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I. INTRODUCTION

Planar transmission line structures such as microstrip
line, coplanar line, and finline have been fundamental components
of microwave integrated circuits for many years, [1]. More
recently, there has been considerable effort devoted to the design
and realization of monolithic microwave integrated circuits
(MMIC's) for use in the f > 20 GHz region, [2]. Once fabricated,
monolithic circuits are very difficult to tune for optimum
performance and this is a méjor drawback, [2], [3]. Accurate
theoretical models of MMIC components are required so that device
performance can be predicted confidently, thus avoiding a
time-consuming and costly production cycle. Such characterization
requires a mathematically rigorous solution for the fields in a
particular structure. The use of a Green's function is therefore
appropriate. Research in this direction is ongoing, (4], (5], [6]
and much has yet to be done. This report outlines an alternative
method for deriving spatial domain Green's functions for multiple
dielectric layered regions based on the principle of scattering
superposition combined with appropriately chosen magnetic and
electric vector potentials, [7].

To demonstrate this technique, the derivation of the
electric field Green's function for a waveguide inhomogeneously

filled with three dielectric layers is outlined.

II. ELECTROMAGNETIC VECTOR POTENTIALS

The electromagnetic fields in any region can be derived

from appropriate choices of A and f, the magnetic and electric vector



potentials, respectively. For the horizontal electric dipole
above a dielectric half-space, Sommerfeld [8], has demonstrated
that two components of a magnetic vector potential are necessary
to completely represent the electromagnetic fields of this

problem. The argument presented in [8] is based on the fact that

if only one component of A is used to generate the fields in each
region, then continuity of tangential electromagnetic field

components at the air-dielectric interface requires that the

wavenumbers in each region be equal. This contradiction is

resolved by considering a second component of A. Instead of choosing
two components of A to solve the above mentioned problem, one may use

any two components of A and/or F. And thus, although the fields which

satisfy a particular boundary value problem are unique, the field
generating potentials are not, [9].

In orthogonal coordinate systems it is conventional to
denote fields as transverse electric (TE) or transverse magnetic

(TM) with respect to coordinate axes. For example, fields derived
from F ='§ F_are TE to x, or TEx and so on.

When a rectangular waveguide is loaded with a dielectric
layer, modes which are TE or TM with respect to the direction of
propagation cannot exist. Instead, modes are designated as LSE
and LSM. An LSE mode is said to be TE with respect to the

direction that is normal to the air-dielectric interface in the

guide. If this is normal is the § unit vector, then all waveguide
modes can be generated from Ay and Fy. LSEy and LSMy modes are
orthogonal, [10], and may be solved for separately. Thus, it is
suggested that fields in layered regions be constructed using the

components of A and F that are normal to the layer interfaces. This



approach will give electromagnetic fields which decouple and

substantially reduce the number of algebraic steps involved. The

electromagnetic fields are generated from A and F as shown in equations

(1).
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III. THE PRINCIPLE OF SCATTERING SUPERPOSITON
This method was first discussed by Tai, [11], and is

conceptually simple. Figure (la) shows a dipole source within a

boundary S,. A Green's function, Go, due to this source is maintained.
é}may be analogous to either an electromagnetic field or a vector

potential, as long as it satisfies the proper boundary conditions.
If another boundary, S, is introduced, as shown in Figure (1b),

then Eo will not satisfy the boundary conditions of this new problem.

However, if a composite Green's function, G.s given by

G =G +G (2)
is assumed, then the "scattered" field, ES, may be determined in such

a way that EC would satisfy all boundary conditions. For most cases,

scattering superposition requires solution in the spectral domain



because usually only certain eigenvalues of the original 50 are

allowed after S, is introduced. 1Initially assuming that the

eigenvalues of G, are a continuous spectrum (i.e. by representing G, as

a fourier integral) allows them to take on their proper values in

the spatial domain.

When constructing the scattered Green's function, Gs, for a

layered structure fewest algebraic steps are required when the

components of A and F which are normal to the boundary, S., are used.
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Consequently, this is the suggested approach.

