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Abstract

The integral equations governing the scattering of a plane
electromagnetic wave by an electrically and magnetically permeable body
are derived with the aid of the free-space electric dyadic Green
functions. In contrast to previous works, equivalent volume currents

or surface currents are not introduced.
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The General Formulation

The problem under consideration is illustrated in Fig. 1 where
Region I is occupied by an electrically and magnetically permeable body
with constitutive constants b and 3 where 2 equal to e[1 + i(o/we)]
for a lossy dielectric body. In general, ul could be complex also for
a lossy magnetized body. A plane wave is impending upon the body which
is placed in air with constitutive constants My and €, This problem
has previously been investigated by many authors. References [I] and [II]
provided a quite complete bibliography on this problem.

In this work we shall formulate the problem without introducing
the concepts of equivalent electrically and magnetically polarized

currents, the result appears to be simpler and the derivation more expedient.

The pertinent equations are:
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Region (II)

v xE = depH
2 o'
v X H2 = -1w€OE2
hence _ _
E E (3)
VXV X ( _2) - k2 ( 2 ) =0
iR i, (4)

where ké = mzuoso.
Equations (1-4) can now be integrated with the aid of the vector-
dyadic Green's theorem and the free-space electric dyadic Green's

function defined in air (uo,eo) which satisfies the equation
= _ 2: - = ) __'
VXV x G, - k26, Is(R - R") . (5)
The vector-dyadic Green's theorem states

ff [PevxvxQ-(@xvxP)-Qdv = - ﬂﬁ [PxVxQ
v

+(vxP)xQds , 6)

where ﬁ denotes the outward normal to S. Now let

with R' located in Region (I). Substituting (1) and (5) into (6) we

obtain
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- jﬁj, n - [E(R) x v x Eo(ﬁ/ﬁ') + (v x E (R))x Eo(ﬁ/ﬁ')] ds (7)
7 1 1 1

Following the same procedure for Hl we obtain

Hl(rz') = (ki - K2) f{f Hl(ﬁ) . EO(R/R') dv

Equations (7) and (8) are compatible. In other words, Eq. (8) can be
derived from Eq. (7) by using the relation v' x El(ﬁ') = 1wu1H1(R').
The proof is omitted here.

By integrating Eq. (3) in Region II using the same Eo(ﬁ/ﬁ')

with R' Tocated in Region (I) we obtain

g[]r ﬁo . [sz v X EO‘R/ﬁ') + (v x En(ﬁ)) x G (R/R')1dS = 0
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The surface integral evaluated on S_ has a simple interpretation. If
we consider a plane wave propagating in an empty space the integration

of Eq. (3) with Eo(ﬁ/ﬁ') would yield



ey = - 5@}‘a2 e o x B+ v x BTy B Tas (10)
Sco
because in the absence of a scattering body E2 = E(i). In the presence

of the scattered body we can write

e o= E) 4 g(s) (1)
2 2

eo= g0y gls) (12)
1 1

The surface integral evaluated on S_ in (9) can be decomposed into two

parts, i.e.,

fyﬁz-m“)xvxg+(vxﬂ”)mes
Se

+ ~l;fﬁ 32-[E£s) XV X 50 + (v x E;s)) X Eo]ds

(s)

Because of the radiation condition of Eo and E

(s)

at infinity the second
integral involving E vanishes while the first integral, in view of

Eq. (10), represents -E(i)(ﬁ) hence Eq. (9) is equivalent to
F:(1)(13') = jﬁjﬁﬁ e [E xvx6 + (v« Ez) X Eo]dS (13)

where we have omitted the dependent variables pertaining to various

terms in the integrand. Similarly it can be shown



ey - ifﬁ-[nxvxé +(vxR)xGlds (14)
2 2 0 2 0

Using these two relations Egs. (7) and (8) can be changed to an alternative

form involving the incident field. We consider the surface term in

Eq. (7). On S the boundary conditions are

n x(E -E) =0 (15)
1 1 2
. vxE vxE
nox L. Z1=0 (16)
1 M My
hence
A u A
n xXvVxE = (-—L) n xv xE
1 1 u 1 2
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The surface term in Eq. (7) therefore can be written in the form

S
- (31 ;Ou°> 5@31 < L7 % B ) x Gylds
. ﬂ”mw-(hfgi)iyal.uvxa)xams (a7)

Equation (7) thus can be transformed to
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_( 1 - ) ‘ij; n - [(v x El) x G, (R/R")1ds (18)

By switching the primed and unprimed variables and making use of
the symmetrical property of dyadic Green's function Eq. (18) can

finally be written in the form

) . (19)
where F S/ E1 - E(1) Carrying out the same manipulation for
Hl one finds
iSlm) = e - k) b[]:f 6, (R/R") « B_(R")dv"
1 i 0 0 1
v
1
€, ~ € = _ A - =
() @ B®R) T xv xR R (20)
1 S

where Hfs) = - p(i),
For a purely permeable dielectric body the surface integral
disappears in Eq. (19) and for a purely permeable magnetized body the

surface integral disappears in Eq. (20). To solve these equations



numerically one can split the volume integral into an indented part and
a principal part.
Once E and H are determined the scattered field in Region (II)

1 1
can be calculated using the formula

= ~ H = ~ -
E(S)(ﬁ) = - jéi‘v XxG «[n xE]+-=2G +[n xvxE]dsS
2 1 1 Mo 0 1 1
S 1
(21)
Inhomogeneous Dielectric Body
For an inhomogeneous dielectric body, nonmagnetic, the
governing equations are
vxE = deuf (22)
1 01
v X Hl = -iwe(ﬁ)El (23)
hence
VX VX E1 -k2(RE =0 (24)
1
where

k2(R) = wzuos(ﬁ)

The integration of (24) with the aid of the free space electric dyadic

Green's function yields



Sy - £ -t ff [K2(R) - K25, (R/R') « E (R
v
1

(25)

which is an exact integral equation for El(ﬁ) inside an inhomogeneous

dielectric body.
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Fig. 1: Scattering of a Plane Wave by a Permeable Body.



