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Abstract

Two complementary reciprocity theorems have been derived in this work.
They are distinct from the well-known reciprocity theorems of Rayleigh-Carson
and Lorentz. An application of one of the theorems to a radiation problem is
given. A one-dimensional version of the theorems is introduced first by using
transmission lines as the models to illustrate some of the key concepts in the

theory.

1 Introduction

There are two well-known reciprocity theorems in electromagnetic theory; one
due to Rayleigh and Carson and another due to Lorentz. For an infinite domain
with an isotropic medium, such as free-space, the derivation of these theorems
including the fictitious magnetic currents have been treated in detail by Van
Bladel [1]. They are also valid for multiple media in contact. When there is an
electrically perfect conductor in one of the multiple media, such as the problem
of a layered dielectric placed above a ground plane, we need a reciprocity theo-

rem involving the magnetic fields in order to derive the symmetrical relationships
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of the magnetic dyadic Green functions in the formulation. In this paper, we
will derive such a theorem and apply it to find the symmetrical relationships.
The theorem involves the concept of two complementary sets of fields. In
order to comprehend better the significance of the complementary sets we will
first give a one-dimensional version of the theorem using the transmission line
as the model before the full theory for a three-dimensional electromagnetic field

1s presented.

2 Transmission Line Model of the Complemen-

tary Reciprocity Theorems

We consider two identical sections of transmission lines (d > z > 0). Line (a)
is short circuited at = 0 and terminated by a load impedance Z,. Line (b)
1s open-circuited at £ = 0, and terminated by a load impedance Z,. Each line
is excited by a distributed current source, denoted, respectively, by Ka(z) and
Ky(z) as shown in Fig. 1. The differential equations governing the line current

and voltage of these two lines are:

dig(z)

b iwCva(z) + Kq(2z) (1)
d”;ix) = iwLiq(z) 2)
di;f:) = wCu(z) + Kp(z) (3)
dv:;—iz) = wLiy(z) (4)



We are dealing with harmonically oscillating current and voltage with a time
factor e=** for complex quantities in time domain. In (1)-(4), L and C are the

line constants. The boundary conditions for the line voltages and currents are:
va(0) =0,  va(d) = Zaia(d) (5)
(0) =0,  wvp(d) = Zyiy(d) (6)

By multiplying (1) by iy(x) and (3) by i4(2), adding the two resultant equations,

and making use of (2) and (4) we obtain

]\’a('r)ib(x) + [\'b(r)ia(I)
d Y
= = [ia(@)in(2) - va(x)on(2)/ 2] (7)

where Z¢ = (L/C)%, denoting the characteristic impedance of the line. An

integration of (7) with respect to z from z = 0 to z = d yields
d
/ [Ka(z)ip(z) + Ny(z)ig(z)] dx
0
. . 91d
= [ia(2)is(2) = va(2)us(2)/22] (8)

In view of the boundary conditions at the terminals, (8) can be written in the

form
d
/ [Ka(2)is(x) + Ky(2)ia(z)] dz = ig(d)iy(d) (1 — 242,/ 22) 9)
0
Now if we impose a relationship between the load impedances such that

ZoZy = 72 (10)

then



d
/o [Ka(z)iy(z) + Kp(2)ia(z)]dz = 0 (11)

Equation (11) is designated as the complementary K-i reciprocity theorem for

the transmission lines and (10) as the complementary impedance condition. It

should be remarked that if we apply the Rayleigh-Carson reciprocity theorem

to a single section of line excited with two distributed current sources, K,(z)

and Ky(z), independently, we can obtain the relation

d
/O (Ka(z)vp(z) — Kp(2)va(z)] dz = 0 (12)

for any terminations at both ends of a single line. Equations (11) is an inde-
pendent theoremn; it cannot be derived from the Rayleigh-Carson theorem. The
fact that the N-i theorem involves the currents on two complementary lines
with different terminal conditions is an evidence of its independence.

If an integration is applied to (7) covering the regions outside of both K,(z)

and Ny(z) we obtain

[ia(2)is(x) — va(z)vs(2)/Z2]

+ [ia(@)ib(2) = va(z)ui()/27], = 0 (13)

where a; and a; denote the extremities of the span of K,(z) and b; and b, that of

Ky(z). Equation (13) is designated as the complimentary v—i reciprocity theorem

for the transmission lines or the (v—7), theorem for short, in contrast to the reci-

procity theorem

[ia(2)vs(2) = ib(z)va(z)]5!



