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CHAPTER 1

INTRODUCTION

1.1 Motivations and Objectives

Recently, spaceborne remote sensing of the Earth has become an important source
of information in monitoring the Earth’s environment. Depending on the applica-
tion, sensors operating in different parts of electromagnetic spectrum have been de-
signed. The sensors in optical, thermal infrared, millimeter, and microwave frequen-
cies have been commonly used to retrieve information about different target types
on the Earth’s surface by virtue of their spectral properties. Propagation proper-
ties of electromagnetic waves at microwave frequencies offer the following advantages
over optical sensors: (1) microwave sensors are capable of penetrating clouds and
precipitations, (2) microwave sensors may have their own source of illumination so
that they are independent of the Sun and thus the desired incidence angle, frequency,
and polarization can be chosen, and (3) the microwave signals can penetrate to some
extent into various types of the surface cover such as vegetation, and thus provide
some information about the subsurface targets.

Among other applications, microwave remote sensing of soil moisture has been
of primary concern to hydrologists since many atmospheric and environmental pro-

cesses are closely linked to the spatial distribution of soil moisture. Application of



both passive and active sensors in microwave remote sensing of soil moisture have
been attempted [Schmugge et al., 1986 ; Dobson and Ulaby, 1986a], however only
active sensors are capable of producing estimates of soil moisture within fine spatial
resolution from a spaceborne platform. Radar backscatter from terrain is influenced
by two sets of parameters: 1) physical parameters such as complex dielectric con-
stant of the scatterers and the surface topography, and 2) the radar parameters such
as frequency, incidence angle, and polarization. For bare soil surfaces, the dielectric
constant is strongly dependent upon the liquid water content, and the effects of other
soil parameters like soil type (particle size distribution) on the dielectric constant of
the soil medium are less important, particularly at the lower microwave frequencies
[Ulaby, 1974]. Radar backscatter, away from normal incidence, from a bare soil sur-
face is a direct result of the surface irregularity. The strength of the backscattered
field and its statistics are complex functions of these surface irregularities relative to
the wavelength and the dielectric constant of the soil medium.

Researchers, for a long time, have been trying to develop mathematical models to
predict the backscattered characteristics of randomly rough surfaces. At present there
exist numerous analytical models each pertaining to specific cases [Ulaby et al., 1982;
Tsang et al., 1985; Ishimaru, 1978]. The success of these models when applied to real
rough surfaces is very limited, however, because of the over simplifying approximate
nature of these models. There are also a large number of experimental data sets, all
collected in an attempt to establish the relationship between the radar backscatter
and the soil moisture and surface parameters empirically [Bartlivala and Ulaby, 1977;
Ulaby et al., 1978; Jackson et al., 1981; Dobson and Ulaby, 1986a and 1986b; Mo et
al., 1988; Wang et al., 1986]. However due to the lack of precise ground truth data,

accurate calibrations, complete angular and polarization response characterization, or



a sufficient span of the surface parameter, the existing data sets have not been able to
contribute much to the understanding of the scattering process. Therefore, no reliable
algorithm has yet been developed to retrieve soil moisture and surface roughness
parameters from radar data with an accuracy required for hydrologic applications.
One of the added complexity in the soil media is the inhomogeneous nature of the
soil medium which is the result of nonuniform moisture profile.

The problem of scattering from random surfaces has been investigated only for
homogeneous surfaces. Even for this case, theoretical solutions exist only for limit-
ing cases. There are two conventional models dealing with rough surface scattering
[Ulaby et al., 1982; Tsang et al., 1985]. One is the small perturbation method (SPM),
which has been developed for surfaces whose height variations are small compared to
the wavelength and where surface slopes are much smaller than unity. The second is
the Kirchhoff approximation (KA), which has been developed for rough surfaces with
large radii of curvature. In recent years, there has been a considerable interest in de-
termination of the regions of validity of these two methods as well as the development
of a more general theory that can bridge these two limiting scattering models [Brown,
1978; Bahar, 1981; Wineberner and Ishimaru, 1985; Fung and Pan, 1987]. The va-
lidity regions of the SPM and KA have been examined previously by comparing the
model predictions to the results derived from exact numerical simulation [Chen and
Fung, 1988; Broschat et al., 1987; Thorsos, 1988]. Unfortunately, these numerical
solutions could only address one-dimensional surface roughness, thus the numerical
simulation does not produce depolarization and its prediction for co-polarized com-
ponents are much different from real surfaces that are two-dimensional. So far, no
exact numerical solution for two-dimensional surfaces has been developed due to the

limited computer power. Therefore, carefully controlled experiments are necessary to



study the two-dimensional surface of arbitrary surface correlation functions.

The major goal of this thesis is to develop an algorithm for retrieving soil moisture
content and surface roughness parameters from radar backscatter data. To accom-
plish this task, first a polarimetric radar backscattering model is developed that is
valid for natural rough surfaces over a wide range of surface conditions at microwave
frequencies. Development of the scattering model requires four major steps: (1) ac-
quisition of accurate polarimetric radar backscatter data from bare soil surfaces over a
wide range of moisture conditions and surface roughnesses, (2) acquisition of accurate
ground truth data for surface roughness and soil moisture using a laser surface profile
meter and a dielectric probe, (3) development and enhancement of theoretical and
numerical scattering models, (4) development of a hybrid scattering model for bare
soil surfaces constructed based on the experimental observations and the theoreti-
cal and numerical models. Once the hybrid (semi-empirical) model is developed and
tested, development of an inversion algorithm capable of providing accurate estimates
of soil moisture contents and surface roughnesses from polarimetric radar backscatter

1s considered.

1.2 Thesis Overview

In this section, the structure of the thesis is explained and content of each chapter
is briefly discussed. Figure 1.1 shows a simplified flow chart of the topics discussed in
this thesis. A theoretical basis for this work is reported in Chapters 2 and 4 which is
used to verify both numerical simulations as well as experimental observations. The
numerical simulations of radar backscattering from random surfaces are introduced
in Chapters 3 and 5 and are used to examine the accuracy of the theoretical models

and also to guide the development of the semi-empirical scattering model. Chapter
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Figure 1.1: Investigation of backscattering from randomly rough surfaces



6 is devoted to the development of an accurate calibration technique for polarimetric
measurement of distributed targets. The experimental data acquired using this cali-
bration technique were used to evaluate the existing scattering models. Development
of the semi-empirical model and its inversion algorithm is described in Chapter 7. In
this chapter the scattering behavior based on the extensive experimental observations
and the results derived from the theoretical and the numerical studies are combined
to develop the semi-empirical scattering model for the backscattering coefficients,
Tows Ohny Oy Lhe inversion algorithm can provide an estimate for soil moisture and
surface rms height, s, when radar parameters (frequency and incidence angle) are
known.

In Chapter 2, classical scattering models are reviewed. In specific, the small
perturbation method, the physical optics model and the geometrical optics model are
considered.

In Chapter 3, a Monte Carlo method in conjunction with the method of momentsis
introduced to solve scattering from a one-dimensional conducting surface numerically.
To make numerical simulation of random surfaces tractable, finite samples of the
random surface must be considered. However, the edges of the finite sample perturb
the scattering solution. To suppress the edge contribution a tapered resistive sheet
is added to each edge. Using this numerical technique, the phase difference statistics
as well as the backscattering coefficients are computed, and the existing scattering
models are examined against the numerical calculation.

In Chapter 4, an improved high frequency solution for random surfaces is formu-
lated and evaluated numerically for a one-dimensional surface. Using this formulation,
the zeroth- and the first-order classical physical optics approximations are examined.

In Chapter 5, the effect of dielectric inhomogeneity in a soil medium is considered



by developing an efficient numerical technique for one-dimensional inhomogeneous
dielectric rough surfaces.

In Chapter 6, an accurate technique for measurement of polarimetric backscatter
from distributed targets is introduced. In this technique the polarization distortion
matrix of a radar system is completely characterized from the polarimetric response
of a sphere over the entire main lobe of the antenna.

In Chapter 7, the experimental procedure and the backscattered data collected
from bare soil surfaces with many different roughness and moisture conditions at
microwave frequencies are explained. These data are analyzed and compared with
the theoretical scattering models. Also they are used to find the dependency of the
backscattering coefficients on the radar and the surface parameters. Using the co-
polarized and the cross-polarized ratios (o3, /02, , o5, /02, ), a semi-empirical scattering
model is developed. It is shown that the semi-empirical scattering model provides a
very good agreement with independent experimental observations. In this chapter an
inversion algorithm for the empirical model is also developed and its performance in

estimating the soil moisture and surface roughness parameters is tested.



CHAPTER 11

REVIEW OF CLASSICAL MODELS FOR
BACKSCATTERING FROM RANDOMLY
ROUGH SURFACES

2.1 Introduction

Even though the scattering of electromagnetic waves from a randomly rough sur-
face has been studied for many decades, no exact closed-form solutions have been
obtained because of the complexity of the problem. Instead, approximate models are
available for a limited range of random surface parameters. The objective of this
chapter is to study such approximate analytic models.

In order to study scattering models of random surfaces, it is convenient to treat the
rough surface as a particular realization of a random function with given statistical
properties. Let z(x,y) be such a random function describing the height distribution
of the zy plane. Then, z is a random variable with a probability density function

p(z) and a correlation function given as

C(6) = (2(z,9) 2(z + &,y + &) - (2.1)

We assume as follows; (1) z(z,y) is stationary in the wider sense. In other word,
the probability density function and the correlation function are independent of the

coordinate of z and y. (2) The surface is isotropic, which means that the correlation



function depends only on the distance regardless of its direction. (3) z(z,y) is mean-
square differentiable with partial derivatives z;, z,. This means that there is a function

z; (or z,) such that

lim = <[z(‘” tAazy) - xy) zz(a:,y)]2> =0. (2.2)

Based on the probability density function and the correlation function, the surface
roughness is commonly characterized by two parameters, namely rms height and cor-
relation length [Ulaby et al., 1982]. The rms height s is the standard deviation of the
surface height distribution, and the correlation length [ is defined as the displacement
such that the correlation function is equal to 1/e = 0.367 - . The rms height m
[Ulaby et al., 1982] is also defined as the mean square of the slope distribution which

1s

- <z§>% =/IC"(0)], (2.3)

where C"(0) is the second derivative of C(£) for £=0. It is often convenient to use the
normalized correlation function (or correlation coeflicient function) which is defined

as

o) = 29 (24)

2
where s is the standard deviation of the probability density function p(z).

Two commonly used classical models are the small perturbation method (SPM)
[Rice, 1951] and the Kirchhoff approach (KA) [Beckmann and Spizzichino, 1963]. The
SPM can be used for the random surface of which the surface rms height is much
smaller than the wavelength and the surface rms slope is relatively small. In SPM, the
surface field is expanded in a perturbation series to solve for the scattered field from a

random surface. The SPM appears to be exact because this method is using the exact
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boundary conditions on the surface, but in practice the infinite series representing the
solution converges reasonably quickly only for very slightly rough surfaces.

The KA is applicable to the random surface of which the correlation length is
larger than the incident wavelength and the rms height is small enough so that the
average radius of curvature is larger than the incident wavelength [Ulaby et al., 1982]

where the average radius of curvature R, is given as

_[28'c(0)]* |
Ly -

The KA method employs the so called tangent plane approximation to apply the
boundary conditions on the surface. Under the tangent plane approximation, the
surface fields at any point of the surface are approximated by the fields that would
be present on the tangent plane at that point. However, even with the tangent plane
approximation, the scattered field in the Kirchhoff-approximated diffraction integral
is still difficult to solve analytically. Therefore, additional assumptions are required
to obtain an analytical solution. A commonly used approximation is to expand the
integrand of the diffraction integral in terms of the surface slope, keeping only the
lower order terms. This additional approximation provides the physical optics (PO)
model, which is valid when the surface rms slope is small relative to the wavelength.
In the high frequency limit as & — oo, the geometrical optics (GO) model can be
obtained using the methods of stationary-phase. The GO model is independent of
the frequency, and is valid when the rms height is large relative to the wavelength.
Although the small perturbation method and the Kirchhoff approach are the most
common models over the decades for computing the scattering from randomly rough
surfaces, many other techniques are introduced recently to extend the validity regions
of the two classical models, including the phase perturbation method (PPM) [Wine-

brenner and Ishimaru, 1985a], the full-wave method (FWM) [Bahar, 1981], and the
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integral equation method (IEM) [Fung and Pan, 1987).

The classical models (i.e., SPM, PO, and GO) for two-dimensional dielectric ran-
dom surfaces are summarized and numerical examples are computed to show the
dependency of the backscattering coefficients on the radar and surface parameters in

section 2.2 and 2.3.

2.2 Small Perturbation Method

The scattering of electromagnetic waves from a slightly rough surface can be
obtained by using the Rayleigh hypothesis to express the reflected and transmitted
fields into upward and downward waves, respectively [Rice, 1951]. The surface field
amplitudes are then determined from the boundary conditions and the divergence
relations, from which the scattered fields can be obtained.

