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Abstract

Approximate boundary conditions can be very helpful in simplify-
ing the analytical and numerical solution of scattering problems. One
of the simplest is the standard impedance boundary condition, but
in an effort to improve the accuracy, more general boundary condi-
tions are now being considered. To establish the general form of these
new conditions and to explore the role played by the geometry of
the surface, boundary conditions are developed for an inhomogeneous
dielectric body whose surface is a coordinate surface in an orthog-
onal curvilinear coordinate system. The treatment is based on an
asymptotic expansion of the interior fields in powers of xlr where N
is the complex refractive index of the dielectric. Boundary conditions
through the second order are derived, and it is shown that beyond the
zeroth order in 7\17, the geometry of the surface affects the boundary
conditions.
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1 Introduction

The impedance boundary condition attributed to Leontovich [1948] is widely
used to simulate the material properties of a scatterer. and even for a non-
planar surface of a material whose properties may vary laterally as well
as in depth. it is customary to use the boundary condition derived from a
consideration of a homogeneous half space. In other words. the effect of
curvature is neglected, and the local value of the impedance is assumed at
every point of the surface. As we shall see, this can be justified to the lead-
ing order, but in recent years more general boundary conditions have been
proposed [Senior and Volakis, 1989] including derivatives of the fields and
purporting to improve the simulation. Here again, the derivation is carried
out for a laterally-uniform half space, and there is the presumption that the
resulting conditions can be applied without modification to a curved surface
whose properties may vary. This is not true, and to provide a simulation in
these circumstances, we here examine the effects of surface curvature and
material variations using the method employed by Rytov [1940] applied to
the formulation developed by Leontovich [1948]. The results presented are
more general than those given by either of these authors, and reveal errors
in some of the formulas quoted by Leontovich.

2 Formulation

A lossy body is composed of a material whose complex permittivity € and
permeability u may vary as functions of position. The body is immersed
in free space and is illuminated by an electromagnetic field. On the as-
sumption that the external field varies slowly over the surface S, we seek a
boundary conditions that can be applied at S to simulate the effect of the
material.

Inside the body Maxwell’s equations are

V x E® = jwuH™ |V x H® = —jweE™
where a time factor e™*“! has been assumed and suppressed. Since

V x (VEE™) = V(v/e) x E™ + /e V x EP



we have

Ve¥ x E" = V x (VeE™) — —=V(Ve) x Ve E" = iwy/e yH" .

L
Ve
and therefore

V x (VeE™) + VeE" x V(In Ve) = ik, N /i H”
where k, is the propagation constant in free space and

N = i
€ollo

is the complex refractive index of the material. Similarly
V x (VEH?) + JrH™ x V(In /i) = —ik,NV/eE" |

Assume |N| is large everywhere inside the body, and on this basis set

v

N=- (2)
q

where v 1s a functions of position and ¢ is a small parameter. Writing

£=VeE™, MH=,pH", (3)

the defining equations can be written as

VxE + €xV(nye) =ik-H,
q

VxH + HxV(ng)=—ik-E.
q

With geometrical optics as a guide, let
£ =Ae*¥t  H =BeV/, (5)
Then

K |
VxE€= (v x A + ’—vw xA) eko¥/a
q



with a similar equation for V x H. and (4) now become [Leontovich. 1948]

'A+VuxB = _,_z_{va+va(1nﬁ)} .
1k,

'B-Vix A = %{VXA+A><V(1H\/E)}.
IR,

We seek a solution for A and B in the form of a power series in ¢, viz.

A = AO+QA1+q2A2+...

B = BO+QB1+Q2B2+...

For this purpose we introduce the orthogonal curvilinear coordinates a, 3, v
with metrical coefficients h,, hg, b, such that the surface S of the body is
v = constant with 4 in the direction of the outward normal.

3 Zeroth Order Solution

Inserting (7) into (6) and retaining only the terms which are independent
of g,

vA,+ VY x B, =0

(8)
vB, = Vi x A, =0

showing that A,, B, and V4 are mutually perpendicular. Eliminating
(say) B,

(v* - [Vy?) A, =0
implying
Vy[* = v’
analogous to the eikonal equation of geometrical optics. Hence

Vi =vs



where s 1s a unit vector in the direction of propagation in the body.