+ [ia(z)vs(z) = ip(z)va(2)];} = 0 (14)

which can be derived by applying the Lorentz reciprocity theorem to a single

section of line with arbitary terminations excited independently by K,(z) and
]\"b(l').
When the current sources are localized such that
Ko(z) = Ip(22) 8 (x — z,) (15)
Ky(z) = Iy (zp) 6 (2 — 24) (16)

where é (z — z,) denotes a delta function defined at z, and similarly for 6 (z — ),

the K—i theorem yields the circuit relation

Lo (za)is (20) = Iy (26) va (24) (17)

while the K—v theorem of Rayleigh-Carson yields
Lo (za)vs (23) = =1y (23) 10 (20) (18)

Historically, Rayleigh formulated the reciprocity theorem for electrically passive
networks first and it was Carson who generalized it to the electromagnetic field
1s an isotropic medium, hence, the name of Rayleigh-Carson theorem.

In regard to the complementary impedance condition stated by (10), two

special cases should be mentioned:

Case 1. Z, = Zy = Z, In this case, the terminal impedance would correspond

to a semi-infinite line connected to the load terminals of both lines. It is

the same as letting d — co.



Case 2. Z; =0and Zy — oo or Z, =0, Z, — oo These conditions show very
clearly the complementary nature of the problem. It is for this reason
why we adopt the word ‘complementary’ to describe the K-i theorem
and the (v-). theorem. Our complementary lines are different from the
two microwave circuits considered by Van Bladel [2] in discussing the

symmetrical property of some scattering matrices in waveguide theory.

[t is important to remember that the complementary theorems involve two iden-
tical sections of line with complementary impedance conditions at two ends, or
two models. With the introduction of the concept of complemental models, the

full theory for the three- dimensional fields would be easier to follow.

3 Complementary Reciprocity Theorems in
Electromagnetic Theory

The reciprocity theorems in electromagnetic theory can be obtained most con-
veniently by means of Stratton’s vector Green’s theorem of the second kind [3]
which states that for two continuous vector functions with continuous deriva-

tives

/// (P-VxVxQ-Q -VxVxP)dV

%

:#ﬁ-[@xVxF—FxVx@]dS‘ (19)
S



where 7t denotes the outward unit normal of the surface S enclosing the volurne
V. We consider two sets of harmonically oscillating electromagnetic fields in
an identical environment with an isotropic medium of electric and magnetic
constants € and p. The wave number in such a medium is denoted by k, being

The two sets of fields will be labeled as (7G,Ea, Ha) and

o=

equal to w (pe)?.

(‘7;,,Eb, Fb). They are solutions of the equations

V x E, = iwpH, (20)
Vx Hy =17, —iwek, (21)
V x By = iwpH, (22)
Vx Hy=Jy - iweEy (23)

The wave equations for E,, Hq, Ey and H, are then given by

VXxVxE,—kE,=iwnl, (24)
VUxVxH,—kH,=VxJ, (25)
VxVxEy—kEy=iwply (26)
VxVxHy-kHy=VxJy (27)

By a proper choice of the functions P and @Q in (19) we can obtain the desired

form of four reciprocity theorems.

Case 1) P=E, Q=E,

With this choice of the two vector functions, and with the aid of (24), (25),



(20), and (22) we obtain immediately

/// (T-Ea=To-Ep) dv

~ﬁﬁ~(ﬁbxﬁa—F0xﬁb)dS (28)
S

Let us consider a specific problem where there is an electrically perfect conduct-
ing body inside V' in an otherwise infinite domain then the surface S consists of
two parts, one at infinity and another corresponding to the surface of the scat-
tering body, denoted by S;. At infinity, the fields satisfy the radiation condition

andon Sy i x E, =0 and 7t x Ey =0, (28) then reduces to

///v ja‘Ede:///vbjb'E“dv (29)

where V, denotes the volume occupied by J, and V; that by J,. Equation (29)
represents the well-known Rayleigh-Carson reciprocity theorem. If the volume

of integration excludes both J, and J;, (28) reduces to

ﬁ( A - (Ey x Ho—Eo x Hy) dS = 0 (30)
Sa+Ss

where S, denotes the surface enclosing J, and S, that enclosing J,. Equation
(30) represents the Lorentz reciprocity theorem. Both theorems, of course, are
applicable to problems in an infinite domain without a scattering body. They
are also valid if the scattering body is made of an isotropic material with electric
and magnetic constants different from that of the surrounding medium. The

proof is straight-forward. In that case, one of the current distribution could be



placed inside the scattering body.

