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CHAPTER 1

INTRODUCTION:

Millimeter-wave integrated circuits are becoming increasingly important in a variety
of scientific and military applications, and a wide range of solid state circuitry has been
demonstrated in both hybrid and monolithic form. However, the inability to accurately
predict the electrical characteristics of various circuit components is a serious barrier to
the widespread and cost effective application of these technologies.

Accurate microstrip discontinuity modeling is key to improving the cost effectiveness
of microwave and millimeter-wave circuit designs. Typical millimeter-wave IC’s contain
various active and passive elements interconnected by microstrip transmission lines as
illustrated in Figure 1.1. In the vicinity of transmission line junctions and other disconti-
nuities, evanescent fields are excited which cause unwanted parasitic effects, and generate
space and surface waves that can significantly affect circuit operation. These discontinuity
effects can be modeled by the use of lumped equivalent circuits; however, there are a num-
ber of different approaches that can be used to approximate the values of the equivalent
circuit elements.

The majority of existing approaches are based on either quasi-static solutions or use a
planar waveguide model. Despite their inherent accuracy limitations, equivalent circuits
derived from such solutions are adequate for many applications since an approximate de-

sign, at the least, provides a starting point after which the circuit may be tuned to achieve
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the desired performance. This is generally true of hybrid integrated circuits operating in
the lower microwave range (at or below X-band).

Quasi-static techniques are well established and described in standard texts [1]-[3].
With these techniques, equivalent circuits are derived in terms of static (i.e. frequency
independent) capacitances and low frequency inductances. Convenient analytical formulas
for discontinuity parasitics are possible, yet their accuracy is questionable for frequencies
above a few GHz.

Planar waveguide models provide a frequency dependent solution. In this approach, an
equivalent planar waveguide geometry is proposed for the microstrip problem. This trans-
formed problem is then solved using an appropriate analytical technique such as mode
matching [1]-[4]. Models derived from this technique are generally considered accurate
to higher frequencies than quasi-static models. However, although they can include dis-
persion effects in the solution, planar waveguide models cannot take surface wave effects
into account. Even if the model were strictly valid, the accuracy is limited by the method
used to approximate the effective width, and dielectric constant of the equivalent planar
waveguide. Further, this approach does not provide a means to account for radiation
effects when present.

In many cases, the limitations of the above two techniques cannot be tolerated. Often,
circuit tuning is difficult or impossible; as a result, inaccurate circuit models lead to long
design cycles with many costly circuit iterations. One example where this is true is in
Monolithic Microwave Integrated Circuit(MMIC) design, where the small size and the
fragility of MMICs make tuning virtually impossible.

Also, for both hybrid and monolithic circuits, the need for greater modeling accu-
racy increases with frequency. Parasitics have a greater effect on circuit behavior, and it
becomes ever more important to accurately model surface wave effects, mutual interac-

tions between circuit elements and radiation losses (if present). Hence for MMICs and for
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both hybrid and monolithic millimeter-wave IC’s, a more rigorous solution for microstrip
discontinuities is necessary.

A technique that meets this requirement was recently developed by Katehi and Alex-
opoulos to treat discontinuites in open microstrip geometries [5]. In this technique, the
currents on the microstrip conductors are first computed by a Galerkin’s implementation
of the method of moments. Based on this current, a transmission line model is used to
evaluate frequency dependent equivalent circuits and scattering parameters [6).

This technique has so far been applied to solve for various discontinuities in open
microstrip. Here, the top of the substrate is left open to the air as shown in Figure 1.2a.
One application where open microstrip is used is in a monolithic antenna array where
radiating elements are integrated along with passive and active components on the same
or adjacent substrates. In open microstrip, radiation from circuit elements is unavoidable
and requires accurate modeling at high frequencies.

Radiation is often avoided in practical circuit designs by enclosing parts of the circuitry
in shielding boxes (or housings); hence, it is important to also establish an accurate method
of solution for microwave and millimeter-wave circuits operating in a shielded microstrip
environment. To this end, the new analytical methodology presented here is an extension
of the approach of Katehi and Alexopoulos to shielded microstrip configurations of the
type shown in Figure 1.2b. This report presents theoretical methodology and preliminary
results for this new method that promises to provide more accurate circuit models for
discontinuities in shielded microstrip.

While rigorous solutions to shielded discontinuities have been advanced by others,
their accuracy is unclear and there are several structures which have not been adequately
analyzed. One approach has been developed by Jansen et. al., who use what is referred
to as a spectral domain iterative technique [7]-[10]. Although reasonable results have

been demonstrated for several microstrip structures, the accuracy of their methods is
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unclear since there has been little or no accompanying experimental verification, and
only limited comparisons to other rigorous numerical solutions. Furthermore, there are
important discontinuity structures that have not been addressed by these authors, leaving
considerable room for contribution.

Another solution has been presented more recently by Rautio and Harrington [11], [11]
who use a method of moments technique. However, the only results from this work we
are aware of is for the input impedance and current distribution for an open circuited
stub. Their solution is, in some respects, more general since they assume a two directional
current distribution, while the present work uses one directional currents. Qur approach
also differs in the choice of basis functions and the method of circuit excitation employed.

The new analytical methods developed here have been applied to obtain results for open
end and series gap discontinuities in shielded microstrip. Work is currently in progress to
obtain results for coupled line filter structures.

To test these analytical methods, an experimental study is being conducted in coop-
eration with the Microwave Products Division of Hughes Aircraft Company. This work
includes a study of "de-embedding” techniques, from which it has been concluded that
the technique most suitable for this work is the thru-short-delay (TSD) method. With
this method, the major factor influencing accuracy is microstrip connection repeatability.
To explore this, a connection repeatability study was conducted [13], and the results were
extended to evaluate the associated uncertainty in de-embedding accuracy. S-parameter
measurements were then obtained for selected discontinuity structures. The numerical
and experimental results are compared wherever possible, and demonstrate the accuracy
and usefulness of the new theoretical methods.

The combination of theoretical and experimental work presented here represents an
important contribution in the area of millimeter-wave IC design by lending more insight

into the high frequency behavior of microstrip discontinuities than previously possible.
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CHAPTER II

THEORETICAL METHODOLOGY

2.1 SUMMARY OF THEQRETICAL APPROACH

2.1.1 Problem geometry

As a first step in the development of the theoretical technique for analyzing shielded

microstrip discontinuities, consider the shielded microstrip geometry shown in Figure II.
The shielding box forms a waveguide cavity, which —for most practical uses— is cut-off for
the highest frequency of operation. That is, the cavity dimensions are usually such that
non-evanescent modes are suppressed. However, the solution presented here, as far as the
computation of the current distribution is concerned, is applicable whether the cavity is
cut-off or not .

as far as the computation of the current distribution is concerned

2.1.2 Theoretical assumptions

In this solution, a few simplifying assumptions are made to reduce unnecessary complex-

ity, and excessive computer time. Throughout the analysis, it is assumed that the width

of the conducting strips is small compared to the effective (or guided) wavelength. In

7
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this case, unidirectional currents may be assumed with negligible loss in accuracy. Also,
while substrate losses are accounted for, it is assumed that the strip conductors, and the
walls of the shielding box are lossless. These assumptions are valid for the high frequency
analysis of the discontinuity structures of Figure 2.2, provided good conductors are used

in the metalized areas.

2.1.3 Description of theoretical approach

The theoretical technique is based on a Galerkin’s method formulation of the method

of moments. The required integral equation is derived by first representing the coaxial
feed by an equivalent magnetic current source. Reciprocity theorem is then applied to
relate this magnetic current source and the electric current on the conducting strips to
the electromagnetic fields inside the cavity.

By expanding the electric current into a series of sinusoidal subsectional basis functions,
the integral equation is transformed into a matrix equation. The matrix equation is
then solved to compute the current distribution. Finally, based on the current, either
an equivalent circuit, or scattering parameters, or both are derived to characterize the

discontinuity being considered. A flow chart illustrating this approach is shown in Figure

2.3.

2.2 FORMULATION FOR METHQD OF MOMENTS SOLUTION

The method of moments is a well established numerical technique for solving electro-
magnetic problems [14],[15]. A review of the basic approach is given in Appendix A. This
section makes use of the method of moments to set up a matrix equation that provides

for a computer solution to shielded microstrip discontinuity problems.

2.2.1 Formulation of integral equation using reciprocity theorem
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Figure 2.1: Basic geometry for the shielded microstrip cavity problem.
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Consider the problem geometry of Figure 2.1. In most practical applications, the coaxial

feed (or launcher) is designed to allow only transverse electromagnetic (TEM) propagation,
and the feed’s center conductor is small compared to a wavelength (i.e. kv, < 1). In these
cases, the radial electric field will be dominant on the aperture and we can replace the
feed by an equivalent magnetic surface current whose only component is in the ¢ direction
(i.e.M, = M¢$) where ¢ refers to the cylindrical coordinate referenced to the center of
the feeding aperture (see Figure 2.4). This method of modeling the feed with a magnetic
current source will be discussed further in Section 2.5.

The magnetic current source is coupled with the current distribution J; on the con-
ducting strip to produce the total electric field £ and the total magnetic field A% inside
the cavity as indicated in Figure 2.5.

We now propose an independent test current source J, existing only on a small sub-
section of the conducting strip as shown in Figure 2.6. Using reciprocity theorem, the two

sets of current sources are related according to

///;,(J_s'Eq_-f{q'Ms)dv=///vjq-Et°tdv (2.1)

where the volume V' is the interior of the cavity.
Since J, is zero everywhere except over one subsection of the conducting strip, and

z-directed (the thin strip approximation), the right hand side of ( 2.1) reduces to

///qu By = //Sq |Jo| EZ(z = h)ds = 0 (2.2)

where S, is the surface of an arbitrary subsection and EX°*(z = h) is the z-component
of the total electric field which must vanish on the surface of the conductors (z = k) since

they are assumed to be perfectly conducting.
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Reducing the remaining volume integrals in ( 2.1) to surface integrals results in

/ /S  Be=h)-Lds= / /S Bfe=0)-dds. (2.3)

Note that this equation is not explicitly in the form of the operator equation of (A.1).
This is because in using the reciprocity theorem formulation we have inherently placed it

in the inner product form of (A.3).

2.2.2 Expansion of current with sinusoidal subsectional basis functions

In order to solve the integral equation (2.3), the current distribution J is expanded

into a series of orthogonal functions as follows. Consider the strip geometry shown in

Figure 2.7, let
NSECT

Js =9 (y) Z Loy (z) (2.4)
p=1
where I, are unknown current coefficients. The function 1 (y) describes the variation of

the current in the transverse direction and is given by

2

Yo-W/2<y< Yo+ W/2
W (2.5)

Y(y) =

0 else
This variation was chosen to agree with that derived by Maxwell for the charge density
distribution on an isolated conducting strip [16], and it has been used successfully by
others to describe the transverse variation of microstrip currents [5], [17],[18]. As we will
see later, with this choice, the y part of the surface integral on the left hand side of (2.3)

can be solved in closed form.

