Electromagnetic Characterization Of The
Basal Plane Region In Sea Ice

John R. Natzke and Thomas B.A. Senior

1 Introduction

In electromagnetic pulse measurements of the depth of sea ice, it is found
that under certain circumstances the strength of the return from the lower
surface of the ice is strongly polarization dependent [1]. This occurs when
there are well-developed basal planes, i.e. planes containing brine drainage
channels extending approximately 5-20 cm up from the lower surface. The
planes are closely spaced and parallel to one another, being perpendicular to
a common ¢ axis. Under these circumstances, the lower surface return is a
maximum when the electric vector is parallel to the ¢ axis, and a minimum
when it is perpendicular to c. In the latter case it is not unusual to lose the
lower surface return completely.

In an effort to understand this phenomenon, various models have been
proposed, such as equivalent media theories, parallel metallic plates, etc.
These have not been successful and, in some cases, have indicated results
completely opposite to those observed. Thus, the task at hand is to develop
a physically-based model that explains the observed effects and shows the
dependence on channel length and spacing, brine concentration, wavelength
and polarization. In this report we will present such a model based on the
electrical properties of the brine drainage channels and the periodic nature of
the basal planes with respect to the c axis. The solution to the scattered field
will be determined for plane wave incidence using the appropriate electric
field integral equation whose kernel is the Green’s function for a periodic
infinite array. Upon solving the integral equation numerically by the method
of moments, results are obtained for the reflected field which support the
observations made in [1].

2 The Model

In the formation of the basal planes, the brine concentration varies from
virtually zero at the top of each plane to very high at the lower surface in



Figure 1: Infinite array of parallel resistive sheets with a perfectly conducting
termination.

contact with the underlying sea [1]. It is convenient to think of the brine
channels as concentrated in a layer of very small electrical thickness which
can be modeled as a resistive sheet. The resistivity of each sheet therefore
decreases from high at the top to zero at the bottom. An appropriate model
for the basal plane region is then an infinite array of parallel resistive sheets
terminated in a perfect conductor simulating the sea surface. When the
resistive sheets are equally-spaced and have identical lengths and resistivity
profiles, the array becomes a periodic structure, and the electric field integral
equation can be readily solved numerically by employing the Green’s function
for a periodic infinite array.

The model of the basal plane region is shown in Fig. 1 as an infinite
array of parallel resistive sheets of length L and separation d terminated in
a perfect conductor with the y axis parallel to the ¢ axis of the sea ice. The
sheets have identical resistivities tapered quadratically from a maximum at
the front (z = 0) to zero at the back (z = —L). The resistivity in ohms per
square of the sheet at, say, —L < z <0, y = 0 is given by

Ly ()

R(z,0) :R0< 7



where Ry is the specified maximum value of the resistivity at = = 0, and
from the periodicity of the array in y,

R(z,pd) = R(z,0), p=0,£1,=2,... .

The boundary (transition) condition of the total field across each of the sheets
is

§ x4 x E(z,pd) = —=R(z,pd) J(z,pd) , —L <z <0, (2)

where p = 0,£1,£2,... and J is the total surface current on the sheets. For
the perfect conductor in the £ = —L plane, the resistivity is zero, and the
boundary condition for the total electric field is

ix B(~L,y)=0. (3)

3 Electromagnetic Field Analysis
Consider the plane wave
E;(H;) — e—ik(zcos do+ysindg) (4)

incident on the infinite array for E-(H-) polarization, where k is the propa-
gation constant of the medium (assumed lossless) and a time factor e~ has
been suppressed. The induced current on the resistive sheets and termination
must be periodic in accordance with Floquet’s theorem, such that

J(z,pd) = J(z,0) e PHisindo [ <2 <0, (5)

and

J(=Ly+pd) = J(=L,y)e77 % (6)
with p = 0,£1,£2,.... In light of (5) and (6), the scattered fields can be

expressed in an integral form where the integration is only taken over one of
the cells of the infinite array, say —L < z <0, 0 <y < d. For E-polarization,
the scattered electric field is

3(2,y) = ikZ /, J.(2',y) Gz, y, ', y') dl', (7)

and for H-polarization, the scattered magnetic field is
Hi(e,y) = =2+ [ J(ay)IxVG(z,y,2"y') I 8)
where Z is the intrinsic impedance of the medium and the path !’ of the line

integrals is over ~L <z <0,y =0and 0 <y < d. z = —L. The unit vector
[ is tangent to the path of integration I’, and the subscript [ denotes the
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component in the direction I. The Green’s function for the periodic infinite
array is

G=17% Hé”(k ) N )

where Hél) 1s the zeroth order Hankel function of the first kind. Since the
series is slowly convergent, especially for small d, a more quickly converging
form (d < 2)) was derived in [2], giving

= 1 ' '
G = 22_(1 S k—e’(k"f‘” [+ky (u-")) (10)
p=—o00 7T
with
ke = \[k? — k2
k, = k(pA/d —sin¢y) .

To solve for the unknown surface currents in (7) and (8), an integral equation
for the total electric field E = E* + E° is derived by applying the boundary
conditions (2) and (3). For E-polarization, we obtain

Ei(z,y) = R(z,y) J.(z,y)
—ikZ /, L(z',y') Gz, y,2",y') dl (11)

and for H-polarization,

E;(xay) = R(I7y) Jl(x)y)

~ikZ /I Tz’ y') 1 (i +%vv> Glz,y,7y')dll (12)
where (z,y) are taken on I and, in (12), E} = (iZ/k)[- V x (zHY).

Upon solution of (11) and (12), the scattered fields are given by (7) and
(8), respectively, and we are interested in the region z > 0. Inspection of
the Green’s function (10) reveals that the scattered field is comprised of
reflected waves propagating away from the structure for k, real (k, < +k)
and surface waves decaying exponentially away from the structure for k,
imaginary (k, > +k). Thus the condition on the index p for a reflected wave
to occur is

- %(1 —singy) < p< i;—(1 + sin ¢p) , (13)

and the p* wave propagates in the direction
¢, = sin™!(pA/d — sin ¢p) , (14)
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taking the principle value of the arcsine measured from the positive z axis. In
the far field only the reflected waves are observable, and for £-polarization,
the pt? reflected wave is

kZ

E, = T

gilkszthyy) / (2!, y') e~ sz +hd) g (15)
ll

and likewise for H-polarization,

H = L ei(kxx+kyy)
zp

2d
A k F ; ’ !
- / [ [f;}Jr(x’, y') — §Jy(, y’)] e R g1 (16)
II

T

where k, and k, are evaluated at the p™ value of the infinite series.

