RL 777

EVALUATION OF REFLECTED FIELDS AT CAUSTIC REGIONS USING
A SET OF G.0. EQUIVALENT LINE CURRENTS
John L. Volakis* and Leon Peters, Jr.
The Ohio State University

ETectroscience Laboratory
Columbus, Ohio 43212

ABSTRACT

A set of equivalent electric and magnetic Tine currents are
derived which supplement the G.0. solution in the far zone whenever
one of the surface principal radii becomes very large. These
hypothetical currents lie along the specular Tine of the surface
and are shown to produce the same result as the stationary phase
contribution of the physical optics integral. An example of a
systematic application of such equivalent currents for the
computation of the scattered field from a complex structure is

also demonstrated.
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I.  INTRODUCTION

It is well known that the Geometical Optics (GO) field due

to scattering from a surface is given in the far zone by [1,2]
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where E1(QR) is the incident electric field at QR’ R is the surface
reflection coefficient, s is the far field distance from the point
of reflection QR (see Fig. 1) to the receiver and p: , are the
principal radii of the reflected wavefront. In case of principal

plane incidence we have
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where R are the principal radii of the surface at QR, p: are
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the principal radii of the incident wavefront and cos 6, = nes-=
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-n - s' as shown in Fig. 1. It is clear that either pr can
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become infinite and equation (1) is then invalid. An example is

that of plane wave scattering by a finite cylinder in which case



the GO term becomes indeterminate. One must then resort to a

Physical Optics (P0) solution which involves the integration of the
surface currents 3}
In this paper a set of equivalent line currents is introduced

0° 2n x A" over the Tit region of the surface.

similar to the equivalent edge currents developed by Ryan and
Peters [3] for treating caustics associated with diffracted fields.
These currents reduce the solution to a line integral and will be
referred to as GO equivalent line currents since they produce the
same result as the GO expression of equation (1) and which remains
valid when equation (1) fails. Such a solution would be inherently
more accurate than is PO in that the error caused by the termination
of the integration in PO (at the shadow boundary) is eliminated.
Further, the GO equivalent Tine current can be readily improved by
introducing higher order terms such as is done in the Luneberg-
Kline expansion [2]. The use of the GO equivalent line current is
intended to give a systematic approach for computing high frequency
scattering from complex structures using the GO solution along with
the Geometrical Theory of Diffraction [1]. Section III presents an

application of these currents to a relatively complex structure.

IT. FORMULATION OF THE GO EQUIVALENT LINE CURRENTS

Consider the incidence of a plane wave over an infinite
conductive cylinder as illustrated in Fig. 2(a). The reflected

field is in the ; direction and is simply given by
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where R of equation (1) has been replaced by 1, EL is polarized
L
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along ey ore; and EE is polarized along e, ore =e ,

respectively. Note that in Fig. 2(a), él = 7 and é}l = -&1.

Our objective is to evaluate a set of equivalent electric (Ie)
and magnetic (Im) currents along the specular line of the cylinder,
so the field produced by these currents is equal to that in equation
(3). The field due to these hypothetical currents on the infinite

cylinder is given by
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where Z, is the free space impedance and k is the wave number. Equating

equations (4) with the appropriate equations (3) one obtains the
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expressions

The scattered far field in the xy plane from a finite cylinder
of length, 2, is now obtained by integrating the GO equivalent

Tine currents in equation (5) as follows:



which gives
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where pr = Rl cos ¢1/2 has been substituted according to equation
1

(2a). Also note that the backscattered field is obtained with

A

¢1 = 0. In Fig. 2(a) this corresponds to s = -;1 = -X.

According to the physical optics formulation, the backscattered

field will be given by
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Employing a stationary phase approximation of the above expression
and neglecting the erroneous contribution from the integral endpoints
at ¢ = #w, one obtains the result of equation (7).

The equivalent current expressions can be generalized to

include oblique incidences as can the PO solution as shown in Fig. 3.



In this figure the unit vectors % and Elz correspond to the principal

11

directions of the surface and ;Iz is normal to the plane of the incidence.