The basis functions a,(x) comprise an orthonormal set and are given by

sin[K(zp11—2

sin(Klz) Tp ST < Tp

0 else



14

for p#1, and

(2.7)
for p = 1, where

K = w,/u.€¢€ is the real part of the wave number in the dielectric region

W is the width of the microstrip line

Yo is the y-coordinate of the center of the strip with respect to the origin of Figure 2.1
z, is the z-coordinate of the pth subsection (= (p — 1))

l; is the subsection length (I; = zp41 — ) .

The z part of (2.3 can also be solved in closed form due to our choice of sinusoidal

subsectional basis functions o, (z).

2.2.3 Transformation of integral equation into a matrix equation

The integral equation (2.3) can now be transformed into a matrix equation by substituting
the expansion given by (2.4) for the current J,. This results in the following:

NSECT

I; [ / /S ,, E(z=h)- lb(y)ap(iv)i:d.s} I, = / /S > a,- M,ds (2.8)
which can be expressed as
[Zgp) (1) = [V (2.9)

where
Sp is the surface area of the p* subsection
[Z4p] is the impedance matrix, which has the dimensions of NSECT x NSECT

[I] is the unknown current vector, which has the dimensions of NSECT x 1
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[V4] is the excitation vector, which has the dimensions of NSECT x 1
The individual elements of the impedance matrix are given by
Zgp = //S Ey(z=h)-¢(y)a, (2) ids . (2.10)
P

The elements of the excitation vector are given by

V, = / H, - Mds. (2.11)
Sfeed

We can now solve for the current vector by matrix inversion and multiplication according

to

[Ip] = [qu]—l [Vq] . (2-12)

2.3 DERIVATION OF THE GREEN’S FUNCTION

To compute the elements of the impedance matrix, we must derive the Green’s function
associated with the electric and magnetic fields E,, H,. We will first define the problem
geometry and outline the electromagnetic theory to be used; then, the boundary value

problem will be solved for the Green’s function.

2.3.1 Geometry and electromagnetic theory

The geometry used in the Green’s function derivation is shown in Figure 2.8. The cavity

is divided into two regions. Region 1 consists of the volume contained within the substrate
(# < h), while region 2 is the volume above the substrate surface (z > h).

The Green’s function will be defined as the electric field due to an infinitesimal current
source located on the substrate surface of Figure 2.8. After deriving the Green’s function,
the fields associated with the test source J, will be evaluated by integrating over the

surface of the ¢*h subsection.
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Figure 2.6: Test current field J, on conducting strip and associated fields
E, 1,
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The test source J, and the associated fields within the cavity (E,,H,) are related

through Maxwell’s equations, which may be put in the following form:

v X E' = —juuH (2.13)
v X H = jugE'+J (2.14)
VI = —jwp (2.15)

v (af) = p (2.16)
v (wl) = 0 (2.17)

where p; is the permeability of medium ¢, ¢; is the complex permittivity of medium 4, and
p is the charge density associated with J.

It is assumed that both regions are non-magnetic and that region 2 is air, hence

g = p2=po=4rx107"H/m (2.18)
€reo fori=1
€ = (2.19)

€ fori=2

where
o

6: =€ — ];6; . (2.20)

In (2.20) o denotes the conductivity of the substrate material, and the quantity w—’:g— is
referred to as the loss tangent. In (2.13) - (2.17), ¢ = 1,2 indicates that these equations
hold in each of the regions respectively. In addition, and the assumed time dependence
is /!, and it is suppressed throughout the dissertation. To simplify the notation of
this subsection, the subscript ¢ is suppressed with the understanding that all the field

quantities discussed here are associated with the test source J, (i.e. Ef = E_; etc.).

2.3.2 Solution to boundary value problem for Green’s function

We now introduce the vector potentials A* such that
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.1 -
H =—yxA. (2.21)
Ho
In view of (2.21), the electric field may be written as (Appendix B,(B.13) )
—i . 1 - - -—i .
EF'=—-jwl|l+ ZvVv A (2.22)
where A’ satisfies the inhomogeneous wave equation

VA RPA = —pod . (2.23)

The integral form of the electric field is given by (B.18) or in integral form (B.18)

CE—— [(1 + 597 @& -das 221)

where k? = w?uge; and Gisa dyadic Green’s function [ref. Tai] satisfying the following
equation
V2G4 kG = —T5(r - ) . (2.25)
In (2.24) and (2.25), the superscript T denotes the dyadic transpose operation, and I is
the unit dyadic given by &% + i + 23.
Because of the existence of an air dielectric interface, a two component vector potential

is necessary to satisfy the boundary conditions [19]. Accordingly, let
A =Ad+ Az, (2.26)
From (B.17) A' is related to G by the following volume integral:

Ai:-p,///vj'éidv,. (2.27)

G may be expressed in most general form as follows:

Yy i An Y
Gt + GL2) + G,&2

Q
1l

+ G 98 + Gigg + Gigs | - (2.28)

+Gi i+ Giig + G
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Assuming an infinitesimal x-directed current source given by

J=6(f-7)& (2.29)
in (2.27) allows for reducing G to
G =Gl 35+ G 33 (2.30)

The functional forms for the dyadic components of (2.30) are found by applying appro-
priate boundary conditions at the walls: ¢ = 0,and @ ; y =0, and b ; and 2 = 0, and .

As detailed in Appendix C, these components may be expressed as

¢l = Z Z AW o5k, sin kyy sin kgl)z (2.31)
m=1n=0

Gg{) = Z Z B,(;,)1 sin kza sin kyy cos k2 (2.32)
m=1n=0
(o] o0

G® = Z Z Agz1 cos k;z sin kyy sin k(2 - ¢) (2.33)
m=1n=0

G® = Z B sin kyz sin kyycos k@ (z - ¢) (2.34)
m=1n=0

where

ky = nr/a (2.35)

k, = mn/b (2.36)

kY =k} - k2 - k2 (2.37)

kD = (k3 - k2 k2 (2.38)

k= wy/uoe (2.39)
k() = w,/,u()fo. (240)

The coeflicients ASBI, Ag;, BS,}T)L, and B,(,f,)L are found by applying boundary conditions at
the substrate/air interface (z = h). The details of this analysis can be found in Appendix
D. The results are:

— @y, cos kya' sin kyy' tan kgz)(h —-c)

Ag) =
" abdypy,, cos k,.(,‘)h

(2.41)
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—pn, c0s k&' sin kyy' tan kgl)h

AR = (2.42)
" abdy cos kD (b - ¢)
B —on(1 — € )k; cos ky2' sin kyy' tan kY h tan k;(,2)(h -¢) (2.43)
" abdy i damn cos kR o
B® _ —@n(1 — €)kg cos k' sin kyy' tan kD tan kﬁz)(h —-¢) (2.44)
m abdmn domn COS kg)(h —-c) '
where
2 forn=0
o = (2.45)
4 n#0
dimn = kP tan kgl)h — k(Y tan k@(h - c) (2.46)
domn = kP& tan kP (h - ) — kD tan kVh (2.47)

Having derived the Green’s function, we are now ready to proceed to the formulation

for the elements of the impedance matrix and excitation vector.
2.4 IMPEDANCE MATRIX FORMULATION

The elements of the impedance matrix are given by (2.10)

Zn= [ /S Eyfz= h)- % () ap () ds (2.48)
which reduces to

Zgp = / /S Euulz = Wb () e («) (2.49)
after performing the inner product in (2.48). Hence, to evaluate the impedance matrix
elements we need E;(z = h); that is, the z-component of of the electric field due to the
test currents J; at the substrate/air interface (z = h).

Once Eyz(z = h) has been found the above surface integration will be carried out

—which, as we will see, can be completed in closed form.

2.4.1 Evaluation of the electric field due to the test currents

Since J, is a surface current distribution, the volume integral in (2.24) is reduced to a
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Figure 2.8: Geometry used in derivation of the Green’s function
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surface integral as follows:

B = —jwno / / K i2 )(G )Tl Jods'dy’ (2.50)

where S, is the surface of the ¢'h subsection.
For better accuracy, the test currents J, are expressed in terms of functions which are

identical to the basis functions (Galerkin’s method)
Ty = 9(y)ag(2")@ (2.51)

where 9(y’) is given by (2.5) with ' replacing y, and ay(z’) is given by (2.6) and (2.7)
with p replaced by ¢ and z replaced by z’.

We now substitute (2.51) for J, in (2.50) to yield

B = —jwp / /S q [(1 + kizﬁ@-) (é")T] By )ag(')2dz'dy/ (2.52)

Let us define a modified dyadic Green’s function f‘i by

F = _jwno [(1 + kivv) (c‘:")T} . (259

Then, E, can be expressed as

/ / I (z)idz'dy' . (2.54)
Sq
The dyadic transpose of (2.30) yields

=T

(G =G ¢5+ Gt 35 . (2.55)

When this expression is substituted in (2.53) and the divergence and gradient operations

are performed we can express I as ( see Appendix E, (E.4) )

I' =i, 8¢+ %98 4+ T0, 58 (2.56)
where
: .10 (0G, dG:
I — 1 - Tz Tz .
o Gox + k? Oz ( Oz + 0z ) (2:57)
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; 10 (0Gi, 0G:,

L = ?a—( R +—az—) (2.58)
i . 10 [0aG, aGi, |
L, = G, +k2a(az+az)‘ (2.59)

Substituting this expression into (2.54) gives

/ / I (z")dz'dy' 2
+ / I (1 g (2')da'dy'§

+// I, (z")dz'dy'% . (2.60)
Recall that we only need the z-component of this field which is given by
// T 0(y )a,(z")de'dy' . (2.61)

Furthermore, at z = h, boundary conditions require that Eé;)(z = h) and Egi)(z =h) be

identical. From the above equation it is obvious that this implies
TN (z=h)=TO(z = h) = T'1u(z = h). (2.62)

This equality is verified in Appendix E, and the result of (E.18) may be put in the equiv-

alent form
I‘u(z = h) =
Jwho E Z abdlfmTIiQ [cos ko sin kyy cos k2 sin kyy'] (2.63)
m=1n=0 mn=emn
where

2
fun = ¢ntankMhtan kB (h - c) [k?)e: (1 - :—) tan k() (h - c)

1

k2
—k{1) (1 - F) tan k{! )h] (2.64)

If we place (2.63) into (2.61) we obtain

ED(z=h) = ED(=h)=

L)
8
—~~
N
[l
=
~—
[l

] [, ety yia'dy

fun |
Jwio g_:l nz_% b do cos kz sin kyyZymn, - (2.65)
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where
Tgmn = // cos kzz’ sin kyy'P(y )aq(2')dz'dy’ . (2.66)
Sq

This surface integration is evaluated in closed form in Appendix F; the result is

_ (gK cos kyz,sin Ry sin Rop, (kyW)
Zomn = dsy, sin K1, sin(kyYo)Jo 2 (2.67)
where
2 forg=1
G = (2.68)
4 else
K = w/uocoer (2.69)
d3, = K?-k2 (2.70)
1 :
Rin = gkt ko)l (2.71)
Ron = %(k ko)l (2.72)
zg = (= Dly. (2.73)

Hence, the formulation for the z-component of the electric field E; evaluated at the sub-
strate surface is given by (2.65) where Zy,, is specified in (2.67), fmn is given by (2.64),
and dypy, and dyy,, are defined by (2.46) and (2.47) respectively.