At the surface the tangential components of the electric and magnetic
fields inside and outside the body must be equal and, as already noted. the
fields outside are slowly varying over S. Hence, the fields inside must also
vary slowly, and this is only possible if ¥ = 0 on S. It follows that Vi
(and therefore §) are normal to S, and consistent with propagation into the

body,
Vi = vy . (9)
From (8) and (9)
A, =9xB,, B,=-9xA,, (10)

and to this approximation the local field inside the body looks like a plane
wave propagating in the direction of the inward normal to S. In particular,
just inside S,

Awe =—=Bog, Ap=DB,, A,=B,=0. (11)
From the continuity of the tangential field components at S we have
A,=eE"=E, B,=/uH"= /H

where E, H are the external fields, and (10) now implies the approximate
boundary condition

yx(yxE)=-Z4xH (12)

Z= \/g (13)

is the intrinsic impedance of the material at the surface. This is the stan-
dard impedance boundary condition, customarily derived on the basis of a
homogeneous half space. Thus, to the zeroth order,

on the external field where

E.=-ZHs, Ez=Z7H, (14)
with E, =H,=0o0n S.



4 First Order Solution

Equating the coefficients of ¢ on both sides of (6) we obtain

1
Al—‘}'XBlz—.
1k,v

{Vx B, +B, x V(ln /z)}

) 1
B+ x A=+
kv

{VxA,+ A, xV(Ine)} .

In terms of the chosen coordinates the components of (15) are

1 1 5 Boﬁ 8
A-la + Blﬁ - ikov {hﬁhw a—(hﬁBoﬁ) - hw E(ln \/ﬁ)}
1 1 0 By 0
Axﬁ - By, = _ikov {ho,h-, ‘a':y'(haBoa) - Ka(ln \//7)}
1 1 0 5}
Ay = {hahﬂ [ﬁ(h"B"" - 55(‘h“B°°)]
Boa a BO

and in view of (11) the components of (16) are

1 1 08 B,y 0

Bia— A4 = -ikov{ av(thoa% . 87(lnx/’)}
_ 1 1 0 oﬁ a

Bis+ A = 2“{ 3 heBos) = 720 \/}

]
B = 73 {h hg lé— (hsBoo) + (h B"ﬂ)}

oﬁ a 6
In — .
B 2 v - 22 2 e
The expressions for A;, + By are identical if
0 0

0
}a_ h Bo A \laDopg) — Ny B A =
) 67( 8 ﬁ)'*'hﬁa,y(h Bos) = hoahpB ﬁav(ln\/a) 0



implyving

l.e.
0B,s 1 0 VER ~
5 2095, (ln hohs) (17)
and therefore
0 ah@ 5305
—(hgB,3) = Byg—+h
57(6 5) 087+667
1 0 hg
= §hﬁBoﬁ$ (hl E:@) : (18)
Similarly, the expressions for A3 — By, are identical if
hﬂ(hB)-i-h—(?—(hB) thi(l )=20
a67 8L oa [367 aPoa allp oaa7 n\/a -
implying
2 {hahﬂBza}_O
O | Ve ’
so that
0B,, 1 0 VEr
= _Boa_
&y 25 (m h(,hﬁ) (19)
giving
0 1 0 h
A haBoa = —ha oa = .
37 (hoBe) = 5By (1032 v (20)



Hence

4o = ~Bu- g B°3 9 lnh Z (21)
07 13
B,, 0
_ Il 29
Aw = B 2ik,vh., Oy ( ) =)
with

. Vi i hgB,s B 5} oa (23)

o ikhohs 0o \ 2 ) 38\ V& i

B Ve 0 thoa h Bog 5

B = thovhohg | Oa \ (/e (24)

It is now a trivial matter to construct approximate boundary conditions
for the tangential components of the external field on S. From (11) and

(21)

A = Ao+ qA1a +0(¢%)