IV. DERIVATION OF THE SPATIAL DOMAIN GREEN'S FUNCTION FOR
A RECTANGULAR WAVEGUIDE INHOMOGENEOUSLY FILLED WITH
THREE DIELECTRICS
Consider the rectangular waveguide inhomogeneously filled
with three dielectrics shown in Figure 2. The dyadic Green's

function for an arbitrary current, 3(;'), in this waveguide has the

form:
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G, (T/T') %% + G, (r/t') %y + G (¥/r') %z
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G, (¥/T') yx + G (¥/T') yy + 6, (x/T') yz  (3)

AA - AA

G, (r/r') = + G,, (r/r') zy + G (r/r') zz
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where the electric field is obtained from

E (r) = J” G- (T/T') + T () av' (4)
v

To obtain all nine terms of (3) is an extremely tedious process.

In this section, the derivation of Gu (;/;') is outlined. Note that

G, (r/r') is merely the E-component of the electric field due to a

z-directed dipole located at (x',y',z'). We begin by considering the

total field generated by the dipole as a superposition of primary
and scattered components. The primary fields are generated
directly by the source and the scattered fields result when the
dielectric boundary layers are introduced. Consequently, the
waveguide problem may be considered as a parallel-plate waveguide
shorted at x = a which contains a primary field and a scattered
field, combined with another parallel-plate waveguide shorted at
x = 0, with three dielectric layers stacked on the shorted end,
and which contains only scattered fields. These situations are
illustrated in Figures (3a) and (3b).

The eigenfunction expansions for the primary fields are

obtained from the magnetic vector potential X, which satisfies the

equation:

VVR+X A=-p J () (5)

We are looking for Ez(;/;') due to an infinitesimal z-directed dipole.

Therefore, the appropriate primary field generating function is a
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solution of

VVE+ X R=-2p 8x-x") Sy-y") d(z-z") (6)

subject to the boundary conditions of the parallel plate structure
in Figure (3a). It should be pointed out that the primary field
will have different x-dependence above and below the source.

Above the source is designated as region (0) and below, region

(0') . The boundary conditions on -Z-Ap are obtained from those on the

electric field. The necesséry relationships are given in equation

")
(1). The expression for AZp for this problem is:

' ¢ €. H -3k (a=x)
(0 (0)
A )=Jdk Msink (a=x") e "
Zp Z (0) X
—~ m 2T k b
X
, muy ' , mn =3 kg (z=2'")
. [sm (_bL) sin (—by—) e (7)

0"y 2 my 2 2 2
where (kx ) + (?) +kz=0)p°£°

The primary electromagnetic fields are obtained from equations (1)
with F = 0. Scattered fields are generated from magnetic and electric

vector potentials A and f‘, respectively. The proper choices are

A=x Axs and F = x Fxs, for reasons discussed earlier. The scattered

electromagnetic fields are obtained from equations (1).

By considering the boundary conditions on E‘.s in the

parallel-plate structures of Figure 3 we obtain the eigenfunction

, , (1) (1)
expansions for the vector potentials AxS and F . as:



) (0) (0) , mry -Jk,2
A= ‘ dkz 2 D~ cos kx (a-x) sin ( -b— ) e (8a)
—-00 m
(1) i -, (1) (1) (1) , mR -3k,2
A = ] dk, Z [Fm sin k x + G~ cos k_ x] sin (Ty) e (8b)
-00 m
(2) [ 2 (2) (2) (2) . ommy  ~3k.z
A= ] dk, Z [Fm sin k. x + G cos k x] sin (T) e (8c)
-00 m
A '<ﬂ( }: (3) LBy Y -3k, 2
s . D, cos k x sin (—E;ﬁ e (8d)
-00 m
(0) (0) (0) my ~3k,z
F = j dk 2 A" sin k' (a-x) cos (=) e ° (9a)
XS Z m X b
-00 m
(1) -, (1) (1) my  ~k.z
F. = J dk, E [Bm sin k. x + C ~ cos k, x] cos (—b—-) e (9b)
-00 m
(2) (2 (2) 2 2 m7 - 3k,2
F =Jdk 2 [B ) sin k. 'x + C cos k”x] cos (——y-) e (9¢)
XS Z m X m X b
-00 m
(3) (3) (3) nn -3k, z
F o = J dk Z A sin k. x cos (= e (9d)
XS z m X b
-00 m
(1) 2 mw \ 2 2 2
where (k) + (-];) +k =k, (10)

The scattered fields in regions (0) and (0') are identical.
The electromagnetic fields obtained from (1), (7), (8) and

(9) satisfy all boundary conditions in the inhomogeneously filled
waveguide except continuity of Ey, E,, Hy and H, at x = xq3.