We are now ready to evaluate the impedance elements.

2.4.2 Evaluation of the impedance matrix elements

From (2.65) and (2.49) we have

fmn qmn
- . 9.74
Zap ]w”";l,;]abdlmndzmn m (2.74)
where
Zomn :// cos ky sin k, y(y)op(z)dedy . (2.75)
Sp

Since (2.75) is the same integral as (2.66), we again use the results of Appendix F (by
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substituting p for ¢) to produce

_ (pK cos kzz,sin Ry, sin Ry, (kyW>
Lomn = day sin K1, sin(kyYo)Jo | =5~ ) - (2.76)
where
2 forp=1
p = (2.77)
4 else
and
= (p-1)l;. (2.78)

Finally, from (2.74), we can write out the entire expression for Z,, by replacing the
abbreviated notation for dimn, damn, fams Zgmn, and Zpmn with their defined expressions

to yield:

Zgp =

0 o M @)
. on tank; 'htank;”(h —c)
Jwi E E _ .
gt (£ tan KDk — 6 tan kP (1 - o)

[Per (1~ 7’;%) tan kP (h - ¢) - kY (1 - i,}:g) tan k{"h)
[P ex tan kP (h ~ ¢) - £V tan K|

(q€p cOs kpx4 cOs kpay K sin Ry, sin Rzn]2
absin kl, [K? — k2)?

(2.79)

We now turn to the computation of the excitation vector.
2.5 EXCITATION VECTOR FORMULATION

In this section, a surface integral will be set up that provides for evaluating the elements

of the excitation vector according to (2.11). This equation may be written as

n=[] (e =0) Mydpdpds (2.80)

where p, and ¢ are cylindrical coordinates referenced to the center of the feeding aperture,

as shown in Figure 2.9.
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As a first step towards evaluating this integral an expression for M will be presented.
Second, the magnetic field components parallel to the plane of the aperture (i.e. they— 2z
plane) will be derived based on the Green’s function of Section 2.3.
Finally, the two dimensional numerical approximation used to carry out the integration
of (2.80) will be presented. The integration is set up to allow for an arbitrary placement

of the feed’s center with respect to the substrate surface (see Figure 2.9).

2.5.1 Coaxial feed modeling by an equivalent magnetic surface current

As stated by Chi and Alexopoulos [20], if the radius of the coaxial feed’s inner conductor

is assumed to be much smaller than the wavelength (kr, < 1), and the coaxial feed line
is designed to allow only transverse magnetic (TEM) propagation, we can represent the

aperture by an equivalent magnetic frill current given by

o Vo a
M, = In (f:-) p¢ (2'81,)

where
Vo is the complex voltage present in the coaxial line at the feeding point
7y is the radius of the coaxial feed’s outer conductor
r, is the radius of the coaxial feed’s inner conductor
p, ¢ are cylindrical coordinates referenced to the feed’s center

Substituting from (2.81) into (2.80) yields (with ds = pdpd)
In

Vo
V:———/ H,y(z = 0)dpds 9.89
q (%) Syed q¢( ) P ( )

where the cylindrical coordinates p and ¢ are defined in Figure 2.9, and H;¢ is the ¢

component of the magnetic field evaluated in the plane of the aperture (z = 0).
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2.5.2 Evaluation of the magnetic field at the aperture

To evaluate the magnetic field component H,s we will first determine the § and 2

components, and then perform a coordinate transformation to the cylindrical coordinates

p and ¢.

Determination of § and Z components of Eq

The magnetic field H, anywhere inside the cavity is given by (2.21)

t 1 - 1t
Hy =V x4 (2.83)

where (2.27)

A= / / /V J,-Gdv' . (2.84)

The § and 2 components are given by (2.83)

; 1 (0A:, 0A!, .
Hoy = —( 5:  Or (2:85)
. 1 (’)A’ ‘
H = 2.86
1 o 33/ (2.86)
with
Ay = / / e (2.87)

A;Z ug// ¥, (2')G,ds' . (2.88)

We now substitute from these equations back into (2.85) and (2.86) to obtain

yy = / /s.,(w L )¢(y'>aq<z')ds' (2:89)

,. aat
H, =

ay(z')ds' . (2.90)

Sq
These components are evaluated in Appendix G (for i = 1,2). Setting z = 0 in the

resulting expressions yields:

H;;)(IE =0) = Hp Z E cnchl,,)m sin kyy cos kgl)z (2.91)

m=1n=0



where

and

H)(z=0) =

HP(z=0) =

H2(z =0)

31

m=1n=0
00 00

m=1n=0

m=1n=0

_k
absin K1

(q cos kzxysin Ryp sin Ra,

¢ tan kS )(h c)

dymnamndsn cos kb

{[0) + k21 -

@y _
on tan ks (h a ) sin(k,Yo)Jo (kyW)
d1mndsy, cos k; )h 2

©n tan kﬁl)h

d]mnd2mnd3n Cos k£2)(h - C)
[(k(2))2 " —ki1-¢ )] tan k) (h - )} sin(kyYo0)Jo ( 5

¢n tan kgl)h

dimndsn cos kD (h — ¢)

sin(kyYp)Jo (

K? — k2

T

%(I( + k)L

1

Wy/Uo€o€r -

Coordinate transformation and evaluation of H,

kW
2

o0 o0
Hy 2 Z engcll) cos kyy sin k(1) 2

Hy E E cnchﬁ,{n sin ky,y cos k() (z

—kﬁl)kﬁ )C: tan k(2 (h —¢) }sin(k,Yo)Jo (k ;V>

{ K@ kD tan KDk

)

—¢)

oo o0
Hy Z 2 Cngc). cos kyysin k®(z - c)

€ )] tan kMh

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)
(2.102)
(2.103)

(2.104)

Equations (2.91)-(2.94) give the § and 2 components of the magnetic field anywhere

inside the cavity.

To find the ¢ component we will perform the necessary coordinate

transformation in two steps:
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Table 2.1: COORDINATE TRANSFORMATION VARIABLES

VARIABLE RELATIONS | UNIT VECTOR RELATIONS

"=z =3

§ = cos ¢p — sin ¢q§

y'=y-Y.=pcos¢ g

2" =2z—h,=pcos¢ 3" = 2 = sin ¢p + cos ¢

1. move the origin from the corner of the cavity to the center of the coaxial feeding

aperture.
2. perform a cartesian to cylindrical coordinate transformation.

Referring to Figure 2.9, let us denote a new coordinate system by (z”,y”, 2"') whose origin
is at the feed’s center (z,y,2) = (0,Y:,h;). The relationship between the new and old
coordinates are outlined in Table 2.1.

Using these relations, we will make the following substitutions in (2.91)-(2.94) to move

the origin to the feed’s center

y - ¥y +Y,

z — 2"+ h,
This yields:

HD(z=0) = H YN engelt sinky(y” + o) cos kM (2" + h,)  (2.105)
m=1n=0

HD(@=0) = Ho Y. Y engell), cosky(y" + Yo)sinkM (2" + he)  (2.106)

m=1n=0

o0 o0
Hy Z Z cnqc!(f,,)m sinky (3" + Y.)cos k{D(z" — ") (2.107)

m=1n=0
00 00

HP(z=0) = Hy 37N enge®, cosky(y" + Yo)sink® (2" — ") (2.108)

m=1n=0

H(g)(:c =0)
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where

" =c—h.. (2.109)
Now, let H ;t represent the projection of H ; onto the plane of the aperture, then
Hiy=Hij+Hp:=Hiy+ H,p (2.110)

where H, ; , and H ;¢ are the p and ¢ components respectively.

From Table 2.1.

¥ cos ¢p — sin ¢<i$

Yy = cos¢p—sin ¢<2’

Hence,

;d, = —sin QSH;y + cos d)H;Z . (2.111)
If we substitute from (2.105)-(2.108) into the above, and let

"

y — pcosd
n

Z° — psing

we obtain

HY)(z=0)=

Hy [— sin ¢ E Z quC,%)m sin ky(p cos ¢ + Y,) cos kgl)(p sing + h.)

m=1n=0

+ cos ¢ E Z Cngc) . cos ky(pcos ¢ + Yy)sin kM (psin ¢ + hc)] (2.112)

m=1n=0
HD(z =0) =
oo o0
Hy [—sinqﬂ Yoy cnqcﬁ,)m sin ky(p cos ¢ + Yz) cos ki (psin ¢ — ¢”)

m=1n=0

(o.¢] o0
+ cos ¢ Z Z cnchﬂn cos ky(pcosd + Y,)sin k£2)(p sin ¢ — c")} . (2.113)

m=1n=0
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2.5.3 Formulation for numerical integration

Consider now the surface integral of (2.82). One factor that complicates the integration

is that it must be performed in two regions whose boundaries depend on the feed position

as can be seen in Figure 2.9. In other words, the integration can be broken up as follows:

_ [ / /54, ) Hdpds + / / N H(2>dpd¢,] (2.114)

where
S;le)ed is the portion of the feed surface lying below the substrate (2" = psin ¢ < —t)

Sﬁld is the portion of the feed surface lying above the substrate (2” = psin ¢ > —t)

To perform the above integration in the most general form we will make use of a 16
point Product Gauss formula approximation method [21]. Let us define a pair of dummy

variables s and u and a function F(s,u) such that

bmaz =27  fPmaz=Tb Smaz=1 Umaz =1
/¢ / H; ydpdg = / F(s,u)d (2.115)
p u

min =0 min=Ta Smin=-1 min=—1

where the correspondence between (u,s) and (p,¢) is given by the following relations

2P - (pmaz + pmi'n) 2P - (rb - ra)

_ - 2.116

u Pmaz — Pmin Th = Tq ( )
1

po= Sluln =)+ (s 4 )] (2.117)

. - 2¢ ;Lf;na—z;'mimin) =¢/m—1 (2.118)

6 = n(s+1) (2.119)

The numerical integration can be carried out by generating a set of 16 pairs of points

(uj,s;) and adding up their contributions according to

min=0 min="Tq

bmaz=2T [Pmaz=T} . 16
/4, / Hyydpdg = ) B F(uj, s5) (2.120)
P ot

where
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( uj,s; ) is the j*h pair of integration points, and
B; is the weighting factor associated with the j'h pair of integration points

F(sj,u;) is the transformed integrand found by performing a coordinate transformation

on Hyy .

Alternatively, once we have chosen the 16 points (s;,u;), we can find the corresponding

values of p and ¢ by (2.117) and (2.119) and obtain the same result. That is

dmaz=2T Pmaz=Tb ] 16
L [T Higdpds = Y Bi(os,45) (2.121)
p j=1

min =0 min=Ta

where

pi = 3l =ra) + (4

¢ = m(s;+1)
and
[ Hg:s)(pj,@) for —h. < pjsing; < —t
Hipin¢i) = { HD(pj 45) for —t<pjsing; <c"=c—h, (2122)
| error condition else .