These are required for the computation of the principal radii associated with

the reflected wavefront. The GO equivalent line currents now take the form
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where B is the unit vector tangent to the specular line and as usual
8. = cos ' (_§1 . 5) . (10)

For a plane wave incidence and infinite R2, gr is equal to Q: (the only
T
finite radius) provided the Tine of integration is along the surface

direction associated with R . However if the convex reflection surface is doubly
2

curved, then the line of integration should follow the path tangent to the

principal surface direction corresponding to the largest radius of curvature (R ).
2

Such a path choice ensures that the GO Tine integral in (6) will reduce
to the usual GO field expression when evaluated via the stationary phase.
Further, p: may be chosen as the principal radius associated with the
direction closest to % . This should be adequate for engineering

I2
purposes and can be applied also to the case of arbitrary incidences,



provided R2 >> R which is a condition imposed earlier. If R is
1 2
not very Targe then clearly the use of the equivalent current integration

is not required.

The total reflected field from the smooth surface is the sum

of the fields caused by the GO equivalent Tine currents 1€ and Im, i.e.

A L (11)
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where E€ and E™ are associated with 1% and Im, respectively.

The limitation and accuracy of the above procedure is, of
course, comparable to that of the traditional GO expression. In
general, the surface radii of curvature must be greater than 1/4,
where X denotes the wavelength. For smaller radii a more accurate

reflection coefficient must be used in the GO expression of equation

(1).  In addition, if the observation point is not at the specular
direction then the result of this analysis will only be valid in the
main lobe region. Outside this region the scattered field must be
evaluated by considering the edge diffraction effects from the surface

terminations which correspond to the endpoints of the integral in (6).
ITI. APPLICATION TO COMPLEX GEOMETRIES

The GO equivalent current concept was systematically applied
for the evaluation of the backscattered field caused by the structure
of Fig. 4 in the xz plane (nose region). This structure consists of
a toroidal 1ip over an ogive. The usual GO analysis which includes
the reflection from the 1lip (see Fig. 5), the double and triple

reflection between the ogive and the 1ip as well as the GO fields of



the ogive (see Appendix), gives correct results in part of the region
only. The results are shown in Fig. 6. As seen, the GO solution fails
for incidences near the x-axis due to the congruence of the singly
reflected rays from the 1ip and also whenever the multiply reflected
fields cause a similar caustic effect.

In this case, the doubly reflected field has a caustic at 6 = 65
degrees where the transverse (to the plane of incidence) radius of
curvature of the reflected wavefront from the 1ip becomes infinite. An
analytical evaluation of this caustic location is rather involved but
can be found in [4]. 1In the caustic region, the GO equivalent currents
can be applied to obtain a bounded solution which is comparable to the
physical optics results. However, since one of the principal radius of
the toroid remains Targe, the GO equivalent current integration may be
also extended outside the caustic region. This was indeed done for
the present geometry.

Additional backscatter mechanisms in the xz plane of the structure
are also caused by the curved edge formed at the junction of the
cylindrical Tip with the ogival surface. However, this does not need
to be considered separately since the endpoints contribution of the GO
equivalent current Tine integral corresponds approximately to the
scattering of this mechanism for the given principal plane patterns.
Further, the hollow pipe with the cylindrical lip over the ogive is of
infinite extent and therefore no contribution from its internal portion
is considered here. As the incidence angle & increases, part of the rim

becomes shadowed and can only be illuminated with surface diffracted



rays from the surface of the ogive. The current along this portion of
the rim specular Tine was found via an extrapolation routine similar to

that discussed in [5].
The Radar Cross Section (RCS) patterns obtained in the xz plane
using the GO equivalent current formulation are now shown in Fig. 7.
The singly reflected field was obtained by integrating along the rim
Tine given by

N
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which is the specular line on the 1ip producing the field caustic. The
parameters, o> h and a are defined in Fig. 4. The angle 61 is
measured from the z-axis and in the yz plane as shown in Fig. 3. The
doubly reflected field was obtained by integrating over the rim Tine
given by

A
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2



-10-

The parameter Brz in the above expression is shown in Fig. 5 and

satisfies the backscatter condition

ot =T/ (14)
i il
Note that (12) and (13) define circular lines over the toroidal 1ip and
pass through the associated specular point in the xz plane. Such a
definition is according to our postulation in the previous section.
For the present application there was no need to employ the GO
equivalent current concept for the triply reflected field because
of the non-existence of a caustic and its relatively smaller
contribution as shown in Fig. 6. The total backscattered field was
computed by summing the individual components as follows:

bsc _ &R

E RR , £RRR
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: GO 1 2 3

where EEO = GO field from the surface of the ogive,
ET = singly reflected field from lip,
EER = doubly reflected field between the ogive and 1ip and
ERRR = triply reflected field between the ogive and the 1ip.

