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1. Intr ion

Recently, a number of papers have been published [1]-[3], on
the subject of waveguide slot arrays. These papers describe a
procedure one can use to calculate self and mutual admittances
between slots. This procedure can consist the basis of a design
scheme where the lengths and offsets of individual slots can be
computed to produce a specified pattern and input impedance in the
presence of mutual coupling.

In many practical applications, the slot array is covered by a
dielectric slab in order to protect the array as well as modify its

characteristics. For this new array, a design scheme can be

described only if the theoretical formulas for Yij are available.
Since analytically evaluating Yij is a very complicated boundary

value problem, numerical evaluation of Y, may substitute for the

needed theoretical formulas. A first step is to obtain the Green's
function, that is, the field due to a suitably positioned Hertzian
Magnetic Dipole (HMD), since each slot can be viewed as a
collection of HMDs. The detailed derivation of the appropriate
Green's function will be presented in this report.

Sommerfeld first analyzed the cases of both vertical and
horizontal Hertzian electric dipoles at a distance h above a
semi-infinite lossy dielectric [4]. Since that time, other
investigators extended his work to grounded dielectric slabs [5].
A problem very similar to the one presented here is the derivation

of the Green's function for a Hertzian electric dipole which has
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been solved by R. S. Elliott [6]. Many details of that work will

be followed here.



2. Wave Equation

Consider a horizontal HMD at the position x'=0, y'=0, z'=-b

S

(Fig. 1). The dielectric slab is assumed infinite in extent with a

dielectric constant €and a permeability . With a eJOt tine

dependance, Maxwell's equations take the form:

VxE=-joui - M (1)

Gxgzjweg (2)

V.5=0 (3)

V.5=0 (4)
where

B = pH (5)

D - €E (6)
and

L= ' (l-jtand ) (7)
i
£ = gv(l—jtanﬁg ) (%)
Because of (4), the electric flux density D can be expressed as the

curl of a vector potential F as following:
D =VXF. (9)

When we insert equation (9) into equation (2), the result is that

—_—

V x(H - joF) =0 (10)
or that

H = JoF + V¢ (11)



where ¢m is an unknown scalar function. When equation (11) is

placed in equation (1), then we result in the following equation

—

V¥+VV -F= (ozeug - joeuVe - M (12)

Since ¢m is not yet defined, we may assume that

1 o =
¢m:—~j——— V -F. (13)
jogt
This relation is known as the Lorentz transformation. In view of

equation (13), equation (12) takes the form

— 2—0 —
VF + K'F = &M (14)
i.e., the inhomogeneous wave equation. At points away from the

source, the electric and magnetic fields are give by

m ol
=
w

— 1_.
E=—Vx
€

and
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3. Solutions to Wave Equation

The solutions to Wave Equation can be classified to primary
and secondary. Primary is the solution to the inhomogeneous
equation

2P 2=P A )
VF + kF = &d(x-x") O(y-y') d(z-z")x (17)
while secondary is the solution to the homogeneous one

—S

278
V'’F + kF =0. (18)

It is known that the primary solution is given by

0 -jkr
had A e
F = x (- —L) ) (19)

an r

In equation (19), the origin of the spherical coordinate system 1is

located at the position of the magnetic dipole.

e
As 1t has been shown in [4), [6], the function

[

written in the form

In equation (20), u = JA2-k

Next, we need to turn our attention to the secondarvy solution. As

Sommerfeld has shown (his proof is reproduced in Apoendix A), the
secondary solution must have an x and a z component which can be

put in the following form:

-u |z+bs|

F o= - fn— I AN J (Ap) e dA (21)



and

s -u |z+bs|

N
F, =" cos¢j AN I (Ap) e dA (22)

z

in which AX(X) and Ai(l) are functions to be determined from the

boundary conditions. In this manner, the solution was transform
from the spherical coordinate system to a cylindrical one shown 1in
figure 1.

In view of the above, the solutions to the wave equation 1in

regions I, II and III can be put into the form:

Region I
- S A s A
F.=F x+F 2 (23)
1 1x 1z
Region II
- o] S A S A
F2 = sz 1 FZX X + F2z z (24)

Region III
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Equations (23)-(25) in integral form may be written as:

N N -uyz
F, = X (- —‘?~) J A (M) T (Ap)e dA +

i

o

u_z

3 P -
+ z (— —;) cosd J Alz(k) Jl(lp)e dA

+ B, (M) euz] dA +

¥z (— 48—7:) cosd J J, (Ap) [Azz(k)e_UZ + B
C

— A N u{z+by) -uz
F3=x(~ ﬁ)JJO(Xp) [e A, A (Me o+
0

+ B, (Me ]+

3x

E -uz uz
+ z (— E) cos¢j J, (Ap) [An(l)e + B, (Me } dA.

(26)

(28)



. 2
In equations (26)-(28) u_ = A? - k , u-= 12 - k2 with k2 = 0% |
° 00

2 2
and k = gL
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4. Boundary Conditions

In this boundary value problem, there are three interfaces to
be considered. The first is the ground plane (z=-h), the second is
an imaginary horizontal plane going through the center of the
magnetic dipole and the third one coincides with the air-dielectric
interface. Continuity of the tangential electromagnetic field

through each of these interfaces give the following relations:

E3x =0
z=-h (29)
3y =0
S S
E2x - E3x
S ES
2y 3y z=-bs (30)
S S
H2x - HBx
S _ S
2y HW
E"2)( - Elx
2y - EW
z=0 (31)
HZX - Hlx
2y - Hw