2.6 MODIFICATIONS FOR ANALYSIS OF TWO PORT STRUCTURES

In the preceeding sections, the theory has been advanced for computing the impedance
matrix and excitation vector associated with a one-port network, such as an open circuited
transmission line (Figure 2.5). This section will present modifications necessary to extend
the theory for treatment of two-port structures. Our approach for computing the network
parameters of two-ports, requires simultaneous excitation of the strip conductors from

both sides of the cavity. We will refer to this as “dual excitation”.
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Figure 2.9: Geometry used for numerical integration to compute excita-
tion vector. Note: the relative size of the feed is exaggerated
for clarity
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2.6.1 Application of reciprocity for dual excitation

In section 2.2.1 an integral equation (2.3) was derived by applying the reciprocity theorem

to the one-port network of Figure 2.5. In an analogous fashion, we will now apply the
reciprocity theorem to the two- port network of Figure 2.10.

In Figure 2.10, both magnetic current sources My, and My, are coupled with the
electric current source J, on the conducting strips to produce the total electric field £,
and magnetic field H%*! inside the cavity. As before, we consider an independent test
source J, and associated fields £, and H, as shown in Figure 2.6. Applying reciprocity

theorem between these two sets of sources yields

///V(JS-E,,—I_{Q-Msl—flq-M32)dv - ///qu.Etotdv

=0 (2.123)

where the volume V is the interior of the cavity and
My = Mué (2.124)
My, = Mgd. (2.125)

The right hand side of (2.123) vanishes as as described by (2.2). Reducing the remaining

volume integrals of (2.123) to the appropriate surface integrals gives

// E(z=h)- Jd.s—// = slds-{—// z—a) Mds .
Sstrlp Sfeedl Sfeed?

(2.126)
Comparing the above to (2.3) it can be seen as a natural extension to the theory for the

case of single excitation (one-port analysis).

2.6.2 Expansion of current and modified matrix equation

The current J; is again expanded according to (2.4)

NSECT

Z La,(z)2
p=1
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The only difference is that we now must consider the basis function for the x-dependence
on the last subsection (i.e. closest to the right-most feed) as a special case. This is
necessary since at each end of the cavity only a half sinusoidal basis function is required

as illustrated in Figure 2.11. Hence, for the right-most subsection we let

sin[K (z—a)

sin(K1;) Tysper1 ST L@

Qyseer (3") = (2'127)

0 else

where the quantities K and [, are as defined in section 2.2.2, and NSECT represents the
index for the right-most subsection. The rest of the basis function expansion is the same
as given by (2.5)-(2.7).

Substituting (2.4) into (2.126) yields

NSECT

Z=:1 [/Lqu(xzh)'lf)(y)ap(m):ids I,=

// I—Jq(x = 0) . Mslds

Sfccdl

+ / / Hy(z = a)- Myds (2.128)
Sfeed2

which can be expressed as

[Zgp) [Ip] = [Vaa] + [Vaal (2.129)
where

S, is the surface area of the p** subsection

[Z4p] is the impedance matrix, which has the dimensions of NSECT x NSECT
[I,] is the unknown current vector (NSECT x 1)

[Va1] is the excitation vector of the feed on the left (NSECT x 1)

[Vy2] is the excitation vector of the feed on the right (NSECT x 1)

Va1

/ / Hy(z = 0)- Myds (2.130)
Sfeedl

ng = // Eq(.”l) = a) . Mszds (2131)
Sfeed?
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We can now solve for the current vector by matrix inversion and multiplication according

to
1) = [Zep) " [[Via] + [Vaa] - (2.132)

2.6.3 Modifications to impedance matrix

The elements of the impedance matrix for the case of dual excitation are given by

the same integral equation as for the one port case, namely (2.10). The difference is
in the integration over the last subsection (p = NSECT) where a,(z) is now given by
(2.127). The integration for E,, given by (2.65) is also modified for the last subsection
(¢ = NSECT) in a similar way. The resulting modifications to the impedance matrix are
very straightforward. This is because it can easily be shown that the surface integration
over the last subsection (i.e. closest to the feed on the right) is equivalent to the integration
over the first subsection (i.e. closest to the feed on the left). Hence, the elements of the
impedance matrix are again given by (2.79) the only change being that {, and (p are as

redefined below rather than by (2.69) and (2.77)

2 forp=1lorp=NSECT

¢ = (2.133)
4 else
2 forq=1orq=NSECT

¢ = (2.134)
4 else .

(2.135)

2.6.4 Modifications to excitation vector

We now consider the integrations of (2.130), and (2.131). By analogy with (2.81) we

may express the two magnetic currents as follows:

My = ——2_ 4 (2.136)



- (;h) p¢> (2.137)

where the positive sign in the second current source indicates that it is taken to be in the

opposite sense (Figure 2.10) and
Vo1 is the complex voltage in the coaxial line at the left-hand feed
Voz is the complex voltage in the coaxial line at the right-hand feed
7y is the radius of the coaxial feed’s outer conductor
To is the radius of the coaxial feed’s inner conductor

p, ¢ are cylindrical coordinates referenced to the feed’s center

Substituting from (2.136) and (2.137) into (2.130) and (2.131) yields

ln (fﬁ‘) Sfeed
Ve = — 2 [ [ Hyle = 0)dpds (2.139)
ln (%) Sfced

Now, the integration required for V;; is identical to that carried out in section 2.5 for V,
(single excitation case). The computation of V,; is only slightly modified as we need to
shift the origin to (2',y',2') = (a,Y,hc) instead of to (0,Y,,h.). After examining the
x-dependence of H, given in Appendix G it becomes obvious that we need only multiply

the result for V3 by cos nr to get the result for V. That is

v
Voo = ~ 2 cosnr Va. (2.140)
Vo2

Let V,q represent the excitation vector elements for dual excitation such that
Vig=Va+Vp.
Then

v
Vid = (1 — 2 cos mr) Vq (2.141)
Vo2
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where V; represents the excitation vector of section 2.5 with Vg set equal to unity.
The next step is to find dual excitation vector for even and odd mode excitations.
As will be discussed in section 2.7, we will find the two-port scattering parameters for a
network by exciting it with even and odd modes.

For the even mode excitation, we let Vy; = Vpo = 1. In this case from (2.141) we have

Vee = Vo (1—cosnr)

0 for n even \
= (2.142)
2V, fornodd.
For the odd mode excitation, we let V5, = —Vg2 = 1. Now, using (2.141)
Vo = Va1 (14 cosnr)
2V,  for neven
= (2.143)

0 for n odd

where
V,e tepresents the elements of the even excitation vector
V,o Tepresents the elements of the odd excitation vector .

Using these two excitations, we can compute both the even and odd mode current distri-

butions using the following matrix equations:

[Ipe]

[qu]_l [Vae] (2.144)

-1 \
[Lpol = [Zgp]™" [Viol (2.145)
where
I, represents the elements of the current vector for even excitation

I, represents the elements of the current vector for odd excitation.
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STRIP
CONDUCTOR

Figure 2.10: Total fields inside cavity Et°t, [t produced by magnetic cur-
rents My, My, and electric current J;.
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A Y
_:/,/)\\,/)\ %\\////%\\;/\ %/\ ,//

Figure 2.11: Strip geometry for basis function expansion with dual exci-
tation.



CHAPTER III

PRELIMINARY RESULTS

The theoretical methodology described in Chapter 2 has been used as the basis for a
computer algorithm which was implemented in a fortran program. This program has, so
far, been used to obtain numerical results for the open end and series gap discontinuities.
This chapter presents some of these results with comparisons to other numerical solutions

and preliminary measured results obtained here at the University of Michigan.

3.1 RESULTS FOR OPEN END DISCONTINUITY

An open end discontinuity in shielded microstrip can be represented as an effective
length extension Ly, a shunt capacitance C,p, or by the associated reflection coefficient
(Fop) as shown in Figure 3.1. The plot of Figure 3.2 contains the computed effective
length for an open end on an alumina substrate (¢, = 9.6, W/H = 1), and Figure 3.3
shows the same for a quartz substrate (¢, = 3.82, W/H = 1.57). Our numerical results are
shown compared to results obtained by Jansen et. al. [22] and Itoh [23]. The geometrical
parameters of the cavity cross section used in the analysis for each of the above cases are
(referring to Figure 2.8): b = ¢ = .275", and H = .025". Also, in both cases the distance
from the end of the microstrip line to the end of the cavity was fixed at .125” . For both
the alumina and quartz cases, our results are seen to fall between the other two numerical

results. From this we conclude that our results are at least reasonable.

44
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A comparison with measured results is presented in Figure 3.4, which shows numerical
and experimental data for I'p, of an open circuit on an alumina (¢, = 9.7, W/H = 1)
substrate. Here, our numerical results are compared with numerical data from Super
Compact ! [24] and preliminary measured results. The geometrical parameters for the
cavity cross section in this case are: b = ¢ = .250”, and H = .025". The measured results

are seen to follow our results most closely.

2 RESULTS F FRIES GAP DI NTINUITY

A series gap in shielded microstrip may be represented as a pi arrangement of capaci-
tances, or alternatively by a set of scattering parameters as shown in Figure 3.5. Numerical
results have been obtained for series gaps on an alumina substrate (¢, = 9.7) with three
different gap spacings (G) 5 mil (i.e. .005"), 9 mil, and 15 mil. Results for the scattering
parameters of these gaps are shown plotted in Figures 3.6 through 3.13. The geometrical
parameters of the cavity cross section are: b = ¢ = .250”, and H = .025". For comparison
with our numerical results, results obtained using Super Compact, and Touchstone [25]
are also shown plotted along with preliminary measured data.

With one exception, the measured data best follows our numerical results. The one
exception was for the magnitude of S21 of the 5 mil gap. In contrast, the Touchstone
analysis had the least agreement with the measurements. This may in part be due to the
fact that Touchstone does not allow for taking either the side walls or the shielding cover
into account.

In summary, our numerical results show reasonable agreement with other numerical

solutions and, more importantly, demonstrate very good agreement with the measured

! It should be noted that Super Compact allows for specifying cover height, but does not take

the effect of the side walls into account. However, for the given geometry, the effect of the side walls is

minimal.
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data obtained so far. We are in the process of obtaining another set of improved mea-
surements as the present measured data shown here is not as smooth, as a function of

frequency, as it should be.



47

EONNNNNNNN

OPEN END

L l‘——
eff a

—>
I
O—0 &'--0 o Iy N
0——4r<:b--o OR o—o[_T Cor
|
o By
I‘op r

op

Figure 3.1: Representation for microstrip open end discontinuity
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END EFFECT FOR ALUMINA LINE (ER=9.6)

o JANSEN
-~ OURRESULTS
7 o |TOH

0 4 8 12 16 20 24

FREQ (GH2)

Figure 3.2: Effective length extension of a microstrip open circuit discon-
tinuity on an alumina substrate (¢, = 9.6), as compared to
other numerical results
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END EFFECT FOR QUARTZ LINE (ER=3.82)
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Figure 3.3: Effective length extension of a microstrip open circuit dis-
continuity on a quartz substrate (¢, = 3.82), as compared to
other numerical results.
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Figure 3.4: Angle of S11 of an open circuit as compared to measurements

and Super Compact results.
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Figure 3.5: Representation for microstrip series gap discontinuity.
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APPENDIX A

REVIEW OF THE METHOD OF MOMENTS

The general steps involved for in the computation of surface currents using the method

of moments can be summarized as follows:

1. Formulate an integral equation for the electric or magnetic field in terms of the
surface current density J, on the conductors. It is generally possible to put this

equation in the form

_ E
Lop(Js) =g (A.1)

H

where L,, is an integral operator, and § is a vector function of either the electric

field E or magnetic field H associated with Jj.