Case 2) P=F, Q=H,

By substituting these two functions into (19), we obtain, in the first step,

the equation

/// E VXJ(, zwu] H,,)dV

_ﬁ (zu,quxH +Jyx E, +zchabu)dS’
JIs

(31)

By means of the divergence theorem, one of the surface integrals in (31) can be

split to two terms, 1.e.,

ﬁ“ (7, x E.) dS
/// 7y x E.) dS

:/// (Ea - VxTy—~1Ty VxE,)dS
1%

:/// (FG-V X Jy —iwujb‘ﬁa) dv
Vv

Substituting it into (31) we obtain

7.2 moe

_ﬁ( (Eax Ey)2° o x 1) dS
S

(33)

where Z = (11/€)? is the wave impedance in the isotropic medium with constants

p and €. For the same problem considered in Case 1, i.e., an infinite isotropic

medium with an electrically perfect conducting body inside the medium the

surface integral vanishes at infinity because of the radiation condition but only



the part involving n - (Ea X E,) vanishes on Sq. Thus, the volume integral and
the surface integral always exist simultaneously. To decouple these two integrals
we can consider two complementary environments for the two sets. For the first
set (ja,Ea,ﬁa) we let the scattering body remain to be an electrically perfect
conducting body with surface S3. We call it Model (a). For the second set
(7;,, Eb,ﬁb) we let the scattering body to be a magnetically perfect conducting
body with the same shape, hence, the same surface Sy. We label it as Model
(b). Unlike the line (b) in the transmission line theory, Model (b) is electro-
magnetically not physically realizable but to use it in a theoretical formulation
it is entirely acceptable. Like the vector potential function in field theory which
is not a measurable physical quantity. In fact, it is not unique mathematically
because we can impose different gauge conditions to that function that still yield
the same answer for £ and H and we use these functions all the time. Having
introduced the two complementary models we would like to label the surface
Sq as S, for Model (a), which is a physical model provided we accept perfect
electric conductor as ‘realizable’, and S, for Model (b), which is not physically

realizable, then

|

nx E,=0onS, (34)

and

ix Hy=0onS, (35)

Now if the volume of integration in (33) corresponding to the region outside of
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S4 we obtain

Ik

’
a

o Hydv = // T, Tadv (36)
Vy

where V, and V4 denote, respectively, the volume occupied by J, and J;. The
I y

relationship stated by (36) is designated as the J-H complementary reciprocity

theorem or the J-H theorem for short, in contrast to the J-E theorem of
Rayleigh-Carson. The J-H theorem is an independent theorem, distinct from

the J-E theorem. When the volume of integration excludes both V, and V4, we

obtain the relationship

ﬁ( i (Fa x Bo)7% = Ta x ) dS = 0 (37)
Sa+5Ss

where S, and S, denote, respectively, the surface enclosing J, and J;. Equation

(37) is designated as the complementary £—H reciprocity theorem, or the (E
M), theorem for short, in contrast to the E-H theorem of Lorentz. Having
introduced the notion of complementary models we would like to extend it to a
problem involving two isotropic media in contact with an electrically conducting
body in one of the media. The derivation of these reciprocity theorems with the

ald of the vector Green’s theorem of the second kind was first presented by this

author in a conference held in China in 1987 [4] without much elaboration.
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4 Two Plane Stratified Isotropic Media on a

Conducting Ground Plane

For clarity, we consider a specific problem illustrated in Fig. 2 (A) where two
plane stratified media are in contact and there is an electrically perfect con-
ducting ground plane located in Region 1. The medium constants are p1,€;
and po, €5 in the two different regions with wave number k; and k9. These con-
stants are assumed to be known. This model will be labeled as Model A. Now
we create another mathematical model shown in Fig. 2 (B) where the medium
constants in Region 2 are denoted by i and ¢}, with wave number k% while the
constants in Region I remain the same as in Model A. The constants y and ¢,
are yet unspecified. The complementary model so created is labeled as Model
B which has a magnetically perfect conducting ground plane in Region 1. The
boundary conditions for the field excited by an electric current source in either

region 1 or region 2 for Model A are:

2X(E1A—E2A):Oat S (38)
i’X(ﬁlA——f—{—gA)IOatS (39)
ix Eyip=0at8, (40)

where S denotes the site of the interface. The subscript A is used to identify

the E or H field in Model A. For Model B, the boundary condition for the field
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excited by an electric current source in either region 1 or region 2 are:

ix (E\p—E.p)=0at$S (41)
ix (Hip—Hp)=0ats (42)
:x Hip=0at Sy, (43)

The subscript B indicates that the fields are defined in Model B. Several cases
will be considered depending upon the locations of the current sources. [t
should be noticed that the fields (Eya, [114), (E2a, H24), (E1p, H1p) and
(EQB,T{_QB) satisfy the system of equations given by (20) to (27) with
(Ea,_ﬁa,j,;) and (u, ¢, k) replaced by the proper field functions and constitu-
tional constants. For Model A, in Region 1 the replacements are (‘EM g, jm)
and (py,¢€1,k1); in Region 2 they are (F“,ﬁg,;,jg,‘) and (p9, €9, k2). For
Model B, the replacements are (Elg,ﬁw,jm) and (y1, ¢, k) in Region 1
and (_E_gg,ﬁm,jgg) and (p, €5, k5) in Region 2. The fact that (1, €4, k%) are
different from (us, €2, k2) will become clear later.

Case 1. Currents Jy4 and J,p in Region 2

In this case both currents are located in the region above the interface. The
volume of that region will be denoted by V,. By choosing P = Ey4 and Q =
Hsp and substituting them into (19), and with the aid of the wave equations

for these functions we obtain initially

/// [Eza- (kHap +V x Tap) = Hap - (3E2a + iwptaToa)] dV
Vs

- // ¢ [iwsTaa x Fap + Fon x (Tap - i, Eag)] dS (44)
S
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In (44), we have only the surface integral on S. The surface integral at infinity
has already been dropped out as a result of the radiation condition. In view of
the expression given by (32), the surface integral with integrand z - (Ey4 x Jap)

can be changed to

/// (EZA -V x 723 - iwugjgg ~Tig,;) dV
v,

hence (44) becomes
//v (k% = k3) Eaa - Hap + iwps (Jop - Haa — Joa Hop)] dV
3
- //5 ¢ (iwpsHop x Hap — iweyFap x Fop) dS (45)
Now we impose a relationship such that
kY = ko
or

Hata . (46)

[
[l

o€

Since pi3 and ¢, are given constants (46) puts a constraint on the product of
3 and €; but not individually. Equation (46) will be referred to as the wave
number matching condition. Under this condition (45) can be written in the

form

/// (JoB - Haa — Joa - Hap)dV
V,
/
= // z. <ﬁ2A x Hap — 2 Fos F'JB) ds (47)
S H2

We now apply the vector Green’s theorem to Region 1 with P = E,4,Q = H,p.

Since in Region 1 there is no current source and the wave number is the same

14



for both models, being equal to k;, the volume integral vanishes and on the

ground plane

xEia=0o0nS,

N>

x Hip=0on S,

N>

the surface integral yields

//2~(ﬁlAXFIB—iﬁlAXEIB>(lS:0 (48)
S H1

Now we impose a condition on the constant €, such that

€3/ pa = €/

or

€y = (2/p1) €4 (49)
Under this condition, the surface integral in (47) is equal to the surface integral

in (48) hence it also vanishes because at S, the site of the interface,

ix (E1a—FEa) =0, 2x(Hia—Hza)=0,

z X (EIB “E;}B) =0, zx (ﬁlB *ﬁ28) = Ov

Thus, (47) becomes

///v, (J24-Hap — Jop - Haa)dV =0 (50)

This is the complementary J—H reciprocity theorem for the two sets of field in

Model A and Model B.
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By combining (46) with (49), it can be shown readily that
M)t
€2 6’2 - €1

737y = 7} (51)

or

This is the complementary condition for the wave impedances in the three media

of the two models. By eliminating €/, between (46) and (49), one finds

Hy = (€2/€1) 1y (52)

Thus, when the constitutional constants in Model A are given, the constants
in Region 2 of Model B are specified by (49) and (52). For the case that
M1 = p2 = po, €1 = €, €3 = €g which corresponds to the case of a dielectric layer
placed on an electrically perfect conducting plane with an air medium above

the layer, we have

¢y = e and py = (eo/e€) o (53)

