and resistive



boundary conditions for the half-plane is presented by Senior in
[29], and a condensed version comparing the two is contained in
Section 1.3 of this work.

Finally, it should be noted that the electromagnetic problems
discussed above have analogs in other disciplines involving wave
phenomena, especially in acoustics. The acoustic equivalents of
the impedance and resistive boundary conditions in the context of

Babinet's principle are pursued by Senior in [30].

1.2 Outline of the Scattering Problem

In order to further understand the nature of the scattering
from partially penetrable objects, in particular those composed of
resistive materials, an investigation into the scattering of an
arbitrarily polarized electromagnetic plane wave normally incident
on a wedge with resistive faces is presented here. The resistivity
of the wedge is assumed to be a complex scalar constant, independent
of position on the wedge. The unknown fields exist in two regions,
the exterior of the wedge (Region 1), from which the plane wave is
incident, and the interior of the wedge (Region 2), as shown in
Fig. 1.1. The primary distinction between this problem and those
discussed previously is the existence of a nonzero field in the
interior region. This field severely complicates the task of finding
a solution. In some respects, the problem closely resembles the
scattering by a dielectric wedge, where an interior field is also
present. Indeed,.exact solutions for dielectric bodies are very few,

and those which have been developed for special cases of the
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wedge [31-32], are either extremely complicated or somewhat in
doubt [33].

Following a brief derivation and comparison of the impedance
and resistive boundary conditions in Section 1.3, a formulation of
the scattering problem to be considered is presented in Chapter II.

By appropriately decomposing the incident field into two components,
with either the E- or H-field vector parallel to the edge of the
wedge, the solution can be constructed from a pair of scalar two-
dimensional fields. The problem is further simplified by decomposing
the scalar fields into components which are either symmetric or
antisymmetric about a plane bisecting the wedge. Thus a total of four
quantities are required to specify the general solution.

The approach taken in this work is to examine the feasibility
of extending the function-theoretic techniques used in solving the
impedance wedge scattering problem to the resistive wedge. While the
Wiener-Hopf method has suﬁcessfu11y been applied to the half-plane and
other geometries (see for example, Carlson and Heins [34,35]) it is not
appropriate for wedges of arbitrary angles, with the possible exception
of the right-angle wedge. Senior discusses this shortcoming, as well
as certain analogies between Maliuzhinets' method and the Wiener-Hopf
technique in [16,29]. Therefore, the emphasis here will be on the
methods of Maliuzhinets and the Kontorovich-Lebedev transform. It is
shown that both methods lead to difference equations, as was the case
for the impedance wedge. However, when applying the method of

Maliuzhinets, the resulting difference equation for the resistive wedge



is of third order, compared to the first order equation obtained
for an impedance wedge. In general, a straightforward technique
for solving this third order equation is not available [36]. A
derivation of this equation and its consequences is given in
Chapter III.

In Chapter IV, the relationship between the representation
of Maliuzhinets and Kontorovich and Lebedev is presented [24].

The latter is applied to the resistive wedge formulation, and again
a set of difference equations for the unknowns is generated.

As before, the equations do not yield to the same methods of
solution available for the impedance wedge. However, a novel
technique for converting the difference equations to Fredholm
integral equations of the second kind is developed. The kernels

of the integrals are bounded and well behaved. This type of
integral equation is well understood in the literature [37,38],

and various means of finding exact or approximate solutions are
available.

Such a method is developed in Chapter V for the Fredholm
integral equations obtained from the K-L representation. From the
theory of Tinear operators, the method of successive approximations
is applied to obtain an iterative power series expansion for the
unknowns. The expansion is in terms of the resistivity of the wedge,
and converges uniformly for particular ranges of values of this

parameter. Bounds for the regions of a convergence are given. The



chapter is concluded with a discussion of how similar expansions
obtained from the difference equations may not exist in certain cases.
A summary and discussion of the results follow in Chapter VI.
Appendix A contains a set of conditions for the existence of the
representations used by Maliuzhinets and Kontorovich and Lebedev, along

with their corresponding inverses.

1.3 Discussion of the Impedance and Resjstive Boundary Conditions

Before proceeding with an analysis of the scattering by a
resistive wedge, it is appropriate to review the mathematical
implications of the impedance and resistive boundary conditions.

In vector form, the impedance boundary condition on the surface

S of a body is given by

where (E,H) are the total fields in the region surrounding the

body, assumed to be free space, Z is the intrinsic impedance of free
space, and n is a unit vector normal to S and directed into the region
containing the fields (see Fig. 1.2). The dimensionless parameter n
is the surface impedance of the boundary normalized to free space.

Physically speaking, if the body consists of a material with large
refractive index, and hence large relative complex permittivity,

n has the form [39]

| u -1/2
= 2 §—+i—°—J , (1.2)



E
/
n
n
€4 9M,
S

Fig. 1.2 Diagram for the Derivation of the Impedance Boundary
Condition (o + =).
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where e¢,u,0 are the permittivity, permeability, and conductivity

of the body, respectively, and €ys Mo Are the corresponding free
space parameters. An e'i“’t time dependence has been assumed and
suppressed here and throughout this work with w the angular frequency
of the EM field. Note that as ¢ + », n+ 0 and (1.1) becomes the

boundary condition for perfect conductivity, i.e.,

=0
>
m
n
o
-

as expected. It was in this context that (1.1) was introduced [8]
as an approximation to the boundary conditions at a body with
large but finite conductivity. A discussion of the validity of the
approximation can be found in [40]. The utility of (1.1) is that
it reduces the problem of determining the fields both inside and
outside the body to that of solving the exterior problem alone,
subject to a boundary condition which describes the material properties
of the body. A1l interior fields are identically zero. As discussed
in Section 1.1, several scattering problems satisfying such a
condition have been solved.

Regardless of its physical implications, mathematically
(1.1) relates the tangential components of E and H via a parameter n.

In terms of the equivalent electric and magnetic surface currents

K = hAxH (1.3a)

km = -nxE , (1.3b)



-11-

respectively, it follows that

Km = -nZn x Ke . (1.4)
An interesting duality transformation exists for the impedance
boundary value problem. It can be stated via the following theorem

[39]:

Theorem 1: If the electromagnetic field incident upon a body

satisfying the boundary condition (1.1) is denoted by

where

the scattered field is

(E5,H%) = (-23(1/n), F(1/n))

This is equivalent to the transformation E ﬁ, ZH > -YE, n -+ 1/ns

and can easily be derived by taking the cross product of (1.1) with

n, yielding
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H-(,ﬁ-H)n=-l—YﬁxE . (1.5)

Equation (1.5) is simply a restatement of (1.1) under the prescribed

transformation. By allowing n + =, (or 1/n > 0), (1.5) reduces to

=S 0
>
i
[}
o
-

which is the boundary condition for a perfect (nonetheless fictitious)
magnetic conductor.

Suppose instead that the material body in Fig. 1.2 is replaced
by a thin shell of thickness §, coincident with surface S. The shell
is composed of the same material as the body, with parameters e,u,o.

A solution for the scattering from such a structure requires the
determination of the fields in the three regions defined in Fig. 1.3.
[f, however, one again cohsiders the situation when the complex
permittivity becomes large while simultaneously allowing the
thickness to decrease, such that their product remains constant, then
the three region problem can be approximated by a two region problem
with an appropriate set of boundary conditions on the surface S.

A mathematical description of the limiting process is given in [25,26].
Referring to the geometry in Fig. 1.4, the approximate vector

boundary conditions that now apply are
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Region 1
(e 0m,)

Region 3
(e,u,50)

Fig. 1.3 Diagram for the Derivation of the Resistive Boundary
Condition.
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Fig. 1.4 Equivalent Geometry for Fig. 1.3 with the Scattering
Body Replaced by a Resistive Surface.
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nx [E1Y = 0 (1.6a)
nx (nxE) = -Rn X [ﬁ]t (1.6b)

where the notation [ ]f denotes the discontinuity in the value of a

quantity across the surface S, or more exactly,
[f]f = fi-f, ; onS ,

with f an arbitrary function. The subscripts refer to the
corresponding values in Regions 1 and 2 of Fig. 1.4. In terms of

equivalent surface currents

Ky = nx [A] (1.7a)
A (1.75)
(1.6) becomes
Em = 0 (1.8a)
nx(nxEg) = RK, (1.8b)
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in the limit as described above. The resistivity R has units of

ohms per square in the MKS system. When ¢ >> ¢, R tends toward a
purely real number, given by [26]

R = (1.10)

1

of

In general, for a passive material with o > 0, ¢ > €y R is a
complex number lying in the first quadrant of the comp]eﬁ plane. From
(1.7), a resistive surface is equivalent to an electric current layer
whose strength is proportional to the tangential electric field

at its surface. Since the tangential electric field is continuous
across the layer (from (1.6a)), there are no magnetic currents.

It is interesting to note that in the 1imit as R+ 0, (1.6) becomes

a perfectly conducting boundary condition, while for R + =, (1.6) can

be written as

A

n x [E]f

n
o

= >
n"
o

x [A1F

These continuity conditions are satisfied by the incident field
alone, and hence there is no scattered field. Equivalently, the
scattering body has ceased to exist.

As was done for the impedance boundary condition (1.1), it is
convenient to normalize the resistivity via a dimensionless parameter

n= R (1.11)
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The factor of two is introduced because of an interesting result
from half-plane diffraction [27]. The total electric current on a
half plane with surface impedance n is identical to that on a resistive
half-plane with R satisfying (1.11). However, this result cannot be
generalized for arbitrary geometries.

Recalling the duality transformation presented in Theorem 1,

its application to (1.6) yields

nx [HIY = o0 (1.12a)
nx(nxH = Remx [E] (1.12b)
where
R = L (1.13)
- .

While (1.5) is simply a festatement of the impedance boundary condition
under the prescribed duality transform, i.e., an impedance boundary
condition is its own dual, examination of (1.12) indicates a similar
analogy does not exist for the resistive boundary condition. Indeed,
(1.12) describes a surface characterized by a jump discontinuity in

the tangential electric field, but no discontinuity in the tangential
magnetic field. .Such a surface supports only a magnetic surface
current Rm, and has been referred to as a "conductive" sheet, with
conductivity R* mhos per square [27]. A discussion of the duality
relations for impedance and resistive boundary conditions is

Presented by Senior [41] in relation to Babinet's principle.
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It is appropriate to further compare the impedance and
resistive boundary conditions in the context of the problem considered
here. A wedge with upper and lower faces S+ and S_ respectively is
illuminated by a plane electromagnetic wave 1incident normal to the
edge of the wedge. By considering the cases in which the incident
electric or magnetic field is parallel to the edge (E- or H-polarization
respectively), as illustrated in Figs. 1.5a and 1.5b, the vector
scattering problem can be reduced to two scalar, two-dimensional
scattering problems.

In the event that S+ and S_ satisfy impedance boundary conditions,

an rl b ',

where E = QU, u being a unit vector parallel to the edge of the

wedge. The normal derivative 3/3n is defined as

i.e., it is taken in the direction of the unit vector B, which from
Fig. 1.4 is directed toward Region 1 containing the incident field.

The propagation constant k is defined as

k = Y
C 3

Where ¢ is the velocity of light in vacuo.
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Fig. 1.5 Two-Dimensional Excitation of a Wedge by an (a) E-Polarized
and (b) H-Polarized Plane Wave.
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Similarly, for H-polarization, (1.5) becomes

aV .
o + iknV

0 5 ons,.S. (1.14b)

where H = uV. Since it will be shown in Chapter II that both U and V
satisfy the scalar Helmholtz equation, as well as similar edge and
radiation conditions, the determination of a single quantity, U or V,
is sufficient, since the duality transformation of Theorem 1 serves to
specify the remaining unknown.

When the wedge satisfies resistive boundary conditions,

(1.6) applies, which can be written as

+

sy 2ik | -

[EEJ +S=U = 0 (1.15a)
+

[ul. = 0 ; onS.,S_ (1.15b)

for an E-polarized incident field. For H-polarization the equivalent

equations are

3V, ik +
an —51 vl = o0 (1.16a)

+
3V - :
[ﬁJ =0 ; onS,S_ . (1.16b) .
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Obviously, (1.15) and (1.16) are not duals of each other, and
therefore the scattering problem for an arbitrary polarized incident
plane wave requires the solution of two different scalar problems.
Further complications arise from the existence of fields in both
Regions 1 and 2, as implied by the bracketed quantities in (1.15)
and (1.16).

For a more detailed comparison of the impedance and resistive,
as well as "conductive" boundary conditions, the reader is referred

to the works of Senior [27,29,30,41,42].



CHAPTER II. FORMULATION OF THE SCATTERING BY A RESISTIVE WEDGE

2.1 Statement of the Problem

Having provided a qualitative analysis of the resistive
boundary condition, including its physical and mathematical implications,
and having compared it to more conventional boundary conditions, a
rigorous formulation of the electromagnetic scattering of a plane wave
normally incident on a resistive wedge is presented.

The geometry under consideration is shown in Fig. 2.1. A wedge
of included angle 2y composed of two resistive sheets S, and S_ has its
vertex coincident with the z-axis of a cylindrical coordinate system
(p,4,2). The resistivity R of the sheets is a scalar constant. The
azimuthal coordinate ¢ is chosen to take on the values -y < ¢ < 2r - y.
The upper face of the wedge lies in the plane ¢ = y; the Tower face in

the plane ¢ = 2r - y. The exterior region (Region 1) is defined by

in<oo
(ps0,2) € Region1 = <y <¢ <2m -y

-0 < Z < ®

Similarly, the interior region (Region 2) is defined by

0Lp <™
(0 »6,2) € Region 2 = Ve b <y

-0 < Z £ ®

-22-
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X
Region 1 \ Region 2
(W <¢<2m-y) (v <¢ <)
AN
AN
N\
s N\
N\
¢=2m=-y

Fig. 2.1 Resistive Wedge of Included Angle 2y ITTuminated by
a Plane Wave at Normal Incidence.
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Region 1 and 2 are assumed to be free space, with e = €y

W=y, An E(H)~ polarized electromagnetic plane wave with
i i’- g i-
E, -ikp cos(¢-¢o) u
= g = (2.])
H! V!
z

is normally incident upon the wedge from an angle ¢0, which 1ies in
Region 1 (see Fig. 2.1). Because of the symmetry of the geometry
about the plane y = 0, it is sufficient to consider, without loss of
generality, the following relation between the angle of incidence

and the half angle of the wedge:
0<yc< 9, ST

Since the entire problem is independent of the z coordinate, the
two-dimensional problem fn the plane z = 0 will be considered from
this point on. As stated previously, a harmonic time variation of
the form e'i“’t is assumed and suppressed throughout.