2. Expand J, into a series of basis functions J, so that
B NSECT B
Jo= > L, (A.2)
p=1

where the I,,’s are complex coefficients and NSECT is the number of sections the

conductor is divided into.

3. Determine a suitable inner product and define a set of test (or weighting) functions

W, . The result may be expressed as

NSECT _ ~ _
E Ip<quL0p (Jp» = <an§> (A3)

p=1
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where the inner product is defined as

(a,B):/S/a-Eds

In Galerkin’s method, the weighting functions are taken to be test currents J, which

are identical in form to the basis functions Jj,.
. Solve the inner product equation (.3) and form a matrix equation of the form

(Zgp] [1p] = [Vi] (A4)
where [Z,p] is termed the impedance matrix, and [V;] is called the excitation vector.

. Solve for the current coefficient vector by matrix inversion and multiplication ac-

cording to

1] = [Zgp] 7 (V] (A.5)



64

APPENDIX B

DERIVATION OF INTEGRAL EQUATION FOR ELECTRIC FIELD

Starting with Maxwell’s equations

v XE = —jwpH (B.1)
v XH = jweE+J (B.2)
vJ = —jwp (B.3)
Vo(E) = p (B.4)
V- (ul) = 0 (B.5)
we define A such that
H= -1—6 x A (B.6)
[

Substituting (B.6) into (B.1) yields

VX (E+jwA)=0. (B.7)

Since 7 X V¢ = 0 for any arbitrary vector function ¢, we let

E +jwA = -y¢. (B.8)
Making use of (B.6) and (B.8) in (B.2) yields
V X A = —jwe(jwd + o)+ J (B.9)

or

= VA+ (V- A) = Wlped - jopegd + ud . (B.10)
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We use the Lorentz condition
V(V-A) = —jwpevé (B.11)

in (B.10) to obtain

VIA+ K A= —uJ (B.12)

where k2 = w?pe. From (B.9) and (B.11) the electric field may be expressed as

_ o 1 - - -
E = —jwA+ jwev(v - A)
1 -- \
= —Ju(l+5Vv)4 (B.13)
We now define a dyadic Green’s function G to be a solution of
V2G4 kG = -I5(7 - 7). (B.14)

After some manipulation, the vector dyadic Green’s theorem [26] can be put in the fol-

lowing form (an appendix will be added later to give the details of this derivation)
///(V2A.5-A-v2é)dvz
14
// ﬂﬁxﬁyﬁxé
Sw+Ss

5
] }ds (B.15)

where, for our shielded microstrip cavity problem, the volume V is the interior of the
cavity, and S, and S, are the surface of the cavity walls, and the surface of a small
volume enclosing the source region respectively. We will require that the components of
Aand G satisfy the same boundary conditions on S, and S;. In this case, it can be
shown that the entire surface integral on the right hand side of (B.15) vanishes. If we now

substitute from (B.12) and (B.14) for 7724 and y2G we obtain

///V(V2A-5—A-v2é)dv - ///V{(-pj—khi)-é
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_A. [-Ta(r oy .é]}dv

—,u///vf-C:;'dV-i-/i(F)

= 0. (B.16)

Hence,

u///]é (B.17)

Finally, substituting from (B.17) into (B.13) produces the following integral equation for

the electric field

=
I

~jon(t+ v [ [ [ 7-Gav
[ siemer

where (G)T represents the transpose of G.

(B.18)
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APPENDIX C

EIGENFUNCTION SOLUTION FOR GREEN’S FUNCTION

The boundary conditions on the cavity walls are applied here in order to derive the
functional form of the Green’s function. First, the general solution to the homogeneous
differential equations for the components of the Green’s function is presented. Then, the
boundary conditions on the walls are used to arrive at an eigenfunction expansion for each
of the Green’s function components. The particular solution for the Green’s function is

found by integrating the inhomogeneous differential equation across the source region.
GENERAL SOLUTION TO HOMOGENEOUS D.E.’s FOR GREEN’S FUNCTION

Consider the homogeneous forms of equations (2.23) and (2.25)
2 71 24t _
VG +RG = 0 (C.2)

where ¢ = 1,2 denotes that these equations hold in each region respectively.

With C:?i given by (2.30), it can readily be shown that (C.2) implies
VG + kG, = 0 (C3)
ViGL, +kIGL, = 0. (C4)
We now apply the method of separation of variables. Let

Giy = Xi(a)Yi(y)Zi(2) (C.5)
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Gy, = Xi(2)Y}(y)Zi(2). (C.6)

Substituting from (C.5) into (C.4) produces the following differential equations for Gxx:

EXE o

M;+¢n =0 (C.7)
&Y .

i tRY =0 (C3)
2 71 P

%3”*54 = 0. (C.9)

Similarly, substituting from (C.6) into (C.4) yields for Gxz

&X

dﬂ+@X§:0 (C.10)

d;;;mf}f; =0 (C.11)

d;zZz;+ku§ =0 (C.12)
where

k2= kD 4 kD R (C.13)

The well known general solution of each of the above differential equations may be put in

the form

¥ = Ay coskit + Agsin kit (C.14)

where t = z,y, or 2;9 = X},Y/, orZ; (where s = z or z) and k! is complex in general.

The next step is to consider the boundary conditions on the cavity walls.

APPLICATION OF BOUNDARY CONDITIONS ON THE CAVITY WALLS

In the application of Green’s theorem (Appendix B) it is required that the compo-
nents of A and é’i must satisfy the same boundary conditions. Hence, the following
correspondences apply

Ai

T

oGy ; Ao Gl (C.15)
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That is, A. and G*, must satisfy the same boundary conditions on the waveguide walls
and on the substrate/air interface and, hence, must have the same functional form in
terms of spatial variation. The same holds true for A% and G?,.
In order to establish what conditions A* (and correspondingly C:?‘) must satisfy at the

walls, we need first to establish more explicit relations between A* and E'. From (B.13)

E'= —jwA' + v(v-AY. (C.16)

Now, from (2.26)
A= Alg+ Az (C.17)

hence,

- 04y A
vA: :L‘+ z

! o 5 (C.18)

and

974 =

2 04 oki
Oz Oz 0z ’
+i(aAi’+6_Ai)*
0y Oz 9z Y

0 0AL QAL .

+

Using (C.17) and (C.19) in (C.16) yields the following expressions for the electric field

components:

N PR O PR

Ez = —Jw [Ax'*'k?%(vA)]
| 10,040 A \
= —jw le'FE%( 92 + P )l (C.20)

i —jwd 0AL 0Al

E, = k? dy" Oz 32) (C.21)
i _iolaiy L0 047 04 \
E, = —jw [A2+k?(92 o + P )l . (C.22)

We now consider the boundary conditions at each of the cavity walls.
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Boundary conditions at z = 0, a

Since the cavity walls are assumed to be perfectly conducting, the tangential compo-

nents of the electric field must vanish at the walls. Therefore, for the walls at z = 0 and «

Ei(z=0,0) = 0 (C.23)

Ei(z=0,a) = 0. (C.24)

In view of these two equations, (C.20) and (C.22) lead to

Ei(z =0,a) = [a%(aa/i; + %ézi)] le=00 = 0. (C.25)
Ei(z=0,a) = —jw [A; + ki?a%(aa’iir %)] lo=00 = 0. (C.26)
Now, (C.25) is satisfied if the following condition is imposed:
(a(,;‘% ¥ ‘%) le=0 = 0 (C.27)
in which case (C.26) leads to
A(z=0,a)=0. (C.28)

If we use the correspondences of (C.15) and the representation of (C.6) we may deduce
that

X{(z=0,a)=0. (C.29)
If (C.28) is placed into (C.27) it is seen that

QA
a; lz=0. = 0. (C.30)

then (C.15) and the representation of (C.5) leads us to conclude that

oX: .
a_; |z=0,a =0. (03])
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The boundary conditions of (C.29) and (C.31) can be satisfied by choosing the following

eigenfunction solutions for the z-dependence:

X! = coskic (C.32)
X! = sinkiz. (C.33)

for : = 1,2, where
KD =k =k, =22 forn=0,1,2,... (C.34)

Boundary conditions at y = 0, b

The tangential component of the electric field must vanish on the walls y = 0 and b;

hence,

Ei(y=0) = 0 (C35)
Ei(y=00) = 0. (C.36)
From (C.20) and (C.21)
i i, 10,040 AL 3
E(y=00) = —jw [Az+ i Bx( o + PP ] ly=0p =0 (C.37)
; . 10 0AL 0AL 3
E(y=0,b) = —jw [Az i Bz( 7 T o, )} ly=0p = 0. (C.38)
If we impose (C.27) at y = 0 and b, we obtain
0AL  0AL
( 52 T 3, ) l=0p =0, (C.39)
and when this is combined with (C.37) and (C.38) the result is
Al(y=0,0) = 0 (C.40)
A(y=06) = 0 (C.41)
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from which it follows that the eigenfunction solution for the y-dependence is given by

Y = sin k:,y (C.42)
Y; = sinkly (C.43)

(for i = 1,2), where
D)=k =k, =20 form=1,23,... - (C.44)

Note that it is easily shown that m = 0 leads to a trivial solution for the y-dependence of

both components.

Boundary conditions at z = 0, ¢

Similarly at the walls z = 0 and ¢ we have

Ei(z=0,¢) = 0 (C.45)

Il
o

Ei(z=0,c) (C.46)

Making use of (C.20) and (C.21) yields

i _ S YRR N2 Va7 B

E(z2=0,c) = —jw [Ax + P Bz( Pl o )} l2=0, =0 (C.47)
i _ | —jw @ 04y | 0A} _

Ey(z - O’C) - [ k? ay ax az )] |2=0,c =0. (048)

Again we impose (C.27) this time at 2 = 0 and ¢

AL  0A! .
(0 ¥ 7z =0 =0 (€49)
which results in
Ai(z=0,¢)=0. (C.50)
If we substitute (C.50) back into (C.49) we deduce
QA;
2 |,0c =0 (C.51)

0z
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Finally, from the correspondence of (C.15), the separation of variables representation
of (C.5) and (C.6), and the conditions imposed by (C.50) and (C.51) the eigenfunction

solution for the z-dependence can be written as

zM) = sink(Vz (C.52)
Z0 = coskVz (C.53)
ZO = sink®(z-¢) (C.54)
Z® = cosk®(z-¢) (C.55)

where —from (C.13), (C.34), and (C.44)— k) and k2 are given explicitly by

K = - (S-S (€56
W = - (p- (Bhp (C57)
and
ko= w/ia (C.58)
ke = w/ie. (C.59)

REPRESENTATION OF GREEN’S FUNCTION BY EIGENFUNCTION SERIES

We will now combine the results obtained above, so that the Green’s function may be
written in series expansion form. Substituting from (C.32), (C.42),(C.52), and (C.54) into

(C.5) and taking the summation over all the possible modes, results in the following for

Gi:
Gglx) = Z z A% cos kg sin kyy sin kgl)z (C.60)
m=1n=0
G® = Z Z B sin kya sin kyycos kP (z —¢c). (C.61)

m=1n=0
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Similarly, if we substitute from (C.33),(C.43),(C.53), and (C.55) into (C.6) we obtain the

following for Gt

G = Z > BY) sin kya sin kyy cos k(M z (C.62)
m=1n=0

G2 = Z Z A?) cos kyz sin kyysin KD (z-c). (C.63)
m=1n=0

The complex coefficients A%, and B (i = 1,2) are determined in Appendix D by the

application of boundary conditions at the substrate/air interface (2 = h).
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APPENDIX D

BOUNDARY CONDITIONS AT SUBSTRATE/AIR INTERFACE

The complex coefficients A%, and B (for i = 1,2) for the Green’s function com-
ponents given by (2.31)-(2.34) are found here by applying boundary conditions at the
substrate/air interface (z = h).