In order to translate these equations into boundary conditions for

the electric vector potential F, equations (15) and (16) have to be

considered. From equation (15), the following relations can be

derived



OF
1 z
E - = (32)
€ ay
I P
RAP PP (33)
oF
P oo o L x (34)
‘ € Jdy

Also from equation (16), the components of the magnetic field are

given by
. 2 — —
H o= —— |k F o+ ii—V~F (35)
* oep ox
Ho= = 4 V.F (36)
Y oep dy
. , -
H = 2 kF + 9 V-F 37)
o wep ‘0z ‘
In view of equations (32)-(37), equations (29)-(31) give the
following relations
oF,
=0 z=-h (38)
&
oF
3x
=0 z=-h (39)
dz
OF.  OF. /
2z _ 3z Z=—b (40)
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S _ S _
F2x - F3x =70y (41)
S S
oF, ) oF, .
0z ) 0z ° (42)
— s a - s
;—pV-FZ =$V "F, z=-b_ (43)
le = sz z=0 (44)
1 aF1z 1 aF.’Zz
= — 3 z=0 (45)
e, op 3 p
1 - o -
i+ (v Fl) -2 9 (v F}) 2=0 (46)
e dp e adp
1 OF,  q OF, i
= — z=0 (47)
£ 0z € 0z

Equations (38)-(47) provide ten necessary conditions for the ten
unknown functions appearing in the expressions for the electric

vector potential F which is also called the Green's function for the

problem. Specifically we have:

Aaz(l)eUh + B, (Me =0 (48)

3z



A

A (Me Ty B, Me

A

2

A,Me -8B, (Me ~=a (Me - B, (Me

LMe T+ B, (Me
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b --ubs ub, -ub,

]
fo=d
>
D
+
[o9]
>

)

b -ub

I
o
w
x
ot
®
=1
+
oo
w
x
Lot
o

b, -ub ubS

A (M) =1a (L) + B (A

2z 2z

_ubs k
A, M +una ) =Ne " Eea ) o+B, )|+

u 2

+ quzm - uBZz(x)

(49)

(50)

(51)

(52)

(54)
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-ub
_ s A
qulx(l) = u[e N + AZX(X)jI - uBZx(l) (57)
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reen' Function
The simultaneous satisfaction of equations (48) to (57) gives

cosh [u(bs—h)] (58)
A = 28 A

1x r

£ (A, € ,h)

cosh[u(b_-h)] sinh (uh) (59)
= —_ 2 d . ’
B, = 20-e)h £ (X, € ,h) £ (A€ ,h)
Pt 2 !
9 wn Eruosinh(ubs) + ucosh(ubs) (60)
AZx = e
u £ (A€ h)
) “un g cosh{u(b_-h)] 1 (61)
A= (e-l)e A X : )
£ (Ag_,h) £ (A g )
cosh [u(bs—h)] (62)
BZx - (u_eruo) N
v f (e )
-h
B = (l-g)e A\ cosh fulb~ Wl (63)
2z ‘ £ (A€ ,h) £ (A€ ,h)
1 r 2 by
A3X(M = AZX(M (64)
Bjx(l) = BZX(M (65)
A, (M) = A, ) (66)
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B, (\) = B,_(}) (67)

In the above equations
£ (A, ,h) = €u cosh(uh) + usinh(uh) (68)
£,(A,€ ,h) = ucosh(uh) + u sinh(uh) (69)

When these results are placed in equations (26)-(28), one has the

Green's function for an HMD a distance bS below the air-dielectric

interface.
¢ ¢ Acosh[u (b_-h) ] -u,z
(p. = - & J J (Apre  dA (70)
2t £ (he b
€ _(1-¢) coshfu(b -h)]  sinh(uh) -uz -
Fy, = 7 coso e J (pidh (7D
2 21 £ (X, € ,h) fz(l,ﬁ D)
0 . r L
. A ucosh(uz)—eruosinh(uz)
F = - £ J & cosh [u(b_~h)] J (Apydd - (72)
2 2n ) u s £ (A€, h) °
o 1 4 rI

< cosh(u(b_~h)] siph{u(h+z)]

- _ € q_
F= 2n(l q}cosQJ

I VAL (73)

fl(X,Er,h) fz(k,er,h
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€
21

eruosinh (ubs) +ucosh (ub )
cosh [u (h+z) ] :

I
OL—-—-.s
c >

J (Ap)dA (74)
fl(k,er,h) 0P

€

¢ cosh [u (b_~h) ]
- (1—-8{)cos¢J‘

sinh[u(h+z)] 2
: J (Ap)IAdA (75)
£, (A&, h) £,(A €, h)
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Conclusions

The Green's function for a horizontal Hertzian magnetic dipole
has been derived by solving the appropriate boundary value problem.
This Green's function can be used in formulating solutions to
the problems of slots on the ground of a dielectric substrate,

cavity-backed slots and dielectric covered waveguide slot arrays.
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Proof of the Need for a F: Component

S
Assume that there is only a Fx component in all three regions.

Then from equations (35)-(37), we have

1 2
Ho= == |KF_+ —a—z F (A.1)
e
2
, - = 2 F (A.2)
Y g dydx '
2
q o= j an (A.3)
© wepd dzox

Continuity of Hy along the air-dielectric interface results in the
following equation

2 2
1 IF, 1 OF, (A.4)

e dydx & dydx

Integration of equation (A.4) with respect to y and then

differentiation with respect to x gives



_A_2 -

2
p OF JIF,, (A.5)

Fe=F (A.6)

(A.6) twice with respect to x

However, differentiation of equation

will give

2 2
ale aFZX (A.7)

ox’ ox’

Equations (A.5) and (A.7) agree only 1if €= €, which 1is not

-~
ya

possible. Therefore F® should have one more component along the

direction.
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