Because the problem is two-dimensional, the total electro-
magnetic field (E,H) can be determined from the two scalar quantities
EZ and Hz' By assuming in turn the E- and H-polarized incident
fields (2.1), (for which Hz and EZ are zero, respectively), the
solution to the general problem is reduced to solving two scalar
problems for a single unknown.

As implied in (2.1), the unknowns E,.H, will be denoted

by
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E = U = ul +¢8 (2.2a)
(2.2b)

where the superscripts i and s denote the incident and scattered
fields, respectively. The fields U and V are functions of the

variables (p,¢), and as a result it is convenient to distinguish
their values in Regions 1 and 2 via appropriate subscripts, viz,

U = U = Ul +U] ,  for (p,4) E Region 1 (2.3a)

U} + U5, for (0,6)€ Region 2 ,  (2.3b)

Us

and similarly for V. As is traditionally the case, the incident field
is assumed to permeate the entire space.

From Maxwell's curl equations in free space

<

x

m
I

iwuoH R

= _jue E
O 1 ]

<

x

x
i

"the following results can be shown in two dimensions (3/3z = 0):

E-polarization: Ep = E¢ = HZ = 0 , Ez = U
. - 13U
1kZHp Y (2.4a)
; =-3U
1kZH¢ TR (2.4b)
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H-polarization: Hp = H¢ = Ez =0 , Hz =V
] =-.l é!
1kY% pv 5 (2.5a)
: = oY
1kYE¢ TR (2.5b)

In addition, it can be shown that both U and V satisfy the scalar

Helmholtz equation

(v2 + k?2) = 0 (2.4)

in Regions 1 and 2, where v2 is the two-dimensional scalar Laplacian.
Expressing the resistive boundary conditions (1.15) and (1.16) in
polar coordinates (p,$), the following conditions on the surfaces S+

and S_ hold for E-polarization:

1|24 2%, 21k ]
o %], "l |t h =0
o=y o=y -
Ul' - Uz% = 0
¢=¢ ¢=W (2 6)
T Y L P o
Ul ¢=2ﬂ"lp - U2 ¢=-‘p = 0
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Similarly, for H-polarization the conditions are

3V .
: % KNI =0
0 6=y $= 6=y
1 3Vl BVZI
o | % |, "% | =0
=y o=y
(2.7)
3V .
1 n
S N O
=21y =2y $==p
1 2

Because the medium and the scattering body are both infinite
in extent, the functions U and V are required to satisfy an
additional constraint as p - = in the form of a Sommerfeld radiation
condition. Specifiéa]]y, by decomposing U and V into a geometrical
optics component, obtained from ordinary ray theory, and a diffracted
component, viz

Ug + Ud

[y
]

v+ e

=
]

each of which is a discontinuous function of ¢, then the diffracted

components satisfy*

*
The reasoning behind this decomposition is discussed by Williams [11].



-28-

lin o172 2. ik o= o (2.9)
p > | °° I

r -
lim o1/2 %p— ik | v =0 (2.9b)
p > ® ! ] >

uniformly for all ¢ appropriate to Regions 1 and 2. Condition (2.9)
is discussed in [6] and elsewhere; its vector analog, the Silver-
Muller condition, can be found in several texts on electromagnetic
theory, see Jones [43], for example. Roughly speaking (2.9) is
equivalent to requiring that the diffracted field have the form
of an outgoing cylindrical wave at infinity, decaying as the
reciprocal of the square root of the distance from the line z = 0.

Finally, the geometrical singularity presented by the vertex
of the wedge requires the specification of an additional condition
governing the behavior of the fields in the vicinity of the edge.
This physical constraint, known as the edge condition, is usually
expressed by requiring that the stored electric and magnetic energy
in any neighborhood of the edge be finite; that is

Tim .}f (eo!E|2 + u°|ﬁ[2)dv = 0 . (2.10)
v>o J,

Jones [43] derives a uniqueness theorem for finite dielectric bodies
and infinite perfectly conducting bodies based on (2.9) and (2.10). He
indicates, however, that these equations do not appear to be
sufficient to insure uniqueness for infinite dielectric structures

(such as a dielectric wedge) [44]. While the uniqueness of the
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resistive wedge problem has not been addressed in the literature,

it will be assumed that a solution satisfying (2.1) through (2.10)

provides the desired results. This assumption is legitimately
questioned, since, as was pointed out in Chapter I, there exist
similarities between the resistive and dielectric wedge scattering
problems.

There are several physically intuitive means of expressing
the edge condition [45,46] which are equivalent to (2.10) for a
perfect conductor. These include zero induced charge or finite
surface current and charge conditions. An overview of these works
and a general discussion of the edge condition for perfect
conductors can be found in Jones [43].

It is relatively easy to show for a straight edge that (2.10)
is equivalent to requiring that no component of the fields be more

$

singular than p~~ in the neighborhood of the edge, where § < 1.

More exactly,
max (£} = 06°) 5 -0, (2.11)

where {fi} are the components of the electric and magnetic fields, and

0( ) is the standard order relation, whereby
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Meixner and others [47,48] have investigated the possible values

of the parameter & for various wedge-like regions, including both
perfectly conducting and dielectric wedges. By assuming series
expansions in powers of p for the various field components, Meixner
derives expressions for the series coefficients and admissible values
of § via Maxwell's equations and the boundary conditions. In
particular, he shows that the lowest order (most singular) terms are
equivalent to those obtained for the corresponding static field
problem. An important consequence of this result is that the field
components parallel to the edge (in this case, E, and Hz) are finite
for all geometries. Although some doubt has recently been expressed
regarding the validity of Meixner's series expansion in the dynamic

(w # 0) case [49], it appears that the lowest order terms are still
the correct asymptotic forms.

Thus, for the resistive wedge, it is assumed that

u,v

n
o
—

©

s §>0 , p>0 , (2.12)

uniformly for all ¢ in each of Regions 1 and 2. Note that in the
event that § = 0, i.e., U,V = constant at p = 0, equation (2.6)
guarantees that the value of the constant is the same in Regions 1
and 2 for E-polarization. However, the same is not true for
H-polarization (see (2.7)); there may be a discontinuity in the
value of V at p = 0 in passing from Region 1 to Region 2. This

observation is related to the fact that a resistive layer can



support only an electric current, which is radially directed for
H-polarization. In the event that this current is zero at the
edge, then the discontinuity disappears and the value of V at p =0
is the same in both regions.

In summary, the problem addressed in this work may be stated
as follows. For the geometry of Fig. 2.1, illuminated by alternately
E- and H-polarized plane waves of the form (2.1), two scalar
unknowns U and V are sought which satisfy the Helmholtz equation
(2.4), the boundary conditions (2.6) and (2.7), respectively, and
the radiation and edge conditions (2.9) and (2.10), or equivalently,
(2.12). The problem will be analyzed by applying the function-
theoretic techniques of Maliuzhinets and Kontorovich and Lebedev.

It is worthwhile to note that the more conventional method of mode
matching, otherwise known as the method of separation of variables,

is not applicable to resistive (or impedance) wedge scattering

problems unless a resistivity (or impedance) which varies in a specified
manner as a function of o is assumed (see [50], for example). Since

a constant resistivity is assumed in this work, the mode matching
method is not a valid approach to the problem.

Before proceeding with the analysis, a decomposition for the
unknowns will be outlined which will prove instrumental in simplifying
several of the resulting expressions, especially the boundary conditions

(2.6) and (2.7).
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2.2 The Method of Symmetric and Antisymmetric Components

It is a well known result that an arbitrary function f(x)
defined on an interval (a,b) can be decomposed into two functions
which are respectively even (symmetric) and odd (antisymmetric) about

the midpoint ¢ of (a,b). Denoting these functions by f& and f°, and

letting
fx) = 5 [f2(x) + (0] (2.13)
then
f(x) = f(x) + f(2¢ - x)
0 (2.14)
f(x) = f(x) - f(2c - x)
and
fe(x) = fe(2c - x)
(2.15)
(x) = -f(2c - x)
Furthermore, if f is continuous and differentiable at x = ¢, then
from (2.14) and (2.15) it can be shown that
dfs
— 0 (2.16a
ax X=C )
f°' =0 . (2.16b)
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An important consequence of this result is that a knowledge of the
single function f(x) on (a,b) is equivalent to a knowledge of two
functions, fo(x) and f°(x), on the half interval (a,c].

The exterior and interior regions of the resistive wedge

(Fig. 2.1) can be considered as intervals [y,2r~y] and [-y,y] in the

angular variable ¢. Likewise, the unknowns Uy,V, and U,,V, in
these regions represent functions of ¢ on the appropriate intervals.
Hence, the decomposition (2.13) can be applied to the unknowns in

Regions 1 and 2 by writing

U (eus) = 5 [0° (0,0) + 100 (p,0)] (2.17a)
192 ’2 ’
Vo (es8) = 5 IV (00) +V° (p,0)] . (2.17b)
152 152 112
where, neglecting the p-dependence,
e,o0 _ +
U (¢) = u1(¢) -UI(ZW-¢) (2.18a)
U8%%) = U (6) T U (-4) (2.18b)
2 2 2

and similarly for V1 and Vz. The plus sign corresponds to the
symmetric (e) component, and the minus sign to the antisymmetric (o)
component. From (2.15) it is obvious that uf,vf (U?,Vg) are even (odd)
about ¢ = mj while U:,V: (Uz,Vg) are even (odd) about ¢ = 0. Of
greater significance is equation (2.16), from which it is determined

that
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B—(U‘*,ve)} = 0 (2.19)
(u°,v°)i = 0 (2.19b)

11 =T

and

3 (ue,v®) = 0 (2.20a)

3% 2 2 $=0
(u°,v%) =0 . (2.20b)

2 2 ¢=°

It is beneficial to recall equation (2.3), in which U and V

were expressed as the sum of an incident and scattered field. The

e

same result holds for Ue, U°, V=, and V°, i.e.,

r- ‘-! ~ -
Ue UEI + UES
152 152 152
= (2.21)
UO UO'I + UOS
152 192 152 i

e VO

120 Ve It is hoped that the reader will forgive

and likewise for V
the rather cumbersome use of superscripts and subscripts which
the author has employed. From (2.18) and (2.1) it is simple to show

that
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T L Vei Vei eikpcos(¢-¢°) + eikpcos(¢+¢o) (2.22a)

0i oi oi oi ikpcos(¢- i ‘ 2.22b
T L LI L ocos(¢ ¢0) ) elkpcos(¢+¢o) ' ( )

Therefore the notation for the various incident field components
can be simplified by denoting the right-hand sides of equations
(2.22a,b) by I® and I°, respectively. Equation (2.21) now has

the less confusing form

_ 1 -
Uf,Z Ie + U?fZ
Ug,z - 1% + U?fz . (2.23)
Vi 2 1% + vffz
vf’z 1° + vffz J

From the symmetry of the geometry it is easy to show that the
left-hand side of (2.23) satisfies the boundary conditions of the
original problem (2.6) and (2.7), as well as the wave equation and

radiation and edge conditions. Thus (Ue ve ) are the E- and H-

1,2°71,2
polarized solutions to the scattering problem with incident field Ie,
while (U? 2,V?’z) are the E- and H-polarized solutions for the
incident ;ie1d 1. Furthermore, by essentially replacing the boundary
conditions on the lower wedge surface S_ by the conditions (2.19) and
(2.20), it is sufficient to determine the unknowns in the upper half
space y > 0 to completely solve the problem, as illustrated in

Fig. 2.2.
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S
_ S, 1 oy
') / u'(e) /
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Fig. 2.2: Symmetric (a) and Antisymmetric (b) Excitation of a
Resistive Wedge and the Equivalent Half-Space Problems.
Analogous Results hold for V(¢).
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The new boundary conditions for Uf ) become

su® st .
%Ff-ﬁql fHER -0 (2.26)
=y o=y
[v; - u§]’ = 0 (2.24b)
=y
sy
——34 = 0 (2.24¢)
3% | yoy
aUs
53_‘ -0, (2.244)
$=0
while for vf , the following hold:
N ,
Pl RO e e

o=y V2 4ey

] :;v‘lE av:l

;— W-W l¢% = 0 (2.25b)
avf
Wq):“ = 0 (2.25(2)
avgl
2 = 0 (2.25d)
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For U? 2,V? ,» equations (2.24c,d) and (2.25c,d) are respectively

replaced by the primed equations

W o=o0 (2.24¢")
p=n
u° =0 |, (2.24d")
2
$=0
and
0 - 1
v = 0 (2.25¢')
1
p=n
Ve =0 . (2.25d")
20 p=0

In the remaining equations the symmetric (e) components are simply
replaced by the antisymmetric (o) components.

The most important consequence of the modified conditions
(2.24 through 2.25) is the presence of only a single "mixed"
transition equation for each unknown, i.e., equations (2.24a) and
(2.25a). These conditions, which contain the only dependence on
the resistivity n, are most responsible for the complexity of the
problem. The method of symmetric and antisymmetric components has
essentially eliminated this equation for the lower sheet. The
implications of this result will become apparent in Chapters III
and IV, in which the scattering problem will be analyzed via

Maliuzhinets' method and the Kontorovich-Lebedey transform.



