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Abstract

An attempt is being made to recast a masterpiece in the theory
of electromagnetism by the great scientist in modern notations and
to supply the derivations of several important equations in the work.
By invoking the radiation condition in his formulation, an amendment
has been made to clarify a criticism addressed to that theory. Also,
upon removing the constraint placed on the current distribution in
the original theory we have demonstrated a complete union of Hertz’s
theory of electromagnetism with Maxwell’s theory. The distinct and
independent features of Hertz’s theory have been emphasized. The im-
portance of this theoretical work by Hertz and its significance appear
to have not been fully recognized.



Introduction

The work under discussion was published by Hertz in 1884 [1], twenty years
after the publication of Maxwell’s theory [2], and three years before the start
of his renowned experimental verification of Maxwell’s theory, a monumental
work in the history of science. The paper has been examined by several
authors [3, 4], but the importance of this theoretical work and its significance
appear to have not been fully recognized. The purpose of the present study
is to recast the entire work in modern notations, to fill in some detailed
steps not found in Hertz’s original paper, and most important of all, to
deduce some new information which can be extracted from his theory. For
the convenience of modern readers, all quantities are now defined in MKS
system. Gibb’s notations of vector analysis are used throughout.

The Formulation

According to Hertz, the following premises are adopted in his theory:

1. The principle of the unity of electric force and that of the unity of
magnetic force. The two forces which Hertz referred to correspond to
the electric and the magnetic fields in modern nomenclature.

2. The principle of the conservation of energy, that of the action and
reaction as applied to systems of closed circuits; that of the superpo-
sition of electric and magnetic actions, and lastly, the well-known laws
of the magnetic and electromagnetic actions of closed currents and of
magnets.

There are two sets of equations in the original work. The first set consists
of equations representing Ampere’s law and Faraday’s law for fields produced
by electric current. For a steady current flow with electric current density J.
which is a function of time Ampere’s law states

VxH=1, (1)

then
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In free space (air)
V- (1H) =0, (3)

so we can introduce an electric vector potential function, denoted by A, such
that

pH =V x A, (4)
then, in view of (1), we obtain
VxVxA,=ypd..
By assuming
V-A. =0, (5)

the previous equation can be changed to

VA, = —pod.. (6)
By defining
Ae = ﬂoIea (7)
(4) becomes
1
H=—VxA,=VxI, (8)
Lo

and (6) can be written in the form
Vi, = -J.. (9)

The quantity I, will be designated as the electric current potential. It has
the dimension of [I.] = [Ampere].

Hertz invoked the induction law that the time rate of change of I, would
yield an electric field given by

7) R
E = —ﬂoa. (10)
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In an interpretation of the origin of (10), it appears that this induction law
is a consequence of Faraday’s law, namely,

oH
VXxE= _ﬂoﬁ' (11)
With H given by (8), (11) becomes
o1,
V x (E+[to—67) = 0. (12)
A particular solution of the above equation is
01,
E= —ﬂo'a_t'v (13)

which is the same as (10). Equations (8) and (13) are two basic equations
used by Hertz.

A second set of equations were introduced by Hertz based on the concept
of magnetic current, which was interpreted by him as the rate of the change
of magnetization, i.e.,

oM
Jm = —/,to—aT. (14)

The negative sign was introduced in (14) so that the magnetic Ampere’s law
would have the same form as the electric Ampere’s law. Namely,

VxE=1J,. (15)

We designate (15) as the ‘magnetic Ampere’s law’ a term not used by Hertz.
For the electric field produced by a magnetic current

V. (eE) =0. (16)

A magnetic vector potential, denoted by A,,, can thus be introduced such
that

&E =V x A (17)
Substituting (17) into (15), we obtain

VxVxA,=¢dn. (18)
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By assuming
VA, =0, (19)
(18) reduces to
VA, = —€dm. (20)

