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Abstract

Two complementary reciprocity theorems have been formulated in this work,
one for two-port passive networks and another for transmission lines. The the-
orems involve two networks or two 1dentical sections of lines with different load
impedances which must satisfy a complementary impedance condition relating
to the characteristic impedances of the network or the characteristic impedance

of a line.

1 Introduction

In electromagnetic theory there are two well-known reciprocity theorems, one
due to Rayleigh and Carson and another due to lLorentz. Recently, we en-
countered a field problem which requires a new reciprocity theorem in order to
provide for the answer. In this paper, we will present two simpler versions of
that theorem; one applies to a pair of two-port networks and another to two

identical sections of lines with different terminations.

RL-871 = RL-871



2 Two-Port Networks

A two-port passive network can always be represented by a T-network as shown
in I'ig. 1 (a) with a shunt impedance Z,, and two series impedances 7, and
Z9. The terminals at the left side of the network will be identified as the left
terminals and the others as the right terminals. Now if the left terminals are
driven by a voltage V, and the right terminals are connected to a load impedance
Zr as shown in Fig. 1 (b), it is well known that the transfer function i,/V, of
that circuit is equal to the transfer function 7,/V} of the same circuit with the
roles of V, and 7, replaced by V; and 7, as shown in Fig. 1 (¢). This is the famous
reciprocity theorem due to Rayleigh. It was later extended to field theory by

Carson in the form

///‘ 7a.mv:///wib.fadv (1)

where J, and J, denote two current sources in volume V, and V,, respectively,
which are responsive for producing the electric fields £, and E} in an identical
environment containing isotropic media including the presence of electrically
perfect conducting bodies in one of the media or in all media. When this
theorem is applied to the networks shown in Fig. 1 (b) and (c), one can readily

derive the reciprocity relationship
ia)Va =i/ Vs . (2)

For the network under consideration, it is known that if a current source I,

is connected to the left terminals of that network and the right terminals are



still connected to a load impedance Zp with a load current i,, then the current
transfer function i, /I, is not equal to the transfer function iy/I; when a current
source [, is connected to the right terminals in parallel with the same load
impedance Zg, and the left terminals are short-circuited resulting in a current

ip. In other words, for a single network,

iao/la # 0/ 1y (3)

or the current transfer function is non-reciprocal.

A reciprocity theorem for the current transfer function, however, can be for-
mulated if we invoke two complementary networks as shown in Fig. 2 (a) and
(b) where in network (b) the locations of Z; and Z5 have been interchanged
and another load impedance Zj is connected to the right terminals which 1s, in
general, different from Z,, the load impedance in network (a). By a straightfor-
ward linear network analysis it can readily be shown that the currents in these

two networks satisfy the reciprocity relationship

io/la =0/ 1y (4)
under the condition
ZaZb = ZCIZC:’ (5)

where Z.1 and Z.2 denote, respectively, the characteristic impedances of the

T-network looking from the opposite terminals. They are given by



41:%{wl_zg+uzr+%nzy+%+4zﬂﬁ (6)
Zr= 5 {2~ 2) 41 + 22) (214 2 4 42 ))F @)

hence
ZerZen = 02y + (21 + Za) Zom (8)

Equation (1) is designated as the complementary reciprocity theorem for the
current transfer function, or (I-7), theorem for short, in contrast to the V-i
reciprocity theorem of Rayleigh-Carson for a single network. Equation (5) is
designated as the complementary impedance condition.

[t can be shown that the product of the two characteristic impedances is also
equal to Zgy Zgs or ZsaZoy, where Zgy, Zso and Zyy, Zgo denote, respectively,
the impedances looking into one pair of terminals of the T- network when the
opposite terminals are either short-circuited or open-circuited.

For a symmetrical T-network, 7, = Z»,
Doy = Loy = 2o = |20 (21 + 2Zu))7 9)

and the physical configuration of the two complementary networks becomes

identical, meanwhile, the impedance condition reduces to
2
ZoZy = Z; (10)

Only under the very special case corresponding to Z, = Z, = Z,., that the

two networks, including the load impedance, merge to one single entity. In



general, when network (a) and its load impedance Z, are known or given we
can construct the mirror image of that network to form network (b) and its
load 1mpedance is determined by (5). As an illustration, we let Z, = 0. then
io = Zmlaf/(Z2+ Z,,). According to (5), we must have Z, — oo, hence, the
(I-1) theorem yields i, = i, Iy/Is = Zm1y/ (Z9 + Zm) which is certainly true
by inspecting the circuitry of network (b). The (/7). theorem can be extended
to cascade networks without much difficulty.