_ _p o __q_ 9 il_ 2

_ q 0 h_ 2
= Bﬁ{1+2ikovh 5 (lnhBZ)}-FO(q)

and thus, to the first order in ¢,

1 0 ha
—_ - — 6)
A, Bﬁ{1+2iko h 59 (1 Z)} (25)
Similarly, from (11) and (22)
1 0 hg
= 9
A Ba{l-{— Sk Nha G (ln 72)} (26)

and to the first order in 1/|N| the boundary conditions on S are



19 ( h
= - (g 2
Eo=-2H, {1 T 2k N B (“ h@Z)}

1 8 ([ hy
EB—ZHG{1+2ikO.7Vh78_7 (IDE )} .

where all quantities are evaluated at the surface. The factor 2 is missing
from the formulas quoted by Leontovich [1948].

To the first order, only the normal variation of the impedance has any
effect, consistent with the interpretation of the surface impedance as the
local impedance looking in, and this provides justification for applying the
standard boundary condition (12) at each point of a surface even when the
properties of the material vary laterally. If h, # hg the effective surface
impedance implied by (27) is anisotropic:

7 =Taa + I, 88 (28)

where

and in terms of 7 a compact (vector) form for the boundary conditions (27)
18

% (3xE)=-7-9xH. (30)

This should be compared with the zeroth order condition (12).
By taking the vector product of (30) with ¥ we obtain

A | A T
7x(7xH):<P—laa+fﬁﬂ)-7xE



and (30) therefore satisfies duality if

1 1
T =17, implyving = Il

where an asterisk denotes the dual quantity. Since V. — N and Z — 1/Z

)
= 741 L 0 (phs g R
- Tk, Nh, Oy \ " ha

~ 1 0 ( hs ,
= Z{Hzikonm (mha z)}+0(uv| )

showing that duality is satisfied to the first order in |N|~!. We can make
this explicit by writing

under the duality transformation,

] 1 0 /[ h
- = Z 1 2o
- =2 {1 T Sk Nh. 0 (“ ha

)
N~

- 1.
ﬁzl“d&+f;ﬂﬂ. (31)

The anisotropy is a consequence of the curvature of S. In the special case
when the coordinates a and § coincide with the directions of the principal
curvatures at every point of S,

1 hq 1 1
19 h—|=—-— (32)
h., Oy hs R, Rp
where R, and Ry are the principal radii of curvature, and if R, = Ry
(including a planar surface as a particular example) the impedance becomes

a scalar. Thus, for a planar surface (o = z,8 = y,7 = z where z,y, z are
Cartesian coorindates, implying hy = hg = h, = 1)

= 1 0 =
n-Z{1+2ikoNa(an)}I (33)

where I is the identity tensor in the a, 8 coordinates. Likewise for a spheri-
cal surface (a = 6,8 = ¢,y = r where r, 6, ¢ are spherical polar coordinates,

10



implying h, = r,hg =rsinb. h, = 1)

— 1 0 <
n—Z{1+2ik0N5;(an)}I. (34)
but for a circular cylindrical surface (a = 9.3 = .y = p where p. 6. - are

cvlindrical polar coordinates, implying hy = p,hg = h, = 1)

_ 1 0 = Z .. s -
U—Z{1+Qikong—(an)}I+2ikoNp(aa_56)' (35)

In all of these results the derivative is evaluated at the surface.

5 Second Order Solution

For the terms involving ¢* the analysis is more tedious, and to keep it as
simple as possible, it is helpful to group the terms. To this end we note
that

B
VxB+Bx V(ln = V x —
(n VD) = VAV x —

and when this is inserted into (6), equating the coefficients of ¢* on both
sides gives