Let us define a magnetic current potential, denoted by I, such that

A,
I, = . (21)
Then (17) can be written in the form
E=VxI,. (22)

The dimension of the magnetic current potential is [I;] = [volt]. The induc-
tion theorem used by Hertz for the magnetic field produced by a magnetic
current 1s

_ 0L,
=

We can give an interpretation of the origin of (23), by considering a ‘magnetic
Faraday’s law’ in the form

H (23)

O0E
VxH=e—.
xH=¢ o (24)
Substituting (22) into (24) we obtain
V x (H - 60"5;) =0. (25)
A particular solution of (25) is
oL,
M=%

which is the same as (23). We must call attention to the fact that the term

eo% in (24) should not be viewed as the displacement current in Maxwell’s

5)



theory because the fields E and H described by (22) and (23) are produced by
magnetic current. There is no electric current involved in this set. Equations
(22) and (23) are the dual set of (8) and (10). Let us summarize the two basic
sets of equations used by Hertz to develop this theory of electromagnetism
to be disclosed shortly. They are:

H=VxI, (26)
E=—p5: (27)
E=VxI, (28)
H=¢dan, (29)

where I. and I,, denote, respectively, the electric current potential and the
magnetic current potential which are solutions of the equations:

VI = -J. (30)

Vi, = -J.. (31)

The explicit expressions of I, and I, will be discussed later.

A most remarkable feature of Hertz’s theory is the casting of the electric
field given by (27) into a form of (28) by an equivalent magnetic current
potential, denoted herein by I/ ;. Thus let

oL, ,
—}toa- =V x Iml' (32)

The prime on I/, is merely a notation, not a differential sign. This is the
most important step in his theory. It invokes the concept of the interaction or
coupling of two otherwise separate systems, the consequence of which shows
that Ampere’s law, both electrical and magnetic individually, is not sufficient
to describe electromagnetic phenomena. The end result of his theory is the
natural appearance of the electric displacement current in the electric sys-
tem and the magnetic displacement current in the magnetic system. This
logic and its development are quite different from that of Maxwell. In certain



aspects, it is richer in its physical content. Hertz did not use the word ‘equiv-
alent’ to introduce I!,;. This terminology is our suggestion. The meaning of
the subscript ‘m1’ will be evident later. By taking the curl of (32) we obtain

-uogzv xL=VxVxL,. (33)
By assuming
VL, =0, (34)
we can reduce (33) to the form
0
oy, 9
VI, = ,uoatV x I,. (35)
Now we introduce a new function I.; such that
0
L = —poz V x Iy (36)
and substitute it into (35). We obtain
v, = -I.. (37)

In (37), we treat I, as a known function which is a solution of (30) and I, as
an unknown function to be determined from (37). Once L, is so determined
we can find I, based on (36), i.e.,

, d
Ly = =g,V x L. (38)

The magnetic field due to this equivalent magnetic current potential can be
cast in the form of (29). Denoting this magnetic field by H;, we obtain

oL, . 8_2
ot~ o
In the words of Hertz this is the corrected part of the magnetic field which

has to be added to the magnetic field due to I. alone. The total magnetic
field is now given by

H1 =6 V x Iel- (39)

H, H+H,

= Vx[l, L& ] (40)

o
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where ¢ = 1/(#060)% denotes the velocity of light in empty space. It is
interesting to observe that in his original work this constant appears very
early in his formulation because his quantities are defined in the absolute
electric and magnetic units. The change of the electric current potential as
seen in (40) also changes the corresponding electric field. Thus,

ad 1 9
E;=E+E; =—p— |I. - = =14 41
The iteration process can be continued on indefinitely to yield a series for
the total electric current potential, denoted by P, given by

1 92 1 9% ]

Pe= e ™ 5 Fiodel (T n—_en 2
L-Ggal (' gl t 42)

The relation between the successive electric current potentials is governed by
the equation

V2Ien = —Ie(n—l)' (43)