CHAPTER III. THE METHOD OF MALIUZHINETS

By far the most successful technique for solving boundary
value problems in wedge-like regions was put forth by G. D.
Maliuzhinets in his doctoral thesis [13] and subsequent publications
[14,15]. His method, which fundamentally is a generalization of the
method of images described by Carslaw [3], was able to provide the
solution for the scattering from an impedance wedge with differing
impedances on each of the faces [15]. Various aspects of
Maliuzhinets' technique were inadvertently and independently described
by Senior [16] and Williams [17] in solving similar problems.

The basis for Maliuzhinets' method is the ability to represent

the total scalar fields (U,V) as a Sommerfeld integral of the form

U(p,0) s(a - ¢)

1 eikpc05a
2r i

V(o ,0) Y tla - ¢)

— - — -

where y is a contour in the complex a-plane, consisting of two loops

Y, and Yy symmetric about the point o = r, as illustrated in Fig. 3.1.
A contour integral of this type was first employed by Sommerfeld in

his classic solution for the scattering of a plane wave by a perfectly
conducting half-plane [1], and as a result (3.1) is often referred

to as a Sommerfeld integral. Maliuzhinets has shown that (3.1) has

-39
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Fig. 3.1: The Contour of Integration y in the Complex a-Plane for
Use with the Maliuzhinets Method.
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a unique inversion (s,t) within a particular set of functions,
provided (U,V) satisfy certain boundedness conditions at p = 0 and
o ~ . An outline of Maliuzhinets' uniqueness theorem is given in

Appendix A.

A direct consequence of this uniqueness theorem is that a

nonzero solution of the homogeneous equation

Fla)e 0% ¢y = 0 (3.2)
y
must be even about the point a =1, i.e.,
fla) = f(2r - a) , (3.3)

provided f(a) = 0(9(1-a)|1ma|) as |Im a| + » within the Toops Y, and
Yy where a > 0. This result is also derived in Appendix A. The
order relation above holds for functions of (p,¢) satisfying the
radiation and edge conditions (2.9) and (2.10), respectively.

Recalling the representation (3.1) for (U,V), it is easy to
show that indeed (U,V) satisfy the Helmholtz equation

U
(v2 + K2)

n
o

(3.4)

In order to apply (3.1) to the boundary conditions (2.6) and (2.7)
(note the (3.1) is a representation for the total fields (U,V)),

it is appropriate to first consider the normal derivative
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U S(C! = ¢)
13 2 oikecosa 3_ do
p 2¢ 2mip 3¢ i
Vv y t(a ¢)
st - o)
.. 1 eikpCOSai_ de . (3.4)
2'"'10 BaLt(a - ¢)
Y

The interchange of the order of differentiation and integration is
justified by the uniform convergence of the integral along y provided
(s,t) satisfy the order relation mentioned previously. Integration

by parts leads to

U s(a - ¢)
1 3 - . oikecosa
o 9d 2mip
) | tla - ¢) .~
_ s(a - ¢)
- %; sin o el KPCOSY da (3.5)
y tla - ¢)

where y_ denotes the various endpoints of the contour y as

|Im o] + .  From the behavior of (s,t) and the exponential (for

o > Q) within the shaded portions of Fig. 3.1, it can be shown that
the first term of equation (3.5) is zero, and thus

U s(a - ¢)

1 s = - %; sin o e KPCOSa da . (3.6)

v t(a - ¢)
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Substitution of (3.1) and (3.6) into the boundary conditions (2.6) and

(2.7) results in the following equations for (s,t): for E-polarization

J[ {sin o (sl(a -¥) - s (o - w)) - % s, (o - w)} eikecose 4, = g

f[sl(a -y) - 52(a - tp)] eikpCOSa de = 0
Y

2ﬂ+¢)-s(a+w))
2

T
[%2]
—e
1
Q

—NN
(%]

—~
o3
1

+%Sl(a -2 + w)] e1kpcosa de =0

2r + y) - sz(a + w)] eikpcosa de = 0

—
n
—
L)
Q
'

(3.7)

and for H-polarization:

f [sinatl(a - v) -%(tl(a -¥) -t (e -v) ) ] glhocose 4 . g

y
fsina[tl(a-w)—tz(a-w)] eikpcosa e = 0
Y
f[sinat(a-Zn+w)+n§(t(a-2ﬂ+¢)
1 1
y

- tz(a +¢))}eikpcosa © = 0

j sin a[tl(a -2m +y) - tz(a +w)} gikecose 4y
v (3.8)
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In equations (3.7) and (3.8) the subscripts 1,2 on (s,t)
correspond to the values of the functions in Regions 1,2,
respectively.

Following Maliuzhinets' derivation for the impedance wedge [15],
and by virtue of equations (3.2), (3.3), and the results of Appendix
A, equations (3.7) and (3.8) are equivalent to the following set of

functional equations:

E-polarization:

nsinals (@ -9) - s (¢ =-9)] - 25 (a - y)
1 2 1
= -n sin a[sl(Zn -a-y) - SZ(ZN -a-19y)] - 251(2w -a-y9) (3.9)
s(a-y)-s(a-9) = s(2r-a=-y)-5(2r-a-y)(3.9)
1 2 1 2
nsinals (a0 -2r +9) - s (¢ +9)] +2s (a - 21 + y)
1 2 1
= -y sin a[sl(-a +9) - sz(Zw -a+y)]+ 251(-a +9)  (3.9¢c)
S(a=-2r+y) -s(a+y) = s (-a+yp)-5(2r -a +¢)(3.9d)
1 2 2 2

H-polarization:

2sinat (a-v)-nltle=-9)-t(-y)]
1 1 2

= -2 sina t1(2ﬂ -a - y) - n[tl(ZW -a-9y) - t2(2w -a -y)] (3.10a)
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t(a-9)-t(a-9) = -t (2r-a-y)+t(2r-a-v) (3.10b)
1 2 1 2

2 sin a tl(a - 21+ y) + n[tl(a -2m +y) - tz(a +y)]
= -2 sin a tl(-a +y) + n[tl(-a +y) - tz(Zﬂ -a+ )] (3.10c)

tl(u -2n +y) - t2(a +y) = -tl(-a +p) + t2(2w - o+ ) (3.10d)
Equations (3.9) and (3.10) can be put in simpler terms. Adding
(3.9a) and (3.9b) and subtracting (3.9¢c) and (3.9d) results in two

functional equations of similar form:

(1 = n sin a)Sl(a) (1 +n sin a)Sl(Zn - a) (3.11a)

(1 = n sin a)Sz(a) (1 +n sin a)Sz(Zn -a) , (3.11b)

where

wm

—
Q

~
[}

s (0 -9) -5 (21 -a -y) (3.12)
1 2

(%]
Cann)
Q
~
n

\ sl(-a +y) - 52(a +y) . (3.12)

Analogously, equations (3.10a) through (3.10d) can be reduced to

(n + sin a)Tl(Zw - a) (3.13a)

(n - sin a)T (a)
1

(n - sin a)Tz(a) (n + sin a)TZ(ZTr - a) (3.13b)
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where

__‘
Q
n

t (0 -y)+t (2r -a - y)
1 2

-
e
~

1]

, tl(-a +y) + t2(a +9) . (3.14)
Hence, equations (3.11) and (3.13) represent a set of coupled first-
order functional equations for the unknowns 51’52 and tl,t2
respectively. An important observation is that Sl,SZ,Tl,T2 all
satisfy identical equations, and therefore can differ at most by a

multiplicative factor M(a) satisfying (see Chapter 2 of [36])
M(a) = M(27 - a) . (3.15)
Having determined S1 and Sz’ one can obtain an uncoupled

set of first-order, inhomogeneous functional equations for s1 and

s , viz
2

s (0 - y) - Sl(a - 21 + 3y) Sl(a) - Sz(ZW -a - 2) (3.16a)

s (o -) - Sz(a - 2m + 3y) Sz(a - 21+ 2y) - 51(2ﬂ -a)

(3.16b)

A similar result holds for t1 and t2, i.e.,

t (a -y) - tl(“ - 21 + 3y) T (a) - Tz(zw -a-2y) (3.17a)

1

t (o -y) - t2(a - 21 + 3y) -T2(a - 2m + 2p) 4+ Tl(Zn - a)

(3.17b)
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Once again there is a similarity among the functional equations
(3.16) and (3.17) describing sl , and tl ) Indeed, if x(a) is

an arbitrary solution of the homogeneous equation
x(a = 9) = x{a-21r+3) = 0 (3.18)

then 51’52’t1’t2 are all of the form

= x(a) + P(a) , (3.19)

where P () is a solution of the appropriate inhomogeneous equation
(3.16) or (3.17). That is to say, 515 and ti,z are determinéd
up to an additive function of period 2r - 4y.

In order to uniquely determine 51,2’t1,2 additional constraints

are required. One such constraint is the order relation previously

imposed:

- ol Imely o (3.20)

1,2

within and on the Toops Yl and y . Furthermore, as is shown in
2

Appendix A, for an incident field of the form

ot = vl emTkecos(s - gg) (3.21)
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the functions

(o - m)
R - (- 2r+9)” (3.22a)

tl(a - )

must be regular in the strip ¢ < Re a < 21 - y, while

2 (3.22b)

must be regular in the stripr - y < Re a < 7 + y. Conditions (3.20) and
(3.22) serve to limit the choices of y(a) and P(a), as well as M(a)
(see (3.15)) in determining the unknowns 5.58,:t,,t,.

In the event that it may be advantageous to preclude the
derivation of the corresponding conditions on Sl’sz’Tl’Tz’ as well as
to avoid the large number of arbitrary unknowns x,P,M and so on, it
is possible to eliminate s, and t2 from equations (3.9) and (3.10)
directly at the expense of arriving at a pair of considerably more

complex functional equations for s1 and tl. After some rather tedious

manipulation, one can obtain the following:

sin(a - 2y) {[1 - n sin a] sl(a -y) - sl(Zn -a - w)}

= -sin a {[1 +n sin(a - 2¢9)] Sl(a -21 -9) - Sl(-a + &b)} (3.23)
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[n - sin a]tl(a -¢) - sina tl(Zn -a-19)
= [n + sin(a - Zw)]tl(a -2m - y) + sin(a-—Zw)tl(-a + 3y) . (3.24)

Similar expressions can be derived for s, and t2 , or they can be
obtained directly from 5, and t1 , respectively.

It is evident that (3.23) and (3.24) are linear third-order
functional equations of the unknowns s1 and tl. Theoretically,
solutions to this type of equation exist, but there is no straight-
forward means of deriving them, except in certain special cases [36].
This is analogous to the task of finding solutions to general
differential equations of order greater than one.

To further emphasize the complexity of equations (3.23) and
(3.24), consider the corresponding functional equation developed
by Maliuzhinets in solving the scattering by an impedance wedge,

namely
(1 -nsina)s(a =-9) = (1 +nsina)s(a -2r +v) . (3.25)
Equation (3.25) is a linear first-order functional equation for s(a).

Two important differences exist between (3.25) and either (3.23) or

(3.28):
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1. The functional equations for the resistive wedge (3.23)
and (3.24) are of third order, while (3.25) for the impedance wedge
is of first order. This difference in itself is sufficient to
preclude the possibility of finding a solution. |

2. Equation (3.25) is a special type of functional equation
known as a difference equation, where the functional dependence of
the argument of s is in the form of a finite increment. In (3.25),
the increment is 2r - 2y. However, (3.23) and (3.24) are not
difference equations. This is evident from the fact that the
arguments of 5 and t1 contain dependences on both +o and -a,
which cannot be expressed via a simple increment. Thus the author
was unable to apply techniques appropriate to difference equations
toward finding a solution.

In order to possibly obviate the difficulties discussed above,
the method of symmetric and antisymmetric components outlined in

Section 2.2 is considered. By writing

. s¥(c - ¢)

1 ikocosa
T e da (3.26)

ve Y t%(a - ¢)

and similarly for U°, v°, and then applying the boundary conditions

(2.24) and (2.25), four sets of functional equations are developed:
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E-polarization (symmetric):

nsin als®(a - ¥) - s%(a - ¥)] - 25%a - )
1 2 1

= -n sin a[sf(Zn -a-y) - S:(Zn -a-y)] - 25?(27r -a-19) (3.27a3)

spla = 9) - s%a-p) = s%(2r-a-y)-s%(2r-a-4) (3.27b)
2 1 2
Sf’(a -1) = - Sf(‘n’ - a) (3.27¢)
s(a) = -s%(2r - q) (3.27d)
2 2

E-polarization (antisymmetric):

nsinafs(a - ¥) - s2o - ¥)] - 252 - v)
= -nsinals](en <o -y) - s2er - a-y)] - 25)(2r - a - ¥) (3.282)
s?(a - ) - sg(a -y) = sf(zw -a - ) - s:(Zﬁ -a - )
(3.28b)
Sf(a -1) = S?(n - a) (3.28¢)

$2(a) = s°(2r - o) (3.28d)
2 2
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H-polarization (symmetric):

. e, - e, - - 8y -
2 sina tl(_a ) n[tl( V) tz( ¥)]
= -2 sing tf(zw -a-y) - n[tf(zn -a-y) - t:(Zn -a-9)] (3.29)

t%a - ¥) - t%a - y) = -t%2r - q - v) + t8(2r - o - y)(3.29b)
1 2 1 2

tle(a -m) = -tf(n - a) (3.29c)
e - e
tz(a) = -t2(21r - a) (3.29d)

H-polarization (antisymmetric):

2 sin o t?(a =) - n[t?(a - ) - tz(“ - )]
=-zgnafwﬁ-a-w-nnya-a-¢)-fwn-a-wjuau)
t?(a - y) - t:(a - ) = -tf(zn —a - )+ tz(Zw - a-y) (3.30b)
tg(a -n) = t?(n - a) (3.30c)