In order to illustrate the Rayleigh hypothesis, let us assume a periodic surface
with period L. The scattered fields in z > B, where B = max z(z, y), may be written
as

E = i A exp[—ia(mz + ny) — 1b(m, n)z] (2.6)

where

o B \/k"’ — a?(M? +n?) k2> a2(m2 + n2)

—i\/a2(M2+n2)—k2 D k? < a¥(m? + n?),

and the coefficients A, are to be determined. Rayleigh [1945] made the assumption
that the series (2.6) with coefficients A,,, was a valid representation for the scattered
field not only for z > B but also throughout z > z(z,y). This assumption has come

to be known as the Rayleigh hypothesis, and it was shown that this hypothesis is valid

if 2B < 0.448 in the case of a periodic surface [Millar, 1973].
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In this section, the formulation of the SPM is summarized by following closely the
derivation in Ch. 12 of [Ulaby et al., 1986]. Considering a plane wave incident upon
a two-dimensional dielectric rough surface as shown in Fig. 2.1, the orthonormal
coordinate systems are given by (v, hi, k,) and (9, hs, ks) with

A

k;

Zsinfcos ¢ + §sinfsin ¢ — Z cos
hi = &sing — §cos @ (2.7)

v; = & cosfcos @+ fjcosfsind + Zsinb,

A

k, = Z sin 0, cos ¢, + 7 sin , sin @, + 2 cos b,
h, = & sin ¢, — g cos ¢, (2.8)

by = —Z cos b cos ¢, — 7 cos O, sin @, + 2 sin b,

A

k, = Zsinf cos ¢ + 7 sinfsin ¢ + 2 cos 6
) (2.9)
k: = & sin 0, cos ¢, + 7 sin 0, sin ¢, + 2 cos 0.

If we consider only the backscattering direction (6, = 6 and ¢, = 7 + ¢), and set

¢ = 0 for simplicity, the coordinate system can be simplified as

A

]Acl-z_%sina—écose, il,'=—y, U; = Zcosf + Zsinb, (2-10)

IAcs = ——lAc,- = —2zsinf + Zcos¥, izs =y, 0,=12cosl,+ 2sin. (2.11)
The total field in medium 0 is the sum of the incident, reflected, and scattered

fields, where the scattered field in a homogeneous half space may be represented by

superimposing plane waves with unknown amplitudes as follows:

E,,:E;+E;+E;, p=vorh, with (2.12)

E; = i ] 125 UP (ke by Jemhsm=hovtitezd df,,

(2m)?

i ikok;
Ep =p;e 0 l', (213)

T _ A ikoky 1
E} = p. R, e T,



Figure 2.1:

13

Medium 1

Geometry of the scatter problem for a two-dimensional rough surface
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where the subscript p stands for v or A which indicates vertically and horizontally
polarized incident wave, respectively, R, is the Fresnel reflection coefficient for p-
polarized wave, the UP(k;, k,) is the unknown to be determined using the boundary

conditions, and k, = |/kZ — k2 — kZ. Similarly, the total field in medium 1 can be

given as

E,l) = Ezl,s + Ell,t , p=vorh, with (2.14)

El = (211r)2 [ 2, DP(ky, k,)ekaz=ikyy=ikiz gk df 215
E;t =p T, eikol‘crr’

where T, = 1 4+ R, is the Fresnel transmission coefficient for p-polarized wave, and

the DP(k,, ky) is the unknown to be determined. The boundary conditions, 7 x (E, —

El)=0and n x (H, - H}) = 0, give four equations as follows,

AE, + EAE, =0,
AE, + ZAE, =, ,
(2.16)

AE; _ JAE; 9z (0AE,  3AE; =0
0z dz dy oz dy )

OAE, _ 9AEy, | 5: (8AEE¢ __ BAE ) -0
Ay 9z Jy oz dy -
where AE, = E, — E;, AE, = E, — E}, and AE, = E, — E! on the surface. The

divergence relations, V-E, = 0 and V- E; = 0, give two more independent equations,

0E, , 0By | 9B, _
=t 5, 755 =0,
The six relations given by (2.16) and (2.17) permit the six unknown field amplitudes
Uz, Uy, Uz, D¥, Db, and D? in (2.12)-(2.15) to be determined.

Since we assume k.z to be a small quantity, we can expand all exponentials in-

volving k,z in Taylor series,

eXhe2@) = | 4k 2(z,y) — - o (2.18)
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The surface field amplitudes can also be expanded in a perturbation series,

UP(ky, ky) = U+ UL + - - (2.19)
D?(k;,k,) = D} + D} + - - -
Substituting (2.18) and (2.19) into (2.16) and (2.17) up to the first order in magnitude,
we can get six algebraic equations for the six unknown amplitudes, U, U}y, U, D%,
Dy, and D%, where subscript 1 indicates the first order solution.

Once we find the six unknown surface field amplitudes, the g-polarized scattered

fields can be computed in case of the p-polarized incident fields as
E;, =4 E,, (2.20)

where ¢, is iz, or v, and E; is the scattered field for a p-polarized incident wave.
The backscattered fields are given for backscattering direction in [Ulaby et al.,

1986],

E:, = —12k cos g, Z(k; + ksin 0, k,)} e~ Fem—thovtikezgp dk - (2.21)

where

__ —cosf+4/ €er—sin? §

cos 0+\/cr—sin2 [/ ’

Gy = (€ — 1)z (Lbein’ ) (2.22)

2)
(cr cos 6+1/ €r—sin? 0)

Qup = ap, = 0.

Assuming k,z << 1, the ensemble average intensity can be approximated as

S 8* ~y 1
<E Ey) = (27)*

qap QP

_°:o (2k cos 0)? |ay|* (227)

e~ ke=kr=ilk~K ) g dk, dk! dE, (2.23)

Since Z(ky, ky) is the Fourier transform of the random function z(z,y) representing

the surface height distribution,

Z (ks ky) // z,y)e* =2y dady, (2.24)



16

the ensemble average of ZZ* can be computed as
(2(ker k) 27K, ) = [ / ) eilkakD= iy K
ke (=== ks (v=9') g o !y
= W(kz, ky)8(kz — k,)8(ky — k), (2.25)
with
W (kg ky) // (u,v) 1k"”"k“”dudv (2.26)
where u = z—z’, v =y —y’, and C(u,v) = (2(z,y)2(z',y")). W(ks, ky) is the Fourier

transform of the correlation function and hence is the surface roughness spectrum.

Substituting (2.25) into (2.23) and integrating with respect to k; and k,, we get

<

1 %0 .
E;, 2> = &7 ( 2 |aqp|2//_m W(k, + ksin0, k,)dk,dk,  (2.27)

£ //_o:o fap(kz, ky)dksdE,

Denoting A <Equ;p> as the intensity within the narrow spectral bands Ak, Ak,

centered at k; and k,
A(EE;) & fip(ks, ky) Ak Aky = fop(ke, by )? cos 0,A0,. (2.28)

The averaged intensity P received at a distance r from the illuminated area A is
equal to the average power per unit solid angle times the solid angle subtended by

the receiver,

A(ELE; Acos, Ak?cos?
Py = <AQ ‘”’>x R — fq,,(k,,k) (2.29)

Since the scattering coeflicient is defined in terms of P by the product of the angle

and the solid angle subtended by the receiver,

oy = lim 47”25_____1%6{1/17:}

qp 500 ARC{l/'I]*}’ (230)
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o,, for backscattering direction is computed as

o —
qu -

AL

k& cos® 0 |ogp|* W (2K sin 6, 0), (2.31)

where ag, is given in (2.22).
Two typical normalized correlation functions are the Gaussian and exponential

functions given as, respectively,
Co(6) = o*exp [—i—] = opa(e), 2.3
0 = exp |5 = e (2.3

in which

ml? = /Oo p(u,v)dudv,

where [ is the correlation length, 7? is the correlation area [Eftimu and Pan, 1990],
and € is Vu? 4+ v? for a two-dimensional rough surface. For a Gaussian correlation

function of (2.32), the surface roughness spectrum is
We(2k sin 0,0) = ws2e=(*sn0)* (2.34)

while the surface roughness spectrum for an exponential correlation function of (2.33)

1s

vjw

W.(2ksin6,0) = ms*? [1 + 2(klsin 0)2]_ . (2.35)

When we have a numerical form of correlation instead of a functional form, e.g., a
correlation measured directly from a random surface, the roughness spectrum can be

computed numerically in the following form;

W,(2ksin,0) = s* / / 7 p(E)e e gy dy

= ors? /O " p(€)o(2k sin 06)de,
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where Jo(z) is the first kind Bessel function of zeroth order, which can be evaluated
approximately using the polynomials given in [Abramowitz and Stegun, Ch.9, 1972].

If above computation was extended to second order, the cross-polarized term
would not be zero in the backscattering direction. The second-order backscattering

coefficient for the cross-polarization has been shown in [Valenzuela, 1967] as,

. 1 2
o =of, = (QW)Z;H cos? 0 |(e; — 1)(R, — Ry)|?

k2k?
// |k P W (k, — ksin0, k,)W (k, + ksin 0, k,)dk.dk, (2.36)
1z T

where k, = \/m, ki, = \/m, and R,, R are the Fresnel re-
flection coefficients for vertical and horizontal polarization, respectively. The cross-
polarized backscattering coefficients can be obtained by evaluating a two-fold nu-
merical integration with a known surface roughness spectrum W(k, £ ksin,k,).
W(k; £ ksinf,k,) for Gaussian and exponential correlation functions can be com-

puted, respectively,

S ul4v? . . .
WG(kx + ksin 0, ky) — 32 // e-—,+2_61(k;:!:ksm0)u+zkyvdudv

-00
2,2
_(kgxksing)2i2 Kyt
= 7s*l%e 1 e” i, (2.37)

W,(k, + ksinf, k) = s / / T bttty g g,
_, / /27r 6_1—/-572-61 k;ztksin §) fsmd)eikyfcosd}é-dédw

0 0
= 21 /0 6T Jy (¢1/(ks  ksin )7 + £2) dé

3
2

= w2 [1 4 {(ke £ ksin0)* + K2} 12/2] (2.38)

The validity conditions associated with the small perturbation method are given

by [Ulaby et al., 1986; Chen and Fung, 1988] as

ks <03, m<03, and, kl<3.0. (2.39)
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Figure 2.2: Backscattering coefficients of a rough surface with ks = 0.2,kl = 2.0, and
€, = (10,1) using the SPM; (a) polarization response of the surface of an
exponential correlation, (b) o5, and o2, and (c) the ratio o}, /02, of the

surface with two different correlation functions.
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Figure 2.3: Backscattering coefficients at vv-polarization using the SPM for the sur-
face of an exponential correlation, (a) kIl = 2.0, ¢, = (10,2), and the
various values of ks, (b) ks = 0.2, ¢, = (10,2), and the various values of
kl, and (a) ks = 0.2, kI = 2.0, and the various values of €.
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Figure 2.4: The ratios of the backscattering coefficients at vv-polarization using the

SPM for the surface of an exponential correlation; (a) of, /o, and (b)
ohy/hy, for ks = 0.2, kl = 2.0, and different e,, and the ratio of, /02, for
(c) kl = 2.0, ¢, = (10,2), and different ks, and (d) ks = 0.2, ¢, = (10,2),

and different kl.
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The backscattering coefficients for various rough surfaces computed using the SPM
are illustrated in Figs. 2.2-2.4. The polarization responses of a rough surface with
ks = 0.2, kl = 2.0 and €, = (10,2) are plotted as a function of the incidence angle in
Figs. 2.2(a)-(c). a2, is higher than o}, and the ratio o3, /07, increases as 6 increases.
The cross polarized response of, is much lower than co-polarized response and the
ratio of af, /o, is constant in a wide range of incidence angle as shown in Figs. 2.2(a)-
(c). The angular pattern of the backscattering coefficients depends on the type of
correlation functions as shown in Fig. 2.2(b).

The sensitivities of ¢, to surface parameters, ks, kl, and ¢,, are illustrated in
Figs. 2.3(a), (b), and (c), respectively, for a surface with an exponential correlation
function. Figure 2.3(a) shows that o2, is very sensitive to ks where k = 27/) and
s is the rms height. When kl increases, only the slope of the angular pattern of

(o}

o?, increases especially in the range of small incidence angles, but the level of o

VY

o
U

does not change as shown in Fig. 2.3(b). Increasing the dielectric constant €, also
increases o2, by a constant value for all incidence angles as shown in Fig. 2.3(c)

with less sensitivity compared with the sensitivity to ks. Figures 2.4(a)-(c) show that

o
vv?

sensitivities of the ratios, o}, /o2, and o}, /02, as functions of surface parameters, ks,
kl, and ¢, of a rough surface having an exponential correlation. The ratio o}, /0?2,
is just the ratio of |ags|?/|aw|* (2.22) which is independent of ks and kl. The ratio
opn/oe,, however, depends on ¢, and 8 as shown in Fig. 2.4(a), i.¢., 0, /0?2, decreases
as 0 increases and the rate of change increases as ¢, increases. The ratio o}, /0?9, is a

weak function of €, and k! but a strong function of ks as shown in Figs. 2.4(b)-(d).

o5, /o2, decreases by 10 dB as ks decreases from 0.3 to 0.1 for a rough surface with

kl = 2.0 and ¢, = (10,2).
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2.3 Kirchhoff Approach

The vector formulation of the Kirchhoff method has been often formulated by
Stratton-Chu representation [Stratton, 1941]. The scattered field outside or on the
surface can be represented by the Hertz vectors which are simple and valid for open
and closed surfaces [Senior, 1992].