Imposing these boundary conditions allows us to find exact



expressions for the scattered fields. Gzz(;/;') is then obtained.

Since only scattered fields exist in the dielectric layers, they
must be continuous at each of the interfaces. Consequently,

F:) and G:) can both be expressed in terms of D:). Also, Bn(ll) and
C;l) can be expressed in terms of Af). The boundary conditions at

X = Xq, are:

E(0') + E(O) + E(0) _ E(1) +“ E(1)

yp YA yF TyA yF

(0") (0) (0) (1) (1)
Ezp + EzA + EzF = EzA + EzF (11)
(0') (0) (0) (1) (1)

+ + =H +

Hyp HyA HyF YA HyF
H(o-) ' H(O) . H(O) _ H(l) + H(1)

zZp zZA ZF zA zF

Equations (11) yield two sets of 2x2 equations:

A Al [ @] [ A
M, M, b, S
= (12)
A A (3) A
] M1 M22_ i Dy ] L sz_
F rl[ o] [ #]
Ny N, m 5,
= (13)
F F 3) F
Noy sz_ i A, ] L Sz_

Solution of (12) and (13) provides the unknown amplitude

. , (1) (1)
coefficients for, respectively, Ax and Fx .

To analyze microstrip circuitry enclosed in the structure
of Figure 2, the Green's function must be known at the

air-dielectric interface because this is where the current



carrying strip lies, [5]. From (11) we know that the tangential
fields must be continuous at this boundary and, therefore, so are

the tangential components of the Green's dyad. Consequently, we

can obtain Gzz (;/;') lxq from E, in either region (0') or region (1).
01

In the first dielectric region, region (1), the E-component of the

electric field due to a z-directed current source, from (la), (8) and

(9), is given by:

(1) (1)
Ez = EzA + EZF where
2 (1)
1) 1 a Axs
Em‘ = (14)
jou g, 0z0x
(1)
dF
1 1
EZ(F) - _ = axs (15)
€ y

Substituting (8b) and (9b) into (14) and (15), with the respective

amplitude coefficients derived from (12) and (13), yields:



my ! e —jkz (z-2')
2 sin k (a=x') sin (—Eg—) sin (—Ezé e

jou, ¢
g ° f dk 2
ZA z

m

b[(%)2 + k]

2 O Wrx (1) ~ (1)
k k. k [K cos k. x - Ksin k x]
z X X 2 X

* - : (16)
2 ~ (1)
k° A(kz ’ kz)
o 2 sin k" oo y' . ommy kg (2
W -jmub sin k_ (a-x') sin ( b ) sin ( 5 ) e
EzF = dkz -
n e m [ mt 2 2]
b (-B-) + kz

mrw 2[% , ku) ' i ku) ]
(b) , sin k x , COs k X

T, W an
[k, ") x)

z

Specific terms in (16) and (17) will be discussed later. Notice

(1) . . .
that E , is associated with a total electromagnetic field which is

(1)
LSM and E . is associated with a total electromagnetic field which is

LSE The remaining task is to complete the inverse fourier

%
transforms of (16) and (17). This will provide us with the
desired spatial domain component of the Green's dyad. Both

integrals may be evaluated via the calculus of residues since no

branch points exist in their respective integrands. For both LSM,

and LSE, modes, the inversion contour in the k,-plane is closed in
the lower half for z > z2', and in the upper half for z < z'. Of

course, the distribution of poles in the k,-plane is symmetric
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about the origin. Completing the inverse transforms yields the

electric field as

(1)
E ZZ Oom (Yo XTo¥s Ky Ko =g 12211

z ~ e
—_— K )
Vo (x,y,x'y" k(i)r k ) -5 | z-z" |
Py Y e I (18)
P m r'(k )

where Uy, is easily deduced from (16) to be

[ (0) ]
U = -ZQub sin kXn (a=x') sin (

. nuy
o ) sin 07;-)