0 . .0
tz(a) = t2(27r - a) (3.30d)
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Again, the subscripts 1 and 2 refer to the values of the
corresponding function in Regions 1 and 2. As noted in Section 2.2
when deriving the boundary conditions, the only difference between
(3.9) and (3.27-28) or (3.10) and (3.29-30) is in the final two
equations, which are considerably simpler in form. However, when
the algebraic manipulations are performed which eliminate SS,S:,
t:,tg as was done for equations (3.23) and (3.24), there appears

to be Tittle gain. The resulting equations are:

E-polarization:

sin(a - 2v) {[1 - n sin a] sf(a - ) + sf(a - or + w)}
= -sina {[1 +n sin(a - Zw)Jsf(u =21 - y) + Sf(a - 3w)} (3.32)
sin(a - 2v) { [1 - n sinal Sf(a - ) - sf(a - 21 +y) }
= -sin a{[l +nsin(a -'Zw)] Sf(a - 2r - y) - scl’(a - 34»)} (3.33)

H-polarization:

[n - sin a] tf(a - ) + sin atf(a - 2r +y)
= [n+sin(a - 29)] tf(a - 2r - y) - sin(q - 2) tf(a - %) (3.38)
[n - sin «] tf(a -y) - sing t(l)(a - 21 +y)

= [n + sin(a - 2y)] tg(a - 21 - y) + sin(y - Zw)ti(a - 3y) (3.35)
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.. . . 0
Similar expressions are available for ss’o,tg’ , or they can be

e,0
’

derived directly from sl €0

t1 respectively. Comparison of
(3.32-35) with (3.23-24) indicates that the decomposition into
symmetric and antisymmetric components has done little to simplify
the form of the functional equations. There has been no reduction
in order; (3.32-35) are still third-order equations. If any
improvement has been made, it is that (3.32-35) are now
"difference" equations, in that the arguments of the unknowns are
of the forma + 4., n = 0,1,2,3, where A, is a finite increment,
and the increments are not uniform (i.e., Bow " n £ constant).
It is perhaps in doubt whether any of the techniques available

for solving difference equations are applicable to equations of

this type.

e e ..
’°,t1’° are guaranteed by requiring

Unique solutions for s1
that they satisfy the order relation (3.20) with a > 0. The
regularity condition (3.22a) must be modified to account for the
presence of additional plane waves in the incident field (see

equation (2.22)); the result is that

s&0 - 1)

1 -1.

- {0 - 2rm o - -1
‘o ( +,)7% (@ - 9,)

1 (X“TT)

t

must be regular in the strip v < Re o < 2r - y. The minus (plus)
sign corresponds to the symmetric (antisymmetric) components,

respectively.
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Equations (3.32-33) are the fundamental functional equations
for the resistive wedge problem formulated via Maliuzhinets'
method. The author has attempted to solve them through apprdpriate
substitutions and/or factorizations, with no success. Methods
described in texts on functional equations [36] are not applicable
to third-order equations of this type. Though an exact solution
has not been found, equations (3.32-33) are amenable to iterative
techniques for generating approximate solutions. However, it is
not within the scope of this work to pursue those methods here.
Instead, an alternative formulation based upon the Kontorovich-

Lebedev transform is presented in the next chapter.



CHAPTER IV. THE KONTORQYICH-LEBEDEY TRANSFORM

4.1 The Kontorovich-Lebedey (K-L) Transform and Its Relationship

to the Maliuzhinets Representation

In 1938, two Russian authors, M. J. Kontorovich and N. N.
Lebedey, put forth a cylindrical or radial transformation, along with
the corresponding inverse, which is analogous to the LaPlace (or
Fourier) transform in Cartesian or linear coordinates [21]. The
transform, which now bears their names, found applications in boundary
value and diffraction problems where the unknown functions are defined
along the radial coordinate p of a cylindrical coordinate system

(p ,d),Z) .
If the K-L transform of a function f(p) is denoted by

ff(v) = K[f(o)] . (4.1)

where v is the transform variable, then, similarly, the inverse

transform is written as

flp) = K[f(v)] (4.2)

provided both K[f(p)] and K'l[f(v)] are defined.
In [21], the transformation is presented in the form of a
theorem providing sufficient conditions on a function %(v) for the

inversion (4.2) to exist. The theorem can be stated as follows:

-56-
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Theorem 2:

Given a complex number k = |k|e16, 0<s<m,and wlv) a function

of the complex variable v = ¢ + it, with w(v) satisfying the following
conditions:

1. w(v) is regular (analytic) in the strip |Re v| < 8, 8 > 0,

2. w(v) is an even function of v, i.e., w(v) = w(-v),

3. the integral

” St+(m/2)(|T |-
f o + teto + iAo
for all |o| < 8, and
4, (o + it)w(o + it)| eGT+(W/2)(|Tl-T) +>0as [t »=

uniformly for all |o| < 8.

Then supposing that

where p > 0, it follows that

() f (o) ' (2 o) L2
0

for all v in the strip |[Re v| < 8.

The function Jp and HSI) are the Bessel function and Hankel

function of the first kind, respectively.

From the results of this theorem, it is convenient to define

the transformed function
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Fv) = wlv) e (/A (4.3)

flv) = K[f(p)] f oMoy 2, (44a)
0

p
~ e -
flp) = KI[f(V)] = - %f vf(\))Jv(kp)dv
—iw

jo

i . < om0

= - -}JA v sin vr f(v)e' H\() )(kp)dv , (4.4b)

-jo

the second integral being a result of the properties of J  and Hil).

It is important to point out that the transformation put forth
in the manner of Theorem 2 must be used with caution. By assuming
properties for f(v) (i.e., w(v)), and then defining f(p) via (4.4b), the
theorem restricts the class of functions for which the transform (4.4a)
exists. In practice, it is the properties of f(p) which are known,
and therefore it is necessary to show that %(v) exists as defined by
(4.4a), and that the expression on the right-hand side of (4.4b) does
indeed return the function f(p).

To this end, Jones, in a recent paper [22], derives sufficient

conditions for f(p) such that the transform integral and its inverse

(4.4a,b) exist. In particular, Jones defines the inverse as
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fo) = K'[F)] = lim -

oo
2 ~
;_'f esv v f(\))Jv(kp)d\) (4.4C)
e>of -1 |

in order to guarantee its existence under the assumed properties of
f(p). An outline of Jones' theorem, and its relation to the properties
of the functions of p expected for the resistive wedge, are given in
Appendix A. Henceforth, all transformations and inverses in this
chapter will be assumed to exist, either in the sense of (4.4b) or
(4.4c), based upon the results of the appendix.

It is interesting to note that under certain conditions, there
exists a relationship [24] between the K-L transform of f(p) and the

Maliuzhinets representation

fo) = Z‘ﬁ-fe"kp“sa s(a - ¢)da (4.5)
Y

where the explicit dependence of f(p) on ¢ has not been shown, and
where vy is the contour of Fig. 3.1. Using the symmetry of the contour

Y =g + Y, and letting

Fla) = ylsla-¢)-s(er-a-0, (4.6)
(4.5) becomes
flp) = %{f elkocosa % )4, (4.7)
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( "ita ebp), where a,b > 0, then

As outlined in Appendix A, if f(p) = 0(p
the integral equation (4.7) has a unique solution within the class of

functions
fla) = O(e(]-a)IIm 0‘l) 5 |Ima] >,
where %(a)/sin a is analytic within and on y, given by
fla) = is;&f‘» Flo) e TKPCOSE 4o (4.8)
0

Note from (4.6) that }(a), as well as vy, are odd about « = r, i.e.,

%(a) = -%(ZN -a) ,
implying from (4.7) that 4
1 ikpcosa
flo) = & [ e Fa)d (4.9)
Y

Maliuzhinets has shown [51] that in the event the constant a > 1,

or equivalently, that %(a) is bounded at the end points of vy, then

£0) = 2if(i=) . (4.10)
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From Appendix A, the existence of the K-L transform of f(p) requires
f(0) and hence f(ie) to be zero. With these restrictions on fla),
it can be concluded that %(a) is regular in the strip m/2 - € < Re a <

3r/2 + e. Based on this fact, and defining the Fourier transform

Joo
glv) = - f floa - 1)e™ da (4.11)
-1

which is absolutely convergent in the strip |Re v| < a - 1,

Maliuzhinets has shown [24] that

fv) = alv) . (4.12)

Equations (4.11) and (4.12) thus establish a Fourier transform

relationship between the K-L transform (4.4) and the Maliuzhinets

representation (4.7) of the function f(p).

4.2 Application of the K-L Transform to the Scattering by a

Resistive Wedge

Recalling the geometry under consideration, the electromagnetic
E- and H-polarized fields (U,V) scattered by a resistive wedge can

be written

= . , (4.13)

where
Uqi = Vi = e-ikpcos((b-d)o)
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is a plane wave incident upon the wedge at an angle b0 from within
Region 1 (see Fig. 4.1). The included angle of the wedge is 2y.
The fields (U,V) satisfy the Helmholtz equation
U
(v2 + k2) = 0 (4.14)
v
in Regions 1 and 2, as well as the boundary conditions (2.6), (2.7),
the radiation condition (2.9), and the edge condition (2.12). For
the time being is assumed that Im k > 0. Equation (4.14) is also
satisfied by the scattered fields (us,v5).
Throughout the remainder of this analysis, it is convenient to

define the modified scattered fields (denoted by lower case letters)

ulons) = US(o,4) +ce' <P (4.15a)
V(os) = VS(p.) + de'*? (4.15b)
where
c US(0,4)
= - s . (4.16)
d V>(0,¢)

The quantities c,d are independent of ¢ within each of the
Regions 1 and 2, which simply means that the scattered field is
uniquely defined at the apex of the wedge within each region. As
was discussed in Section 2.1 regarding the edge condition (2.12),

it is possible for d to take on two values, one each in Regions 1
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Region 1

Fig. 4.1:

/
~/jz\<,\ 2y

v

Region 2

"N\
N\
AN
N\

=21y

Geometry for the Application of the Kontorovich-

Lebedev Transform to the Scattering by a Resistive

Wedge.
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and 2, but due to the continuity of U across the boundary, the value
of ¢ is the same in both regions. From equation (4.16), it is
evident that (u,v) are zero at p = Q.

Expressing (4.14) in cylindrical coordinates, and substituting

(4.13) and (4.14), the following equations for (u,v) are obtained:

2 2 u . (o
02 &y BBy iko @'k : (4.17)
3p2 P 342 v

d
Assuming the additional constraints

limp & = i | Tim [y (4.18)
° % v v dpolv]™ 0, ’

o > 0 o] -> ® o] > ®

which are consistent with the edge and radiation conditions for p and
¢-directed components of the scattered fields, then application of the
K-L transform to (4.17) leads to a differential equation for the

transforms (u,v) [211;

~

[éz_+v2] ?(M) . 2iy /2R [C} (4.19)

d¢2 V(V,¢) sin vw

The general solution to this equation can be written in the

form
(v10) ALv) 8O | 21 ¢ (n/2h [CJ (4.20)
g(v,¢) ) C(u) cosve * D(V) sin vé * v Sin VT d
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where the arbitrary functions A,B,C, and D are independent of ¢. The
task is to find specific values of A,B,C, and D such that (u,v)
satisfy the appropriate transformed boundary conditions. In terms

of (u,v), the conditions are:

E-Polarization:

3u, 3u . _ . .
— .2 2ikp _ 2ikp  ikecos(y=¢,) ikp
3% 36 * ”1‘ - = [e o' - ce 7]
o=y o=y o0
(4.21a)
u| - =0 (4.21b)
o=y ¢=y
3 3 . . . .
Sgl. - SEEL _ 2ikp _ 2ike [ e-1kpcos(¢+¢o)_ celkp ]
b lpzmy 20 M=y 1 Me=2my T
(4.21c)
u - u | =0 . (4.21d)
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H-Polarization:

v . .

1 iknp ’ I I ~ikpcos(y-,)
=+ v - v = -ike|sin (y - ¢ _Je o
gy 2 e 2lemy { °

Dl - )eiko] (4.222)
1 0
v oy
1 2
- — = 0 (4.22b)
% $=y % o=y
31L| _ dkmo ‘ -V l
% lgmgrey 2 Uymaney 2lgeny

= ikp[sin(w + ¢O)e1kpcos(w+ ¢o) - %(d1 - dz)eikp (4.22¢)

v v
1 2
T - = 0 (4.22d)

p=2m-y % =y

The K-L transform of equations (4.21) and (4.22) are obtained
directly by multiplying each equation by (1/p)Hgl) (ko) and integrating

along (0,»). The results are:
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E-Polarization:

du du . ®
___l - -2 + .2_1£ u l H(l)(
ke )dp
Ao Tgmp 901 4oy “,f Ugay v
. =i(n/2)v sinv(r - ¢+ y)
4o T [ I 0 (4.23a)
n sin vt s1n(¢0 - )
. ’ 20 { - 0 (4.23b)
o=y  2lg=y
du du . ®
2ik (1)
- - = u H' "' (ke)do
aﬂwzﬂ-w agz¢=-w " f o Memy Y
T e-i(n/Z)v sin v(m - b y)
Ton s | TEEG, ) (4.23)
" ’ -u = 0 (4.23d)
Heszmy  2lg=—y
H-Polarization:
dv : v
o e s
o=y . o=y  2lg=y

. e-i(n/Z)v ; .
S T [‘2‘ (d - d)v+sinvir-o) + w)] (4.242)

-~ ~

dv1 dv2
do e 0 (4.24b)
d¢ 8= d¢ 5=y
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dv . "
] k
do -7 ( Vl\ - v \ ) il (ko ) do
p=2m=y d=2m =y 2lg=ay v
0

. e-i(ﬁ/Z)v .
= -2y ['E (dl - dz)v - sin v(m - by - w)] (4.24c)
dQI sz
do e = 0 (4.244d)

Some note regarding the regions in the complex v plane for which
equation (4.20), and boundary conditions (4.23) and (4.24) are defined
is necessary at this point.

For (u,v) = 0(96), § > 0, it is shown in Appendix A that (L,Q),
and hence the left-hand side of (4.20), are defined for [Re v| < §.
Inasmuch as the unknowns A,B,C and D are determined, the RHS of (4.20)
may or may not provide an analytic continuation of (G,G) into any
additional regions where it is properly defined.