For a plane wave incident upon a random surface as shown in Fig. 2.1, the
orthonormal coordinate systems (6;,%,]%,-) and (13,,;15,125) are given in (2.7)-(2.7).

The scattered field E*(r) above or on the surface z(z',y’) can be written in terms of

the Hertz vectors,
E*(r) = Vx V x IL(r) + ik, Z,V x IL,5(r) (2.40)

The electric and magnetic Hertz vectors, II? and II? , are represented using the surface
current, J.(r') = A’ x H(r') and J,,(r') = =/ x E(r'), which are equivalent sources,

respectively,

.9

,r')ds’ (2.41)

// (r,r')ds’ (2.42)

where G,(r,r’) is the free-space scalar Green’s function given by

eikolr—r’l

Go(r,r') = (2.43)

dr|r — 1|
assuming the time dependence of e™*. In the far field (r > 2D?/),), the vector

operator Vx and the Green'’s function can be approximated as follows:

Vx(---)zikofcsx(--‘)
(2.44)
Go(r,r') =~ ﬂwexp[-—zko s 1.
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Substituting (2.44) into (2.41) and (2.42), the scattered fields in (2.40) can be obtained

in terms of the surface fields,
E'(r) = ;ﬁe“corics X / / (7 x B(x')) = Zok, x (A’ x H(r'))] e~*F™ ds', (2.45)
r S

which is the same form as what has been derived from the Stratton-Chu representation
through quite complicated computation [Ulaby et al., 1982].

In order to find the tangential surface fields 7’ x E(r’) and n’ x H(r'), we assume
the surface fields at any point of the surface can be represented by the fields on the

tangent plane at that point (tangent plane approximation). Let the incident field be
E' = gehokiT (2.46)

where @ is a unit polarization vector. We can define a local coordinate system (f, ci, k,)

for the locally flat tangent plane such that

x>

i Xy
~ b
hk’,‘ X 1'

where 7 is a unit normal vector of the tangent plane, which is given by

{=

CZ: ict- X i, ici = i X (2, (247)

S>

| —Z4-Z5+3

n = , (2.48)
VZi+ 2 +1
and Z; and Z, are the local slopes in the z and y directions, respectively,
8 I, ! 8 I’ !
Z:(z',y') = Z(;;,y ), and Z,(z',y') = —%—#—) (2.49)

The electric and magnetic incident fields can be decomposed into the locally perpen-

dicular and parallel polarizations using the local coordinate system,

E = and

—
>
]

(a- 1) + (- d)d| e*okr
| (2.50)

A A

H = Lk x [(@- )i + (a- d)d] eob v,
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respectively. Then, the electric and magnetic local reflected fields are, respectively,

A A

E" = [Ry(a- i) + R (- d)d| e®5™  and
[Rnti- D+ - A (2.51)

H =} ]::,' X {th(d . tA)f + R]U(El . d)d] eikok;-r/,
where Ry, and R, are the horizontal and vertical Fresnel reflection coefficients for

the local angle 0j;, respectively.

Using the boundary conditions of

E(r')=E(r')+ E"(r') and

(2.52)
H(r') = H'(r') + H(r') (on the surface),
we can obtain the following relations,
iy x B(r') = [(1+ Run)(@- £)(u x £) = (1= Ru)(a- d)(hu k)] ek and 253
5

a x H(r') = 7 [(“1 + Ru)(@- D)(fu - k) = (14 Ri)(a - d)(fu x f)] gikoki ',

Then, the i)-polarized scattered field from a locally flat plane for the a-polarized

incident field can be computed by substituting (2.53) into (2.45),

B, =b-E(r) = Do / /S fra€ ™R dody (2.54)

with

ki = ki — k, ' (2.55)
foa = b {ky x [ x Bo()] + Zo [ x Ha(v')]} |22+ 22 +1,
where the subscripts @ and b can be v and h which indicate the vertical and horizontal
polarization, respectively.
For the backscattering direction, the scattering amplitudes f, are obtained after

algebraic computation using the coordinate system given in (2.10), (2.11), (2.47), and
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(2.48),
2(cos 0 + sin 0Z,)[Rin(Z; cos 0 — sin0)* — R, Z2]
Jun = — (2.56)
(Zy cos 0 — sin0)? + 27
fo = 2(cos 0 + sin 0Z;)[Riu(Z, -cos 0 — sin0)? — Ri, 2] (257)
(Zzcos0 —sin0)? + Z2
2(cos 0 + sin 0Z,)(sin @ — Z; cos 0)(Ri, + Ri)Z,
= = 2.58
Jor = fon (Zs cos § — sin B)2 + 22 (2:58)
with

Zysin0+ cosf — \/e,(1 + Z2 + Z2) — Z} — (Z; cos § — sin 0)?
Ry = — _ ,  (2.59)
Zysinf + cos 0 + er(l+Z§+Z3)—Z§—(Zxcos9—sm0)2

; e(Zssin 0 + cos0) — /e, (1 + Z2 + Z2) — Z% — (Z, cos 0 — sin 0)? 2:60)
v € (Zssin b + cos0) + /e, (1 + 22 4+ Z2) — Z2 — (Z cos § — sin )2

where the local Fresnel reflection coefficients are obtained using

s Zysinf + cos 6

COSs 91,' = ——ﬁ[ . k,' = .
J2E+ 72 +1

Consequently, the backscattered mean intensity is given as the ensemble average of

the product of the backscattered field and its complex conjugate,

s sk 2 L L ikag(z1-22)
(Ep,Esn) = | Dol //deldylf/dezdyze delf1TH2

' <fbﬂ(ZIl i Zy1 )fb*a(ZIQ, Zy2>eikdz(21 ~Z2)> I} (261)

where 24, Zy), Zs,, Zy,, and Z,, form a random vector, |Do|* = kZ/(47r)?, =

z(z1,y1), 22 = 2(T2,¥2), and 24 = z; — z,. Since the integrals of the mean intensity
are still very difficult to evaluate analytically, we need additional approximations to
get a closed form of the mean intensity.

The validity conditions for this kirchhoff approach are given [Ulaby et al., 1982]

as
kl>6 and R, > A (12 > 2.76s\ for a Gaussian correlation) (2.62)

where R, is the average radius of curvature given in (2.5).
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2.3.1 Physical Optics Model

A commonly used approximation is to expand the integrand in (2.45), fia(Zz, Zy),

about zero slopes and keep only the first few terms as follows;

fba

6fba
*0Z, 27,

vaz,

4o (2.63)
Z2=2,=0

fba(ZaH Zy) = fbﬂ(()?()) + Z

Z:=2,=0
For surfaces with a small rms slope, the scattering amplitude fy,(Z;, Z,) can be

approximated by the first term of the series (2.63) [Tsang et al., 1985] where
fhh(O, 0) = 2 cos GRh

f(0,0) =2cos bR,

fuh(0,0) = fhv(oao) =0

(2.64)

R., R, = Fresnel reflection coeflicients.

This approximation may be called zeroth order approzimation because the slope terms
of Z, and Z, are ignored. With this approximation, the cross-polarized backscattered
fields are zero as seen in the above equations. Since fy,(0,0) £y, (0,0) is not dependent

on the random variables anymore, the ensemble average term is given as

(foulZey, 23) fiu(Zays 21 )2 72)) = | fia (0, 0)F (et} (2.65)

When the randomly rough surface is assumed to have a stationary Gaussian height

distribution,

1 2
e 22 (2.66)

p,(2) = 5o

where s is the standard deviation of the surface height distribution, the characteristic
function for a Gaussian random vector [Stark and Woods, 1986] is
N

M
Y wmwn (Emén) (2.67)

m=1n=1

DN | —

o:() & <er5> = exp [—
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in case of zero mean (% = 0), where £ is a random vector and & is a parameter vector.

Therefore, the ensemble average in (2.65) can be represented as
<eikdz(zl-22)> — 6—(kdz)232[1—p(u,v)] (268)

where p(u, v) is the normalized correlation function given in (2.4). Changing variables
in a double integral, u = z; — T3, v = y; — ¥, and using the characteristic function of
(2.68), the backscattered mean intensity with zeroth order approximation is obtained

in the form of

2

(B2, = (4?; 5 (2c0s 0)° | R, / /_ ZLL dudv(2L — Jul)(2L - [v])

ik p=(kaz)?s?[1=p(u,v)] (2.69)

Instead of a series expansion of fy,(Z,,Z,) about zero slopes, fi.(Z;,Z,) can
be approximated appropriately for surfaces with small rms slope [Fung et al., 1992].
Assuming small rms slope (22, Z2 < 1), foa(Zz, Z,) can be approximated from (2.56)-

)~y

(2.60) as follows;

fun(Zey Z,) = 2(cos 0 + Z, sin )Ry,
Fu(Zay Z,) m 2(cos  + Z sin )R, (2.70)
fon(Zey Zy) = fro(Zay Zy) = 0
where R;, and R, are the Fresnel reflection coefficients. This approximation may be
called first order approzimation since the co-polarized scattering amplitudes include
the first order of the slope terms. The cross-polarized backscattering fields are zero
with this approximation too.
Substituting (2.70) into (2.54) and integrating by part [Beckmann and Spizzichino,

1963], the backscattered fields can be computed as

s __ 1 ikoicdd"
Bty = DonFa— / / eokat dody + O(L) (2.71)
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with

sin .
. - ikokd-l"
o(L) = [Qiko cos0e ]

where the term of O(L) is an edge effect [Beckmann, 1968] which is insignificant for

-L

a surface of small rms slope and small incidence angles near normal. Therefore, the

backscattered mean intensity is given, ignoring the edge effect term,

k2 2
s |2 _ 0
<|Eaa| >lst (4772 (cosﬂ) [Ral’ // dudv(2L = [ul) 2L = o]
. etkdzu e—(kdz)232[1_p(u'v)]_ (272)

Comparing (2.72) with (2.69), the backscattered mean intensity with first order ap-

proximation is that with zeroth order approximation divided by cos* 4, i.e.,

1
(B, = g (1B),, (2.73)

The first and zeroth order approximated PO solutions are examined in more detail
in Section 2.5.

In order to get a closed form of the backscattered intensity, we may set L — oo
assuming the illuminated rough surface contains many correlation lengths L > [.

Using a series expansion for the exponential term,

Hetatun) 3~ (R plu, )7 (2.74)

n! ’
n=0 *

the backscattered mean intensity can be rearranged as

(1B, = (f 77 (2cos0)’ |l (20)° ¢ ’Z (—’“—l

// e'fast o™y, v)dudv. (2.75)

The n = 0 term corresponds to coherent scattering [Ulaby et al., 1982] since

2

k 2 2
(B, = i )(20050) IR.[2(2L)2 ™" / / ket Judv,  (2.76)
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and the rest of the series in (2.75) represents incoherent scattering.
When we consider a Gaussian correlation function given in (2.32), the integral in

(2.75) can be computed [Gradshteyn and Ryzhik, Ch6, 1980] to be

n

[T wl4o? 12 (kisin !2
Ic = // eikasi e T dudy = = , (2.77)

while the integral for an exponential correlation function given in (2.33) is computed

to be

/:/ eikart e 0H dudy = mnl - (2.78)
[n? + 2(klsin 0)?]?

where ky, = 2ksin @ and [ is the correlation length.
Since the backscattering coefficient corresponding to the backscattered mean in-

tensity can be given as

4 Re{(IBLI") i}
% = i, Re{|Eo[ /n*} 219

where the intrinsic impedance 57 = n* = 5o and |Es| = 1.0 in this problem, the

incoherent backscattering coefficients for PO model are given by

(2ks cos 0)*"

n!

k2
ol . —Ocos 0|R.|" e (2ka cos )? E

aa,ing,p

I (2.80)

n=1

where R, is the Fresnel reflection coefficient for a-polarization and I is I in (2.77)
or I, in (2.78) for a Gaussian or an exponential correlation function, respectively.

The additional approximation of the PO model ( zeroth or first order approxima-

tion) limits the validity conditions to the small slope of the rough surface. Therefore,

in addition to the validity conditions in (2.62), another condition that limits the rms

slope is usually given [Ulaby et al., 1982] as

m < 0.25. (2.81)
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Figure 2.6: Backscattering coefficients at hh-polarization using the PO model for a
surface of an exponential correlation, (a) kl = 8, ¢, = (10,2), and the
various values of ks, (b) ks = 1, €, = (10, 2), and the various values of &,
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The backscattering coefficients for various rough surfaces computed using the
zeroth-order PO model are illustrated in Figs. 2.5 and 2.6. Since the polarization
response depends only on the Fresnel reflection coefficients, o7, is higher than o3, as
shown in Figs. 2.5(a) and (b) in contrary to the polarization response in the SPM.
The ration o}, /02, has a peak at the corresponding brewster angle as shown in Figs.
2.5(a) and (b). Figures 2.6 show that the backscattering coefficients using PO model
are very sensitive to the variation of ks and less sensitive to the variations of k! and
¢,. When ks increases (and/or kI decreases) o}, decreases at lower incidence angles
and o}, increases at higher incidence angles as shown in Figs. 2.6(a) and (b). The
dependence of ¢° versus 6 on ks using PO model is quite different with that using
the SPM which shows a constant increase in ¢° versus § for increasing ks as shown in
Fig. 2.3(a). The dependence of ¢° on ¢, using PO model is similar to that obtained

using the SPM, i.e., increasing €, produces an approximately constant increase in o°.