_ixp - _VEo Bi
A2 ¥ X B2 = ikovv X \/ﬁ (36)
i A
B2+7xA2—ikovi e (37)
The components of (36) are
\/ﬁ 6 h—yBl‘y 0 hﬁBlﬁ
Ao+ By = —- — -—
T S e \ 9B\ VR ) v\ Vi
B _ VB [0 [haBia) 9 (h,yBy,
Ao =B = 5 VE ) 0a\ i (38)
A — \/‘7 __6_ hﬁBlﬁ _ i haBla
T ikowhohs \0a \ VE ) 8B\



and similarly, from (37),

B 1. = Ve 0 (hA\ 8 [hgdys
BT kovhgh, |08\ e 0y \ Ve

By + 4 =

g — Ve [0 (hsA) 9 (hod
T ikvhohs | Ba \ Ve a3\ e /|

Consider first the expressions for Ay, + Bys. These can be written as

Aga + Bap = - ! {aBm+B 0 (ln—}}g—> _[{_@_(thh)} (40)

tk,vhy | Oy “387 VI hs 98 \ /i
and
1 0A1. 0 ha Ve 0 [h,A,
- Ap— [ln—2) - ¥ ' 1
A2 + Bap tkovh, { oy T e oy (ln \/E) he Oa ( \/E )} » (4

and are identical if

0By 0Aw . 0 [ he o [ hs
oy O +A1007 (ln \/g) - Bwa'Y (ln ﬁ)

Lh () £5)

In view of (21), this serves to determine %ﬂ as

0By _ 1p 8 (\ hehs) VE O (hAv), VA (kB
oy~ 2V \ ") 2h.da\ e ) T 2h08\ i

Boﬁ a h 6 h 1 6 of8 a h 9
4k, vh, 67 (l Z) (97 (ln \/E)  4ik, 0y {vh 67 (ln ﬁZ>}(4H)

and substitution into (40) then produces a unique expression for Ay, + Byg.
Alternatively, since a knowledge of 3TB;E is not needed for the second order

12



boundary condition, a simpler (but equivalent) approach is to average (40)
and (41). giving

1 0 ha 0 hgs
Ao+ Bag = 5 {4 5 (1“ ﬁ) tBug (1“ —)

\fa b\ VEO (hBy\ 1 0 [Bud hlh_az]
. Oa NG hs 03 \ /i 2ik, 0y |vh, Oy hs )|}

and on using (21), (23) and (24) we obtain

1 9] ha
£ = -Bijg— |In—Z
2o + Bag 2ik,vh., { Yoy ( ! hgs )
B

VB0 [L k[0 (B, 0 (haB,
tkohg OB | Zv hohg | Oa \ Ve B\ e '
A similar procedure can be applied to Azs — By,. From (3

1 [ 0Bn , 0 VD
Az = Bra = ik,vh, {— &y Bla@’y (ln 7) h, Oa (

8)
. B,

)} (44)
and from (39)

1 [8Ay 0 (, hs\ VEd (hAy
Azﬁ - Bga = ikovh.y {_6“)/ + Ama‘)’ (ln ) - . (45)

These are identical if

0Bia _ 1 s 0 (1phehe) | V€O (hyAn)  VE D (kB
oy 2 0y \ em) 20508\ Ve ) 2h.0a\ i

B,, 0 hg 0 hg 1 0 [By O hg
" 4ik, vh., oy (n O,Z) Y (ln e) B 4ikoa{vhq_3—'y_ (1n —GZ)} 49)



Also. by averaging (44) and (45).

1 0 h3 0 hg
dps— By = —— A (1022 ) — By (In—2
42‘) B2a 2“{01/‘}17 { 168‘/ ( o \/E) 18 a"/ < o /1)

_VED (hdu)  VEO (hBn), 1 9 [Bwd ( ha,
hs 03 \ /e he Oa \ /i 2ik, 0y |vh, Oy h,

and on using (22), (23) and (24) we then obtain
_5
h
hs , O L 0 hay
[n22)} 5 {ak % (of22))
(47)
+ \/6_ _8__ _{ h‘Y i hﬁBoﬁ 0 (h aBoa
ikohg 6ﬁ v hahg Ba \/,(_l. aﬂ \/—
L Vi 0 {1 hy [0 [hsBoa N 0 [ haBog
tkoho Oa | Zv hohy | Oa \ /e g\ e '
We are now in a position to construct the second order boundary con-

ditions for the tangential components of the external field on S. From (11),
(21) and (43)

Aa = Aoa + qua + q2A2a + O(qa)