4 Numerical Implementation

The integral equations (11) and (12) were programmed for numerical solu-
tion by the method of moments to determine the unkown surface currents
on one cell of the infinite array. The surface currents were discretized by
employing a pulse basis function expansion, and the remaining integral of
the Green’s function (10) over each segment was then evaluated analytically.
Applying point matching over !' yielded a set of linear equations for solu-
tion, the unkown coefficients being the surface currents on each segment of
the expansion. For E-polarization an appropriate upper limit on the infinite
series in (10) was found to be p = ppqe =~ 60 for d < 2, with the convergence
improving for decreasing d. For H-polarization the convergence was slowed
due to the derivatives of the kernel (see (12)), and an auxiliary series was
introduced following the development in [2] to improve the convergence rate
such that pp.. ~ 60, d < 2.

The numerical implementation of the method of moments solution is con-
tained in the code INFARR as listed in the Appendix. The user is prompted
to choose either E- or H-polarization and to enter the length L, separation d,
maximum resistivity Ro, and the order of taper of the resistive sheets, along
with the upper limit p,,, and angle of incidence ¢o. Other options include
removing the perfectly conducting termination from the solution, specifying
a constant profile for R(z,0) rather than a tapered one, and generating re-
sults over a range of L (all other parameters constant). We note that since
a singularity exists in the Green’s function series if k, = £k, a restriction
on d and ¢q is that pA/d — singy # +1 for any value of p. The user is
notified if such a case exists and requested to change either parameter. The
sampling rate used 1s 100 segments per wavelength, and this is increased by



10(1 = f), f = d,L for d,L < X to ensure a proper sampling. The output
then is the magnitude and phase of the specular reflected field given by (15)
or (16) with p = 0, whose direction of propagation is ¢§ = —¢o. The user is
also informed of which other reflected waves exist, if any, according to (13)
and their direction of propagation (14). The magnitude and phase of these
fields could be output as well by a minor change in the code.

5 Results and Discussion

For the results presented here, the case of primary interest was when d < 1\
and ¢o = 0. Consequently, the condition (13) gives p = 0 as the only reflected
wave. The quadratic resistivity profile in (1) will be assumed, and pp,,; is
set to 50.

5.1 FE-polarization

The reflected field E7, was generated by (15) as a function of L, 0.1A < L <
2], for several values of d with Ry = 5002 as shown in Fig. 2 and for several
values of Ry with d = 0.2) as shown in Fig. 3. As L approaches zero, the
reflected field becomes -1, which is the reflected field of the perfectly con-
ducting termination. As L increases, the magnitude decreases to an asymp-
totic value. The asymptotes imply that there is no longer any contribution
from the termination at z = —L and are thus attributable to the scattering
from the leading edges of the resistive sheets alone. This was verified by
comparing the asymptotic values to the reflected fields produced when the
termination is removed from the solution. Figure 4 shows this comparison
for d = 0.2X, Ry = 50012, and the asymptotes are indistinguishable. This can
also be shown by comparing the results of Figs. 2 and 3 to the reflected field
from resistive sheets of constant resistivity Ry with the termination removed,
for which the results of each case are almost identical as a function of d and
Ry for large L (see Fig. 5). In the limit L approaches infinity the reflected
field in (15) is virtually equivalent to that from an infinite array of half planes
of constant resistivity Ro. Therefore, as lossy parallel plate waveguides, the
resistive sheets tremendously reduce the contribution from the termination.

We note that the rate of convergence to the asymptotic values decreases
with increasing d and Ry, providing a larger return for L < 0.5X than for
smaller d and Ry (see Figs. 2 and 3). Thus the penetration of the incident
field increases for larger d and R, as expected, which is also evidenced by
the increased oscillations attributable to the termination. Even though this
penetration increases the contribution from the termination, the asymptotic
values decrease with increasing d and Ry, implying that the leading edge
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Figure 2: Reflected field E7, of the infinite array for several d with ¢o = 0 and
Ro = 5009 (quadratic taper).
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contribution is reduced. This behavior is expected for increasing Ry, but
requires further analysis as a function of d.

As d approaches zero, the interaction between the adjacent sheets in the
infinite array increases, and the effective resistivity decreases since the sheets
appear in parallel with one another. Furthermore, in the limit the infinite
array becomes a lossy material slab of thickness L, which can be characterized
by some reflection coeflicient, assuming the field transmitted at the leading
surface is completely absorbed. Modeling the slab with a resistive sheet of
resistivity Ro/2 in the z = 0 plane, we find that

1

ar ik(z cos po—y sin o)
T T T Rag €
+ = cos ¢o

b

which gives comparable results to the asymptotic values of (15) for d = 0.05A.
The choice of a resistive sheet model as opposed to a lossy dielectric layer
one is consistent with the nature of the transmitted field propagating in the
¢o — 7 direction and gives the proper dependence on Ry. For d ~ 0.2), it
was observed from the data that for normal incidence and Ry 2 5000 the
asymptotic value was comparable to the edge on backscatter of a resistive half
plane of constant resistivity Ry normalized by the backscatter of a perfectly
conducting half plane, giving

The accuracy of this model in magnitude and phase implies that any inter-
action between adjacent resistive sheets is negligible. As d is increased from
0.2}, the asymptotic values of E7 continue to decrease, suggesting that the
absorption of the incident field is increased, though this phenomenom is not
yet understood.

5.2 H-polarization

The reflected field H], was generated by (16), and, as expected, the mag-
nitude is a constant as a function of L for ¢o = 0, as shown in Fig. 6 with
d = 0.2)\, Ry = 500Q. The reflection is simply the reflected field from the
perfectly conducting termination, which is €2, With the electric vector
perpendicular to the resistive sheets, the sheets have no effect on the inci-
dent field, and this is so as a function of d, L, and Ry. For ¢9 ~ 0 the
result still remains virtually unchanged, and as ¢ is increased the effect of

the resistive sheets increases, which is evidenced by the results in Fig. 6 for
0 = 7('/4
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Appendix

The following is the fortran code INFARR listed with its subroutines:

INFARR.FTN John R. Natzke
9/17/92

This program computes the scattering from an infinite array
of parallel resistive sheets of length L and separation d
under plane wave illumination with the exp(-iwt) time
convention. The sheets are terminated with a perfectly
conducting plane.