2.3.2 Geometrical Optics Model

The asymptotic solution to the Kirchhoff-diffraction integral (2.54) can be derived
using the stationary-phase approximation in the geometric limit as ¥ — oo. Under
this approximation, the scattering coefficient will be proportional to the probability
of the occurrence of the slopes which will specularly reflect the incident wave to the
observation direction. Hence, local diffraction effects are excluded in this approxima-
tion.

The phase 1 is said to be stationary at a point if its rate of change is zero at the

point where
= kokg ¥/ = kgpt' + kayy' + kar2(z',y'), (2.82)

with kg; = 2kosin@, kqy = 0, and kg, = —2kg cos 0 for the backscattering direction.
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The slopes Z, and Z, can be found for the backscattering direction as

2% = 0= kao + kaz Zoo => Zoo = 3= = tan ),

% — ) = kyy + kas Zyo = Zyo = 0.

oy

Using these slopes which are not functions of the random position vectors any more,

the mean intensity of (2.61) can be reduced in the form of
(EsEgz) = Dol | fra(Ze0, 0)|* - (1T7) (2.83)
where
2L ik k.)2s2
(I17) = / / (2L — Jul)(2L — [o])e™is® ¢~ (has s 1=pw] gy (2.84)
-2L

From (2.56)-(2.58) we can find the scattering amplitudes for the backscattering di-

rection as follows;

fnn(Zz0,0) = Z5Ri(0)

Jor(Z20,0) = 25 R, (0) (2.85)

fvh(ZxO,O) = fhv(Z:cO;O) = Oa

where R,(0) is the Fresnel reflection coefficient evaluated at normal incidence for
a-polarization. When we assume k2 s? is large (>> 1) so that the contribution to
the integral in (2.84) is significant only for small values of u and v, the normalized
correlation function p(€) can be approximated by the first two terms of its Taylor

series expansion about the origin,

Changing the variables as { = /u? 4+ v? and integration limit as 2L — oo, (%)

reduces to

0o r2m : 2 2["(0)] .2
(II) = A / / ekutiny o~(kals 0 ge gy
0 0

27TA _ tan? ¢
= 2’2|P“(0)l 2’
(2k cos )2s2 [/)”(O)le (2.86)
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where A = (2L)%. Substituting (2.85) and (2.86) into (2.83), the backscattered mean

intensity is computed as

B2 27 A -
sy K : SOl (2.87
<|Eaa| > (47!'7')2 (COSQ) |Ra(0)| (2k cos 9)232 lp/;(o)le ( )

From (2.79) the backscattering coefficients for the geometrical optics (GO) model is

0aq(0) = Mexp [—M} , (2.88)

~ 2m2cos*f 2m?
where the rms slope m is s4/|p"(0)|, aa is vv or hh, and 0%, = o}, = 0.

In addition to the validity conditions of (2.62) for the tangent plane approximation,

an additional condition is required for the GO model [Ulaby et al., 1982] as

2.5
cosf

k3 s*>10 or ks> (2.89)

When the angle of incidence is large, some points on the rough surface may not
be illuminated directly and shadowed by other parts of the surface interrupting the
incident wave. Since the PO and the GO models do not include the effect of shadow-
ing, the scattering coefficients for these models should be modified for the shadowing
effect. The shadowing function which is the probability that a point on a rough sur-
face will not be illuminated by an incident wave, is given by [Smith, 1967 and Sancer,

1969),

(2.90)

with

2 m cot? g cot 9
2 9 = — - 2m2 —
f(6,m) V 7ot erfc(\/§m>

where er fc is the complementary error function, m is the rms slope, and the corrected

backscattering coefficients ¢ = ¢° - R(6).
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Figure 2.8: The validity regions of the classical models which are the SPM, the PO
model and GO model.

Figure 2.7(a) shows the backscattering coefficient using GO model as a function
of § for the various values of the rms slope m. The curve of o° versus 6 drops more
slowly as the surface slope m increases, where the backscattering coefficient o° does
not depend on polarization, i.e., o,=02,. Similar to the SPM and PO model, the
GO model predicts a constant increase of o° versus  for increasing €, as shown in
Fig. 2.7(b).

The validity conditions of the SPM, PO, and GO models for backscatter given in
(2.39), (2.62), (2.81), and (2.89) are illustrated in Fig. 2.8 where (2.89) is applied for

the case of § < 50°.



CHAPTER III

NUMERICAL SOLUTION FOR SCATTERING
FROM ONE-DIMENSIONAL CONDUCTING
RANDOM SURFACES

3.1 Introduction

Since the method of moments [Harrington, 1968] was applied to the estimation
of the scattering coeflicient of conducting random surfaces [Lentz, 1974], many other
numerical methods with some modifications have been introduced to solve the scat-
tering problem of random surfaces [Axline and Fung, 1978; Fung and Chen, 1985;
Nieto-vesperinas and Soto-crespo, 1987; Durden and Vesecky, 1990; and Rodriguez et
al., 1992]. The incident field in all of these methods was a tapered wave to eliminate
the edge-effect contribution due to the finite length of the sample surface. However,
at large incidence angles (6 > 60°), the width of the sample surface must be very
large to eliminate the edge-effect, which results in excessive computation time. Oth-
erwise, the window should be very narrow to eliminate the edge contribution at a
large incidence angle, which results in an incorrect output by excessive smoothing.

In this chapter, a new technique, adding a resistive card at each end of an illumi-
nated surface, is introduced to eliminate the edge contribution even at large incidence

angles. To illustrate this technique, one-dimensional random surfaces are generated

38
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in Section 3.2. Integral equations are formulated for one-dimensional conducting ran-
dom surfaces and solved by the method of moments for vv- and hh-polarizations in
Section 3.3, and numerical results are analyzed in Section 3.4. Using this numeri-
cal technique, the existing models are evaluated for scattering from one-dimensional

conducting random surfaces in Section 3.5.
3.2 Random Surface Generation

A sequence of independent Gaussian deviates with zero mean and unit variance
(N[0,1]) can be obtained from a standard routine [Press et al., 1986]. Then these
independent Gaussian deviates can be correlated to a specific correlation function
using the concept of digital filtering [Fung and Chen, 1985]. At first, the desired
surface height profile {Z(k)} can be written as the summation of the product of the
independent Gaussian deviates {X(j + k)} and a discrete weighting factor {W(j)}
which is to be determined,

M
Z(k)= Y W()Z(j +k), (3.1)
i=—M
where Z(k) is the kth point of a discrete height profile and M is the total number of
sample points of the weighting factor W(7).

The correlation coefficient function C(z) of the desired surface profile is given by
the definition as follows;

C(i)=E[Z(k) Z(k+1)] = ZZ WGEW(m)E[X(+ k) X(m+k+17)].  (3.2)

T m

Since the Gaussian deviates are mutually independent, i.e.,

EX(G+k) X(m+k+i)] = b iFmEs (3.3)

I, j=m+y,
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the correlation function can be simplified as the self convolution of the weighting

factor,

Cl) =S WEHW(G —i) =W+ W. (3.4)

i
Using the Fourier transform theorem, the unknown weighting factors can be found

analytically,

w(j) = {/Flplil} (3.5)

When we choose the Gaussian correlation function of the form

C(i) = 8 exp [- (%)2] , (3.6)

its spectrum is given by

#lli] = iLesp |- | (3.7

The corresponding weight factor can be obtained as

W(y) = s\/i_Lexp [—2 (%)2} , (3.8)
where s is the standard deviation of the height distribution (rms height), L is the
discrete number given as I/ Az, [ is the correlation length of a random surface, and Az
is the sampling interval. Then, the surface height profile can be computed by (3.1)
and (3.8) for given surface statistics such as the rms height, the correlation function.
The proper value for the width of an independent surface D and the sampling interval
Az is a function of the surface correlation length and frequency of the incident wave.

In order to get meaningful statistics of the backscattering coefficient, the number
of sample surface, N, should be large enough. For example, N > 60 to suppress the

speckle noise in the estimated backscattering coefficient to within £1 dB from the
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mean value for the 5% and 95% cumulative distribution levels [Ulaby and Dobson,
1989].

Considering finite computer storage and practical restrictions on computer exe-
cution time, each surface must have finite length, D. While the upper limit of the
surface width is decided by the size of computer storage, the lower limit may be con-
sidered as D > 10X and D > 10/ where ) is the wavelength and [ is the correlation
length.

The sample interval, Az, is chosen as Az < A/12, which is comparable with
others [Fung and Chen, 1985; Rodriquez et al., 1992]. The backscattering coefficient
is approximately proportional to the surface roughness spectrum, W (2k sin #), where

the roughness spectrum for a Gaussian correlation function is given as:
W (2ksin 6) = ﬁsQIe_(k’Sine)z. (3.9)

If we choose the width of the spectrum as twice of the frequency where W (2k sin 6)
has dropped to e=! W(0), the spatial frequency k, = 2 - 2ksin6 = 4/l. Applying the
sampling theorem, Az < 571(; = [/8. Therefore, the sampling interval Az is chosen
to satisfy both conditions of Az < A\/12 and Az < 1/8.

Three different surfaces with given roughness parameters (Table 3.1) are generated
according to above criteria with M = 45000 and the total length of N x D. Figures
3.1 (a)-(c) show typical sections of the surface height profiles of S-1, S-2, and S-3,

respectively. The height distribution of the generated surfaces are compared with

Gaussian probability density functions

fx(z) = ! exp [—;?] (3.10)

2Ts

as shown in Fig. 3.2. The autocorrelation functions of the computer generated
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Figure 3.1: Typical sections of height profiles for (a) S-1, (b) S-2, and (c) S-3 surfaces.
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Table 3.1: Roughness parameters used for the random surface generation

Surf. | ks kI | A s 1 Ax D | N | Appl

Name meters Model

S-1 0.21 22024 0.0079 0.082 0.01 2.4 |60 | SPM
S-2 0.62 4.6024 0.0237 0.175 0.02 4.8 |60

S-3 1.04 7.4 1024 0.0396 0.281 0.02 4.8 60| PO

T

50. I =
—o0—  $-1(5=0.0079)

L J
—a—  $-2(s=0.0237)

40. |- 7
—&—  5-3 (s=0.0396)

30. -

Probability Density Function (1/m)

20. .
10. . -
J
0.
20.10 0.05 0.00 0.05 0.10
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surfaces agree well with Gaussian functions of (3.6) as shown in Fig. 3.3. Figure
3.4 shows the slope distributions of the generated surfaces compared with a Gaussian

density function given as

far(m) = ——— exp [——"i] (3.11)

27 Sm 252
where m is the slope (tan ) and s,, is the standard deviation of slope distribution (rms

slope) which can be obtained as s,, = s2p/(0) (=v/2s/l for Gaussian correlation).

3.3 Solution by the Method of Moments

The backscattering coefficient of a computer-generated one-dimensional conduct-
ing surface can be obtained by N repeated computation of the electric field scattered

from each independent segment of a random surface as:

1

P2

o 2mp
g (G)PP = phjglo _5' {

Z En PP

nppl N2

} , pp=wvorhh, (3.12)

where D is the width of each segment of the random surface, vv and hh denote that
both the incident and scattered waves are V- and H-polarized, respectively. The
scattered field can be represented by the convolution of the surface current density

J. and the Green’s function as follows:

kZ
5) = -2 O/J Y(kolp — 7)), (3.13)

where ko and Z, are the wave number and the intrinsic impedance of free space,

respectively. H((,l)

is the zeroth order Hankel function of the first kind, and » and 7’
are the position vectors of observation and source points, respectively. The surface
current density J.(7') due to the incident plane wave in (3.13) is to be determined

numerically by the method of moment (MoM) [Harrington, 1968].

hh-Polarization
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Figure 3.5: Geometry of the scatter problem.

The electric field integral equation (EFIE) for one-dimensional conducting surface

can be written as

E'(p) kOZO /J HY (kolp = 7'|)dl', 7 on interface (3.14)
where the incident wave E*(p) is given by
E'(p) = jexplikoki - 7] = §E;(p), (3.15)

and an orthonormal coordinate system of ( iL,-, i, k,) is defined by k; = sin 0,2 —cos b;z,
h; =9, and 0; = cos 0;2 + sin 0;3 as shown in Fig. 3.5.

The simplest MoM solution of (3.14) consists of using the pulse basis and point
matching. After discretizing a sample surface into M (= D/Az) cells, the pulse basis

function can be applied as:

M
7)= 3 L) (3.16)
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where

. 1, on Az,
7.(7) = (3.17)
0, on all other Az,,.