If the dielectric constant ¢ is complex p% would be complex too. Unlike in
network synthesis, the physical realizability of yf is not an issue in this theory.
The complementary condition for the wave impedances has the same appearance
as the complementary condition for the load impedances in the transmission
line model. In fact, if Model (a) of the transmission lines is terminated to a

semi-infinite line with characteristic impedance Z.; and the line in Model (b) is
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terminated to another line with characteristic impedance Z.,, (10) becomes
ZaZy = Zc21

which is truly analogous to (51). The models of the complementary lines, how-
ever, are physically realizable. If we neglect the fringe field at the open end of
an open-circuited line and a short-circuit is replaced by an electrically perfect
conducting plane perpendicular to the line then the K—i theorem can, indeed,
be derived from the J-II theorem even though Model B is physically unrealiz-
able. The situation is analogous to the derivation of the K—v theorem for the
lines by the J-E theorem of Rayleigh- Carson.

In addition to the case treated above, three more cases can be formulated.

They are:

Case 2. Jyain Region 1, Jp in Region 1.
Case 3. Jy4 in Region 1, Jop in Region 2.
Case 4.  Joa in Region 2, Jip in Region 1.

Without going through the details, we found that under the same wave num-
ber matching condition and the complementary wave impedance condition, the

results are:

Case 2. /// (Jia -Hip=Tig-Hia)dV =0 (54)
Vi

where Vi denotes the volume in Region 1

Case 3. ///V (T Hip)av = ///V Top FaadV (55)
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Case 4. ///‘ (Joa - Hap) dV = ///V Jip - HiadV (56)

Formulas stated by (50), (54) - (56) have been derived using the plane stratified
structure as an example. They are valid for similar canonical structures such as
a conducting cylinder coated with a layer of dielectric material.

The theorem can be extended to multiple layers of isotropic media placed
above an clectrically conducting ground plane (Model A). It can be shown that,
in general, for n = 1,2---N where the last region (N) may either extend to
infinity or terminate to an electric wall in Model A and a magnetic wall in Model

B, the gencral theorem is

///x Tia 'F‘dez///vjw'ﬁmd‘/ (57)

7

where 7,7 = 1,2--- N, derivable under the conditions:
kn=4%kl, n=12 --N (58)

272 =7 n=12---N (59)

The unprimed parameters are defined in Model A which are assumed to be
known and the primed parameters defined in Model B are determined by (58)

and (59). For n = 1, we have u; = f and ¢; = ¢}.

5 An Application of the J-H Theorem

The formulation of the complementary J-H theorem which we have so metic-

ulously derived is not an academic exercise although works from educational
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institutions often had that tint. In our case, it was motivated by a problem
which we could not resolve initially. It deals with the question of finding the
transpose of some magnetic dyadic Green functions in the formulation of a ra-
diating aperture on a ground plane coated with a layer of dielectrics, Model A
in the previous section with p; = ;)2 = jg, €1 = ¢ (dielectric), €2 = € (air).

The key formulas obtained by the method of dyadic Gireen functions are:

E1(R) = iwpo // [;f,g’(‘ﬁ’,ﬁ)r. [ x T;,‘(YE’)] ds’ (60)
Sa

Fo( ) = iwopio / [GE,?§>(T5’,Tz)]T. EE T;A(ﬁ’)} ds' (61)
Sa

where S4 denotes the area of a radiating aperturc on a conducting ground

—(21)

. . — =(11) . .
plane with electric field £ 4 (ﬁ) G, and G, denote two magnetic dyadic

m?2
Green functions of the second kind, indicated by the subscript notation ‘m?2’
. =1 o .

The superscript ‘11’ of the function G, (K, R) means the position vector of a
field point of that function, ﬁl, and that of a source point of that function, R,

o o =
are both located in Region L. The superscript ‘21’ of the function G, 5 (R, R)
means the field point of that function is in Region 2 while the source is in Region
1. The symbol [ ]7 denotes the transpose of the function inside the brackets. On
the other hand, the position vector R enters in the expressions for the electric
field in the two regions and R becomes the position vector for the aperture field.
This is one of the characteristics of the method of the dyadic Green functions. It

should be mentioned that the notation and the nomenclature for the magnetic

dyadic Green function in this paper were not used in this author’s original book
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on that subject [5], rather they were introduced later [6].

The main problem to be resolved is to find the symmetrical relationships
between the transposed functions and some other functions with the roles of R
and R’ in the Green functions interchanged. Our original attempt encountered
repeated failures that was finally conquered by invoking the J-H theorem.