[t 1s understood that
Ie(—l) = Je (44)
IeO = Ie. (45)

The total electromagnetic field due to P, is then given by

H. = VxP, (46)
0P,
E. = —ﬂo—at—- (47)

By means of the same technique, it is obvious that the fields produced by
the magnetic current can be developed in a similar manner. In fact, by
considering (28) and (29) as the dual of (26) and (27), we can deduce the
following key equations:

1 0? 1 o™

sz m ™ 5 Jiaiml -\ n____mn
I c? 6t2I e (=) cn 8t2"I + (48)



E, = VxP, (49)

0P,
ot

The relation between the successive magnetic current potentials is given by

H., = (50)

Vg = =In(aoyy (51)

with
Ln-1) = Jnm (52)

and
Lno = L. (53)

Based on (42) and (43), Hertz showed that P, satisfies the Helmholtz wave
equation. The proof is as follows. By taking the Laplacian of (42) we obtain

> 1 o™
VP, =V? -1)"— —=I.,.
Since
Vi, = -1, (55)
and
Vi, = —L(noy), n2> L (56)
(54) can be written in the form
1 9? & 1 a?(u—l)
2 _ n
\Y Pe = “Je - .(,3 ﬁ;(_l) C2(n"1) at2(n_1)le(n—1)
1 0 & L1 o
= -Je + 22' 'a'th;)(_l) 22—" Wlen
1 0°P,
= —Je 2 6t2 )



or

2 1 0°P, _
VP, - 2 o7 = -J., (57)
which is the vector Helmholtz equation.

It should be emphasized that the wave equation for P, as stated by (57)
was derived under the condition that V - J, = 0 and its derivation does
not depend on the explicit expressions for I.,. Only (43) is needed. By
eliminating P, between (46) and (47), with the aid of (57), one finds

J0H,
VXE. = —po— (58)
JE,
e = JC (°] .
VxH +€ 5 (59)
These are two of the differential equations found in Maxwell’s theory now de-
rived from Hertz’s theory under the constraint V - J, = 0, hence

V . (eE) = 0. One important feature of Hertz’s theory is the natural ap-
pearance of the displacement current eoga%‘ in (59).
The constraint on J. can be removed. But before we do that, let us

complete the discussion of Hertz’s work, particularly in regard to his solutions
for I, for n > 0.

Solutions for P,

The series expansion for P, derived by Hertz as given by (42) contain the
potential functions I.,. An expression for I, was found in the original paper
without showing its derivation. We attempt to give a derivation of that
expression using a procedure that is presumably similar to Hertz’s original
scheme. We start with I.,, which is a solution of the equation

V2L, = ~Ly = -J.. (60)

One particular solution of I, in free space is given by

= L | g
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or simply

L, =— / ear, (62)

47

which will be written in the form
1 e
L= / 3K, (r)dr, (63)
with K,(r) = 1/r. To find I; which is a solution of
Vi, = -L,, (64)
we let
1 ,
Iel = E/Jel\,(r)d‘r. (65)

Substituting (63) and (65) into (64), we see that the function K;(r) must
satisfy the equation

VK (r) = —=K,(r) = =1/,

or
1 d { ,dK; 1
7 0 ( —d:) = (66)
The particular solution for K is
Ky(r) = —r/2. (67)

Following the same procedure progressively, one finds
1
Ln=p / 3 Kn(r)dr, (68)
with

Ka(r) = (=1)"r"1/(2n)!. (69)
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hence

a2n
P, = Z(—l)“mlm

n=0

2n-1 2n
1/ o o (70)

4r (2n)! B(ct)?

n=0

This is the expression for P, found in Hertz’s original paper, although he
used the component form of P, in stating his result. It can be proved by
means of (68) that V- I, = 0 when V-J. = 0. This is a verification of the
postulate stated by (34) and passed on to I.; and subsequently to I.,.