Then, (3.14) can be rearranged using dl' \/1 + (dz(z')/dz")*dz,

ko Zo

}:I

Azp

H (koy/(z = wa)? + (2 — 20)2)4| 1 + (:Z)zdx}

= exp[iko(sin 0;z — cos 0;2)]  (3.18)

Since (3.18) can be matched every point on the surface (z, z) = (z1,21), ", (Tm, Zm),

-, (zm,2m), (3.18) can be casted into a matrix equation,
[Zmn] [In] = [vm]w (319)

where each element of the impedance matrix [Z,,,] is given by

dz, \’
H(gl)(ko\ﬂ:vm —2,)% 4 (2m — 20) 4|1 + (d:; ) dzn,,  (3.20)

koZg
Zmn =
4 Az,

the elements of the excitation vector [V,,] are given by
U = exp[iko(sin 0;z,, — cos §;2,,)], (3.21)

and [Z,] is the surface current vector which is to be determined.
Since Hél)(kop) has an integrable singularity for diagonal elements (m = n) of
the Z-matrix, small argument expansion of the Hankel function [Harrington, 1961] is

used to obtain z,,,
2

2 [~z ?\  z?
H @) ~(1- =) + - 1- =) += 1781, (3.
o (z) = (1 4)+7r ln2 n +4 , =178 (3.22)

Equation (3.20) can be evaluated analytically using (3.22) for the diagonal element

as,

koZy Ad 12 (koy Ad\  KHAd)? (1-2 4 (kyy Ad
Zun N [1 +- ln( » ) -~ 5 S In Ve (3.23)
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-. The non-diagonal elements, zynq,

where Ad = Axn\/l + (dzn/d:cn)2 and e = 2.718-

can be obtained by evaluating the integral numerically, e.g., using the four-points

Gaussian-Quadrature integration technique
Once the surface current vector [Z,] is found, the hh-polarized scattered field, £},

in the far-field can be computed using the far-field approximation of H (kop)
milke 7 (3.24)

(kolp 7'|) for large argument — Thor

into (3.13), which results in

1+ (dz">2 (3.25)

M T -—
kOZO ei(kop—"/‘i) Z 'Iy(mna zn)e—ikOk’.p"Axn d
In

E;(65) = —
hh( ) ’87rk0p ot
where k, = sin 0% + cos bz, izs =7, and U, = — cos §,Z + sin 0,2

vv-Polarization
For the solution of VV-polarization case, the magnetic field integral equation

(HFIE) can be used to compute the surface current as follows

_i x Hi(p) = ——J +3 /n x {1.(7) x VH (kolp - 7])} dl',  (3.26)

where 7' is on interface, and the incident magnetic field is given as

H(p) = e’ 7 = jH,.

Since
V' H (kol7 ~ 7)) =

koH{(kolp — 71) R,
i x Jo(7) x R=13.(7) (7 R),

= _ 7 dz 2,

- - . —5T+ Z
R ==

- dz
L+ ()
A 1 dza

z+ i tko (sin 8; z—cos ; z)
)
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(3.26) can be rearranged as,

lk — N ~ —_ —
0 [Ies@) (- B) H ol ~ 7

(4 x H(p) = =5 JealF) +

dz'\? )
a1+ (8?) dr’, p = z, Y- (3.27)

When the pulse basis and point matching technique is used, (3.27) can be casted

into matrix equations as,
[Zmal Il =D7), P =2, 2 (3.28)

The element of the impedance matrix [Z,,,] is computed by

6rn'n Z_{CB

2z =
e 2 4 Azy

(- B) B (koyf o — 2 4 (o — )

o ¥ (3.29)
i, T, .

where 6,,, is the Kronecker delta function. The excitation vector elements are given
as

1
<t

tko(sin6;zm—cosbizm) z __ dZm T
€ y 'Um = _d 'Um o)
Tm

38

and [Z?] and [Z7] are the current vectors to be determined where ¥ = (dz,, /dz,,)iZ.
Once the surface currents are found similarly as described in the HH-polarization

case, the scattered field can be computed as

M
koo ifkop-r/4) 5
\ 87 kop n=1

dz,

[— cos B, + sin b, dan I(zn, 2n)

E:U(H-?) = -

e dz, \*
e koks P Ag 11+ (dmn) , (3.30)

Suppression of Edge Contribution
In order to demonstrate the edge effect, the surface current J.(p) is computed

for a flat conducting surface of the width of 12 A at 0° incidence. While the surface



50

current induced by v-polarized incidence wave does not show any edge effect and
agrees with the PO (physical optics) current J,, = 24 x H', the surface current
induced by h-polarized incidence wave shows the peak currents at the edges of the
surface as shown in Fig. 3.6 (a). Corresponding backscattered radar cross section
(RCS) of the conducting strip is computed for both hh- and vv-polarizations as shown
in Fig. 3.6 (b). For the simulation of the random surface scattering, the surface is
assumed to have infinite width and to give no backscatter at 90° incidence.

To suppress the edge contribution to the backscatter of the finite conducting
surface, each end of the surface is extended with a resistive sheet in the hh-polarization

case. Using the transition conditions on the resistive sheet given by [Senior et al.,

1987]
[AxE]f=0, #x(ixE)=—RJ, (3.31)

where R is the resistivity of the resistive sheet, eq. (3.14) can be revised for a resistive

sheet as
Ei(— =R — kOZO J (1) — ' — . )
p) = R(p)J. - 7'|)dl', 7 on interface. (3.32)

Consequently, the element of impedance matrix in (3.20) is revised as

Zmn = R(Tn, zn)émn + kOZO

| HP (ol = )+ (2 = 20)?)

o 2d 3.33
. . (3.33)

The resistivity profile, R(z), is chosen similarly as the profile used in [Leo et al.,

1993] as

0, |z| < D/2+d
R(z) = ) (3.34)
0.0052, (227=)", Dj2—d > |2| < DJ2
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where D is the total width of the surface and d is the width of the resistive card. The
resistivity and the surface currents induced by h- and v-polarized incidence waves
are shown in Fig. 3.7 (a) in case of D = 12A and d = 1). Since the current distri-
bution near resistive cards shows ripples, the backscatter RCS is computed ignoring
the surface current at each end (1)) of the surface. In this case, the hh-polarized
backscatter RCS also decreases as the incidence angle increases, following the vv-

polarized backscatter RCS as shown in Fig. 3.7 (b).

3.4 Numerical Results

The backscattering coeflicient of a random surface with given roughness parame-
ters can be computed by a Monte Carlo method as described above, i.e., the scattered
fields from N randomly generated segments of the surface are computed numerically,
and the backscattering coefficient of the random surface is obtained from the statis-
tics of the scattered fields. Each segment of the surface has the width of D with an
extended region of Dg and a resistive sheet of the length D at each end as shown
in Fig. 3.8. Both Dg and Dp are chosen to be 1A considering the trade-oft between
computation time and edge effect reduction. The resistivity of the resistive cards is
given in (3.34) and shown in Fig. 3.8. Even though currents on the whole regions are
computed by the method of moments, the currents only on the region of consideration
are used to compute the scattered field, ignoring those on the extended regions and
the resistive regions.

In order to test the numerical technique described above, the backscattering co-
efficients of the surface S-1 and S-3 in Table 3.1 were computed and compared with
the small perturbation method (SPM) solution and the physical optics (PO) solution,

respectively. The roughness parameters of the surface S-1 given in Table 3.1 satisfy
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the validity condition of the SPM which is ks < 0.3, kI < 3.0, and \/2_3/1 < 0.3 for a
Gaussian correlation. The backscattering coefficients by the numerical simulation for
vv- and hh-polarizations show an excellent agreement with the solution of the SPM
as shown in Fig. 3.9, where the SPM model for a one-dimensional conducting random
surface is given in Appendix A. The roughness of the surface S-3 in Table 3.1 is valid
for the PO model (ks < 6, v/2s/1 < 0.25 [Ulaby et al., 1986]). The numerical solution
for S-3 shows an excellent agreement with the PO solution at § < 85° as shown in Fig.
3.10, where the PO model is formulated and evaluated exactly for a one-dimensional
conducting surface as given in Chapter 2. Since the numerical solutions agree very
well with the theoretical models at two extreme roughness conditions, we can apply
this numerical technique with confidence to the intermediate roughness conditions
which cannot be solved by existing classical theoretical models. The backscattering
coefficient for one of such surfaces, S-2 in Table 3.1, is computed and shown in Fig.
3.11.

It is well known that the phase-difference statistics has valuable information in
addition to the magnitude as shown in Chapter 5. This numerical technique is used to
compute the co-polarized phase-difference statistics of a random surface S-2 (ks = 0.6,
kl = 4.5). The co-polarized phase-difference angle ¢. = ¢p, — @, for a smaller
incidence angle (20°) shows narrower and higher shape of distribution curve than
that for a larger incidence angle (50°) as shown in Figs. 3.12 (a) and (b). The
standard deviation of the ¢, distribution increases as the incidence angle increases
while the mean of the distribution stays at zero as shown in Figs. 3.13 (a) and (b).
The degree of correlation a and the coherent phase-difference ( are parameters of the
phase-difference statistics defined in [Sarabandi, 1993]. As described in Chapter 5,

the degree of correlation a and the coherent phase-difference ( are the measures of
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the width (standard deviation) and the mean of ¢. distribution, respectively. The
degree of correlation a and the coherent phase-difference ( computed by the numerical
simulation for the surface S-2 are shown in Figs. 3.14 (a) and (b), respectively. The
degree of correlation a depends on the roughness of random surfaces as shown in
Figs. 3.15 (a) and (b). Figures 3.15 (a) and (b) show the kl and ks dependencies
of the degree of correlation for fixed ks and kl, respectively. Based on the numerical
results, the degree of correlation « seems to be a strong function of the rms slope for

one-dimensional conducting random surfaces.

3.5 Evaluation of Theoretical Scattering Models

At first, the formulations of the theoretical models are summarized for scattering
from a one-dimensional conducting random surface having a Gaussian correlation.
The small perturbation method (SPM), the physical optics (PO) model, and the
geometrical optics (GO) model have been presented in the previous chapter for two-
dimensional dielectric surfaces, and those will be modified for one-dimensional con-
ducting surfaces in this chapter. Many other scattering models have been presented
recently, including phase perturbation method (PPM) [Winebernner and Ishimaru,
1985a], full-wave method (FWM) [Bahar, 1981], and integral equation method (IEM)
[Fung and Pan, 1987]. Those models are also evaluated in this section. Since a
one-dimensional random surface does not produce depolarization, the cross-polarized

backscattering coefficients are zero, o}, = 02, = 0.

3.5.1 Small Perturbation Method

The like-polarization backscattering coefficients by the first-order small pertur-

bation model (SPM) have the form given in (2.31) for two-dimensional surfaces.
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The backscattering coefficients o7, for the SPM are proportional to the roughness
spectrum which is the Fourier transform of the surface correlation function and also
proportional to the magnitude square of the far-field Green’s function given in (3.24)
and (2.44) for one- and two-dimensional surfaces, respectively. Since the one- and
two-dimensional surfaces correspond to the two- and three-dimensional scattering

problems, respectively;

opy X 27p - g?rlk—p - W14(2k sin §) (3.35)

1
09, o 4rr?. ) Wa4(2ksin 6,0).

Comparing Wy4(2k sin 0) given in (3.9) and Woy(2k sin 6, 0) given in (2.34) for a Gaus-
sian correlation function,

oy _ T Wi4(2k sin 6) [[

0%y k Waa(2ksind,0) ~ ki

(3.36)

Therefore, the backscattering coefficient for the one-dimensional conducting surface

can be given from (3.36) and (2.31) for a Gaussian correlation;

0° = 4/7 (ks)? kl cos*6 |a2 |1 ¢~(Hsnd)? (3.37)

c
aPP

where a7, is modified for a conducting surface as,

ap,(0) = -1
1 +sin6
)= ————. .
a5, () = —— (3.39)

3.5.2 Physical Optics Model

The incoherent like-polarized backscattering coefficient of the physical optics (PO)

model for a one-dimensional random surface can be obtained by modifying the model
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for a two-dimensional surface given in (2.80). Similarly to (3.36), the ratio between

oy; and o3, for the PO model is

05 _ T L. Wip(2ksino)

o5k ¥, WS (2ksin6,0)’

(3.39)

where Wz(;)(Qk sin#,0) is the Fourier transform of the nth powered normalized corre-
lation function for a two-dimensional surface and given as I in (2.77). WI(Z )(Qk sin §)

is the Fourier transform of p*(¢) for a one-dimensional surface,
sin 9)2
W (2ksin 0) = \ﬁl e (3.40)
n

Therefore, the backscattering coefficients for a one-dimensional conducting surface

with the Oth-order approximation can be obtained as

o 2k 0 n sin 6)2
O (0) = O34y (6) = V/TkL cos? g ~Bhoed - (—,f)— e, (3.41)

n=1
when a Gaussian correlation function is assumed. The first-order approximated

backscattering coefficient for the PO model is given by (2.73)

o

0o () = Zmal”) (3.42)

PPoth cos? f :
3.5.3 Phase Perturbation Method

Using a perturbation expansion of the surface field phase from rough surfaces,
the phase perturbation method (PPM) was developed in the case of scalar wave
scattering from surfaces for which Dirichlet boundary conditions hold [Winebernner
and Ishimaru, 1985a and 1985b]. The backscattering coefficient for a one-dimensional

surface is expressed as [Broschat et al, 1987],

0° = kcos® 6 exp[—2Re[Ny] /_: exp[i2k z sin 0](exp[Nii(z)] — 1) dz  (3.43)
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with

o U+ ksind
N, = 2k? cos 6 / W(U)8 (%) du,

Nu(z) = k* /Oo W(U)exp[iUz]

—00

) 2
U+l;csm0)’ dU,

cos0+ﬂ<

U U 2
V=y1=-(=
(@)= (5)
where W(U) is a roughness spectrum for one-dimensional random surfaces given in

[Broschat et al, 1987] as

W)= %exp [—

The PPM does not include polarization dependence, and above formulation is

U*?
o)

equivalent to electromagnetic wave scattering from perfect conducting rough surfaces
for hh-polarization. Calculations of the backscattering coefficient using (3.43) involve
a double integral having infinite limits of integration, where the integrand fluctuates
by being non-oscillatory and highly oscillatory [Broschat et al, 1987).