-4213 - B2o = {

ﬁ

2k, vh * 0y
(o

0y

1 0 ([ h,
= —(Bos+ qBis+ ¢*Bag) — q(Bos + ¢Bis) = ~ (ln-2z
o ’ya’y hﬁ

) 1 1{d ( ha \\" 62 ha
. qB°"(2kovhv>2[ (5 a5z} + 3 (a2

0 h 0 q \/- 0 |Z 0 h@Bog
T 5 (m—z) 7y vh, )} 2k2vh, b, Oa [U hﬁ{a_a( N )
0 (haBu\\], _#VE D hy {8 (hsBua

FERN SkZoh,hy OB th hs | 0a \ e

14



0 [hoBog 3
5 ()} <o)

and thus, to the second order in ¢,

B ¢ 9 ha\_ & (1[0 [ h \\'
Ao = —{1+ o (mh Z) Eoh ] {2{07 (mhaz)}

82 hy
37 <ln h_aZ> -

¢Ve 8 [Z h, Q(th[,) g(mm)
 2k2vhyh, Oa | v hahg | Oa \ VE ) 98\ VB

¢ Vi 01 hy [0 (RsB,\ 0 [h.BS
¥ S¥soh s 38 ZUE{0a< ) )H )

In terms of the external fields!
1 [0 (hgBg\ 0 (haBa)\| _ 1 [0 )
hah@{aa ( \/ZZ ) —-é_/é( \/ﬁ )} - hahg{aa(hﬁHB)— aﬁ(haHa)}

and therefore

1 0 |Z hy [0 (hsBs 0 [ hoB, ik, 0

v [ o (20) g (o ] = e v (2em).
Similarly, on using (11),

1 01 hy [0 [hgBy 0 [haBs _ ik, 5 Lo
i zons (e (57 *a (72 )] =0 v (e

The process is valid only because ¥ = 0 on S and the derivatives are tangential ones.
Hence

ho . A
By _ hoHMe=**e¥/9 = h HiM = h, H, .
VH

15



and since v = Ngq, implying

0 9]

a‘7(1111;) = 7 —(InN),

the boundary condition becomes

1 ~ € _ Z 3 Ho
6.V (:h,Ev) - {I“Hg otV ( ; hH)}

2k, Nk,

E, +

1 0 ho 1 0? ho
= — |(In—2] - In—=Z
r=2 {1 " %k, Nk, 5y <n s ) (2k, N, 2 [072 (n he )
1{8 [ ha \\" 0 ([ ha,) 0
¢ = |[In— — N
+2 {57 (ln hﬁZ)} By (ln Z) 67(1nh7 )} } (50)
We note that to the second order in ¢ (49) can also be written as

1 1 A ﬂo
Eot o ® 2V (ZhiE,) = P{H"+ Sk NR, Y (Zh”H”>}'
(51)

The analysis for the second boundary condition involving the compo-
nents Es and H, is similar in all respects, and using (11), (22) and (47) we
obtain

o 1 ~ Ho
= B —_— 9
5k, Nh gy ( : h"E”) I {H" TRV ( p h’H”) }(5“)

where I'; differs from I only in having h, and hg interchanged. Accordingly,

1
Fl:F

to the second order in ¢, where the asterisk denotes the dual quantity, and a
compact (vector) form for the boundary conditions which makes the duality

16



self-evident 1s

. . 1 (€ = -
4 X (*, X {E+ Qiko‘\"h.,v (:h,,E.,)D = —7-%X {H

1 Ho -
—h.H 3
HETTS (,u " )} 20
with
1. _
ﬁ=Faa+F;ﬁ' (54)

To the required order

1
F:Z<1+ a)e“

%k, Nh, 0y (99)
where
.1 8 ha
- 2 (ln= 56
4= kN, 0y (“hgz) (50)

6 Examination of the Solution

The second order boundary condition (53) has several interesting features
and it is worthwhile examining these as well as the forms taken in special
cases.

The most intriguing feature of all is that the form of the boundary
condition is independent of any variation in the material properties of the
surface, and in this respect (53) is similar to the zeroth and first order
conditions. Any lateral variation of the properties is taken care of by the
gradient operations, and a variation in the normal direction affects only the
second order terms in the expression for the effective surface impedance 7.
Nevertheless, for simplicity we shall henceforth assume that the material is
homogeneous.