The user is prompted for all of the input parameters, and
the output is the specular reflected field written to the
files smagdt (magnitude) and sphadt (phase).

NN

parameter (ip=2500, ic=4)
integer EorH, indx(ic),xory
real k,L,ky
real RC(ic),R(ip),xp(ip),yp(ip),dxC(ic),dyC(ic),drC(ic)
complex ci,ctemp,carg,Erz,Hrz,Lzn,Lxn,Lyn,dGxn,dGyn
complex Z(ip,ip),In(ip),Vm, kx, kxp, Km
integer ipvt(ip),iretrn
complex wk(ip)
data ci,pi/(0.,1.),3.141593/
open(3,file='smagdt’)
open(4,file='"sphadt’)

c...Declaring constant values

10 k=2*pi

Zo=sqrt(4.e-07*pi/8.854e-12)
nolter=1
drg=pi/180

c...Prompting user for input parameters
print *,’1) E- or 2) H-pol?’
read *,EorH
print*,’1) With or 2) without pec termination?’
read*, ibac

numC=1
if(ibac .eqg. 1) numC=2
indx(1)=1

15 do 20 i=1,numC

if(i .eq. 1)then
print*, ‘For the resisitive strips --*
xory=1
print *,’ Enter L:’
read *,L
W=L
Xm=-W
ym=0
print*,’ 1) Constant or 2) Tapered Resistivity?’
read*, ich
ichl=ich
else
print*, ‘For the back short --*
ich=1
Xory=2
==L
ym=0
print *,’ Enter 4:°’
read *,d
W=4d
endif
c print *,’ Number of elements’,int(10*(1-W)+100*W)
c read *,
if(Ww .1t. 1)then



C

O00000a00n

18

20

N=int (10*(1-W)+100*W)
else
N=int (100*W)
endif
drC(i):W/N
if(xory .eq. 1l)then
dxC(i)=W/N
dyc(i)=0
else
dxC(i)=0
dyC(i)=W/N
endif
if(ich .eg. 1)then
if(i .eg. 1l)then
print*,’ Surface resistivity (ohms):’
read*,RC(1)
else
RC(1i)=0
endif
else
RC(1)=0
rLod=W
print*,’ Maximum resistivity Ro (ohms):’
read*,Ro
print *,’ Order of taper (1 = linear):’
read *,itap
endif
dxstar=axc(i)/2
dystar=dyC(i) /2
do 18 j=indx(i),indx(i)+N-1
Element position arrays
Xp(j)=xm+dxstar+(j-indx(1i)) *dxc(i)
yp(Jj)=ym+dystar+(j-indx(i)) *dyC(i)
Resistive Loading
if(ich .eqg. 1)then
R(j)=RC(i)
else
if(xory .eqg. 1)then
diff=xp(j)-xm
else
diff=yp(j)-ym
endif
R(j)=Ro*(diff/rLod) **itap+RC(1i)
endif
continue
indx(i+1)=indx(i)+N
continue
if (numC .eq. 1)then
print *,’ Enter 4d:°’
read *,d
endif
M=indx (numC) +N-1
print*,’ Total number of current elements M =‘,M
print*, 'Pmax:’
read*, Pmax
print *,’Number of angular iterations:’
read *,nolter
if{noIter .gt. 1l)then
star=1*drg
fini=pi-star
step=(fini-star)/(nolter-1)
phi=star
endif
print*, ‘Incident angle:’
read*,phio
phio=phio*drg
do 30 jp=-8*Pmax, 8*Pmax, 1
chk=jp/d-sin(phio)
if(chk .eg. 1 .or. chk .eq. -1)then
print*,’ SINGULARITY for p =',jp,’: Change d or phio.’
GOTO 15
endif



30 continue
print *, ‘Number of length iterations:‘
read *,nolter
if(noIter .gt. 1l)then
print*, ‘Final length’
read*, fini

wstar=L
wstep=(fini-wstar)/(nolter-1)
endif
DO 700 iter=1,nolter
print *, !
print *, ' M= ',M,’ L =',L,’ d =/,d,’ phio =’,phio/drg

print *,’ Generating impedance and source matrices

’

c*****************************************************'k************

C****t************** Impedance, Source, 2RSSR R R SRR R SRR ERE S
C*t*******i******** and Current Matrices kA kX kA Xk kX kX kX ok ok kk k%
C***********tt*****'k*********r***t***t***tt*i‘k********tt*t*t*tﬁ*tt*
A=k*Zo/d
inr=1
do 250 j=1,M
xm=xp (J)
ym=yp (3)
c Impedance matrix elements
inc=1

do 244 i=1,M
if((inr.eq.inc.and.j.eq.indx(inr))
& .or.(inr.eq.inc.and.inc.eq.2.and.i.eq.indx(inc))
& .or.(inr.ne.inc))then
xn=xp (1)
yn=yp (i)
dx=dxC(inc)
dy=dyC(inc)
dr=drC(inc)
Z(j,1i)=0
lim=1
if(i .eqg. j) lim=8
if (EorH .eq. l)then
c E-pol
do 230 jp=-lim*Pmax, lim*Pmax
ky=2*pi*jp/d-k*sin(phio)
carg=k**2-ky**2
kx=csqgrt (carg)
if(inc .eq. 1)then
Lzn=cexp (ci*ky*(ym-yn)) /kx**2
if(i .eq. j)then
Lzn=Lzn*ci*(1l-cexp(ci*kx*dx/2))

else
Lzn=Lzn*cexp(ci*kx*abs (xm-xn))
& *csin(kx*dx/2)
endif
else
Lzn=cexp (ci* (kx*abs (xm-xn)+ky* (ym-yn)))
& /kx*dy/2*sinc(ky*dy/2)
endif