2 )y (1) ~ (1) ~ , (1)
k k k (K1 cos kxn x - K. sin k X)

znm Xn Xn

* 2 me 2 2 (19)
k, b (7;) + k

znm

and Vp, is similarly deduced from (17) to be

_ , (0) , mry
\%m = Zmub sin kxp (a=x') sin (

. miy
)81n(b)

. T (20)
LLIE I
Ter

Explicit expressions for Rl and Rz are given in Appendix A and explicit

expressions for §1 and §2 in Appendix B. From the residue calculus we
~ (i)

know that kznm is a root of A(kx ’ kz) and corresponds to an allowed

LSM, eigenvalue in the guide. Similarly, we know that Kzpm 18 @

11



r,.
root of I-(kx + k) and is an allowed LSE, eigenvalue of this structure.

These eigenvalues may also be determined by the transverse

resonance technique, [10]. In our assumed model it was required

that x' 2 xp; and this restriction applies to the field given in

equation (18). However, it is not a problem because we are

interested in the fields generated in the waveguide due to a

source at x' = Xop - The functions K'(k ) and r'(k ) result from
znm zpm

the Taylor series expansions of the denominators of (16) and (17),

respectively, and are defined as:

~ (1)
5 dA(kx r k)
'k = 21
( an) dkz kz = kzm ( )
roo
r al, ', k)
' (k = 22
% n) ax, . (22)
~ () T, W
d Ak, k) al, k,)
Expressions for K and K are given in Appendix A
z Z

and B respectively.

Equations (16) and (17) also show poles that appear when

mm
k, = 3 (-Eﬂ . These are non-physical spurious modes which are not

orthogonal to the LSM, and LSE, modes. Consequently, they need not

be discussed any further. The final expression for

G  (x

2 Xoyr Yo 2 Xy, ¥', z') is given in equation (23)

12



2z

' Unm (XOI’ Yr x01’ Y', er ’ kznm) -jkznm Iz—z' I
G_ (x,x' = Xm) = po €
n m

1)
+ 2 Z me (x()l' Yr Xgpr y's kxp ! kzpm) e-jkzm |z-2' |
~ & M)

(23)

The remaining components of the Green's function may be obtained

by applying the technique used to find G,,.

V. CONCLUSION

This report has discussed an alternative method for
deriving Green's functions in layered regions. It has been shown
that the usual tedious algebra encountered when working with many
layer structures can be reduced to having to solve two 2x2 sets of
equations for unknown vector potential amplitude coefficients. To
demonstrate the usefulness of this technique, a component of the
elecric field Green's function was derived for a rectangular
waveguide loaded with three isotropic, lossy dielectric slabs.
This research was conducted independently from the work of
Professor Tai, [12]. Our techniques are similar in that
scattering superposition is used, but different in the sense that
we use different generating functions to obtain the scattered

fields.
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APPENDIX A

~ ()
~ o~ d 1\(kx ’ kz)
Expressions for K, K. and
17 2 dk
z

In Appendix A, primed notation represents the total

derivative with respect to k,. It is convenient to designate the

following functions:

A, = 822 kil) kf) sin (kf) X,,) COS (k):Z) X))
My = & &k, k. cos (ki x,) sin (k. x,)
M = €, & (<) cos (k% x) cos k" x,)
Moy = & & k. k. sin (k. x.) sin (k" x)
Mo = & & k| k. cos (ki x,,) cos (k. x)
Mg = € k' k. sin (k. x,) sin (k° x)
Ay, = €, & kil) k:” cos (k):Z) x,,) sin (k)il) x,)
7»08 =€ & (kf))2 sin (k):Z) x,,) cos (kil) X,,)
hos = & & K k. sin (k' x,) cos (k' x)
Mo = & & (k)" cos (k. x,) sin (k' x)
Ay =€ € (k) sin (k. x,) sin (k. x)
A, =¢, & kil) kf) cos (kiZ) x,,) cos (kil) x,,)
Ay =€, k. sink (a-x,) sin (k@ x)