It has been claimed that the PPM reduces to the two classical models, namely
the SPM and the PO in the appropriate limits and smoothly interpolates between

the SPM and the PO [Ivanova et al, 1990; Broschat, 1987].

3.5.4 Full Wave Method

The “full-wave” method (FWM) was developed for random surface scattering by
Bahar [Bahar, 1981; Bahar, 1991a; and Bahar,1991b]. Even though the FWM is
formally exact, approximations are necessary to obtain results for rough surface scat-

tering since the general form includes ten-fold numerical integrals for two dimensional
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surfaces. The scattering coefficient for a one-dimensional perfect conducting Gaussian

surface is given as [Bahar, 1991b],

o 2 2L T 2
op, = 2kGY /(; [1 - ﬁ] {Xg(l/y, =) [1 +GP (m?A - V;B2)]

—2x(vy) [l + Gf2m2A] +1+ Gf2m2A} cos(vyz)dz

2L
—2kG(};2Gf/ {1 - —2%] [x2(vy, —vy) — x(vy)] 2vy Bsin(v,z)dz (3.44)
0
with
xa(vy, —vy) = exp [—v2s*(1 = p)| (3.45)
122
x(vy) =eXP[ ?S ] (3.46)
&p s?
Aw) =~ gt
B(z) = —3—232
i) ()
GP(p) & (2P 7})A ~ GP 1+ h,GP],
W)~ 4 4
where s is the rms height, m is the rms slope, v, = —2ksiné, v, = 2kcosf, and

GH = cos, G = tan @ for the horizontally polarized backscatter.

Bahar has shown analytically that the FWM can reduce to both of the SPM
and the PO when appropriate conditions are imposed [Bahar, 1991a; Bahar,1991b].
Thoros and Winebernner, however, claimed that the FWM does not reduce to the

SPM in their examinations [Thoros and Winebernner, 1991].

3.5.5 Integral Equation Method

The integral equation method (IEM) was developed based on an approximate so-

lution of a pair of integral equations for the tangential surface fields [Fung et al., 1992].
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Backscattering coeflicients for a rough dielectric surface are given in a quite lengthy
form for each case of ks < 3 and ks > 3 in [Fung et al., 1992]. The backscattering
coefficients for a perfectly conducting rough surface are given in [Fung and Pan, 1987]
for a two-dimensional random surface. For a one-dimensional surface, ¢2, and o3,

can be modified as

4k Wl(d (2k sin 9)

o __ ——2k2 52 cos? § 2n
Toe =g € nz:l i (ks cos 9) (3.47)

: {22”"2 exp(—2k*s® cos? ) + 2" sin®  exp(—k%s? cos? 0) + sin* 9} :

If a Gaussian correlation function is assumed, W, d) (2ksin 0) can be replaced by (3.40)

as

o \/_kl _2k282c0520z (ks cos 6)? (ks cos )™ _ (btsino)? (3.48)
n=1 Tl'\/_

b cos?f
[ exp(—k*s? cos? ) + 2sin* 0]

It was claimed that the IEM reduces to the SPM and the PO for the low-frequency
limit and the high-frequency limit, respectively [Fung and Pan, 1987 and Fung et al.,

1992).

3.5.6 Numerical Results

The validity regions of the scattering models and three roughness conditions given
in Table 3.1 are illustrated in Fig. 3.16. The validity regions of the phase perturbation
method (PPM), the full-wave method (FWM), and the integral equation method
(IEM) need to be examined in detail; however, each of these models is assumed
to meet the validity conditions of the small perturbation method (SPM) and the
physical optics approximation (PQ), as well as the intermediate roughnesses between
the validity regions of the SPM and the PO model [Bahar, 1991; Broschat et al., 1987;
and Fung and Pan, 1987].
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Figure 3.16: The validity regions of the scattering models.

The backscattering coeflicients of vv- and hh-polarizations for a perfectly con-
ducting rough surface are computed by the SPM, the PO, and the IEM at three
roughness conditions as indicated (o) in Figure 3.16 and those values are compared
with the solution from the method of moments as shown in Figs. 3.17(a)-(c). Since
the PPM provides only the hh-polarized solution [Winebernner and Ishimaru, 1985)
and the only hh-polarized scattering amplitude of the FWM is given explicitly in
Bahar [1991], the hh-polarized backscattering coefficient for a perfectly conducting
rough surface is computed by the PPM and the FWM and compared with those of

the SPM, the PO, and the IEM as in Figs. 3.18(a)-(c).

3.6 Conclusions

A Monte Carlo method in conjunction with the method of moments (MoM) is

applied to obtain an exact solution of scattering from a one-dimensional conducting
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random surface. A new approach is introduced in this method to eliminate the edge
effect which results from the numerical simulation of scattering from a random surface
of finite width. By adding a resistive sheet at each end of an illuminated random
surface, the edge effect can be eliminated even at large incidence angles less than 85°.
The numerical solution with this technique agrees very well with existing theoretical
models, SPM and PO, at their validity regions. In addition to the magnitude, the
phase-difference statistics was computed by this technique, and it is shown that the
degree of correlation a shows strong dependency not only on the incidence angle
but also on the roughness of the surface. This numerical technique has been used
to evaluate existing models of SPM, PO, PPM, FWM, and IEM for scattering from

one-dimensional conducting random surfaces.



Backscattering Coeff. (dB)

69

ks=0.21 \

kl=2.15
o MoM, VV-pol. \-

[ | MoM, HH-pol. SN\

........... SPM, HH-pol.

B R PO, 1st-order

----- IEM, VV-pol.

—--—--= [EM, HH-pol.
1 l 1 I 1 l 1 l 1 l 1 l

SPM, VV-pol. \\\

0. 10. 20. 30. 40. 50. 60.

Incidence Angle (Degrees)



Backscattering Coeff. (dB)

10.

-10.

70

Incidence Angle (Degrees)

T | T | r I ! 1 ! | ! I ! I
e h
\ \‘\\‘
e 1
\ LN
\\ SN (]
Kl=4.6 i
MoM, VV-pol. “\ [ J
I MoM, HH-pol. ) |
‘BN [ )
| SPM, VV-pol. N —
N °
----------- SPM, HH-pol. S °
------- PO, Oth-order N N |
\ \‘ \
|- - - PO, 1st-order \\ N Ky m
\ \ e
_____ IEM, VV-pol. \ RN
L \ A
————- - IEM, HH-pol \\ “ \\
1 1 1 | 1 | 1 | M | J\‘ s
0. 10. 20. 30. 40. 50. 60. 70. 80.



71

T

lks:lF04
kl=7.4

] MoM, VV-pol. -
| MoM, HH-pol.
SPM, VV-pol.

----------- SPM, HH-pol.
------- PO, Oth-order
....... PO, 1st-order —
_____ IEM, VV-pol.
—_——- - IEM, HH-pol.

Backscattering Coeff. (dB)

Incidence Angle (Degrees)

Figure 3.17: Comparison of models with an exact numerical solution for (a) ks =0.21
and kl = 2.2, (b) ks = 0.62 and kI = 4.6, and (c) ks = 1.04 and kI = 7.4
for both of vv- and hh-polarizations.
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Figure 3.18: Comparison of models with an exact numerical solution for (a) ks = 0.21
and kl = 2.2, (b) ks = 0.62 and ki = 4.6, and (c) ks = 1.04 and kl = 7.4
for hh-polarization.



CHAPTER IV

AN IMPROVEMENT OF PHYSICAL OPTICS
MODEL

4.1 Introduction

In Chapter 2 the Kirchhoff approximation in the computation of the radar backscat-
tering coefficient was introduced briefly. The scattered fields from a randomly rough
surface can be formulated exactly in terms of surface currents (or equivalent tangential
surface fields). Since it is very difficult if not impossible to compute the exact form of
tangential fields on the random surface, we have used the tangent plane approxima-
tion (or the Kirchhoff approximation) i.e., the surface fields at any point of the surface
are represented by the fields computed by approximating the boundary interface as
a tangent plane at that point. Then, the backscattered mean intensity, from which
the backscattering coefficients can be computed, can be formulated in terms of the
ensemble average of the conjugate-multiplied scattering amplitudes. The scattering
amplitude is a function of the local surface slopes and the local reflection coefficients
where the local reflection coefficients are also the function of the local surface slopes.
In order to avoid the complexity of the analytical computation of the ensemble average
term, the scattering amplitude has been expanded in a series as a function of surface

slope, and only the first few terms have been kept to produce the physical optics (PO)

75
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model. When only the first term is kept and all other slope terms are ignored, the
zeroth-order approximated PO model is obtained as shown in the last chapter. On
the other hand, when one more additional term (first-order slope term) is kept, and
the edge effect term [Beckmann and Spizzichino, 1963; Beckmann, 1968] produced
by the integration by parts is ignored, the first-order approximated PO model is ob-
tained. For both of these PO models, the integration limits for the tangent plane
have been approximated by infinity to obtained closed form of the models. Instead
of using the series expansion of the scattering amplitudes, the stationary-phase ap-
proximation can be used in the geometric limit, ignoring the local diffraction effect.
This approximation with an assumption of large value of kscos@ (where k = 27 /),
s is rms height) leads to the geometrical optics (GO) model. The mean intensity has
been formulated exactly, without any further approximation, using a spectral rep-
resentation of the delta function and assuming a Gaussian height distribution, and
evaluated approximately in case of a very rough surface [Stogryn, 1967; Holzer and
Sung, 1978].

The goal of this chapter is to evaluate exactly the backscattered mean intensity
without using any further approximation except the tangent plane approximation so
that the exact Kirchhoff solution can be used to examine the zeroth- and first-order
approximated PO models. In other words, the slope term effect and the edge term ef-
fect (Ch. 2) can be examined using the exact Kirchhoff solution. The exact Kirchhoff
solution may also be used to examine other theoretical models and numerical solu-
tions. In this chapter, the backscattered mean intensity is formulated exactly for a
two-dimensional dielectric random surface and evaluated exactly for one-dimensional
dielectric and conducting surfaces. The exact Kirchhoff solution is compared with a

method of moments solution for scattering from a one-dimensional conducting surface,
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Figure 4.1: Illustration of the development of an exact Kirchhoff solution.
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as well as with the zeroth- and first-order approximated PO models. The Kirchhoff
approach previously studied is illustrated by solid boxes and lines, and the work to

be studied in this chapter is indicated in dotted box and lines in Fig. 4.1.

4.2 Formulation for a Two-dimensional Dielectric Surface

The backscattered mean intensity for the Kirchhoff approximation has been given

in (2.61) and will be presented here again for convenience;

L L )
(EgaEg;> = |D0|2//Ld$1dyl/[L dxzdyz e'kdz(zl—IZ)

A Foa(Zoy, Zy) Fro(Zoy, Ziy) €24 (4.1)

with fy.(Zz, Z,) given in (2.56-2.58) where

0z(z1,41) 0z(x3,y2) 0z(z1,11) 0z(z3,y2)
r — ) T, — 9 1 T I Z - ]
= oz Zay oz Z dy v dy
2g = 21 — 22, 21 = 2(21,1), 22 = 2(22,Y2), kax = 2kosinb, kg, = —2ko cosf, and

|Do)* = k2/(47r)%. Since the integral of the ensemble average term in (4.1) is very
difficult to evaluate, additional approximations were used to get the PO and GO
models as summarized in Ch. 2. The ensemble average term of the integrand in
(4.1), however, can be evaluated exactly by using the spectral representation of the
delta function and the sifting property of the delta function integration. Since the

delta function can be represented by

§(z,y) = (2;2 / /_Z €97 ¢V Jadf, (4.2)

the scattering amplitude can be written in terms of the dummy variables o and 3 as

fba(ZZa Zy,) = //_Z fba(ﬂxvﬂy)‘s (:Bx - Zraﬁy - Zy) dﬂrdﬂy
(271r)2 [ fulppi) { /I e‘“=<ﬁ=-zr>+f“v(ﬁu-Zv)dazday} dB,dB,. (4.3)
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In the above equation, fy,(Z;, Z,) is replaced by fue(8z, B,) which is not a function of
random variables anymore. Applying above relations to (4.1), the ensemble average
term can be represented by

<fba(le s T ) fri(Znys 2y )ei2ki12d>

_ (;)4 [ | d8edBer [ [ BB fin(Bers B fi(Bers B

oo 00 . . . .
// dag, day, // dayldawe'a’lﬁ‘x Hioy By | o1y Fay —iay, By,
—00 —00

. < e—i0wy Zay oy, Zy, | giowy Ty oy, Dy, | eik‘,,zd>. (4.4)

When we assume the random surface of this problem has a Gaussian height distri-
bution, the ensemble average term, (---), is a characteristic function for a random
vector, T = [Zz,, Zayy Zuyys Zups 2d]%, and a parameter vector, @ = [—ay,, 0y, — @y,
@y, ka:]T. In fact, the most natural rough surfaces have Gaussian height distribu-
tion. A typical example of surface height distributions which were measured from
bare soil surfaces is shown in Fig. 4.2. Figure 4.2 includes a large number of points
(> 8000) measured by a laser profile meter and shows an excellent agreement between
the measured height distribution and the Gaussian probability function for the same
standard deviation of 1.12cm.