2(j,1i)=2(j,i)+A*Lzn

230 continue
else
c H-pol
do 240 jp=-lim*Pmax, lim*Pmax
ky=2*pi*jp/d-k*sin(phio)
carg=k**2-ky**2
kx=csqgrt (carg)
kxp=ci*k*(abs(1l.*jp)/d-sgn(l.*jp)*sin(phio))
if(inr .eq. 1)then
c ExXs--
if(inc .eq. 1)then
Lxn=cexp (ci*ky*ym) /kx**2
if(i .eq. j)then
Lxn=Lxn*ci*(l-cexp(ci*kx*dx/2))
else
Lxn=Lxn*cexp(ci*kx*abs (xm-xn))
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*csin(kx*dx/2)
endif
dGxn=0
Xi=xn-dx/2
do 232 iend=1,2
dGxn=ci/2*sgn(xm-xi)
*cexp(ci*ky*ym)* (cexp(ci*kx*abs (xm-xi))
-cexp (ci*kxp*abs (xm-xi)))-dGxn
if(jp .eq. 0)then
dGxn=ci/2*sgn(xm-xi)
*cexp(-ci*k*(ym-yn) *sin(phio))
* (exp (k*abs (xm-xi) *sin(phio))
/(1-cexp(-k/d* (abs(xm-xi)-ci*(ym-yn))))
+cexp (-k*(abs(xm-xi) *(sin(phio)+1./d)
+ci*(ym-yn)/d))/(1l-cexp(-k/d* (abs(xm-xi)
+ci*(ym-yn)))))+dGxn
endif
Xi=xn+dx/2
continue
Z(3,1)=2(3,1)+A* (Lxn-dGxn/k**2)
else
dGxn=0
do 234 iend=1,2
dGxn=ci/2*sgn(xm-xn)
*cexp(ci*ky* (ym-yi)) * (cexp(ci*kx*abs (xm-xn))
-cexp(ci*kxp*abs (xm-xn)))-dGxn
if(jp .eq. O0)then
dGxn=ci/2*sgn(xm-xn)
*cexp(-ci*k*(ym-yi) *sin(phio))
* (exp (k*abs (xm-xn) *sin(phio))
/(1-cexp(-k/d*(abs (xm-xn)-ci*(ym-yi))))
+cexp (-k* (abs(xm-xn) * (sin(phio)+1./d)
+ci*(ym-yi)/d))/(1l-cexp(-k/d* (abs(xm-xn)
+ci*(ym-yi)))))+dGxn
endif
yi=yn+dy/2
continue
Z(j,1)=2(3,1i)-A*dGxn/k**2
endif
else
Eys--
if(inc .eq. 1)then
den:O
Xi=xn-dx/2
do 236 iend=1,2
if(jp .ne. 0)then
dGyn=ci/2*cexp(ci*ky* (ym-yn))
* (ky/kx*cexp(ci*kx*abs (xm-xi))+ci
*sgn(1l.*jp) *cexp(ci*kxp*abs (xm-xi)))-dGyn
else
dGyn=ci/2*(-tan(phio) *cexp(ci*k
* (abs (xm-xi) *cos(phio) - (ym-yn) *sin(phio)))
-ci*cexp(-k*(abs(xm-xi)/d+ci* (ym-yn)
*sin(phio))) *(cexp(k*(abs(xm-xi) *sin(phio)
+ci*(ym-yn)/d))/(1-cexp(-k/d* (abs (xm-x1i)
-ci*(ym-yn))))-cexp(-k*(abs (xm-xi)
*sin(phio)+ci*(ym-yn)/d))/(1-cexp(-k/d
* (abs (xm-xi)+ci*(ym-yn))))))-dGyn
endif
Xi=xn+dx/2
continue
Z2(3,1)=2(3,1)-A*dGyn/k**2
else
Lyn=cexp (ci*(kx*abs (xm-xn)+ky* (ym-yn)))
/kx*dy/2*sinc(ky*dy/2)
dGyn=0
yi=yn-dy/2
do 238 iend=1,2
if(jp .ne. 0)then
dGyn=ci/2*cexp(ci*ky* (ym-yi))
* (ky/kx*cexp(ci*kx*abs (xm-xn))+ci



& *sgn(l.*jp) *cexp(ci*kxp*abs(xm-xn)))-dGyn
else
dGyn=ci/2*(-tan(phio) *cexp(ci*k

& * (abs (xm-xn) *cos (phio) - (ym-yi) *sin(phio)))
& -ci*cexp(-k* (abs(xm-xn)/d+ci* (ym-yi)
& *sin(phio))) *(cexp(k* (abs(xm-xn) *sin(phio)
& +ci*(ym-yi)/d) )/ (1-cexp(-k/d* (abs(xm-xn)
& -ci*(ym-yi))))-cexp(-k*(abs (xm-xn)
& *sin(phio)+ci*(ym-yi)/d))/(1l-cexp(-k/d
& * (abs (xm-xn)+ci* (ym-yi))))))-dGyn
endif
yi=yn+dy/2
238 continue
Z(3,1)=2(j,1)+A*(Lyn-dGyn/k**2)
endif
endif
240 continue
endif
else
if(inr .eg. 1l)then
if(i .1lt. j)then
Z(3,1)=2(1,3)
else
Z2(3,i)=2(3-1,1-1)
endif
else
Z(j.,1)=2(3-1,1-1)
endif
endif
if(i .eq. indx(inc+1)-1) inc=inc+1
244 continue

c...Incident Field (Source) matrix elements
if (EorH .eq. 1l)then
Vm=cexp (-ci*k* (xm*cos (phio) +ym*sin(phio)))
else
if(inr .eq. 1)then
Vm=Zo*sin(phio)

& *cexp(-ci*k* (xm*cos (phio)+ym*sin(phio)))
else
Vm=Zo*cos (phio)
& *cexp (-ci*k* (xm*cos(phio)+ym*sin(phio)))
endif
endif
In(j)=Vm
if(j .eq. indx(inr+1)-1) inr=inr+1
250 continue

Cc...Resistivity profile
do 260 j=1,M
260 continue
c...Calling subroutines to calculate the current matrix
print *,’ Selving [Znm][In] = (Vm] . . .’
call CGECO(Z,ip,M, ipvt, cond, wk)
print *,’ The condition number is ‘,cond
call CGESL(Z,ip,M, ipvt,In,0)
Ct*t****t**’tt****tt'k****t****ttt*t***'tttiit*ttttﬂ*!i*ittitt*******
C***t***t*t*t******'k* Diffracted Field ISR E R R SRR SRR R RS
c*t*i*i***tiQ****t*'k***********!*!t*t't*tt*t*t*'ktt****itt*tt****i**
c...Direction of diffracted field(s)
jp=0
dowhile(jp .lt. d*(l+sin(phio)))
print*,’ Reflected field exists for p =',ijp,