A, = kx‘” cos kf” (a-x,,) cos (k):” Xgp)

Ao =¢, k)fo) sin kim (a-x,,) cos (kil) Xy,)

Mg =k, cos ki (ax,) sin (k' x)
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Expressions for K, K, and A' are:

(A - A)

02 07 08

I21 = (3‘01 + hy,) 0”03 + )‘04) * ()‘05 - A'm;)

=
I

2 ()‘01 + 7koz) ()‘09 - )‘10) * ()‘os - )‘os) 0‘11 + }”12)

~

16) KZ

>
I

<x13 - x“) K, + als + A

+ (A - Ay) [(?»;1 +)»0'2) Ay, + A0 + (A + A, A, + A

03 04

¥ ()\':)5-)\'(;6) gy = Agg) + (g = Ay (A, - A )]

05 06 07 08

T 1

0‘15 +)\'16) [0‘01 +A’oz) (A’oe '}‘10) gy + Ay (g =AY

01 02 09 10

<+

+ (l(')s - k;s) A, + A, + Ay = Ay A+ A )]

11 12
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Appendix B

rood
.. alx, ', k)
Expressions for R, R, and

z

In Appendix B primed notation represents the total derivative
with respect to k,. It is convenient to designate the following

functions:
)

5, =k k' sin (x x,) sin (k. x,,)
Sw = k:” k:w cos (ki” X,,) cos (k:n X,,)
8, =k k' sin (. x,) sin (k x,)
8, = (kf))2 cos (kiZ) x,,) cos (k:l) X,,)
8,5 = k;l) k:Z) sin (k:a) X,,) cos (k:2) X,)
5, =% k' cos (k" x,,) sin (k] x,,)
5, =k kx” cos (k" x,) sin (k@ x,)
5,= (k) sin (" x,) cos (k, %)
5, = k. k' cos (k' x,) sin (k x,)
8, = (k) cos (k' x,) sin (k. x,)
5, = k" k' cos (x| x,) cos (k. x,)
5, = ) sin (k" x,) sin (k. x,)
o, = k:m cos k:m (a-x,,) sin (kin xy,)
5, = k" sin k! (a-x,) cos (k, %)
5. =k cos ki (a=x,) cos (k x;)
5, =k sin k" (a=x,) sin (k x;,)
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Expressions for R, R, and [* are:

o]
I

(601 + 602) (803 + 804) * (605 - 8) (3, - B

06 07 08)

Pz R
|

2 (801 * 802) (809 - 810) + (805 -8 (B, +3d

06 11 12)

[ (813 + 814) R+ (815 - 616) R,

* (813 * 614) [(801 * 602) (803 * 804) * (801 * 802) (

+ (805 - 606) (807 - 808) + (805 - 806) (8

+ (615 - 816) [(801 * 802) (809 - 810) * (601 * 602) (8

'
503
07

09

..5')

04)

+ 0

- 8;8)]

10

+ (805 - 806) (511 + 612) * (505 - 606) (611 * 812)]
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(a) (b)

Figure 1. (a) Dipole maintaining G, within boundary S,

(b) Dipole maintaining E;c and boundary §, within boundary S,
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*x
X = a

Hor € J (x',y',2") (0)

- 0 ~ (0')

X = X01 s

or € (1)
X=X,

uo’ez (2)
X = X,q

oreg (3)

>
y=»> Y

Figure 2. Rectangular waveguide inhomogeneously filled with

three dielectrics, excited by current source

3 (x', y',y 2').
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Ax X4 A
x=a
( Jghy'z)
p'o’eo
—(0') = =
X=X Ep 14 ES(O) * XOl u 8 ""(1)
01 o'& Eg
X=X
12 —
ot ESfZ)
X=X
23
=(3
Hor €3 E; )
> v x=0
y= . y=
 / v
-00 - 00
(a) (b)
Figure 3. Decomposition of dielectric-loaded wavequide of

Figure 2 into equivalent superposition of

parallel-plate structures.
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