From similar considerations, the LHS of (4.23) and (4.24) are
also defined for |Re v| < &, while the RHS are analytic in |Re v| < 1,
having poles at v equal to a nonzero integer,

It is important to note the various regions of analyticity of
the transformed quantities, since the inversion contour of (4.4b,c)
must lie within the intersection of these regions.

With these caveats in mind, equation (4.20) may be substituted

into the transformed boundary conditions in an attempt to determine

the unknown coefficients A,B,C, and D (each defined in Regions 1 and 2).
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From (4.23b,d),

Al(y) cosvy + Bl(v) sin v - Az(v) cos vy - B (v) sinvwy =0
2

Al(v) cos v(2r - ¢) + Bl(v) sin v(2r - y) - Az(v) cos vy

+ Bz(v) sinw = 0 ,

implying
A ) = Sl bl [a (4) cos vr 48 () sin vl (4.250)
BZ(V) = 5121:(gw- b) [AI(V) sin vr - Bl(v) cos vr]  (4.25b)

Similar results can be derived from (4.24b,d), i.e.,

¢ () = - SSlEe ) 1 (u) cos v + D (v) sin vr] (4.262)
Dz(v) = - Coscggﬂv& b) [Cl(v) sin vr - Dl(v) cos vr] (4.26b)

Substitution of (4.25, 26) into the remaining boundary conditions
(4.23a,c) and (4.24a,c) leads to the four rather complicated equations

below:

E-Polarization:

\)Sin\)m —cs - _
oS vi sin vy [-sin v(m ¢)A1(V) + cos v(r - p) Bl(v)J

, 2ik J o] K = ko (4.272)
n ’ )
. o=y V
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v Sin vm
cos vy sin vy

[-sin v(r +y) Al(.v) + cos v(m + y) Bl(v)J

] ZiELI‘ y ' K (ko)do = -K(v,-4)  (4.27b)
n 1 o=2m=y v

H-Polarization:

-v[C (v) sin vy- D (v) cos vy] + i%ﬂ. (v | -V l )
1 1 1 2¢=1‘p

WY (ko)do = Llv,p) (4.28a)

- 1§3- (Vll -V )HSI)(kp)dp = = L(v,-y)
o $=2m=1 2| p==y
(4.28b)
The functions K(v,y) and L(v,y) are given by
T e-i(w/Z)v sin v(r - 6o * v)
Koo = 57 S| & T, e | 0 (42
il .
L(v,p) = 2i -gqﬁ—;;——'[‘g (dl - dz)v + sgn y sin v(m - ¢ * ¢)]

(4.29b)
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Equations (4.27) and (4.28), defined in the strip [Re v| <
min (8,1), are a pair of coupled equations for the remaining unknowns
Al,Bl,Cl, and Dl, and their solution provides all that is necessary
for determining the unknown transformed fields (&,Q). However, these
equations cannot be solved explicitly in their present form, due to
the presence of the "untransformed" fields (u,v) under the integral
signs.

Two methods for simplifying (4.27) and (4.28) by eliminating
the "untransformed" fields are presented in .the following subsections.
In 4.2.1, an approach leading to second order difference equations is
developed. The technique parallels that used by Lebedev and Skal'skaya
[23] in solving the impedance wedge problem. A second, more general
method leading to Fredholm integral equations of the second kind for the
unknowns is described in 4.2.2. The method, developed by the author,
allows the well-established theory of linear integral equations to be

applied toward solving the equations.

4.2.1 Difference Equation Method

The method to be presented requires that one of the following
two conditions is satisfied by the unknown functions (&,&);
(1) §>1, or
(2) (u,v) may be analytically continued into the region
|Re v| < &', &' > 1.
The net result of either of these requirements is that (L,&) or their

continuations are analytic in the strip |[Re y| <1 +¢, ¢ > 0. For



-72-

the moment it will be assumed that such is the case. Whether it is
indeed true will be discussed in another part of this work.

Equations (4.27) and (4.28) are now multiplied by ei("/z)v,
and then v is replaced first by (1 + v) and then by (1 - v). The
resulting set of equations in (1 + v) have a common region of
analyticity with the corresponding set of equations in (1 - v), which
from the above requirements is given by |Re v| < ¢. By subtracting

one set from the other, and making use of the identity

ei(ﬂ'/Z)(]‘W) H](i\))(kp) - e‘!(“/z)“'\)) H(I)(kp)

(1) = 2lv gilnr2d [y )

ke
(4.30)
there results a new system of equations for the unknowns A;, B,

Cl, DI:

E-Polarization:

p (1 + VIF(1 +v) = p (1 - v)F(1 - v) +q,(1 +v)G(1 +v)

8 cos v(1r-¢o+¢)
T sin v

- qu (1 - v)G(T - v) - %' cos ¥ F(v) + sin vyG(v)

(4.31a)

p (1 +v)F(1 +v) = p_(1 = v)F(T = v) +q_ (1 + V)61 +v)

- q (1 -v)6(1 - v) +-§ [cos v(2r - )F(v) + sin v(2r - y)G(v)]

_ . COS \)(_1r -6, - w)
= - _8—1_ . 0 (4-3]b)
n sSin vr
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where
b (v) = - sin vr sin v(r ¥ y)
+ sin vy coOS vy
q (V) = Sin vr cos VGT ¥ w)
y sin vy cos vy
and

Flo) = v el (72 (y)

i(ﬂ/Z)VB (v)
1

G(v) v e

H-Polarization:

sin(T + v)uF'(1 +v) - sin(1 = v)YF' (1 = v) - cos(1 + v)ypG'(1 + v)

+cos(1 - v)¥6' (1 = v) + nlq (V)F'(v) - p(v)G'(v)]

. s1‘n(¢o - y)cos v(r - by * v)
= 4y -

sin vr (4.32a)

sin[(1 +v)(2r - w)IF'(1 + v) - sin[(1 - v)(2r - y)IF' (7 - v)

- cos[(1 +v)(2r - 9)1G'(1 + v) + cos[(1 - v)(2r - ¥)]G'(1 - v)

sin(gg +w)cos v(m - 6, - ¥) (4 39p)
sin vr

- nlq_(v)F'(v) - p_(v)G'(v)] = 4i

where

F'(v) e /20y ¢ ()

] 1
6 (v) = el(m/2 0 (+)
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Equations (4.31) and (4.32) each constitute a pair of coupled
second order linear functional equations for F(v),G(v) and F'(v),
G'(v), respectively. Although one may observe several symmetries
associated with the equations, there is no straightforward means
for finding their solutions known to the author.

Certainly the task of developing expressions for F and G
(and Tikewise F' and G') would be easier if the functional equations
could be uncoupled.

To this end, the decomposition derived in Section 2.2 is
applied to the transformed functions (L,Q). From the equivalent

of equation (2.18), one can define

Q

~

61<v,¢> uf<v,¢) +u2(v,9)
=1 , (4.33)

~ 2 ~e 0

v (v,9) Vo (vy9) + v (v,0)

1 1 1

where

.80 U (v,0) tu (v,2r - ¢)

Lo | 1 (4.34)
V&0 v (v,0) Tv (v,2r - o)

1 1 1

The plus (minus) signs correspond to the symmetric (antisymmetric)

components. It is convenient to write, analogous to (4.20),
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~“e,0 e,o e,0 e,0
u1 Al ) Bl (v) 2ie‘i("/2)v C1
. ) cosve * sin v * S s n
ve,O CE,O(v) De,O(\)) | de,o
1 1 1 1
(4.35)
Substituting (4.35) into (4.33) leads to the following results:
1 a8 0
A = = + ; 4.
. 5 [Al A1] ; (4.36a)
- 1 rpe o
B1 5 [B1 + Bl] , (4.36b)

and similarly for C1 and Dl. In addition, from (4.34)

ce = 2c
1

¢ = 24
1 1

¢ = d° =0
1 1

From either (4.34) or the transforms of (2.24c,c') and (2.25¢c,c'), it

is easily shown that

RN

—_— = = 0 s

ds o=m d¢ o=T

Sl L e
b=m 1 o=m
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which is equivalent to

Bf AE
= tan vn| ' i (4.37a)
o .
D. ¢
1 C1
g° A0
1 1
= - cot vr (4.37b)
p° c®
1 1

By substituting (4.36) and (4.37) into the appropriate functional
equations (4.31) and (4.32), and defining

[F (), FL )] = v &' 7 0an o 1a®(v),c8(v)] (4.382)
1 1

'(v)]

' v e‘("/Z)V[AS(v),c°(v)] (4.38b)
1

[F, (v),F

one can obtain, after considerable algebraic manipulation, a set

of four uncoupled, linear, second order functional equations:

E-Polarization:

Fe("l +\J) Fe(.] - \)) ) i cos \)(Tr - ID) F (\,)
e

cos(T +yJy ~cos{T - vly n  sin ur

. cos v(m - ¢.)coS vy
_ l6i T~ % (4.39)
n SIn vr
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F0(1 +v) Fo(] - )

STn(T #3909 ~sn(T =) '

4 sin v(r - y)
n sin vr Fo(v)

T T sin vr (4.39b)

H-Polarization:

i (] + \))(TT = w) 1 i ] -\ T = .
oS
F'(v) i
o Siﬁ W Siﬁ1vﬂ [sin(¢° - ¥)cos v(r - by * V)

- sin (¢° + y)cos v(r- by - v)] (4.40a)

F'(1 -v)

QO +v)(r - 9)] o [(1 - v)(r -
oo - Sl

sin(1 + v)r

0 . 4
CcoS W sin vm

[sine, - ylcos v(m - ¢, + )

+sin(¢, +y)cos v(r - ¢, - ¥)] (4.40b)

Equations (4.39) and (4.40) are the fundamental functional
equations for the resistive wedge scattering problem. While an
equation of similar type has been solved by Lebedev and Skal'skaya
in [23], the author has not been able to generate a solution using

their method.
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A general solution to any of equations (4.39,40) can be

written in the form

Flv) = Pl(\))F(’l)(v)+P2(\’)F(‘2)(\))+Fp(v) . (4.8)

(1),F(2)

where F are the two independent solutions of the corresponding
homogeneous (RHS = 0) equation, and Fp(v) is a particular solution
of the inhomogeneous equation. P1 and P2 are arbitrary even periodic
functions with period unity.

Determination of a unique solution to (4.41) requires
restricting the solution to a particular class of functions
satisfying a specified analyticity condition, along with a

prescribed behavior as |[Im v| + =.

More specifically, it is possible to write

. re
Folv) = -4ic + e 12D cin o ue‘ H\(’l)(kp) 4 (4.42a)
) Ugar p
0
- -i(m/2)v _. 0 (1) do
Fo(v) ve sin vr J” u; o H ™ (ko) 5 (4.42b)

with identical expressions for Fé in terms of vf, d , and for Fé(V)
1

. 0
in terms of v , where
1

(4.43)
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From (4.39-4.43) and behavior of (ull ate =0

¢=Tl" Vll(b:'n')
and for p » =, the following conditions are satisifed by F,.F,sF.,F.:
l»j

e’ 0’e’o

1. Fe,Fé are even functions of v, while

Fé,F0 are odd functions of v.

2. The functien F (v) is analytic in the strip |Re v| < 6,
where uf = O(pd), § >0, for p » 0. Similar results hold for
Fo,Fé,Fé in terms of u?,vf,v?, respectively.

3. The function Fe(v) approaches zero when |Re v| < s and
|Im v| > =, provided uf|¢=“ contains no geometrical optics scattered
fields (recall the decomposition (2.8)), which is always true for
by - 2y > 0. Similar results hold for Fo,Fé, and Fé. In [23],
Lebedev and Skal'skaya write F&(v) = F&9(v) + FEd(v), equivalent
to (2.8), and then state that FEd(v) > 0 for |Re v| < &,

]Im v| + «» for all ¢,y. This is unnecessary, since by solving the
problem for ¢, - 2y > 0, (whereby Feg = 0), the solution for
¢y " 2y < 0 can be obtained via an appropriate analytic continuation.
Further discussions regarding the behavior as |Im v| + = can be found
in Appendix A.

Conditions (1-3) above are sufficient to uniquely determine
the solution (4.41).

Whenn = 0, equations (4.39) can be solved directly, yielding

the known solutions for a perfectly conducting wedge (E-polarization)

_ cos v(m - ¢0)cos Vi
Fa(v) o = -4 RICEE (4.443)
F (v) - 4 sin v(r - ¢0)Sin vy
0 \Y _ = 1 S'in \)(n ~ w) (4-44b)
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Although the solution to (4.40) (H-polarization) with n = 0
cannot be as easily deduced, the resulting equations can be solved
via Fourier transform techniques, yielding the correct expressions.

Furthermore, it is relatively straightforward to solve (4.39-
40) for the special cases y = 0, n/2, corresponding to a resistive
half-plane and full plane, respectively. Both solutions are known,
the latter being the simple geometrical optics reflected and
transmitted plane waves, while the former having been given in
[27,28].

The lack of available methods for solving functional equations
of the type (4.39-40) has prevented the author from obtaining an
exact solution for arbitrary values of y. However, since (4.39-40)
were derived from (4.27-28) based on the assumption that (L,Q) were
analytic in a strip [Re v| < &, with 6§ > 1, it is reasonable to ask
if a different set of equations, replacing (4.39-40), can be derived

in the more general situation where § > 0. Such a derivation is

presented in the next section.