For the special case of the planar surface 2 = 0 we choose a = z,3 =
y,7 = z implying hy = hg = hy = 1. Then T' = & = Z so that §j = ZI,
and the boundary condition becomes

R R 1 e . 1w
5 x (z x {E + 2ikoN?VE,}) = _Zix {H + 2ikoN7VHz} . (57)

17



The components of this are

1 € OF, 1 Ho OH,
4 = -Z!H,
et 2ik,N ¢ Oz Z{ TSN 2k, N u Oy }
(58)

1 €o 0E 1 Ho aJH-:Z

E+7zk \’e@y Z{ I+2i1Q,N,u ax}‘
and since
E. - 1Z, (0H, OH, H - e ?_E_E _ OE, ‘

ko \ Oz Oy k, \ Oz Jy

(58) can be written as

r—_7lg 1 0*H, 0°H, Y 0*E, 32EI>
T v 2(k,N)?2 \ 0z? 92y ( k,N)? \Oz0y  Oy*

(59)
B 1 O*H, 0°H, Y (0*E, O°E,
i {HI T3k N) ( oy 33:6y) ~ 2(k,N) ( ozt aw;,)} '

On inserting the zeroth order approximations to the derivatives of the elec-
tric field on the right hand side, we then obtain

1 0? o* (92H
E.=-2 {Hy + 2(k,N)? [(83:2 B 8y2) H, - Bxay]}

1 ([ @ & H,
5= {H’ RNy [(azﬁ - axz> He - 20xay” !

and these are analogous to the results cited by Leontovich [1948]. However,
the coefficient of the terms O(|N|~2) differs by a factor /2 from his, and it
appears that the error was made in extending the correct but specialized
results of Rytov [1940].

Using Maxwell’s equations and the divergence conditions, (60) can be
expressed in terms of the normal field components:

(60)

18



2

{;l RN 112 2zf(koN>3} Ho=0

and from these it is clear that (60) do not satisfy the duality condition. On
the other hand, from (58) or (59) without any approximation at all,

H? e 0 .
{822 + 2k N =2 k(2N ~ 1)} E.=0

2
{6872 + 2ikoNHﬁ£ — k3(2N? - 1)} H.=0

which are quite different from (61). Equations (62) are second order gener-
alized impedance boundary conditions in the form generally adopted [Senior
and Volakis, 1989] for a planar surface and do satisfy duality. In view of the
discrepancy between (61) and (62) it would seem that boundary conditions
like this are very sensitive to the precise form of conditions such as (57)
from which they are often derived.

For the circular cylindrical surface p = constant we choose a = ¢, 5 =
z,% = p, implying h, = p,hg = h, = 1. Then

T 1 6 = . 1 o
E Y% =-7- —
p x (px{ +2ikoN - Ep}) ] PX{H+2ikoN HVH"} (63)

with

|

=T¢¢ + Fiz
and

1 1
'=2<1
{ ¥ 2z'koNp+2<2koNp)2}

19



so that

1 1 3
=7 {1 2%k, Np Q(Qko‘\'p)z} ‘

The components of (63) are

1 ¢ 10E, 1 u,0H,
o = _-T!{H, S
ot 2ik,N € p 09 { + 2k,N p 0z

E. il -
=t 2k,N € 0z I

1 €0E, 1 N 1 po10H,
* T %k,N pp 00

in agreement with the results in Appendix A, but without some approxi-
mation it is not possible to write these in terms of normal derivatives of
the normal field components alone. However, they can be written in terms
of tangential components. Since

1 Z, (1 OH, 8H¢> - 1Y, (18EZ 3E¢>
) p— = A | >

Tk, \p 86 0z k, \p 00 02
we have
T 1 1 0°H, 10%H,
by=-2 {EHZ T EN)? (;5 ap? ;a¢az)

1 10°E, 0’Ey
2(k,N)? p0¢0z 022 '
As regards the last term on the right hand side it is sufficient to insert the
zeroth order approximations