Figure D.1 shows a cross section of the cavity in the z — 2 plane. The application of
boundary conditions at the interface is made difficult by the presence of the infinitesimal
current source on the substrate surface. We will avoid this difficulty by first solving a
similar problem with the current source raised a distance Ah above the substrate. After
solving for the boundary conditions at z = h and z = h 4+ Ah, the equations required to

determine the coefficients A’,,, and B{,, are obtained by letting Ak go to zero.

FORMULATION

From the consideration of the boundary conditions on the waveguide walls the components

of the Green’s function are given as

Gl = i i AY) cos kyz sin kyy sin k(1) 2 (D.1)
m=1n=0

) = i f: BY sin ky sin k,ycos k(M z (D.2)
m=1n=0

G® = i i A@) cos kyz sin kyysin k(2 - ¢) (D.3)
m=1n=0

G® = i i B sin k,z sin k,y cos k) (z — c) (D.4)

3
1
—
3
1l
o
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(2)

x
>
I
x=a
a) Actual position of current source
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>

b) Current source raised above interface

Figure D.1: The current source is raised above the substrate/air interface
to apply boundary conditions.
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For region 3, the Green’s function must satisfy the same differential equation (2.25) as in

the other two regions. We will use the form of the general solution given by

GO = Z Zcosk zsin kyy [A(3) ik *+BPe -k )z} (D.5)
m=1 n_O

GQ _ Z Zsmkzw sin kyy [C( )ezk n D(S) K, ] (D.6)
m=1n=0

where,

k; = nr/a (D.7)
k, = mn/b (D.8)
KD = k- k2 - k2 (D.9)
KD = (k2 - k2 - k2 (D.10)
PONSC) (D.11)
k= wypoea (D.12)
ko = wy/Hoto - (D.13)

Recall, the electric field solution in terms of the vector potential components (C.20)-(C.22)

i N D N AT
E; = -jw [Aﬁﬁa—(v-fl)]

[, 10 0AL 04
——Jw[z‘l+ (3w+6)]

92 (D.14)

—jw & AL QAL \
k2 8_y( oz T oz) (D-15)

(D.16)

B - _].w[Ai 1 9 04 aA ]

- —_ )
k2 9z Oz
These equations hold in each region respectively (i.e. for ¢ = 1,2,3).

The solution for the magnetic field can be written using (2.21) and (2.26) as follows:

I_I'zpl—va‘——[vx(A‘quA’z)] (D.17)
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Separating this into z,y, and 2z components gives

104}

H = D (D.18)
;1 (oAb 0Al

H = Ho(az - m) (D.19)
= —iaa“:f. (D.20)

APPLICATION OF BOUNDARY CONDITIONS

Recall from Appendix C (C.15) that the following direct correspondences can be made

as far as boundary conditions are concerned

A G A oG (D.21)

Boundary conditions at z = h

At z = h, the following boundary conditions apply:

E}) = EO (D.22)
EQ = EP (D.23)
HY = HP (D.24)
Y = HO (D.25)
poHY = poH® = gV = g® (D.26)
aEY) = E® (D.27)

We will make use of (D.23)-(D.26) to formulate four of the eight equations needed to solve

for the complex coefficients in (D.1)-(D.6). We start with (D.26), then substitute from
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(D.20), and recall the correspondences of (D.21) to obtain

Fle) aGY)
Gl = 5 e (D.28)

When (D.1) is placed in (D.5) and orthogonality is applied, the following result is obtained
A sinkDh = AB) K7k 4 p) ~iKh (D.29)

where k{) has been substituted for k) in accordance with (D.11).
Next, from (D.24),(D.18), and (D.21)

Y o

9 =5y (D.30)
From (D.2) and (D.6)
B cos kMWh = CO) b 4 D) =ik (D.31)
The combination of (D.25), (D.19) and (D.21) yields
(ag;(v;) - B_g?) o=k = (ag&i’ - %) |o=h (D.32)

Making substitutions from (D.1),(D.2),(D.5) and (D.6) in this expression leads to
(AR — BOk] cos kR = 2 [ 407 - ek
“k, [c,(:,gefkﬁ”h + Dgs;e—jki”h] . (D33)
We now substitute for Bis cos k{h from (D.31) to reduce the above to

A kO cos kDA = kD [Afjf)lejk(zz)h _ B® e—fkﬁ”h] . (D.34)

Now consider (D.23). From (D.15) and (D.21)

10 06Y acl) 8 ,0GY)  aGY
Eb_y( Oz 0z )= :(?_y( oz 0z Ne=n -

(D.35)
Substituting from (D.1),(D.3),(D.5), and (D.6), produces, after simplification,

o 1) 2(DY e 21 3) ikDh 3) —ik2h

— (AW ke + BOED)sinkDh = k(AR %k 4 B e=ikhy
€

~JKD(CE M — DB)eHhy (D 36)
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Next, we use the expression from (D.29) to replace Ass’ltejk(,"’)h + B,(,‘:’% T Jields
AN (1 - €)kg sin kDR + BO kW) sin k(1 p =
—jkP ez |C) O _ pE) e=ikh| 030

Equations (D.29), (D.31), (D.34), and (D.37) represent 4 of the 8 equations we need.

Boundary conditions at z = b’

We now proceed to the boundary conditions at z = k' (see Figure D.1) we have

E® = EO (D.38)
E® = EP (D.39)
E® - E® = g, (D.40)
H® = HO | (D.41)

H® = HO (D.42)
~HP -HP) = J,. (D.43)

Of the above, we will use (D.38), (D.41), and (D.42) to derive three more equations for

the complex coefficients.

We start with (D.42) and use (D.18) and (D.21) to obtain

oG aGY)
oy 1= = gy le=w (D-44)

which yields after substituting from (D.4) and (D.6)
B®) cosk@ (' — ¢) = CO) W 4 D) =KW (D.45)

Next, consider the boundary condition of (D.41). This leads to

oG 9GS |
oy |o=he =% |o=he (D.46)
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after the use of (D.20) and (D.21). Substitution from (D.3) and (D.5) yields

AD sin kO (h = ¢) = A®) KW 4 B) =KW (D.47)

mn

This equation, when combined with (D.3) and (D.5) , shows that
GA(z=1)=GA(z=1). (D.48)

With the above equality, we can substitute from (D.14) into the boundary condition of

(D.38), and make use of (D.21) to produce

9 062 ac® 9 6Y ac
%( oz t 0z )2%( Ox t 0z )-

(D.49)
Substitution in the above from (D.3), (D.4),(D.5), and (D.6) yields

ARk + BE kKD sin k(K - ) =
2 [ AW 1 B emk]

Now, replace [As,?zlejk(zz)h' + B,(,f,)le‘j"(zz)h'] with Ag% sin kg)(h‘ —¢) from (D.47) and we
may write

BO) sink@ (K — ¢) = —j [c,(,fgefkﬁ”h' _ pg;e-fk£2)h'} . (D.51)

At this point we have 7 independent equations —(D.29), (D.31),(D.34), (D.37),(D.45),-
(D.47), and (D.51)— and we have 8 unknown complex coefficients. The other required
equation is obtained by integrating the differential equation of (2.25) across the boundary

at z = H'.

Integration of the differential equation for G' across the source region at z=h’

From (2.25) we have

V2G4 kG = —T6 (G- 7) . (D.52)
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we then substitute from (2.30) to yield
(7 +k2) (GL a8 + GL,23) = ~8(r — )24 . (D.53)

Hence,
(V2 + k?)Gfm =-6(F-7)=-b6(z-2")o(y-y)6(z - 7). (D.54)

We now integrate both sides of this equation over a line passing through the source point

7', and then take the limit as the length of this line vanishes

K 4o
lim (v + k2)G' dz=—-é(z —2")o(y - v'). (D.55)

a—=0Jpr_q

This may be written as

. P 9 . B +a ; Kta g ; , ,
lim (T + -2 4k / Guadzt [ 55Ghdz| = ~8(a-2)o(y-v) (D.50)
h'—a

If we make use of (D.3) and (D.5), we can show that the first integral vanishes as follows:

hl+ hl
lim G dz = hm l GG dz+/ Gg‘;dz
h -«

a=0 Jp'—q

= lim [Z Z ( ) cos k. sin kyy (Agzlejk(zz)z - Bﬁ,?%e"jk(zz)z)l ’;zﬁ;_a
a—, m=1n=0
+ lim [ Z Z ( ) (2) cos k. sin kyy cos k(P (z — )] =hta
m=1n=0
=0 (D.57)
(since each of the limits on the right hand side vanish individually.)
Therefore, (D.56) can be reduced to
hl+a a 1 ! /
ilir%) - EEG dz = -6(z —2")o(y — ¢/) (D.58)
From which we obtain
il_%—éz— Z:fz =—6(z - 2")8(y - ¢'), (D.59)

or

oG 96Y ,
Pl ek —8(z — 2")o(y — o). (D.60)
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Substitution in the above from (D.3) and (D.5), and simplifying (with the use orthogonality
principles) yields

':Z—b {Ag,?”)zkgz) cos k£2) (h/ _ C) _]kgz)(Asgztejk(ZQ)z

_Bfr‘?)le‘jk(f)")} = —coskyz'sink,y’  (D.61)

where

2 forn=0
On = (D.62)
4 forn#0

The above represents the final equation needed to evaluate the complex coefficients.

EVALUATION OF THE COMPLEX COEFFICIENTS OF THE GREEN’S

FUNCTION

To evaluate the complex coefficients, we will make use of the equations derived above
involving A%, Bi . (i = 1,3), and %) and DE). Since we are only interested in Ag%,
B,(,},l, A%%L, and Bg% these will be evaluated by eliminating the other complex coefficients
along the way.

Now, recall that ' = h + Ah. If Ah — 0 then A’ — h in equations (D.45), (D.47),
(D.51), and (D.61).