& ', phip =’,asin(jp/d-sin(phio))/drg,’."
jp=jp+l
enddo
jp=-1

dowhile(jp .gt. -d*(l-sin(phio)))
print*,’ Reflected field exists for p =',jp,
& *, phip =’,asin(jp/d-sin(phio))/drg,’."’
jp=jp-1
enddo
c...Specular reflected field



print*,’ For p = 0, phip =,’,-phio/drg,”’,’
jp=0

Erz=0

Hrz=0

ky=k* (jp/d-sin(phio))

carg=k**2-ky**2

kx=csqrt(carg)

do 610 inc=1,numC

Lzn=0
do 600 i=indx(inc),indx(inc+1)-1
xn=xp (1)
yn=yp (i)
c print*,i,xn,yn,cabs(In(i))
Lzn=In(i) *cexp(-ci* (kx*xn+ky*yn))+Lz
600 continue

dr=drC(inc)
if (EorH .eqg. 1l)then
if(inc .eq. l)then
Erz=-k*Zo/kx/d*csin(kx*dr/2) /kx*Lzn
else
Erz=-k*Zo/kx/d*dr/2*sinc(ky*dr/2) *Lzn+Erz
endif
else
if(inc .eq. 1l)then
Hrz=1./d*ky/kx**2*csin(kx*dr/2) *Lzn
else
Hrz=-1./d*dr/2*sinc(ky*dr/2) *Lzn+Hrz
endif
endif
610 continue
if (EorH .eq. 1)then
print *,’ Erz: ‘,cabs(Erz),pha(Erz)
write(3,*) L,cabs(Erz)
write(4,*) L,pha(Erz)
else
write(3,*) L,cabs(Hrz)
write(4,*) L,pha(Hrz)
print *, -’ Hrz: ‘,cabs(Hrz),pha(Hrz)
endif

if (noIter .gt. 1l)then
do 620 i=1,numC
if(i .eq. 1)then
ich=ichl
xory=1
L=wstar+iter*wstep
W=L
Xm= -W
ym:O
else
ich=1
Xory=2
=-L
ym=0
wW=d
endif
if(Ww .1t. 1.)then
exN=10*(1-W)
else
exN=0
endif
N=int (exN+100*W)
drC(i)=W/N
if(xory .eq. 1l)then
axC(i)=W/N
dyC(1i)=0
else
dxC(i)=0
dyC(i)=W/N
endif
dxstar=dxC(i)/2
dystar=dyC(i)/2



do 618 j=indx (i), indx(i)+N-1

xp(j)=xm+dxstar+(j-indx(i))*dxC(1i)
yp(j)=ym+dystar+(j-indx(i)) *dyc(i)
if(ich .eqg. 1l)then

R(j)=RC(1)
else

if (xory .eq. 1l)then

diff=xp(j)-xm

else
diff=yp(j)-ym
endif
R(j)=Ro*(Aiff/W)**itap+RC(i)
endif
618 continue
indx(i+1)=indx(i)+N
620 continue
M=indx (numC) +N-1
endif
c phio=star+(iter)*step
700 continue

print *,’ Again (l=yes) ? '
read *,ians
if(ians .eq. 1) GOTO 10
print*,’
print*, 'The output files are SMAGDT and SPHADT.'
800 stop
END

ct**t**********t***************t**t*********t*******t*************

FUNCTION SGN(R)
C****t*ii**t********t*****t*******ttt*itit****t*******tt*tﬁ******i
if(R .ne. 0)then
sgn=R/abs (R)
else
sgn=1.
endif
return
end
C**ti*****t**********t*****t*i*t*ﬁ****i**i***!**t**tt***t*********

FUNCTION PHA(C)
c******t***t*****************i****t*i*tttitttttt***itit****i******
complex c
if(Real(c) .ne. 0)then
pha=180./3.141593*atan2 (aImag(c),Real(c))
elseif(aImag(c) .ne. 0)then
pha=aImag(c)/abs(aImag(c))*90

else
pha=90
endif
return
end
C***i*************ﬁ*****t********t***i*ittit*ii***titttttititt*t*t*c
C
c The following subroutines are standard LINPACK routines C
C to perform L-U decomposition and back substitution on a C
C single precision complex matrix. See CC-Memo 407 sec 2.1 C
Cc for documentation on these routines. C
C C
C*********tt*t*tt***ti**t***it*******tﬁttt**t**ﬁtt**tttttt*******t*c
C
SUBROUTINE CGECO(A,LDA,N, IPVT,RCOND, Z)
C C
Ct*i**t*tt****t*t*tt*i*t**t**t*t'***t**tti***t*'it**tt***t*itt*ti**c
C C
C NAASA 2.1.042 CGECO FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
(e}
INTEGER LDA,N, IPVT(1)
COMPLEX A(LDA,1),Z(1)
REAL RCOND
C

C CGECO FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION



AND ESTIMATES THE CONDITION OF THE MATRIX.

IF RCOND IS NOT NEEDED, CGEFA IS SLIGHTLY FASTER.
TO SOLVE A*X = B , FOLLOW CGECO BY CGESL.

TO COMPUTE INVERSE(A)*C , FOLLOW CGECO BY CGESL.
TO COMPUTE DETERMINANT(A) , FOLLOW CGECO BY CGEDI.
TO COMPUTE INVERSE(A) , FOLLOW CGECO BY CGEDI.

ON ENTRY
A COMPLEX (LDA, N)
THE MATRIX TO BE FACTORED.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
N INTEGER
THE ORDER OF THE MATRIX A .
ON RETURN
A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS

WHICH WERE USED TO OBTAIN IT.

THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

IPVT INTEGER (N)
AN INTEGER VECTOR OF PIVOT INDICES.

RCOND REAL
AN ESTIMATE OF THE RECIPROCAL CONDITION OF A .
FOR THE SYSTEM A*X = B , RELATIVE PERTURBATIONS
IN A AND B OF SIZE EPSILON MAY CAUSE
RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND .
IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION

1.0 + RCOND .EQ. 1.0

IS TRUE, THEN A MAY BE SINGULAR TO WORKING
PRECISION. 1IN PARTICULAR, RCOND IS ZERO IF
EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
UNDERFLOWS.