4.2.2 Integral Equation Method

The starting point for this section will be equations
(4.27-28). It is beneficial to immediately express them in terms
of symmetric and antisymmetric components. This is achieved by
substitution of (4.36-38), then adding and subtracting (4.27a) and
(4.27b), and similarly, (4.28a) and (4.28b). The net results are

the following:
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E-Polarization:

Falv) , 2k ei(n/Z)va e

- Hsl)(ko)dp

cos vy = n
o .
sinv(r - ¢ +9) sinvir-¢ -y)
= - 9 - 0
csc vn'[ZCv STlr =%, + 9) G R (4.45a)

F (v) . ®
o' 2ik i(w/2)v 0 (1)
sinw ~ 7 ° Jﬁ ul ¢=va (ko) do
0
. sin v(r - ¢_ +¢) sinv(r-¢_ -
= H oscovr| = 9 - = o~ ¥) (4.45b)
n sin(r - ¢, +¥) sin(m - by = V)
H-Polarization:
sin v(m - ¢¥) ., ikn _i(m/2)v )
STh o Fe(v) e v ] b= v kp)d
0

= 2§ csc vn[n(d1 - dz) tsinv(r - ¢ +y) - sinv(r - by = ¥)]

(4.46a)
COZi:(gn' blp) - e Hr/ahy J [v> - VZ]‘W Hél)(ko)dp
0
= -2 csc vnfsin v(r - o) + ) +sinv(r - ¢ - y)] (4.46b)

From this point on it will be assumed that b - 29 > 0
(implying y < n/2), which for reasons stated earlier allows Fe(v) -0
for |Im v| + », |Re v| < &. Similar behavior is exhibited by

Fo’Fe’ and Fo'
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. . e .
In [23] it was shown that by decomposing u1 in geometrical

optics and diffracted components, i.e.,
u® = B9 4 ed , (4.47)

the transformed quantity ;f - 6?9 satisfies all the conditions of

Theorem 2, and hence the following representation is valid

)
DRSS f wsin o o800 - 1002 (0o
1 . 1 1 H
-ie (4.48)
Therefore
f [ - O (o) = - %J 1) (k)
0 0
oo . )
J uosin un[uf - uig]e”“ Hfll)(kp) du do (4.49)
i

From the conditions of Theorem 2 along with results from [21], it is
allowable to exchange the order of integration in (4.49). With

the aid of the identity
i(r/2)x (1) .2 .
e HX (kp) i KX(T1 ke)

the integration on p can be expressed in terms of the integral

[52]
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ir2  -i(m/2)v

e-l(ﬂ/Z)V‘JP Kv(-ikp)Ku(-ikp)dp = o e [cos ur + cos vﬁjq

0

|Re u| + [Rev| <1 ;3 Imk>0

The net result is

nN

8 - 97 1 (ko)dp = - b e i(n/2)
. 1 1 vV k

(] . N . .
1 usin un[uf - Uﬁg]e1(nlz)v
- COS um + COS VT du (4.50)
=je
Jones has shown [22] that the integral
u%(u) J w3 (1) () & (4.51)
1 1 M p

0

is uniformly convergent for Re u = 0, and hence (4.51) may be

substituted into (4.50) and the order of integration exchanged;

therefore

COS umw + COS v

w© je ) ~e i(n/2)n
e geq (1) 1 -i(n/2) wsin ur ue
f (w8 - uPh, ol = - gp e
0

o

© i

1 -i(n/2)v ge do sin um (1) i(n/2)u

2%k © Jﬁ “oo ~COS um + cos vm uh (ko)e d
-1

0

du

(4.52)
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By means of the identity

" ei("/Z)”Hﬁl)(kp) _ ko

it follows that

o .
U[' sin um el (7/2)0 1) (o)
_€OS um + COS vm B p)du
-]
joo
- ke sin um _ i
m j‘ COS um + COS v [Ku-l('1k°) ) Ku+1('ik0)]du
Sjo
jo= -jotl
k .
- f + f 21N BT ¢ (.ikp)du  (4.53)

. ) COS Wy - COS VT M
-Jo=1 Joot1 bl

The function Ku(-ikp) is analytic within the strip |Im u| < 1, for
Im k > 0, and IKu('ikP)l > 0 as |Im u| > = within the strip.
Therefore, (4.53) may be evaluated using residue theory, whereby the

terms on the LHS and RHS of (4.52) containing ufe cancel, leaving

2k COS um + COS vm 1

" . RN (77 ) 1
Jﬂ UTHSI)(kp)dp = 21 mi(m/2)y Jﬂ u sinur e \" 08 (1) du
0 - i (4.54)

|IRe v| + [Reu| <1 ;3 Imk>0

It is easily shown that

e-i(ﬂlz)u

a?(u) = S sinar [Fe(u)COS u(m - ¢) + 4dic] , (4.55)
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and in addition,

Joo
dic 8cv .
JP Cos um + cos vy ¥ = - Tinor (4.56)

o

Substitution of (4.54-56) into (4.45a) resylts in an integral

equation for Fe(v), viz

oo
i cos u(m - ¢) cos vy
Fe(v) B n\Jﬁ COS um + COS vt 41':e(u)du

-

4 cos v sin v(r - by ¥)  sin v(r - b9 - V)
T T q sinovrn s1‘n(¢0 -y) * sin(¢o +v)

(4.57)

|Re v| + |Re u| < 1
Equations analogous to (4.54-56) exist for the functions u?,v?,vj,v?,
and v?; hence it is possible to generate similar integral equations
from (4.45b) and (4.46) for Fo’Fé’ and Fo-
Prior to presenting the integral equations, it is convenient

for later analyses to put v = it, u = it', and define

[fe(f)sfo(T)] EFe(iT)aFo(iT)] ’

(4.58)

[fo(r),f (x)] [Fg(it),F(it)]
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In terms of the new unknowns, the integral equations can be written

as*

E-Polarization:

folo) f e e e
0
4i ch yt [ sh(m - ¢ +¥)t  shin - 4o - ¥)r }
" showt | Tsin(e, - v) sin(eg + )
fole) + -ﬁ—f M ¢ e
0
S ORI ety
" " n shawt sin(¢° - ) ) Sin(¢o +y)

H-Polarization:

sh mt' sh wt

fl(,rl)

sh yt' shir - ¥)t

€ dt'
ch mt' + ch nt

0
. ch(r - ¢o)r sh yt
W
® \ f'(t")
\ n sh wt' sh =t 0 1
folt) + ZJ ch vt' ch(r - ¢)t ch =0 *ch nt O°
0

sh(r - ¢°)T ch yt
chim - y)t

(4.59)

(4.59b)

(4.60a)

(4.60b)

*
The functions sh( ), ch( ), represent the hyperbolic sine and cosine

functions, respectively.
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The even or odd property of each unknown has been used to

reduce the integration interval to the semi-infinite line [0,=).

Equations (4.59-60) are the fundaﬁenta] equatioﬁs for the
resistive wedge scattering problem formulated via the K-L transform
technique. The author is unaware of any derivation of this type in
the Titerature on the transformation. The equations are Fredholm
integral equations of the second kind (when n # 0).

A11 four equations can be written in the form

f(r) - Af Kt,t')f(c')de' = g(r) ; 0<t<o, (4.61)
0
The functions f(t), g(t) are simultaneously either even or odd
functions, while K(t,t') is simultaneously either even or odd in both
t and t'. The parameter A is proportional to either n (H-polarization)
or n~t (E-polarization). The kernels of the Fredholm integrals are
all bounded in the quarter-plane 0 < t <=, 0 < t' <=, In addition,

the following order relations hold

[K(z,")| = O(B-wlRe TI) ;5  |Ret| +w (4.62a)
for ' = constant. Likewise

[K(t,t')| = o(Ae'("“”)lR“") ; |Ret'| += (4.62b)

for t = constant. As a result, it can be shown that
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Jﬁ [K(t,t')|] dv < = ;  for real t'

0
(4.63)

J [K(t,t')] dt' < « ;  for real t
0
i.e., the kernel K(r,t') is absolutely integrable in both t and t'.

However, it is not integrable in the quarter-plane, that is to say

J” Jr [K(t,1')|2 dr dr’
0 0]

is unbounded. Furthermore, the inhomogeneous terms g(t) of the

integral equations (4.59-60) satisfy
lgx)] = ofebom@ReTly o pe e L (468

Since it has been assumed that ¢0 - 2y > 0 for this analysis, it is

also true that

f lg(t)|dr < = . (4.65)

0
The analyticity properties of the kernels and inhomogeneous terms,
represented by K(t,t') and g(t) respectively, are also easily determined,

and can be summed up as follows:
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Lenma 1:

There exists a § > 0 such that g(7) is analytic in the strip
|Im <[ < &, and g(t) decays exponentially to zero as [Re t| + .=
uniformly within the strip.

Similarly, for the same §, the kernel K(r,t') is analytic,

as a function of both t and t', in the region

D = { [Imz] <6 Ulm<'|<s }

In addition, K(t,t') decays exponentially to zero as |Re 1| > =,
uniformly in |Im t| < &, provided t' is held to a constant within the
strip |Im t'| < §. Similar behavior holds as a function t' when t

is constant.

The properties described in Lemma 1 will be used in Chapter V
in order to develop an iterative solution to equations (4.59-60).

Once again the author has not been able to derive a closed
form solution for the unknowns represented by f(t), except in the
special cases n =0 ory =0, /2. However, the formulation of the
problem in terms of Fredholm integral equations of the second kind
allows that vast wealth of knowledge [37,38,53,54] regarding these
equations to come into play, particularly for iteratively generating

convergent series solutions.
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In the next chapter, an iterative series solution is described
based upon the method of successive approximations (Neumann series
expansion) from linear operator theory, and the convergence of the

series is discussed.



CHAPTER V. THE METHOD OF SUCCESSIVE APPROXIMATIONS

5.1 Review of Linear Operator Theory

Before deriving a series solution of the integral equations
(4.59-60), it is appropriate to review some aspects of linear
operator theory which ensure the convergence of the series. Most of
the results are taken directly from References 55 through 57.

| A complex linear vector space is a set X together with the set
of complex numbers Z, such that for all x,y€ X and a,b€ Z:

1) x+y = y+x€X

(2) ax€ X

(3) a(x +y) = ax +ayand (a +b)x = ax + bx
(4) a(bx) = (ab)x

(6) 1.x = x.A

A normed linear vector space is a linear vector space X

together with a function ||x|| on X, such that for all x,y € X

and a € I:
(1) ||x|] > 0and |[x|]|] = 0 if and only if x =0
(2) [lax|] = [la]. [|x]]

(3) [Ix +yll < xI] + [lyl].
By defining the function g(x,y) = ||x - y||, for x,y € X, the normed

linear vector space X is made a metric space with metric g.

-97-
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If X is a metric space with metric g defined as above, then
a Cauchy sequence is a sequence X, in X such that for each real g > 0,

there exists a positive integer N for which

9xp %) = |[x, = %,/ < 8 whenever n,m > N

A metric space X is said to be complete if for every Cauchy sequence

X in X there exists a y € X having

= 1im
y im x
n-+ow

A complete normed linear vector space X is called a Banach
space.
If X is a Banach space, then a linear operator T is a function

from X onto X which is linear, 1.e.,

T(ax + by) = aTx + bTy

for all x,y € X, a,b€ Z. The linear operator T on the Banach space

X is said to be bounded if these exists some M € [0,») such that

[|Tx]] < M||x]] for all x€ X

The norm of the bounded linear operator T is defined as
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T = sup | Tx]

where A = {x € X| x # 0}.
If T is a bounded linear operator on X, it is possible to define

the nth iterated operator T", n > 1, by the inductive equations

Tix = Tx

T2x T(Tx)

™y = 7(T)

for all x€ X. It is easily shown that
n n
T < [T

With this background it is possible to present the following

theorem.

Theorem 3:

If T is a bounded linear operator on the Banach space X,

with ||T|] < 1, then the series
5,7
n=1

converges in operator norm to a unique linear operator To. Furthermore,

the operator
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is defined on X, where I is the identity operator Ix = x, and from

[T < [IT||™ along with

n n
1-1I+Y ™ =11 gy -1,
p=1 p=l
it follows that
(I-T)L =1 = L(I-T)

and hence I - T is one-to-one onto X with bounded inverse

(1-mn"

i
—
"
—
+
—
b=

Theorem 3 allows a solution to the Fredholm integral equations

(4.59-60) to be formulated as a convergent series.

5.2 Series Solution to the Fredholm Integral Equations

The general form for the Fredholm integral equations can be

written, as before,

-]

fm-xj (e, )f(c )de = gls) (5.1)

0

where f(t) represents the desired unknown. Using operator notation,

(5.1) can be written as
(I-T)f =g , (5.2)

where the linear operator T is given by
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Tf K(t,t')f(c")de" . (5.3)

1]
>
oCl— s

It is desirable to select a Banach space X such that T is a
bounded operator on this space. The results of Theorem 3 can then
be applied to equation (5.2) to generate a series solution for f(z).
In order to specify the Banach space X it is beneficial to
recall the properties of f(t) and g(t), as they must belong to the
space. In particular, from Chapter IV and Appendix A,
1. f(1), g(r) are analytic in a strip [Imt| <6, &> 0 and
2. f(t), g(r) ~ 0 as |Re t| + = uniformly within the strip
for bg - 2y > 0, implying vy < n/2.
If the region -=» < 1 < « is denoted by a, then from (1) and (2) above
it follows that
sup [ f(7)] < =,
TEa
and similarly for g(r); i.e., f and g are bounded in gq.
Therefore, consider the linear vector space X defined as the set
of bounded functions of t analytic in the strip |[Im t| < & and

hence continuous on the region g. The norm of f(t) € X is defined as

[Ifl] = sup |f(c)] . (5.4)
TEa

From a theorem of topology (see for example, pp. 84, 108, 216 of [57]),

it follows that X is complete, and hence X is a Banach space.
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In addition, from (5.3) and the definition of the norm it follows
that Tx€ X for all x&€ X, and thus T is indeed a linear operation
from X into itself.

With the norm as defined in (5.4), it is possible to show that
the operator T is bounded for the kernels K(t,t') occurring in

(4.59-60). In particular,

[ITF[| = sup IAjK(T,T')f(T')dr']
TE a 0
< sup [3] S‘IK(T,T')IdT' sup| f(t)|
T€a 0 T€q
< [ LIFID sup SIK(T,T')Idr' . (5.5)

TEA O

Consider the various kernels of (4.59-60).