The characteristic function of the ensemble average form, (- - -), for the Gaussian
random vector can be computed using the parameter vector and the correlation ma-
trix, where the correlation matrix components are functions of a correlation coefficient
and its derivatives as shown in Appendix A. By changing integral variables from dz;
dy; to du dv (where u = 71 — 73, v = y; — y2) and integrating over dz, dy,, the

following integral identity can be obtained;

//_Ldelde//_LLdyldw://_zLL (2L — [ul) 2L - |o])dudv,  (4.5)

Using the characteristic function and the integral identity, the backscattered mean
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Figure 4.2: A typical example of surface height distributions measured from natural
rough surfaces.

intensity, (|Eg,|%), in (4.1) can be written in a ten-fold integral equation of which the

integrand is an algebraic equation without ensemble averaging terms given as

s |2 'D0|2 2L thgzu
< B >= @-;)—4/  dudo(2L ~ [u])(2L ~ [o])e™

[ @B [ [ a8 B BB B) S (46)
with

S = / [_oo darl d(_‘l:,;2 /[_oo dayldayzeia‘lﬁfl“"iaylﬁh . ei“11ﬂ11+i°‘y16ﬂ1
a? 2 2 2 2 25,2
- exp _2_101“1(070) {arl + ag, + a,, + ayg} -0 kdz {1 - ID(U, U)}
- €Xp [—02 {arl azzpu“(u’ v) + Ay, ayzpuv(ua 'U) + (arl Qy, + Qg, Oy, ) Puu(u, U)}]
" exp [-Uzkdz {(azy — az,) pulu, ) + (g, — ay,) pu(u U)}] . (4.7)

The terms involving the cross correlation function py,(u,v) have been ignored

in [Holzer and Sung, 1978]; however, p,,(u,v) is not small enough to be ignored as
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Figure 4.3: Comparison between a Gaussian correlation coefficient and its derivatives
in case of | = 0.5m.
illustrated in Fig. 4.3. In Fig. 4.3, a Gaussian correlation coefficient function is
considered as an example with the correlation length of [ = 0.5m and the magnitudes
of p(u,v) and its derivatives, p,(u,v), puu(u,v), and py,(u,v), are compared among
one another.

In order to integrate the last term S analytically, it will be better to rearrange it

as follows;
S = exp [—azkf,z {1- p(u,v)}] ) P (4.8)
with
L. = /_Z da, eP*1%:1 -eg;"‘"‘(o’o)“gl - g~ kazpu(uv)asy i P (4.9)
where

) 2
: 2 2
Iaz = _/ daz2e—1ﬂ;2012 . 662 puu(O,O)az2 e ? puu(u,v)azl Oy
2
—00

. Cﬂkd,/’u(u,v)azg . Iotyl’ (410)
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where
I“u) - /oo dayl e . 6%2'”""(0’0)0‘51 . c—azp""(“'v)%zaﬂl
itk (4.11)
and where
0y2 / da N =10y, ay, . e 2 Puu(O 0) . 6—0'2 [puu(u,v)a“ +puv(u,u)a11]ay2
g7 haspulum)any (4.12)

Since all of the above integrals in (4.9)-(4.12) have the same form of
A/oo eiBre—C_rz_Dzdx —A %ebi-(-}y’ ‘ e_i_?_g,

the integrals I, , I, , Ia, , and I, can be computed consequently by backward

Qzqy

substitutions. After a quite complicated algebraic computation, the final form of S

in (4.8) can be obtained as

2
_ (27) o= (kas i (1=p)  [53(2kis 23 [ro(1+05)]
2 2 2
8“/’0\/1 - ps\/l ~ PE
'6[52(kdz (p“ 1+”B )2]/[po(1+p5)] [ﬁ?,l +ﬁg2 —QPBﬁyl ﬁy;]/[20032(1—9% )]

2
[ﬁ:z - (ﬂyl “PBﬁy;)] /[20032]

e e—i[zkiz/’v(ﬂyl +ﬁy2 )]/[pO(I‘I’PB)]

2
- [ﬁfl =pEBz,pDBy,+ l—flpzr(ﬁy] -pBBy,)(pBt+rPE )] /[2p05% (1-p%))
‘e B

. 6—i2k.z(/3u 1+p3)|:ﬂ11+ﬁ’2 —pD By, + (ﬁyl =pBPy,)(1 '-PB)] /[po(1+PE)], (413)

where more simplified notations have been defined as p, 2 0p(u,v)/0u, puy 2

82 p(u,v A A A
et gy 2 —pua(0,0) p5 2 pua(u,0)/pun(0,0), pp = pun(t,9)/pua(0,0), &

e

Pou(t,v)/ pun(0,0), and s £ 5. Above formulation is good for any type of correlation
function which has derivatives throughout the coordinate system.
Once we found the mean intensity < |Ef |* > in (4.6) with S given in (4.13),

the backscattering coefficient o7, can be computed using (2.79) for a two-dimensional
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dielectric random surface. The exact formulation of the Kirchhoff approximated mean
intensity in (4.6), however, is in the form of six-fold integrals and should be solved
numerically. Since the six-fold numerical integration is a challenging problem with the
present computer powers, we can reduce the computation either by approximating
the integrand in (4.6) and (4.13) or by simplifying the problem itself. Since the
goal of this chapter is to get an exact solution of the backscattering coefficient for
examination of the zeroth- and first-order PO models (or the effects of the slope term
and the edge term), a simple problem of a one-dimensional random surface will be

considered in the next section.

4.3 Evaluation for a One-dimensional Dielectric Surface

An exact formulation for the Kirchhoff approximated backscattering coefficient
for a one-dimensional dielectric random surface will be derived and also solved nu-
merically in this section. For a one-dimensional random surface (no surface height
variation in y direction, i.e. Z, = 0), the scattered field can be obtained similarly
as the problem of a two-dimensional surface given in (2.40) except that the Green’s
function for a two-dimension scattering problem (corresponding to a one-dimensional

random surface) is given by
Go(F, 7) = ~HV (kr), (4.14)

where the position vector 7 is employed instead of 7 for a one-dimensional surface
(two-dimensional scattering problem) in order to avoid confusion between the position
vector and the correlation coefficient function p(u). The first-kind Hankel function of

order zero, H", can be approximated in the far field (r > 2D?/X,) as

2 . 7 =t
HE (kr) [ melbromnl) il (4.15)
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Therefore, the corresponding backscattered mean intensity can be computed as
s |2 2 [ ikggu x ikgzz
(BLE) = 1Df* [ (2L = 1ul) € (fnlZer) finlZen) €574) i, (8.16)

where |Do|* = ko/(877o). The scattering amplitude fyo(Z;) can be obtained by sub-

stituting Z, = 0 into (2.56)-(2.58) as

fan = 2R (Z4,0)(cos 8 + sin0Z,)

fow = 2Ry (Z;,0)(cos 0 + sin0Z,)

fvh =fhv =0 (417)
with
R Zysinf + cos 0 — /e, (1 + Z2%) — (Z; cos 8 — sin 6)?
h =
l Zysin® + cosO+ /e, (1 4+ Z2) — (Z; cos 6 — sin§)?
€(Z;sinf + cos0) — \/e,(1 + Z2) — (Z; cos § — sin §)?
R = & ) =142 - ) (4.18)

- €(Zzsin + cos0) + /e, (1 + Z2) — (Z; cos § — sin 9)2.
No cross-polarized backscattering coefficient can be obtained for a one-dimensional
surface as indicated in (4.17). When the spectral representation of the delta function
is used, the scattering amplitude and its conjugate can be pulled out of the ensemble

average term as

1

(ol 2o Zen)e ™) = s [ [ drdf Sua8) 180

. //0c> dayday eio1Pr—iazf2 <e-ialle . ei02Zs, eikdzzd>. (4.19)
—00

The term (- - ) at the right hand side of (4.19) is the characteristic function of the
Gaussian random vector T = [Z,,, Zrz,zd]T and the parameter vector @ = [—ay, as,
k4.]T. The characteristic function for a one-dimensional surface is a quite simple form
compared with that for a two-dimensional surface and is represented as a function

of the parameter vector components, the correlation coefficient and its derivatives
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as shown in Appendix A. The backscattering mean intensity for a one-dimensional

dielectric random surface is

<A o= (o [ iz = et [ [ dpidse fu(BE0)-S (420
with

S = exp [~0%k2, {1 - p(u)}] - L, (4.21)
where

2

oo ) o .
L., :/ day exp[ifia] - exp [—?pw([))af} - exp {—a2kdzpu(u)a1] Loy, (4.22)

and

0.2

L., -—-/ day exp[—ifaz) - exp [—“Q_Puu(o)ag] ~exp{ a /’w( )ala?J

- exp [a2kdzplt(zt)al] . (4.23)

After integrating I, and I,,, analytically, the backscattered mean intensity is obtained

as,

D) L , |
(IE2,1) = 5'7;5'[)— du (2L — [u]) - exp iksru] - exp [~s*k2, {1 — p(u)}]
kd P
- exXp = d 1 aa 1 d
X [Po(l+f)3)] \/:p—/ ﬂ f ﬂ / ﬁ2 ,w ﬁz
- ox [ﬁ B+ B2 - 3/)851%52} ex [_ik‘dzpu(ﬁl + ﬂz)]
U1 2p0s (1= ) P (14 ps)

A

(4.24)

where p,, = 8[)(u)/au, po = —puu(0), pp 2 /’uU(“)/puu(O)’ and s = g.
The effect of shadowing can be properly accounted for the mean intensity in (4.24)
just by restricting the limits of integration with respect to df; and df; corresponding

to the surface slopes. In the backscattering case, maximum slope can be infinity

Bmaz = 00; however, the minimum slope should be restricted by the incidence angle



86

z
]
K
0; ‘\
Max. Slope

Min. Slope

dz

Slope = — Surface Facet
dx y
> X

Figure 4.4: Illustration of the shadowing correction in backscattering direction.

0; as Bmin = —cotf; to get proper orientations of surface facets as illustrated in
Fig. 4.4. Therefore, the integration in (4.24) with respect to df; and df3; should be

restricted for the shadowing correction as

/ / F(By, B2)dprdfy = oty /_ozow‘ F(B1, B2)dPrdp .

Since the incoherent backscattering coefficient for a one-dimensional random sur-

face is defined by

— lim 2mp ‘ <|Efa|2> - |(Efa)|2
P2 B3]

, (4.25)

‘Tb

where |(E;,)[? is the coherent intensity and |E:|* is the incident intensity given as 1.

The coherent scattered field (Ej,) can be obtained from (2.54) as

(E:.) =D, /_LL dz exp [ikgex] - (faa(Zz) exp [tky.2]) . (4.26)
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Using the spectral representation of the delta function, the ensemble average term at

the right-hand side of (4.25) becomes

(faa(Z:) exp [ikq,2]) = 2%/:0 dp /_: da exp [iaf]
- (exp [—1aZ;] exp [tki,2]) . (4.27)

For a Gaussian height distribution, the term (exp [—iaZ,] exp [tk4,2]) is the charac-
teristic function for the random vector T = [Z,,z]” and the parameter vector & =
|7

[—a, k4.]". Since the components of the correlation matrix are computed as

<Z3> = —0%p(0), (Z,2)=0, and <22> = o?), (4.28)

the characteristic function can be computed as follow;

2 —Puu 0) 0 —a
(exp [—taZ;] exp [tkq.2]) = exp ——C;—(—a, ka:) 0
0 1 k(iz
. ;
o
= exp [——2— (—-a2pw(0) + ka) . (4.29)

Integrating with respect to da, the coherent intensity can be rearranged as

D, e £k2 /Ld [ikaz]
s Xp |~ ka| | do explikae

/| dﬂfaa(ﬁ)GXP[ ek ]

(Eo) =

———| 4.30
—cotf 2s2puu(0) ( )

The backscattering coefficient of the Kirchhoff method has been evaluated exactly
for the one-dimensional dielectric random surface having a Gaussian height distribu-
tion and an arbitrary correlation coefficient function. The backscattering coefficient
can be evaluated by integrating three-fold integral given in (4.24), and the numerical

results will be given in Sec. (3.5).
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4.4 Evaluation for a One-dimensional Conducting Surface

In the last chapter a numerical solution for scattering from a one-dimensional
conducting random surface has been developed. In order to compare the exact PO
solution described in this chapter with the numerical solution, we would need the
evaluation of the exact PO solution for a one-dimensional conducting surface. For
a conducting surface, the mean intensity can be further simplified from (4.24) since
the local reflection coefficients are constant (R, = —1, R, = 1). The scattering
amplitudes can be simplified from (4.17) for a one-dimensional conducting surface,

and the backscattered mean intensity can be rewritten as

(12 = A22L ™ au (o1 ) - expikica] - exp [~5%8%, {1 — ()]

2ms2pg
exp [_f_k_dz_&_} 1, (4.31)
po(1 + pB)

with

1 0o
Iﬁl = dﬁ faa(ﬁ ) ’ Iﬁ and (432)
V1- 0k /‘°° e

(= x ex _ﬂ12 + 2 —2ppfi 2 e _ikdzpu(/Bl + ﬂz)} .
Iﬁz - /—oo dﬁ2 faa(ﬂ2) p [ 2[)082(1 _ pr) ] Xp [ P0(1 + PB) ’ (43‘3)

where

frn(B:) = —2(cos 6 + sin 6;)
fou(Bi) = 2(cos 8 + sin 3;) (4.34)

Jon(Bi) = fro(Bi) = 0.