Z COMPLEX (N)
A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
IF A IS CLOSE TO A SINGULAR MATRIX, THEN 2Z IS
AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
NORM(A*Z) = RCOND*NORM(A) *NORM(Z)

LINPACK. THIS VERSION DATED 07/14/77
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

LINPACK CGEFA

BLAS CAXPY, CDOTC, CSSCAL, SCASUM

FORTRAN ABS, ATMAG, AMAX1,CMPLX, CONJG, REAL

INTERNAL VARIABLES

oo NN e NN e e e e N e N e N e e o o e o o N o oo N e N oo o N N o N N o N o N e e N N N N o N o N o o N N O N o N ]

COMPLEX CDOTC, EK, T, WK, WKM
REAL ANORM, S, SCASUM, SM, YNORM
INTEGER INFO,J,K,KB,KP1,L

C
COMPLEX ZDUM, ZDUM1, ZDUM2, CSIGN1
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
CSIGN1 (ZDUM1,Z2DUM2) = CABS1(ZDUM1) * (ZDUM2/CABS1 (ZDUM2) )
C
ccc Compute 1-NORM of A
C
ANORM = 0.0EO0
DO 10 J =1, N



10
ccc
c
c
c
c
c
c
c
c
C
C
c
20
30
40
50
60
70
80
90
100
c
ccc
c
110

ANORM =

AMAX1 (ANORM, SCASUM(N,A(1,J),1))

CONTINUE

Factor

CALL CGEFA(A,LDA,N, IPVT, INFO)

RCOND =

1

/ (NOFM(A) * (ESTIMATE OF NORM(INVERSE(A))))

ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND CTRANS(A)*Y =
CTRANS (A)
THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E .
THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.

IS THE CONJUGATE TRANSPOSE OF A .

SOLVE CTRANS(U)*W = E

EK = CMPLX(1.0E0,0.0E0)

DO 20 J
Z(J)
CONTINU

E

1, N
CMPLX(0.0E0,0.0EQ)

DO 100 K = 1, N

IF (CABS1(Z(K)
IF (CABS1(EK-2Z

.NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
)) .LE. CABS1(A(K,K))) GO TO 30

)
(K))

S = CABS1(A(K,K))/CABS1(EK-Z(K))
(N,S

CALL CSSCAL

E

K

’ (le)
= CMPLX(S,0.0E0) *EK

CONTINUE

WK = EK - Z(K)
WKM = -EK - Z(K)
CABS1 (WK)

S =
SM =
IF (

KP1

C

ABS1 (WKM)

CABS1(A(K,K)) .EQ. 0.0E0) GO TO 40
WK = WK/CONJG(A(K,K))
WKM = WKM/CONJG(A(K,K))
GO TO 50
CONTINUE
WK
WKM = CMPLX(1.0E0,0.0EQ)
CONTINUE

= CMPLX(1.0E0,0.0E0)

K+ 1

IF (KP1 .GT. N) GO TO 90
DO 60 J = KP1, N

SM = SM + CABS1(Z(J)+WKM*CONJG(A(K,Jd)))
Z(J) = Z(J) + WK*CONJG(A(K,J))
S = 8 + CABS1(Z(J))

CONTINUE

I

F

(S .GE. SM) GO TO 80
T = WKM - WK
WK = WKM
DO 70 J = KP1, N
Z(J) = Z(J) + T*CONJG(A(K,Jd))
CONTINUE

CONTINUE
CONTINUE

Z(K)
CONTINU

E

WK

S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)

Solve CTRANS(L)*Y =V

DO 120 KB = 1, N
K=N+1- KB
IF (K .LT. N) Z(K) = Z(K) + CDOTC(N-K,A(K+1,K),1,2(K+1),1)
IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 110

S

1.0E0/CABS1(Z(K))

CALL CSSCAL(N,S,Z,1)
CONTINUE
IPVT(K)

L =
T =
Z(L)
Z(K)

Z(

L)
Z(K)
T

E .



120

130
140

Cccc

150

160

CONTINUE

S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)
YNORM = 1.0EO0

Solve L*V = Y

DO 140 K =
L = IPVT

=

S = 1.0E0/CABS1(Z(K))
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM
CONTINUE

CONTINUE

S = 1.0E0/SCASUM(N,Z,1)

CALL CSSCAL(N,S,7Z,1)

YNORM = S*YNORM

Solve U*Z v

I

DO 160 KB = 1, N
K=N+1 - KB

K .LT. N) CALL CAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
CABS1(Z(K)) .LE. 1.0E0) GO TO 130

IF (CABS1(2(K)) .LE. CABS1(A(K,K))) GO TO 150

S = CABS1(A(K,K))/CABS1(Z(K))
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM
CONTINUE
IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K)
IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K)
T = -Z(K)
CALL CAXPY(X-1,T,A(1,K),1,2(1),1)
CONTINUE
MAKE ZNORM = 1.0
S = 1.0E0/SCASUM(N,Z,1)
CALL CSSCAL(N,S,Z,1)
YNORM = S*YNORM

Z(K) /A(K,K)
CMPLX(1.0E0,0.0E0)

IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
IF (ANORM .EQ. 0.0E0) RCOND = 0.0EO
RETURN

END

IR R R R R R R R R SRR R R RS SR R SRS R SRR Rl SRS R SRRttt Rttt tn s
C C

c

C

SUBROUTINE CGEFA(A,LDA,N, IPVT, INFO)

C

c

C t***t***************‘k**************tt*t**i***t**t*tit********t***c

C
C
C

NN nn

NAASA 2.1.043 CGEFA FTN-A 05-02-78

INTEGER LDA,N,IPVT(1), INFO
COMPLEX A(LDA,1)

c
THE UNIV OF MICH COMP CTR

CGEFA FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION.

CGEFA IS USUALLY CALLED BY CGECO, BUT IT CAN BE CALLED
DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.

(TIME FOR CGECO) = (1 + 9/N)*(TIME FOR CGEFA)
ON ENTRY
A COMPLEX (LDA, N)

THE MATRIX TO BE FACTORED.

LDA INTEGER

THE LEADING DIMENSION OF THE ARRAY A .
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Cccc

(9]

10

ccc

ccc

ON RETURN

A

IPVT

INFO

INTEGER
THE ORDER OF THE MATRIX A .

AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
WHICH WERE USED TO OBTAIN IT.

THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.

INTEGER (N)
AN INTEGER VECTOR OF PIVOT INDICES.

INTEGER

= 0 NORMAL VALUE.