According to the wave equation for P, stated by (57), there are, mathe-
matically, two independent solutions given by

P, = g [ > )
[Pe], = 417r/ Md“ (72)

in free space. The function [P, is designated as the retarded potential and
[P.], as the advanced potential. The Taylor series expansions of J.(t — r/c)
and J.(t + r/c) are given by

Jit—-r/c) = Je+raa(‘]e) %;( )7 4 (73)
Jit+r/e) = Je—ra(?(Je)+%§J; — el (74)

Thus, Hertz’s expression for P, as stated by (70) is the arithematic mean of

[Pe), and [P),, i.e.,

1
= 2 {[Pe]; + [Pe]a} (75)
This relation was first pointed out by Havas [3], after commenting on a

paper by Zatkis [4] who misinterpreted Hertz’s expression for P.. According
to Havas, Hertz’s solution for P, is not acceptable from the physical point
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of view, which is certainly true. However, the ‘shortcoming’ can be readily
remedied. In fact, the concept of retarded potential was introduced by Hertz
several years later [5]. If he had pursued the matter further that shortcoming
could have been easily removed.

In any event, there are two approaches by which Hertz’s result can be
properly modified to yield the correct answer. The missing criterion is the
radiation condition which Hertz never mentioned in his paper. If we add to
Hertz’s expression for P, a term denoted by P,, which is a solution of the
homogeneous wave equation

1 0°P,
“ae Y (76)

then the radiation condition can be satisfied by a proper choice of P,. The
desired function is obviously given by

VP,

P,= 5 ([P ~ [P} (77)

Since both [P.], and [P.], satisfy (57), their difference certainly satisfies (76).
Let the resultant potential function be denoted by P.r, then

Pgs = P.+P,

1 1
= -2- {[Pe]r + [Pe]a} + § {[PC]T‘ - [Pe]a}

= [Pe]ra (78)

which 1s the desired answer.

Another approach to find P.r is more complicated but it follows closely
Hertz’s original analysis with a modification. Returning to the differential
equation for I.,, namely,

V2Ieo = "Ie(—l) = "Jev (79)
we observe that the general solution for I, is
1 1
Ieo - Z; /Je (; + Co) dT’ (80)
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where ¢, is an arbitrary constant (function of time). In Hertz’s treatment he

let ¢, = 0. Now if we choose ¢, such that

.
d(ct)’

L [3. . aa,
L=/ [T * 8(ct)] dr.

coJe =

then

For I.; we let

1 aJ. ..
L, = 4W/ [J Ki(r) + —a—(cT)IXI(T)].
The functions K;(r) and K7 are solution of the equations

ViKi(r) = —1/r

VIKi(r) = -l

The particular solutions are

Ki(r) = —-r/2!
Ki(r) = —-r¥/3!,
hence
r? 8.]
=5/ (2' >)"’
Similarly,

rt ol,
= /(4' i act)) ar

(81)

(82)

(87)

Using these modified expressions for L, in (42), now representing Pz, we

find

1 r2n—1 anJ
P =— / I gr,
T~ i = n! O(ct)" ’

14
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which is the same as [P.],. It is seen that the new expression contains terms
with odd derivatives of the current function, these terms represent precisely
the mean value of the difference of the retarded and the advanced potentials.
Of course, this approach is guided by our anticipation that the resulting po-
tential function should represent a retarded potential. The method, however,
is essientially based on Hertz’s formulation with a proper modification.

Non-solenoidal Distribution of J,

So far we have been dealing with Hertz’s theory under the constraint
V -J. = 0. For non-solenoidal current distribution the equation of conti-
nuity reads:

Op

Vde=-——.
I ot

(89)
In view of (59) we must have
V- (e,E) = p, (90)

which corresponds to Gauss law for time varying charge. With this removal
of the original constraint we have obtained the complete system of Maxwell’s
equations from Hertz’s theory of electromagnetism based on an independent
method quite distinct from Maxwell’s path. As far as the function for P.r or
[P.], is concerned, the expression represented by (71), or its equivalent (88),
is still valid, but V - P, is no longer vanishing. It can be shown that

o PeT—_/l apt—r/c)

(91)
This part of the theory was investigated thoroughly by Hertz later in 1889
[5]. The consolidation of Maxwell’s theory could have been established by
Hertz theoretically in 1884 if he had pursued a little further based on his own
model.