Starting with (D.45) with A" — h we can substitute from (D.31) to obtain
BY) cos kMh = BR) cos kA (h-c). (D.63)
Similarly, (D.29) and (D.47) yield
AQ sink@(h - ¢) = AD sinkMp . (D.64)

From (D.37) and (D.51) we get

B sink®(h - ¢) L [Ag; (ei - 1) kzsin k(b 4+

BN EY

%
T

sinkVh|.  (D.65)
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From (D.34) and (D.61)
ab

@n

[Agzlkgz) cos kgz)(h’ —c)— Ag%kﬁl) cos kgl) h] = —cos ky2' sin kyy' .

The combination of (D.64) and (D.66) yields

ab [A%L sin k(M
$n |sin kgz)(h -c)

Solving for AY

— Py, cos kya' sin kyy' tan Icg)(h —c)

A=
abdypy,y, cOS kgl)h

where

dimn = kP tan kDA — KD tan k3 (h - ¢)

and ¢, is given by (D.62) A, is found by substitution from (D.68) into (D.64)

— Py, c0s kyz' sin kyy' tan kDh
abdy,,, cos kﬁ"’)(h —c)
Next, we combine (D.63) and (D.65) to get

AQ) —

mn

(1) Wy an @ g _
an COos kz l;sm k‘z (h C) _ ].2 [Agll (l* _ 1) kz sin kgl)h
cos k )(h —-c) k) €r
(1) 1.(1)
+B'””*kz sin kgl)h] :

which, by substituting for AR from (D.68), can be rearranged to find B as

—n(1 — € )kg cos kya’ sin kyy' tan kb tan k£2)(h —c)

B -
abd ndomy, COS kﬁ‘)h

where
domn = kD€ tan k@ (h — ¢) — kM tan kVh .

Finally, place (D.72) in (D.63), and B,(,le can be expressed as:

—Kqp(1 — € )k cos kya' sin k,y' tan kM h tan k?)(h —-c)

5 -
d1mndamn COS kg)(h —¢)

k® cos kB (h - ¢) — AD kD cos kgl)h} = —cosk,a'sink,y' .

(D.66)

(D.67)

(D.68)

(D.69)

(D.70)

(D.71)

(D.72)

(D.73)

(D.74)

We now have derived explicit relations for the desired complex coefficients A,(,Bl, A,(;QL,

BT(,%L, BZ). Tt can be shown that the same relations can be obtained by moving the

current source of Figure D.1 into the dielectric region and then bringing it back to the

substrate surface.



85

APPENDIX E

EVALUATION OF THE MODIFIED DYADIC GREENS FUNCTION

i

4

The modified dyadic Greens function was defined in (2.53) as
=i . 1-- =i.T
I'=—jupo | [ 1+ 7V | (G)] -
From (2.30)
G =Gi 58+ G35,
The dyadic transpose is
(G = Gi 43 + G 33
The divergence of E.2) yields

- =i dG! dG:
. T - T Tz | A
v (@) ( oz + 0z )x

Forming the gradient of this

I o (0Gi. 0G:
. T - Z T zz | Aa
v (G) 0z ( oz + 0z )wm
+i oG, N oG, \ ..
oz | 9z )V

+g aa;eraG;z ..
0z \ Oz 5z | %

We can now substitute from (E.2) and (E.3) into (E.1) to yield

i = —jw Gi +ii aG;:a:_’_aG;:z A
- IR T B \Tae T )|

=i

(E.1)

(E.2)

(E3)



86

s 19 8G§W+6G§z "
k?9y \ 0z 2z )| ¥°

; 10 (oG, 0Gi \]|..
+ lG + 3 kza ( 9% +W)] zx} . (E.4)
Hence, the zz component of the modified Green’s function is given by
g
T . 1 1 a BG;&. aG;:z K
Fm: = —JWHo [Gxx+ k? Oz ( oz + 0z )l . (E“))
From (2.31) and (2.32)
G = o> AL cos kg sin kyysin k1 2 (E.6)
m=1n=0
9GS 2 & o
rrali mzz:l T;)kxA(llz sin kg sin kyy sin kgl)z
202(1) ©
866;;” = mX: 7;) AW k2 cos k. sin kyy sin k{2 (E.7)
G0 = Yoy BY) sin k,z sin kyy cos k{1 z (E.8)
m=1n=0
(1) 00 00
agz = — :4‘:1 T;) kM BOY) sin k,z sin kyy sin k{1 2
PG 2 & o
Ozc';z = - mz=1 1;) kok(DBW) cos kg sin kyysin kgl)z . (E.9)

Substitution from (E.6)-(E.9) into (E.5) results in

co . i) _kk b

m=1n=0

Replace the expressions for AD), and BY) from (2.41) and (2.43). The result is

rl) = +jwpo i i cos kz sin kyy sin k(1) 2
m=1n=0
{ Kqb €08 kz2' sin kyy' tan k£2)(h —-c) ) k_f:
. dymm €OS kgl)h ( - k%)
kpktY Kab(1 — €8 )k cos k' sin k,y' tan kW h tan k£2)(h —-c)
B kf [ dmndamn cos KV R ] } (E.10)

which can be rearranged in the following form:

M = oy z{ !

m=1n=0 \ dimndamn cOS £V,
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. [K,ab cos k. sin kyy sin k(2 cos kyz' sin kyy' tan k) (h - c)]

@ (1_k (2) (1) ks (1)
ke 11— o) tank;”(h—c) - kY [1- = tank,’h| » (E.11)
1 1

where the expression for dy,, from (D.73) has been used in combining the terms inside

the brackets of (E.10). Evaluation of (E.11) at 2z = h gives

e =h) = jou > ()

m=1n=0

. [nab cos ko sin kyy cos kyz' sin kyy' tan kW h tan k3 (h - c)]

2
. [kg)e: (1 - %) tan k@) (h — ¢)
1
* 2
kM (1 ( kk ) tan k(l)h}} . (E.12)
1

Proceeding in a similar fashion for region 2, we have from (2.33) and (2.34)

G = Z Z A®) cos kyz sin kyy sin k®)(z - c) (E.13)
m=1n=0
(2)
agx = - Z Z kAN (2) sin kya sin kyysin k£2)(z -¢)
m=1n=0
62G§;2) 0 o
6m2$ = =Y Y APk cos kyx sinkyysin kP (2 - ¢) (E.14)
m=1n=0
G = Z Z B sin kz sin kyy cos k(2 - ¢) (E.15)
m=1n=0
aGY)
(9;:” = - Z Z k; 2)B 2) sin k;x sin kyy sin k£2)(z -c)
m=1n=0
G 2, &
50 = Z Z kzkgz)B,(,f% cos k. sin kyy sin kgz)(z —¢) (E.16)
m=1n=0

Substitution from (E.13)-(E.16) into (E.5) yields

sz) = —Jwho Z Zcos kz sin kyy sin kg")(z - ) [A( ) (1 _ 22) kz 2"2 37(31)1}

m=1n=0

We now replace A( ) and By(,f,)l with the expressions from (2.42)and (2.44)

[o <IN o}

Fg:) = —Jwlo E Z cos k, sin kyysin k;(f)(z ~¢)

m=1n=0

{ {—nab cos k' sin kyy' tan kﬁl)h] (1 k_g) kzk:(})
d1mn COS k;(,2)(h —-c) kg k3
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‘ [-—nab(l — €7 )k; cos kya' sin kyy' tan kgl)h tan k£2)(h - c;)] }
d1mndomn cOS k£2)(h - ¢)

which can be rearranged as follows

e - jwuoi";f;{ !

m=1n=0 \ d1mnd2mn cOS k£2)(h - c)

. [nab cos k. sin kyy sin kgz)(z — ¢)cos kyz'sin kyy' tan kgl)h]

kz €*k2
kD -3 tan k{? (h — c) — k() -2t tan k{Vh| } . (E.17)

1 1
Evaluation at z=h yields

I@(z=h) = jou i i{ <_1—)

m=1n=0 dlmnd2mn

[Kab €08 ky2 sin kyy cos kya' sin kyy' tan k(D h tan k) (h - ¢)]

(2) = k2 2)
|k er l—ﬁ tan k,*(h — ¢)

1

k) (1 _ ﬁ) tan kD) ] } (£18)
0 (1- S5 anon | 18

1

Upon comparison of (E.18) with (E.12) we can readily see that

Fglx)(z = h) = r:(c2a:)(z = h) = F:cx(z = h) . (E.lg)
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APPENDIX F

EVALUATION OF CLOSED FORM INTEGRALS OVER

SUBSECTIONAL SURFACES

Consider the surface integral given by (2.66)
Lymn = // cos ky &' sin kyy' Y(y')a,(z") da'dy’ .
Sq

where from (2.5)

From (2.6)
sin[K (zg41—2')] z, < 2 < Tot1

sin(Klz)
n __ in[K(z' -
a. (2 = sin[K (¢’ ~z4_1) ’
1 ( ) sin(Klz) Tg-1 X7 L 2

0 else ,

for ¢ # 1, and from (2.7)

sin[K (Iz -2’ ’
N ) L 0se <l
ap (2) =

for ¢ = 1. In the above,

(F.1)

(F.2)

(F.4)
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and, for our purposes here! , we let

zg=(g-1),.

Figure F.1 illustrates the strip geometry used to determine the integration limits in

(F.1). The boundaries of the ¢** subsection depend on g as follows:

Yo-5<y<Yo+¥% forg=1

Te-1 < &' < xgr

Y—%gy'§Y0+%’- else .

With these subsection boundaries, Z,,,, may be expressed as

Tymn = TVT? (F.6)
where
! Yo+W/2 N oo ’ g1
v = /Y W Y(y')sin kyy' dy (F.7)
-
) Jo® cos kya’ a,(z")dz' for ¢=1
7= {7 ‘ (F.8)
Yol coskya'a,(z')dz’  for g #£ 1.
Tg-1 q

INTEGRATION OVER ¥’

From (F.7) and (F.2) we have

;2 /Y°+W/ 2 sin kyy’

TV =—» dy'. (F.9)
YO_W/2 1 2(y'~Y, 2
- [

W

Note that for strip geometries other than an open circuit and a straight thru section of

transmission line, the position function z, will be more complicated in general.
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Figure F.1: Strip geometry used in evaluation of surface integrals
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Now, let
sing = U =Yo) = cospdp = Zdy
v v (F.10)
vy’ = %siné—i—Yo =3 dy = %cosd)dqb
with these substitutions
, 1 [%
=1 /2” in [ky(% sin é + Yo)| dg (F.11)
)

which can be expanded, with the use of trigonometric identities, as follows:

L~

I
v = ﬂ / sin(ky%sin@coskngdq&

M)

+ / : cos(ky-v;f sin ¢) sin k, Yo dq&l
)
Wy oW
=/ + / . (F.12)

Consider the first term:

z

1)y’ '
/ -71; cos k, Yo /2 sin(ky% sin @) d¢

z
2

0 z
% cos kYo [/ sin(ky% sin @) do + /2 sin(ky% sin ¢) d¢] .
0

I

]

Now, if in the second integral above we let

¢ =0 ; df = -ds

then

(1) g 3
/ - % cosk,Yp [/ sin(ky%{ sin ¢) d¢ + / Sin(_ky%i sin ¢)(—d¢)
0

-z
2

= 0.