= K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
CONDITION FOR THIS SUBROUTINE, BUT IT DOES
INDICATE THAT CGESL OR CGEDI WILL DIVIDE BY ZERO
IF CALLED. USE RCOND 1IN CGECO FOR A RELIABLE
INDICATION OF SINGULARITY.

LINPACK. THIS VERSION DATED 07/14/77
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

BLAS CAXPY,CSCAL, ICAMAX
FORTRAN ABS, AIMAG, CMPLX, REAL

INTERNAL VARIABLES

COMPLEX T

INTEGER ICAMAX,J,K,KP1,L,NM1

COMPLEX ZDUM

REAL CABS1

CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))

Gaussian elimination with partial pivoting

INFO = 0
NMl1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
FIND L = PIVOT INDEX

L = ICAMAX(N-K+1,A(K,K),1) + K -1

IPVT(K)

=L

Zero pivot implies this column already triangularized

IF (CABS1(A(L,K)) .EQ. 0.0E0) GO TO 40

Interchange if necessary

IF (L .EQ. K) GO TO 10

= A(L,K)

A(L,K) = A(K,K)

A(K,K) = T

CONTINUE

Compute multipliers

T =

-CMPLX(1.0E0,0.0E0) /A(K,K)

CALL CSCAL(N-K,T,A(K+1,K),1)

Row

elimination with column indexing

DO 30 J = KP1, N



T = A(L,J)
IF (L .EQ. K) GO TO 20

A(L,J) = A(K,J)
A(K,J) =T
20 CONTINUE
CALL CAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (CABS1(A(N,N)) .EQ. 0.0E0) INFO = N
RETURN
END
C o)
CrR AR AR R AR A KA KA KK KK AR RARKRE IR AR KA KR KKK AR KK AKX AI AKX KR K KKK AC
C C
SUBROUTINE CGESL(A,LDA,N, IPVT,B,JOB)

c
E**kt**t********t**t**k****t**********it**t****t***t****t*t*t*****ic
C C
C NAASA 2.1.044 CGESL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
C
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INTEGER LDA,N,IPVT(1l),JOB
COMPLEX A(LDA,1),B(1)

CGESL SOLVES THE COMPLEX SYSTEM
A * X =B OR CTRANS(A) * X =B
USING THE FACTORS COMPUTED BY CGECO OR CGEFA.

ON ENTRY
A COMPLEX (LDA, N)
THE OUTPUT FROM CGECO OR CGEFA.
LDA INTEGER
THE LEADING DIMENSION OF THE ARRAY A .
N INTEGER

THE ORDER OF THE MATRIX A .

IPVT INTEGER (N)
THE PIVOT VECTOR FROM CGECO OR CGEFA.

B COMPLEX (N)
THE RIGHT HAND SIDE VECTOR.

JOB INTEGER
=0 TO SOLVE A*X = B ,
NONZERO TO SOLVE CTRANS(A)*X = B WHERE
CTRANS(A) IS THE CONJUGATE TRANSPOSE.

1

ON RETURN
B THE SOLUTION VECTOR X .
ERROR CONDITION

A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS A
ZERO ON THE DIAGONAL. TECHNICALLY THIS INDICATES SINGULARITY
BUT IT IS OFTEN CAUSED BY IMPROPER ARGUMENTS OR IMPROPER
SETTING OF LDA . IT WILL NOT OCCUR IF THE SUBROUTINES ARE
CALLED CORRECTLY AND IF CGECO HAS SET RCOND .GT. 0.0

OR CGEFA HAS SET INFO .EQ. 0

TO COMPUTE INVERSE(A) * C WHERE C IS A MATRIX
WITH P COLUMNS

CALL CGECO(A,LDA,N, IPVT,RCOND, Z)

IF (RCOND IS TOO SMALL) GO TO ...
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DO 10 0 =1, P
CALL CGESL(A,LDA,N,IPVT,C(1,J),0)
10 CONTINUE

LINPACK. THIS VERSION DATED 07/14/77 .
CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LABS.

SUBROUTINES AND FUNCTIONS

BLAS CAXPY,CDOTC
FORTRAN CONJG

INTERNAL VARIABLES

COMPLEX CDOTC, T
INTEGER K, KB, L, NM1

NMl1 = N -1
IF (JOB .NE. 0) GO TO 50

JOB = 0, SOLVE A * X =B
FIRST SOLVE L*Y = B

IF (NM1 .LT. 1) GO TO 30
DO 20 K = 1, NM1
L = IPVT(K)
T = B(L)
IF (L .EQ. K) GO TO 10
B(L) = B(K)
B(K) =T
10 CONTINUE
CALL CAXPY(N-K,T,A(K+1,K),1,B(K+1),1)
20 CONTINUE
30 CONTINUE

NOW SOLVE U*X =Y

DO 40 KB = 1, N
K=N+1-KB
B(K) = B(K)/A(K,K)
T = -B(K)

CALL CAXPY(K-1,T,A(1,K),1,B(1),1)
40 CONTINUE
GO TO 100
50 CONTINUE

JOB = NONZERO, SOLVE CTRANS(A) * X = B
FIRST SOLVE CTRANS(U)*Y = B

DO 60 K =1, N
T = CDOTC(K-1,A(1,K),1,B(1),1)
B(K) = {B(K) - T)/CONJG(A(K,K))
60 CONTINUE

NOW SOLVE CTRANS(L)*X = Y

IF (NM1 .LT. 1) GO TO 90
DO 80 KB = 1, NM1
K =N - KB
B(K) = B(K) + CDOTC(N-K,A(K+1,K),1,B(K+1),1)
L = IPVT(K)
IF (L .EQ. K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) = T
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
RETURN
END
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C Cc
SUBROUTINE CAXPY (N, CA,CX, INCX, CY, INCY)

C C

R R R R R R e T e

C C

C NAASA 1.1.014 CAXPY FTN-A 05-02-78 THE UNIV OF MICH COMP CTR

C

C CONSTANT TIMES A VECTOR PLUS A VECTOR.

C JACK DONGARRA, LINPACK, 6/17/77.