1
E¢=—PHZ y Ez-: 'f;:H¢ With FZZ
and hence
1 1 1 0? 1 0°
E, = — _ _29
¢ Z { [1 T 25kNy T 3ENE AR (az2 5 0¢2)} H:

(65)

1 &H,
(k,N)2p 090z |

20



Similarly

E. = Z{|1 ! ! v 19 H
T ©2k,N,  2(2k,Np)? | 2k,N)?\O8:2 9200%)| ¢

1 0%H,
T (k,N)2p 800z |

(66)

For the spherical surface r = constant we choose a = 6,3 = 0.7 = s0
that h, = r,hg = rsiné. h, = 1. The boundary condition (53) then is

1 e _ .
fx(fx{E«h. /ve—VET}>=—77'TX{H+ u—VH,} (67)

21k, N € 2k, N pu
with
T =00+ —é9
77 - F‘
and (see (50))
1
'=2=—.
I‘n

By a method similar to that used to derive (65) and (66), it can be shown
that the boundary conditions expressed in terms of the tangential field
components are

1 0* cosf 0 1 R L
E0 - —Z{[1+2(koNr)2 (——9—2+m%_ Sin29 - Sin29 a¢2>} Hd,
_ 1 82H9 (68)
(ko,N7)2sin6 000¢ .
1 0* cosb O 1 1 92
E, = ] — | — == _
’ ? { { 2(k,Nr)? (392 * sinf 89 sin’@ sin’6 Bq&?)] Hy
- 1 il 69
(k,NT)2sin6 060¢ | (69)
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In general form at least. (65) and (66) and (68) and (69) are similar to
the boundary conditions (60) for a planar surface, and it 1s tempting to ask
whether. for a curved surface, we can derive the boundary conditions by
treating r.y.z as local coordinates. To test this, consider the cylindrical
surface p = constant. Replacing = by p, z by pf and y by = in (60) we
do indeed reproduce the differentiated terms in (65) and (66), but do not
obtain the undifferentiated terms associated with I'/Z and Y/T*. This
1s not unexpected in view of the first order condition (35), and since the
dominant (for large |N|) terms then differ from those in (65) and (66), it is
clear that the procedure cannot be justified.

Our final point concerns the sequence of boundary conditions through
the second order for an inhomogeneous curved surface, and the implications
for simulating other surfaces using boundary conditions of this type. In its
most general form the zeroth order condition is

% (3 xE)=—nj x H (70)
and involves only a single scalar parameter n which is independent of any
material inhomogeneity and the shape of the surface. The first order con-
dition is

yx(§ xE)=—7-4xH (1)
with

n="Taa+T:58,

but if duality is satisfied, Iy = 1/T*. There is still only one parameter
(T') involved, but this may be a function of the variation of the material

properties in the normal direction, as well as the curvature of the surface.
Finally, the second order condition is

w2 A € _ .
5 x (v x {E+ SN (;hva)}) = 4 x {H

Ar Ho
—V (= 72
T SLNH, (,1 h’H")} (72)
involving the two parameters I' and A, and all material variations in the
normal direction are embedded in T.
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7 Conclusions

The method developed by Rytov [1940] has been used to derive approximate
boundary conditions at a surface which may be non-planar and have mate-
rial properties that vary laterally as well as in depth. The approximations
are based on the assumption that |N| is large, where N is the complex re-
fractive index of the material, and boundary conditions through the second
order have been obtained. The lowest (zeroth) order one is the standard

Leontovich impedance condition whose form is the same for any surface.
planar or curved, and is independent of any variation of the material prop-
erties. This is not true of a higher order condition and, in particular, the
surface curvature now affects the boundary condition. Because of this it
should not be assumed that a generalized boundary condition developed
for a planar surface is immediately applicable to a non-planar surface.
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Appendix A: Homogeneous Circular Cylinder

When the exact solution of a scattering problem is known, it can be used to
derive an approximate boundary condition applicable at the surface. and a
case 1n point is a right circular homogeneous dielectric cylinder.