The modification of Hertz’s theory for the magnetic current model can
be executed in the same manner. The most convenient derivation is to apply
the duality principle by replacing (J, pe, Per, Ee, He, g0, €,) in the electric
model by (J,,0,Pmnr, —Hm, Ep, €, 11,) in the magnetic model.
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In Retrospect

Several authors in the past have reviewed the paper under discussion, but it
is our opinion that the value of this masterpiece was not fully recognized. It
is remarkable that an alternative method was available to derive Maxwell’s
equations based on a quite different approach. Even though a constraint
was originally imposed on the method, the fact that a retarded potential
formula can be extracted from the formulation demonstrates convincingly
the power of his method. As has been shown, by removing that constraint
and invoking the equation of continuity and the Gauss law, the complete
system of Maxwell’s equations evolve from Hertz’s theory. For the magnetic
current model, since there is no magnetic charge, the condition V -J,, =0
is not a constraint. It is a mathematical statement of a physical law. The
theory for the magnetic current model is, therefore, complete by itself pro-
vided that a homogeneous solution is added to the original magnetic current
potential function. This portion of Hertz’s theory appears to be not cov-
ered in Maxwell’s theory. The physical insight of Hertz’s work seems to be
not well appreciated in the past. In a comment by the renowned physicist
Max Planck [6], Hertz’s derivation of Maxwell’s equations is considered to
be peculiar. We feel that the derivation was very brilliant, logical, and not
peculiar at all. Hertz’s modest conclusion of his own theory “... if the choice
rests only between the usual systems of electromagnetics and Maxwell’s, the
latter is certainly to be preferred ...” might have casted a negative image in
the eyes of later scholars.

It may be of interest to remark that forty years ago one of the present
authors (C.T.T.) considered a method [7] to extend Rayleigh’s theory of
diffraction of electromagnetic waves by small bodies [8]. In that method, we
expand E and H for a monochromatic oscillating field into two series in the
form

E = Y (ik)E, (92)

n=0

H = Y (ik)'H, (93)

n=0
where k = w(poeo)%. According to Maxwell’s theory, in free space,

V x E =ikZ,H, (94)
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o fo\ 7
VxH=-iks, Z= (—) . (95)

By substituting (92) and (93) into (94) and (95) and equating the terms of
the same power of (¢k)", we obtain, for n > 1,

Vx(Z,H,) = -E. (96)
V X En = ZoHn-l~ (97)

In particular, for n =1
V x (Z,H,) = -E, (98)
V x E, = Z,H,. (99)

In a later paper by Stevenson [9] the solution for E,, H, for n > 1 are found
systematically by an interative method based on a known pair of solution for
E, and H,. The similarity of the approaches between the works of Stephen-
son/Tai and that of Hertz is quite evident. However, Hertz’s theory is more
profound and authorative. Both of these authors were not aware of Hertz’s
iterative method. In fact, even Lord Rayleigh did not quote Hertz’s the-
ory relating a quasi-static field with a dynamic field or a wave theory. The
scientific community had done a great injustice in not fully recognizing the
value of this work which probably had prompted Hertz to search vigorously
for the experimental evidence in verifying Maxwell’s theory, now confirmed
theoretically by an independent approach.

The authors gratefully acknowledge the support from Dr. Fawwaz T.
Ulaby, Director of the Radiation Laboratory at the University of Michigan
for this work. The technical assistance of Mr. Jim Ryan is very much appre-
ciated.
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