C

COMPLEX CX(1),CY(1),CA
INTEGER I, INCX, INCY,IX,IY,N

C
IF(N.LE.O)RETURN
IF (ABS(REAL(CA)) + ABS(AIMAG(CA)) .EQ. 0.0 ) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GOTO 20
C
ccc Code for unequal increments or equal increments
Cccc Not equal to 1
C
IX =1
Iy = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
CY(IY) = CY(IY) + CA*CX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C
cce Code for both increments equal to 1
C
2000 30 I = 1,N
CY(I) = CY(I) + CA*CX(I)
30 CONTINUE
RETURN
END
c c

C**t***************ﬁ*tt***************'****'***tt***i*f*****ttt****c

COMPLEX FUNCTION CDOTC(N,CX, INCX,CY, INCY)

C**tt*****t***k**!*k*tk*******t**t***t*t*tii**tﬁ******t************c

C

C NAASA 1.1.012 CDOTC FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
Cc
C FORMS THE DOT PRODUCT OF TWO VECTORS, CONJUGATING THE FIRST
C VECTOR.
C JACK DONGARRA, LINPACK, 6/17/77.
C

COMPLEX CX(1),CY(1),CTEMP

INTEGER I, INCX, INCY, IX,IY,N
C

CTEMP = (0.0,0.0)

CDOTC = (0.0,0.0)

IF(N.LE.O)RETURN

IF(INCX.EQ.1.AND.INCY.EQ.1)GOTO 20
C
ccc Code for unequal increments or equal increments
ccC Not equal to 1
C

IX = 1

Iy = 1

IF(INCX.LT.0)IX

IF(INCY.LT.0)IY

DO 10 I = 1,N
CTEMP = CTEMP + CONJG(CX(IX))*CY(IY)
IX = IX + INCX
IY = IY + INCY

10 CONTINUE
CDOTC = CTEMP
RETURN

(-N+1)*INCX + 1
(-N+1)*INCY + 1



C

ccc Code for both increments equal to 1
C
20 DO 30 I = 1,N
CTEMP = CTEMP + CONJG(CX(I))*CY(I)
30 CONTINUE
CDOTC = CTEMP
RETURN
END
c c
C*t**r****t******t*i'*********t*t**t*t*i**tﬁ**kt******tﬁ**t*****tt**c
c C
SUBROUTINE CSCAL(N,CA,CX, INCX)
C C
C*******t*i’********i'**f**************tt*t***tt******tt*t***t*tt****c
C C
C NAASA 1.1.019 CSCAL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
C
C SCALES A VECTOR BY A CONSTANT.
c JACK DONGARRA, LINPACK, 6/17/77.
C
COMPLEX CA,CX(1)
INTEGER I, INCX,N,NINCX
o)
IF(N.LE.O)RETURN
IF (INCX.EQ.1)GOTO 20
C
cce Code for increment not equal to 1
C
NINCX = N*INCX
DO 10 I = 1,NINCX, INCX
CX(I) = CA*CX(I)
10 CONTINUE
RETURN
C
ccec Code for increment equal to 1
C
20 DO 30 I = 1,N
CX(I) = CA*CX(I)
30 CONTINUE
RETURN
END
C C
c***t***t*******t**‘.tt*****t*t******t**t*t*t***tt*tt*i**t*‘k***t****tc
c C
SUBROUTINE CS8SCAL (N, SA, CX, INCX)

Cc
Ct*****tt*********l"k***************tti*ttt*tt*t*t*iﬁ**x************c
c C
C NAASA 1.1.018 CSSCAL FTN-A 05-02-78 THE UNIV OF MICH COMP CTR
o
C SCALES A COMPLEX VECTOR BY A REAL CONSTANT.

Cc JACK DONGARRA, LINPACK, 6/17/77.
C

COMPLEX CX (1)

REAL SA

INTEGER I, INCX,N,NINCX
C

IF(N.LE.O)RETURN

IF(INCX.EQ.1)GOTO 20
C
ccc Code for increment not equal to 1
C

NINCX = N*INCX

DO 10 I = 1,NINCX, INCX

CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
10 CONTINUE

RETURN
C
ccc Code for increment equal to 1
C

200030 I =1,N



30

C

CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
CONTINUE
RETURN
END
C

C******************ik********************t***t********i******t*****c

INTEGER FUNCTION ICAMAX(N,CX, INCX)

C***********‘k******i**:\'*******t**************ti****************tt**c

C
C NAASA 1.1.021 ICAMAX FTN-A 05-02-78 THE UNIV CF MICH COMP CTR
C
C FINDS THE INDEX OF ELEMENT HAVING MAX. ABSOLUTE VALUE.
C JACK DONGARRA, LINPACK, 6/17/77.
C
COMPLEX CX(1)
REAL SMAX
INTEGER I, INCX,IX,N
COMPLEX ZDUM
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C
ICAMAX = 1
IF(N.LE.1)RETURN
IF(INCX.EQ.1)GOTO 20
C
ccc Code for increment not equal to 1
C
IX =1
SMAX = CABS1(CX(1))
IX = IX + INCX
Do 10 I = 2,N
IF(CABS1(CX(IX)).LE.SMAX) GO TO 5
ICAMAX = I
SMAX = CABS1(CX(IX))
5 IX = IX + INCX
10 CONTINUE
RETURN
Cc
CcccC Code for increment equal to 1
c
20 SMAX = CABS1(CX(1))
DO 30 I = 2,N
IF(CABS1(CX(I)).LE.SMAX) GO TO 30
ICAMAX = I
SMAX = CABS1(CX(I))
30 CONTINUE
RETURN
END
c [

C****t******‘k*t**t*lt********t***t**t****************t*k*****k****t*c

REAL FUNCTION SCASUM(N,CX, INCX)

c**tﬂ**************1\'************&*t*t*******ﬁ****t***t*i*****t*****c

eHeNe NN N Ne!

C

NAASA 1.1.010 SCASUM FTN-A 05-02-78 THE UNIV OF MICH COMP CTR

TAKES THE SUM OF THE ABSOLUTE VALUES OF A COMPLEX VECTOR AND
RETURNS A SINGLE PRECISION RESULT.
JACK DONGARRA, LINPACK, 6/17/77.

COMPLEX CX(1)
REAL STEMP
INTEGER I, INCX,N,NINCX

SCASUM = 0.0E0

STEMP = 0.0EO
IF(N.LE.O)RETURN
IF(INCX.EQ.1)GOTO 20

Code for increment not equal to 1

NINCX

= N*INCX
DO 10 I =

1,NINCX, INCX



STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I)))
10 CONTINUE
SCASUM = STEMP

RETURN
C
cce Code for increment equal to 1
C

20 DO 30 I = 1,N
STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I)))
30 CONTINUE
SCASUM = STEMP
RETURN
END