The above results can also be obtained by using a Il-network to represent
a two-port network. The two complementary Il-networks then have the config-
urations as shown in I'ig. 3 (a) and (b). In terms of the admittance functions
Y1, y2 and y,, which are not equal to the reciprocals of Zy, Zs, and Z,,,, we find
that the characteristic admittance of the network are given by

) . 1

Ya=1/Z. = 3 {!/1 =y + (v +w2) (y1 +y2 + 4ym)]
. ; | L
y::’_’ = l/zt'.’ = Z {y.’ -y + [(Ul + y.!) (yl + Y2+ /hm)]"

-
M =
o —_—

then
YaYeo =1/ZaZa =y + (Y1 + y2) Ym (13)

Equation (5) can then be changed to an equivalent form in terms of the admit-

tance functions, namely,
}a Yb = I/ZaZb = )cl}c‘l (11)

These results, of course, can be obtained directly by applying the duality prin-

ciple in network theory.
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By taking a variation of (14) one finds 8Y, = (Y1 Ye2) 82y or 82y = (Ze1 Zen)
0Ye = Zo1Z26(1/Z,) that means when the load admittance of circuit (a) is
increased by 6Y,, the load impedance of circuit (b) must be increased by an
amount such that the two increments also satisfy the complementary impedance
condition.

It may be of some interest to remark that the two networks shown in Fig.
2 (a) and (b) within the boxes were used by Guillemin [1] to define two itera-
tive impedances when they are connected in cascade. It can be shown that the
product of the two iterative impedances is equal to the product of the two char-
acteristic impedances of the individual network given by (8). Similar relation
holds for the product of the iterative admittances and that of the characteristic
admittances. For a symmetrical network (7, = Za), we have only one char-
acteristic impedance function and one iterative impedance function which are

equal to each other.

3 Transmission Lines

The complementary reciprocity theorem for two identical sections of transmis-
sion lines of length ‘d’ extending from z = 0 to d and with line constants L and
C is based on two models shown in Fig 4 (a) and (b). Line (a) is terminated
at its two ends by Z, and Z and Line (b) by Z, and Z; at the corresponding

ends. The lines are excited by two distributed current sources K;(z) and Ky(z)



are solutions of the equations

dvg(x) = iwlLiy () v
dr

lia(e) . '

(]l[( 1) iwCvq(2) + Ka(2) (16)
ar

and two similar equations for v,(.r), iy(z), and Ky(z). The boundary conditions

are

va(0) = Zaia(0), vald) = Zj1,(d) (17)
l‘(,(U) = Z[‘l'(,(()), ‘U/,(([) = Z;/Ib(d) (18)

By using the equations for the line voltages and currents it can be shown that

d Y
- la(@)in(e) = va(a)y(2) /23]

= No(2)ip(x) + Ny(2)ia(z) (19)
where 7, = (L/C)%, denoting the characteristic impedance of the lines. An
integration of (19) from @ = 0 to d yields

'(1
/ [Na(2)ig(x) + Ky(2)ig ()] da
0
. . Sad

= [ia(e)in(e) = va(2)ve(2)/22] (20)
In view of the boundary conditions stated by (17), and (18), we can put (20) in
the form

d

/ [No(0)ig(a) + Ky(2)iq(2)] dz

Jo

= ia(d)is(d) [V = 2024/ 27

= 1(0)is(0) [1 = Z, 24/ 7?) (21)



Now if we impose the conditions

Zoly =41 (22)
and
2,2, = 2; (23)
simultaneously, (21) reduces to
-d
(24) / (Na(@)ip(2) + Ny(2)ia(2)] dz =0
0

The above formula is a statement of the complementary reciprocity theorem
for the two lines, or (N i), theorem for short, under the condition that their
terminal impedances satisfy the coinplementary impedance conditions stated by
(22) and (23). I Z.. Z,. and Z/ are given or known, these two equations can
be used to determine 7, and 7},

Some special cases should be pointed out. When d — oo, the two sections

of line become semi-infinitely long. The case is also equivalent to

Z(/'I = d(/l = ZC (25)

When Line (a) is short-circuited at both ends (Z, = Z, = 0) then Line (b) must
be open-circuited at both ends (7, — o0, Z] — 00). Other combinations can be
easily visualized. These conditions demonstrated very clearly the significance of
the complementary status of the two lines. The two complementary lines under
discussion are quite different from the two circuits considered by Van Bladel

(2] in his analysis of the symmetrical property of some scattering matrices in



the theory of waveguides. In contrast, our complementary reciprocity theorem
can be used to investigate the synunetrical property of the scalar Green func-
tions relating to the current on a transmission line without finding the explicit
expressions of the Green functions.