E-Polarization:

-]

S IKe(T,T')IdT'

0

ch(r - ¢
ch ¥t S ch mt' + ¢
0

_ chyt shir - ¢)r _ 1 sh(r - 2p)t
" " sh T sin ¥ -7cscw1_ sh nt

hir - ! .
sh yr S chsrriTlT =5 dr
0

|K (r,7') de'

ot——3

o]

ch vt S' chr - y)! dr!
0

I A

ch 7' + ch mt

- %cscw[1 ) sh(r - 2y)t ]

sh nt
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implying

] 1 1 .I
sup Kyt ),Ko(r,f )dt' < 7 CsC ¥ . (5.6)

TE a

ot—s

Likewise,

H-Polarization:

il - i | g o v e
0 0

©

¢ T _shm ch(m - y)t! de!
- ¢ sh(m - V)T ch mt' + ¢ch 7t °F
(o]
T sh t shim - y)t

= I
v sh(m -y)t shratsing o csc v

ol—g

] 1 | h : ] 1
IKO(T,t )dt' = EE%;—§£$7?- X 22 JI, [ch mt' + ch nt] dr
0
sh mt sh(m - y)t' '
<2 chlr - ¥)t S ch mt' + ch =t dr
0
<2 hmr o shlm =)ty ey th(n - )

chir - ¢)t  shrt siny

implying

8

sup [Kelrst' )oK (ot )de! < Tescy . (5.7)

T€a o

LS
v

The results above have made use of the assumption 0o = 20 > 0 which

requires y < w/2.
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It is now possible to derive a set of bounds for the norms of
the various operators. Let the operator T associated with the kernel
Ke(r,r') be denoted by Te’ and so on. From the definition of the norm

of a linear operator, it follows that

1
llTe,TOII < z-lkl csc ¥ (5.8)
[lTé,Téll < %-[A'l csc ¥ (5.9)
where
}\=__2_
n
v - .1
A 2

In order to make use of Theorem 3, it is required that |[|T|| <1,

and hence from (5.8-9)
In| >cscy;  for T.T s (5.10a)
In| < Zsing ;3 for TL,T (5.10b)
T i e’'o ° )
Equation (5.10) provides sufficient conditions on n for the convergence

of the series in Theorem 3.

Specifically, the solutions to (4.59-60) in the Banach space X

can be written as follows:
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fe(T) = g (1) + Z nge(r)
n=1
folt) = g (x) + Z Tog,(7)
n=1
where
n -
g,oge,o ) (‘§) S Kg,o(“f 195 o(7") dr!
0
and
In] > csc y

H-Polarization:

! = ! 'n 1
fole) = gyle) + 3 1 Mgrte)
n=1
where .
n 'n 1! ' 1
e ogé,o (' %') S Ke,o(T’T )ge’ (') dr
0
and
lnf < %E-sin )

The iterated kernel Kn(r,r') is defined via

(5.11a)

(5.11b)

(5.12a)

(5.12b)
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Kl(TgT') = K(T:TI)

©

M) = X (e, ,e') e, > 2

o]

Several observations regarding the solutions (5.11-12) can be
made:

1. For E-polarization the solution is in the form of a power
series in n™!, and is convergent outside the disc |n| < csc y. For
H-polarization, the series is in powers of n, convergent within the
disc |n] <(2¢/7)sin y.

2. It may be possible to extend the regions of convergence of
(5.11-12) beyond the 1imits expressed in (1) above, since the limits
are simply sufficient conditions for the convergence of the series.

3. The two regions of convergence for E- and H-polarization
do not overlap, and hencé cannot be used simultaneously to solve the
problem with an arbitrarily polarized incident field.

4. The series fail to converge for y = 0, at least in the
sufficient sense. This is consistent with Senior's results [10]
which indicated that for the half-plane an expansion in terms of
n also contained contributions of order n 1n n, and thus could not be
expressed as a simple power series.

5. For E-polarization, in the limit n + », the unknowns
fe’ fo + 0. This is consistent with the fact that for n + =, the

wedge ceases to exist, and hence the scattered field is zero.
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Likewise, for H-polarization and n = 0, the result is fé,fé = gé,gé,

the known solutions for the perfectly conducting wedge.

6. The series (5.11-12) are uniformly convergent for 1 € (-=,»)

within the bounds on n by virtue of the norm (5.4). When applying

the inverse transform to the unknowns fe,fo, etc., it is therefore

possible to exchange the order of integration and summation. This

allows an approximate solution to be generated, with each successive

term increasing the accuracy of the approximation.

~ .~

The final forms for the unknown transformed fields (u,v) are

given by:

E-Polarization:

~

ﬂ1(V)

u,(v)

-i(m/2)v
= & [f (-iv)cos v(m - ¢) + f (~iv)sin v(r - ¢) + 2ic]
2v sin v 0
(5.13a)
e-i(w/Z)v

. [ £ (iv) 88 v(r - p)

- -iv
2v sinvr| e ! coS VY cos v¢

ey sinv(r - ¥) . .
+ fo( iv) ST W sinve + 2ic ]

(5.13b)

H-Polarization:

where

e-i(n/Z)v [

- fwdwmswn-¢)+Quwnmvh-¢)+ﬁq]

e

(5.14a)

-i(x/2) .
2oL 7 [ fo(iv) sin vln = w) co vé

" 2y sinyr sin vy

+ fé(-iv) cos v(r - y) sin vg+ zidz ] ,

Cos vy

(5.14b)
the substitution Tt = -~iv has been used.
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Recall that to invert (5.13-14) directly requires restraining
¢ to regions where the geometrical optics fields are zero. Otherwise,
the transforms of these fields must be subtracted prior to inversion
(see equation (4.48) and Reference 23). Having already assumed the
condition do " 2y = ¢ > 0, the appropriate interval on ¢ for which

the geometrical optics field is zero is given by
|7 -] < ¢ (5.15)

in Region 1, i.e., for GI,GI. In Region 2, no such interval exists.
Since it is a difficult task to determine the geometrical optics
field in the interior of the wedge, especially for small values of
y, the half-angle of the wedge, one must first determine (ul,vl)
from (61,91) in the interval (5.15), and then analytically continue
the result to the surface of the wedge. From the boundary conditions ‘
it is then possible to determine (uz,vz) on the surface of the wedge,
and hence everywhere inside Region 2. A more straightforward
procedure is to use Jones' inversion formula (4.4c), and to deform
the contour of integration in such a manner which allows € to go to
zero. This procedure is outlined in [22]. In fact, Jones' formula
can be used to directly invert all of (5.13-14) without need for a
restriction such as (5.15).

It would next be desirable to complement the series solutions
(5.11-12) with similar results for small n (E-polarization) or
large n (H-polarization). Such an approach is considered in the

next section.
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5.3 Operator Theory for the Difference Equations

For the purposes of this discussion it is sufficient to
consider one of the integral equations (4.59-60), say (4.59).

It is easily shown that the corresponding difference
equation (4.39a), which was derived under the assumption that
Fe(v) was analytic in a strip |Re v| < &, where § > 1, can be

obtained from (4.59a) under the same assumption. By replacing <

by alternately t + i and t - i in (4.59a), it follows that:

2 - y)t' ch + 9 '\ A .
folr +1) + 5 ,g = c; wrw - cg nf(T . felr')de' = g(r + 1)
0
(5.16a)
. 2 \ ch(m - ¥)t' ch y(r - i) et o .
folr = 1) + 2 S chmt’ - ch 7t flrt)de! = gy (v - 1)
0
(5.16b)

Equation (4.59a) s valid for |Im | + |Im t'| < 1, which becomes
|Im t| < 1 since t' is real. It then follows that (5.16a) is valid
for -2 < |Im ¢| < 0, while (5.16b) is valid for 0 < [Im 7| < 2.

From the:relation (4.58) between fe(r) and Fe(v), where
v = it, the requirement that Fe(v) is analytic in |[Re v| < 8, 6§ > 1,
implies fe(r) is analytic in [Im 1| < §. This behavior allows one
to consider the limits as [Im 1| - 0%,0™ in (5.16a,b), respectively.

From the formulas of Plemelj (see for example, p. 232 of [58]),
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. I Ch(" - ‘Q)TI ch IIJ(T : 1) 1 '
1im X ch nt" ~ ch nt fole') dr
0

+ -
Imt~>0 ,0

i1

ch v(r ¥ i)ch(r - y)r f (z) + chir - v)t' ch (= : i)
sh mt e’ ch mt' - ch mt
0

. fe(r') dr'  (5.17)

Division of (5.16a,b) by c¢h w(r ¥ i), taking the limit as |Im | -

0+,0', respectively, and making use of (5.17) leads to

f(t+1) s e .
e g_]_ChTT-lpT Ch(‘n"le)'{' 1 |
cho(tr +1) n  shart fe(T) ¥ g ch g¢' = ch e fe(T )de
0
g (t +1)
S Cchylr +1)
fe(T - 1) L2 ch(n‘- )t £ (1) + " ch(r - y)t' £ (x')dr!
chy(r - 1) sh mt e chmt' - chwrt e
0
golr - 1)
chv(x - 1)

Subtracting the former from the latter and inserting the expression

for ge(r) gives

f (¢ - 1) fe(r + 1)

e 4i ch(r -
chy(t- 1)  chylr+ 1) iy sé T fe(T)

16 chir - ¢0)r ch yt
n sh nt

(5.18)
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which easily reduces to (4.39a) by letting t = -iv, fe(-iv) = Fe(v),
and recalling that Fe(v) is an even function.
The above derivation suggests an interesting result from

operator theory. In (5.2) the integral equation was written as

(1 - Te)fe = gy (5.19)
with Te being an integral operator. Equation (5.18) is then

equivalent to

-1 _ -1 _ -l
To LI -TOf] = (T, - Df, = Tog, (5.20)
where the operator T;l is the left inverse of Te’ provided the space
of functions is restricted to those which are analytic in a strip
|Im 1| <6, 6§ >1. It is also possible to show that T;I is a right

inverse under the same restrictions. Explicitly, T;1 is defined by

e sh 1 fe(r - 1) fe(r + 1)

n—. -
e e 41 ch(r - )t | chy(r - 1) ch vt +1) (5.2])

where f_ is even and analytic in |Im | <6, 8§ > 1. Obviously,

T;l is a difference operator.

équation (5.20) can be written as

(I - T:)fe = -T;lge (5.22)
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which Teads one to ask if the results of Theorem 3 can be used tg
generate a series solution for fe in terms of the iterated operator
(T;I)", which is essentially a series in powers of n. Such a series
would indeed complement the earlier result, equation (5.11a); which
expresses f, as a power series in _
However, the author has not been able to develop a suitable
bound for the norm of T;l, and hence is not able to take advantage
of the results of the theorem. Nonetheless, with a suitable choice
of a Banach space of functions and aperator norm, it may be possible
to prove the convergence of a series in T;I. Indeed, the author
has shown that the first two terms of such a series produce the
correct geometrical optics fields. Furthermore, when n = 0, the
series reduces to a single term which is the correct solution for the
perfectly conducting wedge. Thus it appears that the series, even if
it is not convergent, may provide an asymptotic representation as
n+ 0. Similar conclusions regarding the other operators To’ Té,

Té can be made.



CHAPTER VI. COMMENTS AND CONCLUSIONS

The electromagnetic scattering of an arbitrarily polarized plane
wave normally incident upon a resistive wedge has been formulated via
a pair of related function-theoretic techniques, the method of
Maliuzhinets [12-14] and the Kontorovich-Lebedev transform method
[20-22], both of which have been successfully used to solve scattering
problems in a single wedge-shaped region.

The goal of the author was twofold: obviously to find an exact
solution to the resistive wedge problem, and secondly, to point out the
similarities between the two function-theoretic techniques as well as
the complexity that arises in applying them to a two-region problem.

With regard to the latter of these goals, the author has shown
that, as with past applications, both methods lead to a set of difference
(or functional) equationé for the various unknowns. However, if these
methods are simply applied directly, as in the single region problenm,
the presence of nonzero fields in two regions produces a coupling of the
unknowns in the functional equations (see equations (3.9-10) and
(4.31-32), for example). By means of a decomposition into symmetric
and antisymmetric components, the equations were successfully uncoupled,
although they remained sufficiently complex to prevent the determin-
ation of closed form exact solutions.

One reason for this shortcoming is the lack of a systematic

technique for solving difference equations of order greater than one.
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To this end, the author has developed a novel procedure which,

under less restrictive conditions, replaces the difference equations
of the K-L method with Fredholm integral equations of the second
kind. This allows a large number of techniques to come into‘p1ay
for the determination of exact and approximate solutions. |

One such technique, the method of successive approximations,
is shown to lead to uniformly convergent power series solutions for
certain values of the normalized resistivity n. In particular, for
E-polarization, the series converge when n is large, while for
H-polarization, they converge when n is small. This behavior
prevents the use of both polarizations simultaneously for generating
the solution to an arbitrarily polarized incident field.

Although an attempt to alleviate this problem was made by
demonstrating that the integral operator and difference operator
were inverses of each other under restricted conditions, the author
was not able to bound the difference operator over the space of
functions being considered, and hence could not prove a series
generated with this operator would converge. Nonetheless, the series
does exhibit proper behavior under certain circumstances, leaving open
the question as to whether a bound for the operator does exist.
Certainly, this is an area open to future work. A parallel effort
investigating more accurate bounds for the integral operators,
thereby extending the radius of convergence of the series, is also
worth pursuing.

In addition, the author is hoping to communicate the results

of this work, particularly the functional equations (3.32-33) and
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(4.39-40), to §evera1 authorities on functional equations for their
suggestions regarding possible solutions.

Finally, the reader may find this work conspicuously lacking
in numerical or graphical results. This is not an accident, as the
purpose of the author was to explore the possibility of extending
proven function-theoretic techniques toward finding an exact solution
for the resistive wedge, and in the process, to illustrate the nature
of the complications that arise when these techniques are applied
to a two-region problem. The author believes that the presentation
of numerical data based on an approximate solution is not consistent

with these goals, and hence has reserved this area for pursuit in

the future.