Let us now apply that theorem to derive the desired symmetrical relation-
ships. When a current source Jy4 is attributed to an infinitesimal electric
dipole, with a properly normalized current moment, located in Region 1 at R4

in Model A and pointed in the z; direction it can be written in the form
Jia=12i6(R-Ry) . (62)

When another current source J;p, located also in Region 1 at Rp of Model
B, is due to an infinitesimal electric dipole with the same current moment, but

pointed in Z; direction we write

Jip = ;6 (R—- Rp) (63)
Substituting (62) and (63) into (54) we obtain

Ci',"ﬁlg (R-A) :i'JﬁlA (EB) (64)

=(11)
G

By definition, Hip (R4) is the vector components of ml

(RA,EB) in the
direction of Z;, i.e.,
— 11)

o o=an
Hip (Ra) =G, (Ra,Rp) i; (65)

20



The function of the first kind with subscript ‘m1’ is involved because in Model

B the magnetic field satisfies the Dirichlet boundary condition, i.e.,

2x Hyp(Ra)=0on Sn. (66)

) — = . =(11) — = .
Similarly, Hy 4 (RB) is the vector component of G, (RB, RA) in the direction

of i’,’, i.e.,

— —_ =11) __ _ R .
HIA (RB):Gm2 (RB,RA)~:L',‘ (61)

The function of the second kind is involved in this case because in Model A the

magnetic field satisfies the Neumann boundary condition, 1.e.,
:xVxHa(Rg)=0onS, (68)

The classification of the functions of the first and the second 1s based on the these
two different boundary conditions. In view of (65) and (67), (64) is equivalent

to

=D =
z; -Gy (RA,RB) 25 =25 -Gy (RB, RA) T (69)

If we merely change the notation for R4 and Rp to R and TEI, then in the
language of dyadic analysis (7], (69) corresponds to the symmetric relationship

=y _, 1" D~
G ®B| =B R ) (10
This is one of the relationships for which we are seeking. By applying the same

technique to (55) with

71,4 ——'—5:,'5 (R—RA) (71)



and

JQB :éjé(ﬁ—_RB) (72)

we can find the other relationship, namely,
—=(21) T o=y
[G (R R)] =G, (R,R). (73)
Attention should be called on the difference of the order of the superscripts and

the different kinds of the magnetic dyadic Green functions in (73). Substituting

(70) and (73) into (60) and (61) we finally obtain the desired formulas

Fu(R) = iwpio // TR TR). [ E(R)] ds (74)
E5(R) = iwpg //5 _(1 ) R [i X F(I_Zl)] ds (75)

This 1s what we tried to accomplish. In this paper, we do not intend to cover

=(11) | =(12)

the derivation of the expressions for GG,; and G they will be compiled in

Gy
the forthcoming revised edition of the author’s book currently in preparation.
In conclusion, it took us a long journey to arrive at the symmetical relation-
ships of two magnetic dyadic Green functions encountered in a formulation. In
retrospect, the challenge was rewarding as it forced us to search for a method
to provide for the answers of two apparently relatively simple transformations.
The complementary J—H theorem is precisely the tool to uncover these formu-
las although the task is not an easy one. While the Rayleigh-Carson theorem

can be used most conveniently to find the symmetical relationships for the elec-

tric dyadic Green functions, it is the J-H theorem which is needed to find the
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symmetrical relationships for the magnetic dyadic Green functions. It happens
that the new reciprocity theorem is more complex and sophisticated because it
requires two complementary models. Aside from the application illustrated in
this paper, the theorem may be useful in other occasions to formulate boundary-
value problems in antenna theory and in microwave theory.

The author is most grateful to Ms. Bonnie Kidd in the preparation of this
manuscript.
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K,(x) 1g(x)

by
x=d

(a) A section of transmission line with a short-circuit and a
load impedance Z,,.

(b) An identical section of line with an open-circuit and a
load impedance Zy,.

Fig. 1. Two sections of line with the complementary impedance

condition Z,7Z = Zc2



Region 2: k,, Ky, €, /S

Region 1: k,, K, € Se
TITTIT I 7777777777777 L =0

z=d

(a) Two plane stratified isotropic media in contact with an
electrically perfect conducting ground plane.

Region 2: k'), W, €, / S

Region 1: ky, 1y, € / Sm

(b) Two plane stratified isotropic media in contact with a
magnetically perfect conducting ground plane.

Fig. 2. Two complementary models.