Hence, (F.12) becomes

s

, (2)y' z
v = / - %sinkyYo / 2 cos(ky%/-sin@dd)

0 z
= % sin k, Yo [/ cos(ky% sin ¢) dp + /2 cos(ky% sin @) do| .
0

-Z
2
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If, in the first integral, we let
¢ =—¢ and d¢' = do

we obtain
J:

7v¥ = 1 sin Ic:yYo/2 cos(ky%/— sin¢g)de . (F.13)
T 0
By comparison of the Bessel function of the 27 order given by [27]

s

Jop(2) = ;2;/02 cos 270 cos(z sin ) df

with (F.13) we may readily see that

¥ = auky 1o (1) w1t

This completes the y'-portion of the integration.
INTEGRATION OVER 2z’

From (F.8), let us first consider the case for ¢ # 1

z! Fa+1 / N
I; = / coskzz'ag(z)de’ (g #1) (F.15)

q-—-1

Substitution from (F.3) yields

z! 1 oo ! 1.0
S / sin K(z' — z4_1) cos kya' dz
I

q . >
sin Kl | Jz,_,

Zq+1
+ / sin K (z' 4+ z4—1) cos kya' d:z:']
Zq

1 1 1,‘/ 2 II \
= sin Kl, [Iq( '+ I‘g ) ] ' (F.16)
For the first integral we have
Zgl)x' = / " sin K(z' — z4_1) cos k,z'dz’
ZTg—1
1 T,
- ! {sin [(K + kz)z' — Kzq-1] + sin [(K — k)2’ — Kz,-1]} da’
Iq—l
1 1 -
= -3 { K+ h [cos(Kly + kyq) — cos kpzq_1]

+ [cos(Kl; — kyzq) — cos kmzq_l]} . (F.17)

1
K -k,
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We can solve for I,?‘W in a similar fashion to yield

7@ _ Tatl | oo, ! 13,0
5 = sin [K (2441 — 2')] cos ky2'dz
Zq
1( 1 !
= 3\E-% [cos kp2q41 — cos(K g + kyzy)]
+% y [cos kgaqq1 — cos(Kl, — k,,xq)]} . (F.18)

Substitution from (F.17) and (F.18) back into (F.16) yields

o 1 1 1 1 !
I; = kL (K T + = k:z:) [5 (cos kzgq1 + cos kzzq_1) — cos K1, cos kzzq] .

(F.19)
After some manipulation, this expression may be put in the following form
~4K cos kyzy sin [§(ks + Kl sin [4(k, - K ),
sin Kly (K + k;) (K — k)

K2 cosk T, 1 1
B T . 1 Ll si b K l . .
sin K1y smc[z(kf”‘ ) } Sinc [Q(k Ix)x] (g#1) (F.20)

!

I; =

where

dnf 140
Sinc(t) = ! (F.21)
Recall now the integral for the case ¢ = 1 from (F.8)

lz
/
Iy =/ cos kya'aq(2')dz’ .
0

Substitution from (F.4) for a;(z)

1
sin K1,

T

Iz
/ cos kya' sin(l, — z’)dz’ . (F.22)
0

Comparison of this expression to the integral of (F.18) it becomes clear that if we let

zq — 0 and @441 — [y in (F.18) we can obtain the solution for the integral in (F.22). The

result is

/ 1

x —
ho= 2sin K1, {K -k,
1 1 1 )
T 2sinKl, (K RTET kx) [cos kglz — cos K] .

» 1 ,
[cos kply — cos K] + TiE [cos kzly — cos K lx]}
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The above can be rearranged to give

o —Klg . 1 ) 1 _
= ok e [2(’“” K)lr] Sinc [2(’% - K )lz] (forg=1).  (F.23)

Combination of this with (F.20) yields

o (KPR coskyz, . [1 i } . [1 ]
I = 2ein K1, Sinc 2(kx + K)l;| Sinc Q(k’” - K)l;| (foranyq) (F.24)
where
2 for ¢g=1
(= (F.25)
4 for g#1.

Finally, substitution from (F.14) and (F.24) back into (F.6) yields

Tymn = //s cos kyz' sin kyy' v (y o, (2")dz' dy’
q

(K2 coskya, .
DSkl O

[%(kx + K)lz] Sinc B(kz - K )lx}

-sin ky Yo Jo(ky%/— . (F.26)
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APPENDIX G

EVALUATION OF THE MAGNETIC FIELD COMPONENTS

The magnetic field components anywhere inside the cavity are given by the surface

integrals of (2.89) and (2.90)

0= [ (agjx-“’i )¢(y')aq<x')ds' (G.1)
H, = / /S 0Gs, (')ds' . (G.2)

We will evaluate H ;y first.

EVALUATION OF THE y— COMPONENT OF THE MAGNETIC FIELD

From (2.31) and (2.32)

( 1) o 0
83” - 6?” = > > kD AL cos kya sin kyy cos k() 2
Z z m=1n=0

(e ¢] e ]
- Z Z kB cos kyz sin kyy cos k(D2

m=1n=0

Using the expressions for A%, and B{Y), from (D.68) and (D.72) yields

oG BG( ) B Z Z ¢n €08 k2 sin kyy cos k! )ztank(Z)(h ¢)
R

oy foyar drundamn cos VR,
. [kgl)dmn — k2(1 - €) tan k£ )h] -coskya'sinky,y . (G.3)

Substitution from (2.47) for dyy,y, in the bracketed term yields

kD domn — k2(1 = €*) tan kgl)h] = [ ke tan k@ (h - ¢) — kM tan kgl)h]
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—k;‘;(l — €;)tan kgl)h

kVED e tan k(b - ¢)

— |(EM)2 + k21 - )] tan k(D (G.4)

Use of (G.4) in (G.3) results in

oG BG(l) ¢ tan kgz)(h —c)

0z =—ZZ

m=1n=0 dlmnd2mn Cos kgl)h
{KDED e tan kB (h - ¢) - [(BD)? + k2(1 - )] tan kDh}

- cos k. sin kyy cos kM z cos kyz' sin kyy' . (G.5)

.0

Similarly, substitution from (2.33) and (2.34) yields after similar algebraic manipulations

2) (2) © %o
ag” ag = Z Z kAR cos kya sin kyy cos kP (z — ¢)
z T

m=1n=0

o0 o0
- Z Z kzB?) cos kg sin kyy cos k(P (z — ¢)

©n tan kgl)h

m=1n=0 dlmndZmn cos k(2)(h - C)
{RDED tan kOh — [(KO)2e; - K1 - )] tan kO (h - o)}

cos k. sin kyy cos k(2 — ¢) cos k2’ sin kyy' . (G.6)

We are now ready to evaluate the y—component of the magnetic field. Substitution from

(G.5) into (G.1) yields

H(l) io: i d(,on tan k(2)(h ¢)

=6 dimndamn cos kR
) o>

{ W@ e tan kP (h - ¢) — [(kgl))2 + k21— e:)] tan kgl)h}

- cos k. sin kyy cos kN2 [Tl (G.7)

where from Appendix F (F.26)

TIymn = //s cos kz&' sin kyy'¥(y' )y (2")dz'dy’
q
(qu?coskqu [ . ] ) [1 )
Ssin KL Sinc [ =(k; + K)l| Sinc 2(kz—lx)lz]

-sin ky Yo Jo(ky%) . (G.8)
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So

O (K2 & & gontank/(f)(h-—c)
v 2sin K1,

m=1n=0 dlmnd2mn Cos k;(:l)h
{RORDe; tan KO (h - ¢) - [(KD)? + (1 - )] tan KD}

- cos kyz,4 Sinc B—(kz + K)lx] Sinc [%(kx - Iﬁ)lz} sin k, Yo Jo(ky%)

- cos ky sin kyy cos k{1 . (G.9)

Substitution from (G.6) into (G.1) and again making use of (F.26) yields

~(K2 & & tan kO h
g - Skl P tan ks
" 2sin K, mE:I 'nz:;) dmnamn cos k) (h — ¢)
{ KD tan kDR — [(kD)2er ~ k2(1 - &) tan kA (h - o}
. [1 , [ - . w
- cos kx4 Sinc [5(]% + K )lz] Sinc [—2-(1% -K )lz] sink, Yo Jo(ky7)

- cos kyz sin kyy cos k(2 — ¢) . (G.10)

We now proceed to the evaluation of H ;z.
EVALUATION OF THE z— COMPONENT OF THE MAGNETIC FIELD
Substitution from (2.31)

oGl
dy

= Z Z ky AD), cos ky cos kyy sin k() 2

=1n=0

_ i f: nk, tan k£2)(h -c)

m=1n=0  1mn COS kgl)h

3

- s k2 cos kyysin k(1) z cos k' sin kyy' (G.11)

Similarly, from (2.33)

ac®
oy

= Y ) ky AR) cos kyz cos kyysin kP (z — )
m=1n=0

_ i i ok, tan kY

m=1n=0 A1mn COS k£2)(h - C)

- cos kyx cos kyy sin k(B (z — ¢) cos kya' sin kyy’ (G.12)
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Substitution from (G.11) into (G.2) and using (F.26) yields

712 [ele} [0’}
gO - G K17 Prky tan k{? ( -c)
Hg 2sin K1, 2

S = dyn coskMh

- cos kg4 Sinc [ —(kz + K)I ] Sinc B( - — K)lz]

-sin ky Yy Jo(ky%)cos kz cos kyysin k(U 2 (G.13)

Likewise, substitution from (G.12) in (G.2) yields

ao _ _GEE 2 i @nky tan kR
9% 2sin K1, = = dlmncosk )(h—c)

- cos k4 Sinc [§(kx + K)lz] Sinc [%(kx - K)lx]

-sink, Yo Jo(ky%) cos k. cos kyy sin kP (z — ¢) (G.14)

In summary, the § and Z components of the magnetic field anywhere in the cavity may be

expressed as follows:

Hé;) = Hyp Z Z cnchl,zm cos k2 sin kyy cos kﬁl)z (G.15)
m=1n=0
H,g) = Hyp Z Z cnchl,,)m cos k. cos kyy cos kgl)z (G.16)
m=1n=0
H,g) = Hyp Z Z qucg(ﬁ,)m cos ky sin kyy cos k2 (z — ¢) (G.17)
m=1n=0
o0 nOO
Hq(f) = Hy Z Z cnqc%n cos kg cos kyy sin k£2)(z -c) (G.18)
m=1n=0
where
(K12
Hao = =3z
© 7 2§inKl,
1 1
Cng = coskzzySinc [i(kx + K)lx] Sinc [E(lcz - K)lx]
and
1 Cgr)m (2) * (2
Cq(;nln = o Do {k ke tan kP (h — ¢)
— [(RM) + K2(1 - €)] tan KD} (G.19)
k @)y _
() Pokytan k(h—c) . kYo Jo(kyﬁ (G.20)
dymn cos kR 2
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2 &"_ {k(l)k(2) tan kW,
cymn - kyd2mn z z z
- [(6@Y2e; - k21 = )] tan kP (h - o} (G.21)
(1)
@ - _ekytankih e otk a2
Comn = sin . 22
dlmncoskg?)(h-—c) y10 0( Yy 2 ) ( )
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