APPENDIX .  THEOREMS FOR THE METHODS OF MALIUZHINETS AND THE
KONTOROVICH~LEBEDEY TRANSFORM

A.1 The Method of Maliuzhinets

The material in this section is derived entirely from the
works of Maliuzhinets [13-15,51]. The basis for his method is
the representation of a function S(p,$) of the polar coordinates

(ps6) in the form of a Sommerfeld ihtegra], viz.

1 ik
o = [ e
Y

where y is a contour in the complex o plane consisting of two loops,
Y, and Y- The contour approaches infinity within the shaded regions
where the real part of 1kpc05a is negative for positive real k, as
shown in Fig. 3.1, and reproduced for convenience in Fig. A.1.

In [14], Maliuzhinets establishes conditions for the existence
of a unique solution s(a) to the integral equation (A.1) for S(p,s)

satisfying certain boundedness conditions.

Theorem A.1:
Let M,a,b,c,d be positive numbers, and let ¢,m be numbers

satisfying
0<€<1r

jarg | <

NTE
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Fig. A.1: Contour of Integration for the Representation of a
Function by a Sommerfeld Integral.
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Let F(p) be a function satisfying the inequality
IFlo)| < M[o|~1*a eblel

for positive values of p, and also in the entire region

0 < lpl < ®

larg pl < El ’ 0< €1 < T

where this function is analytic. Consider the integral equation

Flp) = -27‘; Xe"‘°°°5°‘ fla) do (A.2)
,YI

where the contour y' is made up of two Tloops, y; and yé. The loop

Y1 consists of the two half lines

Re a = argml‘(e +%)

Ima > d

and the line segment Im o = d. The loop y; is symmetric with
respect to Yi about o« = 0 (see Fig. A.2).

Then there exists one and only one solution f(a) to (A.2)
which is analytic on and within the contour y' except at infinitely

distant points, and which satisfies the additional constraints
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— — o m— S et e

The Contour of Integration y' in the Complex o Plane.

Fig. A.2:
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(1-a )|Im o
| fla)]| < M1 e ! ; Ml,a >0 (A.3)

1
fla) = -f(-a)

This function is represented by the integral

f(a) = - m ;'In Q g F(p)e-ﬂipCOSa da (A.4)
0

for Re(m cos o) > 0. For this function, a = a.
1

Proof:

In view of the fact that f(a) is odd, (A.2) can be written as

Fle) = l?'j‘ ™05 £(4) da (A.5)

T
1
Y
1

i(arg m)

By making a change of variables, W = e cosa, and defining

g) = -2 o) -ilarg ™ (A.6)

sin a

equation (A.5) becomes

1 m oW

Fle) 5 S‘ e g(W) dw , (A.7)
T

where I' is the image of y; under the transformation of variables. The

contour T intersects the real axis between zero and ch d, and coincides

at infinity with the rays arg W = (e + %~), as shown in Fig. (A.3).



Fig. A.3:
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Contour of Integration I in the Complex W Plane.
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The function g(W) is analytic to the right of I', which coincides
with the interior of the loop y;, where f(a)/sin o is analytic.

From (A.3) it follows that

lg(W)]| < 4M1|w_|'al , (W[ >= , Jarg W] <e+ 7 . (A.8)
. . -]mlpw . .
Multiplying (A.7) by e , where Re W > ¢h d, and integrating

over (0,») on p gives

XF(p)e‘l“‘"’“ do = -2%1—5 do Se'"‘"’(”l'”) g4 ) &, (A9)
0
0

r

where the integration is taken as a limit at the endpoints. By virtue
of (A.8) and the fact that Re(W -W) < 0, the order of integration may

be exchanged, and the limit taken, which leads to

©

§ rlode Mo gy - ZT}HF‘Y ) (i (A.10
W-W m
r Y

o]

where, thanks to (A.8), the integral in (A.10) has been evaluated from

the theory of residues. Transforming W back to a,

m sin a

S F(p) eMC0Se 40 - _ 2f(a)
v .

which is the desired result given in (A.4).
In order to show that the assumptions regarding the analyticity
of f(a), along with the conditions (A.3), are indeed true, consider

equation (A.10) as a definition of the function g(W).
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Because of the conditions that F(p) be analytic for
larg o] < el, it follows that the integration for p > ¢ in (A.10)
may be displaced to an arbitrary half line |arg o| = 2 > ¢ (by choice),
from which it follows that g(W) is analytic for large |W|, pfovided
|arg W| < ¢ + n/2. Defining f(a) via (A.6), one then concludes that
for sufficiently large d, f(a) is analytic in Ima > d, |Re o - arg m|
< ¢ + 1/2, which corresponds to the interior of the Toop y{.

In addition, because it has been assumed that

IF(D)[ < Mlpl-]"’a eb'r‘l

it can be shown via (A.10) that

-p|m
J.%%m ) S IF(o)] e®[Milcos(arg W) 4

0
< Mlmd|@ S x -1ta e-x[cos(argW)-b/lmWIJ dx
0

Since the integral is bounded for sufficiently large |W|,

lg)] < M W™ L M >0,

2 2

confirming (A.8), and since
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it follows that

| fla)] < M e(1-al)llma]

with a, = a, as assumed. Thus the proof is complete.

By means of the substitutions
Flo) = S(ps¢)
fa') = glsla’ +7-)-sla’ +7-0)]
M = ik (implying Im k > 0)

and replacing o' = a - m, equation (A.5) becomes

(o0 = gy [ €O Isla - o) - sl v 2r - )]

"1
From Fig. A.1 and the relation between the contours Yl and vy ,
2

the expression

is obtained, which agrees with (A.1).
An important result of Theorem A.1 is that an odd solution

to the equation
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must vanish identically; consequently, a solution to the equation

g e'lkpCOSa s(a - ¢)da = 0 (A.12)
¥

must satisfy the condition

s(a = ¢) = s(2r -a-9) , (A.13)

i.e., the coefficient of the exponential in the integral must be even
about o = w. This result is used extensively in formulating the
functional equations for the unknowns in Chapter III.

The justification of a representation such as (A.1) for the

unknown fields satisfying the Helmholtz equation
(v2 + k2)S(p,¢) = 0

is discussed in considerable detail in [51], and will not be reproduced
here for the sake of brevity. However, it is worthwhile noting that the
bounds placed upon the function F(p) in Theorem A.1 include the functions
S(p,s) satisfying the edge and radiation conditions discussed in Chapter
II. Furthermore, from [51], the value of S(p,$) at p = 0, provided

S(p .0 ) is bounded, is given by
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$(0,6) = 2is(i=) = -2is(-i=) , (A.14)

and does not depend on ¢, as expected. The boundedness at p = 0 implies
a > 1, which also implies, from (A.3), that s(i=) < =, consistent with
(A.14).

The representation (A.1) is simply a superposition of elementary
plane wave solutions to the Helmholtz equation. This is more readily

seen by replacing a by o - ™ + ¢, whereby

S(p,0) = E%T S e-1kpcos(a+¢) s(a - 7) da (A.15)
T4
where y¢ is simply the contour y displaced an amount m-¢ to the right.

As discussed in [51], (A.15) represents a set of plane waves incident
from a direction 2r - o, where o is complex, allowing for evanescent
(decaying) waves.

Recalling the geometry for the scattering of a plane wave by a

resistive wedge, the incident field is given by

(wiyly = egfkecos(o-6) (A.16)

Maliuzhinets shows in [51] that discrete plane waves, given by the
geometrical optics fields, correspond to poles of s(a-m) lying within
the stripr - ¢ < Rea < 3r - ¢. From (A.16), it follows that s(a-7)
has a pole at o = 27 - 9o with residue unity. Furthermore, the field

(A.16) is the only geometrical optics field incident from within
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Region 1 (¢ < ¢ < 2r - ), as all other fields appear to emanate
from within the wedge (i.e., Region 2).

Therefore, it may be stated that sl(a) (representing the field
in Region 1) satisfies an additional constraint for the wedge problenm,
that is

s, (e=m) - (a-2r ) (A.17)

is analytic for y < Re a < 2r - y. This condition is stated in
Chapter III as a means of uniquely determining a solution to the

functional equations derived for the unknowns.

A.2 The Kontorovich-Lebedev Transform

The requirements for the existence of the K-L transform and its
inverse are rigorously described in [21,22,59], each of which prescribes
a set of conditions for a function f(p) or }(v) in order for the
integral formulas to converge. The results of [21] have been
reproduced without proof in Theorem 2, Chapter IV of this work.

Rather than repeat any of these derivations here, the author
will simply state the necessary results, and then apply them to the
particular functions being considered in Chapter IV in order to
Jjustify the assumptions made therein.

Specifically, a set of total fields (U,V), representing the
solution to the scattering by a resistive wedge of an E- or H-polarized
incident plane wave, were shown in Chapter II to have certain

boundedness properties as p approaches zero and infinity.
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Near the vertex of the wedge

(uy) = 06%) , >0 , o>0 , (A.18)

which allows (U,¥) to be at most a nonzero constant at p = 0. Further-

more, by writing,

d

(Uv) = (U9 + e, V9 + 9 (A.19)
i.e., as a sum of geometrical optics and diffracted fields, the
radiation condition requires
Ud
lim 01/2[2— - ik] = 0 (A.20)
P d
p > @ v

-1/2
which implies that (Ud,Vd) decay at least as rapidly as p / as

p + o, In addition, several of the inversion theorems assume

Im k > 0, in which case, Writing
(UV) = (U + U, v eV
the scattered fields (US,VS) behave as e'bp as p >~ », where b > 0.

It is convenient to summarize these results into a set of

assumptions regarding (U,V):
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1. There exist A, Py > 0 such that

Uy < A%, a0 (A.21)
for o 2 Py-

2. There exist B,C > 0 such that
-1/2 e‘ikp

w9 < B (A.22a)

w99 < ¢ (A.22b)
for p > Py
Since the value of |U1,Vi| is unity for all p, it follows
that (US,V®) satisfy (A.21) above. Inasmuch as the scattered fields
contain geometrical optics terms, (US,V%) also satisfy (A.22b).
In Chapter IV, the modified scattered fields

ik
u US +ce P

v VS +d elke

where ¢ = -US (p=0), d = -V® (o = 0), were defined. This implies
that (u,v) satisfy (A.21) with § strictly greater than zero. In a
manner analogous to (A.19), it is possible to separate the geometrical

optics terms from (u,v), (as was done in [23]), viz

g o= w9+l - (US9 + 9 e1k°) + (uS9 4 eikp) (A.24)

and similarly for v. Note that ug,Vg both satisfy (A.21) with § > 0,

in addition to (A.22b).
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Consider the K-L transform of (u,v), given by

- 1 d
(u,v) = g (u,v)H\()* )(.kp) p—p : (A.25)
0
(1) _ ¢ | Rev|y . ‘

Because Hv (ko) = 0(p ), it follows from (A.21) and (A.22b) that
the integral (A.25) is uniformly convergent for |Re v| < &, and thus
(u,v) are analytic functions in the strip |Re v| < §. In addition,
from [23] it can be shown that (~d,\~/d) approach zero as [Im v| + =,
|Re v| < &. Unfortunately, the geometrical optics transformed fields

do not exhibit such behavior.

In particular, a general form for (ug,vg) is

N
(WI,v9) = z an[e']kpcossn - eTkp] (4.26)

n=1

where By = ¢ = ¢ps 0 is the negative direction of propagation of the

plane wave, and an,N are constants. The transform is then given by

N .
W9 = Z a, S (e'ikpCOSB - eikp)H\()l)(kp) do

0 p

N
1 - cos v(r 3 8)
= Z 21a e i(v/2) * . (A.27)
n=

v sin vr

Note that the second order pole at v = 0 is cancelled by the second
order zero of [1 - COSV(Jr-Bn)]. Therefore (ug,vg) are analytic in
|Re v| < 1. The minus sign corresponds to 0 < By < 21, the plus sign
to -2r < g < 0. It is easy to show that (u3,v9) become unbounded

for n/2 < |g,| < 3n/2 when v » -i=. It is for this reason that one

cannot perform the inversion
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joo
[ @i o e

e

(U,V) = -

| —

directly. Instead it is the integral
jo
(u - ug, v - vg) = --% S (u - W, v - vg)vdv(kp) de (A.28)
e
which must be considered. Jones avoided this problem in [22] by
defining the inversion via

joo

(upy) = - lin % S e (Uv)vd (ko) do (A.29)

allowing the inclusion of the geometrical optics terms.

It should be noted that should there exist intervals in ¢ for
which (ug,vg) are zero, then the inversion may be carried out for these
values of ¢, and the result analytically continued for other values.
This method neatly generates the geometrical optics terms.

In Section 4.2.2, the derivation of the integral equations for

the various unknowns made use of a formula of the form

© joo .
i ; : 2)u
g, (1) . 1 -i(n/2)v {0 posin ur ug(p)el(“/
SU H\) (ko) dp 7k & COS um * COS vr du .(A.30)
0 Yie

It is desirable to explicitly show this result.

By inserting (A.26) into the LHS of (A.30) one obtains

® N .
2a -i(r/2)v sin v(r - |8,.])
g, (1) _ n e
S u Hvl (ko) do = kK sin v [“ * sin[g, | : - (R.31)
0 n=1
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Similarly, substitution of (A.22) into the RHS of (A.30) gives

jo .
i . ~i(n/2)n .
1 _=i(n/2)v p sin ur e g
2k € g COS um + COS VT u? ) du

T

©

0 iy | L Tyl

n
k € ch mt' + cos vw
0

Mz

b=
n
—

Zan e-i(n/Z)v sin v(r - |Bn|)
k sinovr sin [8,]

o

3
n
—

and hence (A.30) is indeed valid.*

dr'

(A.32)

* .
This result was derived in Chapter IV in a slightly different manner,
based on the uniform convergence of the transform representation of

u”. The results are equivalent.
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