The evaluation of the GO equivalent line currents for the doubly
reflected field required the knowledge of the field first reflected
from the surface of the ogive. The determination of this component
involved the tracing of the reflected rays from the ogive to each
specular rim point given in equation (13). This ray tracing routine
is outlined in [5] and a detailed description of the parameters used

for the evaluation of the equivalent line currents can be found in [4].
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The reader will further note that the singly and doubly reflected field
curves computed via the GO equivalent line currents in Fig. 7, differ to
some degree from those in Fig. 6 even outside the caustic region. As
mentioned above this is due to the inclusion of the diffraction from the
junction of the 1ip with the ogive when the equivalent current integration
was employed. Beyond 6 = 122 degrees, the whole 1ip is shadowed. In

this region, the given backscatter patterns in Figs. 6 and 7 jnclude the
contribution of the surface diffracted ray [6] from the ogive and

through the stationary point on the Tip. It is important to note that

continuity of the total field is still maintained at this transition point.

IV. CONCLUSION

A set of equivalent electric and magnetic line currents were

developed which can be used to supplement the usual GO expression.

The field produced by these currents remains bounded when one of

the radii of the reflected wavefront becomes very large in which case

the GO solution fails. It was shown that the GO equivalent current line
integral produces the same result as the stationary phase contribution of
the physical optics surface integral. A general application of these
currents was demonstrated and compared to the usual GO solution.

This equivalent current solution produces more accurate results
than the PO solution for a general type of scatterer since it eliminates
the shadow boundary discontinuity of PO. In addition, it introduces none
of the tedious computations that would appear in PO if the radius

of curvature became angular (¢) dependent.
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APPENDIX

The expressions used for evaluating the GO field of the ogive in

the xy plane are given by [7]

GO .
R.R ez 01
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The result in the region of o < 8 < n/2 is still singular when 6 is close
to «. Therefore, for practical purposes the value of EGO(e = o) was

used until EGO(e) §_EGO(6 = o). The effect of this is evident in the
patterns of Figs. 6 and 7. The definition of the various parameters in

the above equation are (see Fig. 4):

GO 1

(Vel}
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and

GO _ _CoS a
R = Rl (] cos e)

SGO is the position vector corresponding to the ogive's specular point,

gtip is the vector defining the ogive tip and RSO is the transverse
2

principal radius of the ogive's surface at the point SGO‘
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LIST OF FIGURES

ITlustration of parameters for reflection from a doubly
curved surface. (a) Ray tube geometry. (b) Single
ray representation.

ITlustration of reflection from an infinitely Tong cylinder.
(a) Due to a plane wave. (b) Due to an equivalent
Tine current.

Geometry for the generalized set of GO equivalent line
currents.

Geometry of a structure consisting of a semi-infinite
cylinder with a toroidal 1ip over an ogive.

Stationary backscatter mechanisms for the structure in
Fig. 4 (Reflection from the ogive is omitted).

(a) Singly reflected. (b) Doubly reflected.

(c) Triply reflected.

o,, and O q? ¢ = 0 degrees RCS patterns for the

oo

structure in Fig. 4 using ordinary GO analysis; R =
1

12.073 inches, o= 46.34 degrees, a = 2.1 inches and

Py = A/4 = 0.3275 inch. (a) o ¢ = 0 degrees pattern.

96’

(b) o ¢ = 0 degrees pattern.

66°

o¢¢ and O

in Fig. 4 using the GO equivalent line currents where

6’ ¢ = 0 degrees RCS patterns for the structure

applicable and the uniform geometrical theory of diffraction

in the shadow region. (a) o ¢ = 0 pattern.

YN
(b) 044> ¢ = 0 pattern.
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