In terms of the cylindrical polar coordinates p, ¢.z the cylinder is de-
fined as p = p, and is illuminated by an H-polarized plane wave incident
in a plane perpendicular to the axis. The only components of the field are
then H,, E, and E,, and their expessions are

p2po:
He = Y (=i {Tu(kop) + BB (kop)  cosno
n=0
E, = —ikZ" ien(—i)"{J(kopHR H"(k,p)} sinno
0P n=0
Ee = ~i2,Y el =i {7k + RAH ()} cosno
=0
P < po
H, = Y (=i anu(Nhop) cosn
n=0
E, = — z ien(—i)nnaHJn(Nkop)sinnng
Nkop 155
E, = —zZZen J(Nk,p)cosne
n=0

where the prime denotes the derivative and R,,a, are coefficients to be
determined. From the continuity of H, and E; at p = p, we find

Ju(kopo) + 1Yo P Jo(kopo)

R, = - Al
HY (kopo) + Y, PHV (k,p,) (41)
with
Ju(Vkopo)
P=iz_ofe 2
Tu(Nkopy) (42)
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On the assumption that |\{k,p, > 1 with Im..V > 0 to prevent any
penetration through the cyvlinder, P can be expanded in an asyvmptotic
series for large t = Nk,p,. Since

Tt = 5 {HO0) + HO (0}

it follows that

e—-:’(t—n%—f) 20 (n m)
Ja(t) ~ ?
®) V2t mgo (22t)m
B e~Ht=nz3-%) - 4n? -1 (4n?—1)(4n?-9)
Vot 8it 128¢2
_ (4n? — 1)(4n? — 9)(4n? - 25)
128 - 24:t3
(4n? — 1)(4n? — 9)(4n? — 25)(4n? — 49) s
(128)7 - 611 MU
Hence
emit-n3-1 1 3 4n?-1
J(t =1 (t)+ ———{—= - —-
() Lhit) + omt { 2t 2t 8it
5 (4n?—-1)(4n?-9) 7 (4n? —1)(4n? — 9)(4n? - 25) s
T % 1282 T o 128 - 2443 o)
_ emit-n3=9) 1+ 4n’ +3  (4n® - 1)(4n® + 15)
- V2rt 8it 128¢2
_ (4n* = 1)(4n® - 9)(4n’ 4 35)
128 - 24413
(4n® — 1)(4n? — 9)(4n? — 25)(4n? + 63) s
* (128)2 - 624 +0(™)
giving
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1 dn?-1 4n?-1
=714+ — —
P=2 { T Tee e

(4n? — 1)(4n? - 25)

— o + O(t's)} : (4.3)

An approximate boundary condition must reproduce P (and therefore
R,) to a specified order in 1/¢t. A standard impedance boundary condition
has the form

E,=-TH., (4.4)

and using the previous expressions for the field components in p > p, we
obtain (A.1) with P =T. Thus, to the zeroth order in 1/¢,

r=2, (4.5)

but (A.4) is also sufficient to reproduce the exact solution to the first order
in 1/t if T is chosen as

1
=241 , A.6
{ * 2Nk, po} (4.6)
and (A.4) is then a first order impedance boundary condition.
To reproduce terms of higher order in 1/¢, it is necessary to generalize
the boundary condition (A.4). In line with (72) we now consider the second
order boundary condition

A 9] (eo

Eot 5ot :E,,> - _TH,, (A7)

and using again the field expressions in p > p, we find

A e n \? A _/n\?
P=r-—2=2 =I'-=2Z1(-) . A.
r 2N eZO (kopo) 2Z<t> (48)

Comparison with (A.3) now shows that to the second order in 1/¢

1 1
r=z\1 |
{ T Nk T 2(2Nkopo)2} (4.9)
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and
A=1, (4.10)

in agreement with (63). As a matter of fact, by choosing

1 1 1
'r=2<1 — 4.11
{ ¥ 2Nk, T 22Nk z‘(2z\'kopo>3} A
and
1
4=1- . 4.12
N ( )

the boundary condition (A.7) is sufficient to match the third order terms
as well, but this is peculiar to the geometry. In general, a third order
boundary condition is necessary to achieve this accuracy, and as evident
from the term in n* in (A.3), a still higher order boundary condition is
required to match the terms in 1/¢4.
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