When the current sources on the lines are localized we can write

Nola) = T () 6 (2 = zy) (26)

Ny(a) = 1y (1) 8 (2 — 2p) (27)

where & (& — a,) denotes a delta function defined at z = z, and similarly for
b(x = ). Substituting these two expressions into (24) we obtain the circuit

relation

Lotaa) iy (ra) = =1y (20) ia (23) (28)

The circuit relation for a single section of line terminated by any two load
impedances at the ends, derivable from an application of the Rayleigh-Carson

reciprocity theoreni, would be

lo(ueg) vy (o) = Iy (2p) v (24) (29)

where v, (ry) and v, (@) denote two line voltages measured across the lines.
This shows the difference of the two reciprocity theorems both in the context
and in the formulations.

As an example for the application of the complementary reciprocity theorem

stated by (28), let us consider two semi-infinite lines or with Z;, = Z} = Z. and

9



Line (a) is short- circuited at 2 = 0(Z, = 0) that means Line (b) must be open-
cireuited at ¢ = 0(7, — o). A localized current source with unit amplitude is
now applied to Line (a) at 2’. The solution for i4(z) obtainable from the theory

of transmission lines [3] is

—isinkz'e*T 2> ¢!

lo(e) = o (30)
—"* coskr, T <2
By means of (258)we find that il a unit current source is applied to Line (b) at
. the current at " would be
isinka'e e > 2!
o .
(') = (31)
M cos ke, r< 2!
By mterchangig o and 2" i (31). we obtain the solution for 7,(z) when a unit
current source s apphed to that line at ¢, namely,

. ./ .
Wt sinky, 2 < 2!

() = (32)
cos ka'ethr g > at

L other words, it 1s not necessary to solve i,(z) as a separate problem once

the solution for the cotplementary problem is known or vice versa. Both (30)

and (32) also show clearly that the current transfer function for a single line is
non-reciprocal.

The complemental reciprocity theorems presented in this paper represent

the circuit version and the one-dimensional version of a more complex theorem

for a three-dimensional clectromagnetic field with multiple layers of isotropic

media backed by a conducting body. In appearance, the theorem has a rather

10



simple form, namely,

/// Ja-HpdV = /// Ty adV (33)
JIN 4 Vi

where J 4 and Jpg denote two electric current density functions in two com-
plementary models like &'y and Iy in the transmission line theory, occupying,
respectively, volume V4 and V. H 4 and 1Ty denote the magnetic fields pro-
duced by these two currents in two complementary environments, corresponding
to i, and ¢, in the transmission line models. The preof of (33). however, is much
more involved. The work will be reported elsewhere together with an application
of that theorem to a boundary-value probleny in electromagneties. A part of the
present paper is based on a techmical report on the complementary reciprocity
theorems in clectromagnetic theory [1], available upon request.

In conclusion, it should he emphasized that the complementary reciprocity
theorem for the two-port networks and that for the ransmission lines are quite
distinct from the Ravleigh- Carson thearem. The latter involves only a single
network or a single section of hue while the new theoremis apply to two comple-
mentary circuits and two identical sections of line with different load impedances
which are related to cach othier i terms of the characteristic impedances of the
structures.

The author is indebted to Prof. Alan B. Macnee for calling attention to
the identity between the products ol the iterative nupedances and that of the
characteristic impedances ol a two- port unsymmetric network. He is most

grateful to Ms. Bonnie Kidd for the preparation of this manuscript.
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Fig. L. A two-port T-network with two different driving conditions.
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Fig.2. Two complementary T-networks.
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Fig. 3. Two complementary I1-networks.






(a) A section of transmission line terminated by two load
impedances Z, and Z';.
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(b) An identical section of line terminated by two load
impedances Zy, and Z},.
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Fig. 4. Two sections of line with the complementary impedance
conditions Z,Z =7, Z,Zy = 7.