The integrals, I5, and I, can be integrated analytically, and the results are, respec-

tively,

1 2 - k zHPu 2
-y prsexp[ oh 1 . )] exp [_su%ési(pdg : >]

2pos?(1 —

. kdzpupBﬁl} . .
-exp |—1——————| - |sin — 1831 = kg, pu b + 0. 435
P [ po(1 + pB) [ m {/’Bﬂl 15°(1 = pB)kazp } cos ] (4.35)
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and

2(1 _ kz u2 2kz u2
Loy = (522t [_s (1= pp)(kuepa) } o [_s (kaep >]

2po(1 + pB) 2po
uk ¥4 2
. [32/)0 sin? Opp {1 - M} + cos? 0 — isin 0 cos 0s*(1 — pp)ka; pu
Po
—5%kg,pu {i sin 0 cos 0(1 + pg) + s%kq, py sin (1 — pB)}] . (4.36)

Substituting (4.36) into (4.31), the exact evaluation of the Kirchhoff mean intensity

for a one-dimensional conducting surface can be obtained as

s |2 s |2 |D0|2 = .
(IBoP) = (1BiuP) = 455 [ du (2L = Ju) - exp [k

- exp [—s2k32 {1- p(u)}] . {(cos 6 — isin 05>‘21<:dzpu)2 + sin® 032p0p3} , (4.37)

where | Do|* = ko/(8ro), pu = Op(u)/Du, po = =puu(0); pB = pua(w)/pua(0), s = o,
ki = 2kosin 8, and kg, = —2kg cos §. The coherent intensity for a conducting surface

can be computed from (4.30) using the scattering amplitudes given in (4.34) as

sin2 ( kdz L)

s\2 s \2 _ 2 _ 272 | o \Rde L)
(B = BRI = 410, exp [ 5"k <2t

(4.38)

The backscattering coefficient of a one-dimensional conducting surface using the
Kirchhoff approximation can be evaluated exactly using (4.25), (4.37), and (4.38).
Since the integrals, I, and Ig,, are integrated over —oo to oo, the shadowing effect

should be accounted for by the shadowing function given in (2.90).

4.5 Numerical Results

A numerical technique introduced in the previous chapter for scattering from
a one-dimensional conducting random surface will be used to examine the exact PO
model evaluated in this chapter. Since the generated random surfaces given in the last

chapter have a Gaussian correlation function, the same form of correlation function
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will be used for numerical examples as

p(u) —u2/127
pul) = =7,
2 4u2 —u2 .
puu(u) = l:_l-g + —lr € /127 (439)

2
po=—pu(0) = 5.

The exact PO solution is tested against the exact numerical solution (Monte Carlo

method with the method of moments technique) for conducting random surfaces
at five roughness conditions. Figure 4.5(a) illustrates the five roughnesses, ks; =
0.62, ki, = 4.6; ksy = 0.6, kl;, = 6; ks3 = 1, kI3 = 6; ksy = 1, kly = 8; and
kss = 1, kls = 10 where k = 27/}, s is the rms height, and [ is the correlation
length. Figures 4.5(b)-(f) show good agreements between the exact PO model and
the method of moments(MoM) solution. There is no distinction between the hh- and
vv-polarizations for the exact PO solution for a one-dimensional conducting surface.
The vv-polarized backscattering coefficient of the method of moments solution is
higher than the hh-polarized one; however, the difference becomes negligible when
the roughness condition satisfies the validity region of the PO solution as shown in
Figs. 4.5(e) and 4.5(f). The difference between the two polarizations is large for
smooth surfaces and the o° of the exact PO solution has the values between the hh-
and vv-polarized 0° of the MoM solution as shown in Fig. 4.5(b).

Since the exact PO solution shows an excellent agreement with the MoM solution,
the exact PO solution can be used to examine the zeroth- and first-order approxi-
mated PO models (see Ch. 2). In order to examine the zeroth- and first-order
approximated PO models using the exact PO solution derived in the previous sec-

tions, the approximated models for a one-dimensional dielectric random surface are
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Figure 4.5: Comparison between the exact physical optics model and the method of
moments solution; (a) illustration of the roughness conditions and the
backscattering coefficients for (b) ks = 0.62, ki = 4.6, (c) ks = 0.6,
kl=6,(d) ks=1,kl=6,(e) ks =1, kl =8, and (f) ks = 1, kI = 10.
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summarized as;

2L .
<|Es |2> = |D0|24 COS2 oiRaIZ/ (2L - Iul)ezkd,u ' 6-52(kd2)2[l_p(u)]dua (440)
Oth -2L

aa

s —52k2 sin2(kdzL
[{E2)ous [* = D[4 cos? 6|, [2e™H (7/2—>) (4.41)

(|E2a|2)1.9t — |(E:a)lstl2 — 1 )
(1B2aomn  [{Esuouwl”  cos*d

(4.42)

The backscattering coefficients of the zeroth- and first-order approximated PO models
for a one-dimensional conducting random surface can be obtained by substituting
|R.|* = 1 into (4.40)-(4.42). It should be noted that if the edge term is included
in the evaluation of the coherent intensity of the first-order PO model, the coherent
intensity |(E2,),,|* becomes |(E2,)o, 1"

Figures 4.6(a) and (b) show the comparison between the exact PO solution and
the zeroth-order approximated PO model (no slope term in the series of scattering
amplitude) for a conducting and a dielectric surface, respectively. The zeroth-order
approximated PO model underestimates the backscattering coeflicients. For example,
for a relatively smooth surface (ks = 1, kl = 8) the slope term effect is about
2 ~ 5 dB at 20° — 70° as shown in Figs. 4.6(a) and (b). Figures 4.7(a) and (b)
show the comparison between the exact PO solution and the first-order approximated
PO model for a conducting and a dielectric surface, respectively. The first-order
approximated PO model was obtained by including the first-order slope term in the
series of scattering amplitude, integrating by parts, and discarding the edge term
(see Ch. 2). The first-order approximated PO model shows a good agreement with
the exact PO model at lower incidence angles (§ < 40°), but, overestimates at large
incidence angles (# > 40°). For example, the edge term effect is about 5 dB at 45°

and 15 dB at 70° for a relatively smooth surface (ks = 1, kl = 8) as shown in Figs.
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moments solution for the roughness of ks = 1, kI = 8 for (a) a conducting
surface and (b) for a dielectric surface of € = (10,2) for hh-polarization.
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4.7(a) and (b). Figures 4.8(a) and (b) show the comparison between the exact PO
solution and the approximated PO solutions for a relatively rough surface (ks = 1,
kl = 6) and a relatively smooth surface (ks = 1, kl = 10), respectively. The slope
term effect for a rough surface is larger than for a smooth surface, and the edge term
effect for a rough surface is smaller than for a smooth surface as shown in Figs. 4.8(a)
and (b). The difference between hh- and vv-polarized backscattering coefficients is
the ratio of the Fresnel reflectivity |Rx|? and |R,|*. For the exact PO solution, the

local reflection coefficient which is a function of the surface local slope affects the

[o]
Vv

polarization differences. Figure 4.9 shows the comparison between the ratio o}, /o
of the approximated PO model and the ratio of the exact PO model for the roughness
of ks = 1, kl = 8 and the dielectric constant of €, = (10,2). The ratio o}, /02, for
the approximated PO model has a peak at § ~ 66° which is the brewster angle for
e, = (10,2), while the ratio for the exact PO solution is < 0 dB at low incidence
angles and > 0 dB at large incidence angles as shown in Fig. 4.9. In order to
get a closed form of the backscattering coefficient, the integration limit in (4.40) is
changed as L — oo assuming L > [ where [ is the correlation length. Figure 4.10
shows the backscattering coefficients of the exact PO solution for the one-dimensional
conducting random surface of ks = 1.2, kIl = 6.1 for the values of L, = 5I, L, = 101,
L3 =20, Ly = 40l, and Ls = co. At low incidence angle (8 < 45°) the backscattering
coefficient is independent of the integration limit L. The backscattering coeflicient
with L = 5, however, is much higher than ¢° with L = oo as shown in Fig. 4.10.
The exact PO solutions presented in Figs. 4.5, 4.6, 4.7, and 4.8 have been computed

for the integration limit of L = 101.
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4.6 Conclusions

The backscattering coeflicient of a two-dimensional dielectric random surface has
been formulated exactly without further approximation other than the tangent plane
approximation (or Kirchhoff approximation). The exact PO solutions for a one-
dimensional random surface have been computed numerically and compared with
the exact numerical solution (Monte Carlo method with the method of moments) in
the case of conducting surfaces. The exact PO solution was used to examine the
zeroth-order and the first-order approximated PO models, which is equivalent to the
examination of the effects of the slope term in the series of scattering amplitude
and the edge term in the formulation of scattered field, respectively. The zeroth-
order approximated PO model (no slope term) underestimates the backscattering
coefficient in the range of 2 ~ 5 dB at 20° — 70°. The first-order approximated PO
model shows an excellent agreement with the exact PO solution at small incidence
angles § < 40° and overestimates at large incidence angles § > 40° in the range of

5 ~ 20 dB depending on the incidence angle.



CHAPTER V

A NUMERICAL SOLUTION FOR
SCATTERING FROM INHOMOGENEOUS
DIELECTRIC RANDOM SURFACES

5.1 Introduction

An exact solution for scattering by inhomogeneous, dielectric, random surfaces
does not exist at the present time. This chapter presents an efficient numerical tech-
nique for computing the scattering by inhomogeneous dielectric rough surfaces. The
inhomogeneous dielectric random surface, which is intended to represents a bare soil
surface, is considered to be comprised of a large number of randomly positioned dielec-
tric humps of different sizes, shapes, and dielectric constants, lying on an impedance
surface. Clods with non-uniform moisture content and rocks are modeled as inho-
mogeneous dielectric humps and the underlying smooth wet soil surface is modeled
as an impedance surface. In this technique an efficient numerical solution for the
constituent dielectric humps is obtained using the method of moments in conjunction
with a new Green’s function representation based on the exact image theory. The
scattered field from a sample of the rough surface is obtained by summing the scat-
tered fields from all the individual humps of the surface coherently, ignoring the effects

of multiple scattering between the humps. The behavior of the scattering coefficient
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o° and the phase difference statistics are obtained from calculations of the scattered
fields for many different surface samples of the same process. Numerical results are
presented for several different roughnesses and dielectric constants of the random sur-
face. The numerical technique is verified by comparing the numerical solution with
the solution based on the small-perturbation method and the physical-optics model
for homogeneous rough surfaces. This technique can be used to study the behavior
of the scattering coefficient and phase difference statistics of rough soil surfaces.
Investigation of the radar scattering response of natural surfaces is an important
problem in remote sensing because of its potential in retrieving desired physical pa-
rameters of the surface, namely its soil moisture content and surface roughness. Soil
moisture 1s a key ingredient of the biochemical cycle and an important variable in
hydrology and land processes. Although the problem of electromagnetic wave scat-
tering from random surfaces has been investigated for many years, because of its
complexity, theoretical solutions exist only for simple limiting cases. These include
the small perturbation method (SPM) [Rice, 1951] and the Kirchhoff approximation
(KA) [Beckmann and Spizzichino, 1987], both of which are applicable for homoge-
neous surfaces over restricted regions of validity. Numerous techniques based on the
basic assumptions of the SPM and KA have been developed in the past in an attempt
to extend the regions of validity of these models; however, they all have the basic lim-
itations of the original models [Brown, 1978]. Other theoretical models are available
also, such as the full wave analysis technique [Bahar, 1981], the phase perturbation
technique [Wineberner and Ishimaru, 1985], and the integral equation method [Fung
and Pan, 1987], but they are not applicable for inhomogeneous surfaces and their
regions of validity have not been fully determined yet. Several numerical solutions of

the scattering problem have been proposed to identify the regions of validity and ac-
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curacies of these theoretical models. A scattering solution for a perfectly conducting
random surface using the method of moments has been suggested by Axline and Fung
[1987] who used a tapered incident field as the excitation to eliminate the edge-effect
contribution due to the boundaries of the illuminated area. Since then, many other
numerical solutions with some modifications have been introduced [Fung and Chen,
1985; Nieto-Vesperinas and Soto-Crespo, 1987; Thorsos, 1988; Durden and Vesecky,
1990; Lou et al., 1991; Rodriguez et al., 1992], all for scattering from perfectly con-
ducting random surfaces. A numerical solution for homogeneous dielectric random
surfaces has recently been reported [Sanchez-Gil and Nieto-Vesperinas, 1991] where
again a tapered illumination is used to limit the size of the scattering area. The ac-
curacy of the numerical solution with tapered illumination decreases with increasing
incidence angle. To our knowledge, a solution for scattering from an inhomogeneous
rough surfaces does not yet exist.

Analysis of microwave backscatter observations by Oh et al. [1992] reveals that
the existing theoretical models cannot adequately explain the scattering behavior of
soil surfaces. The deviation between theoretical predictions and experimental data
is attributed to three factors. First, the roughness parameters of some surfaces are
often outside the region of validity of the theoretical models. Second, the autocorre-
lation functions associated with the measured height profiles of natural surfaces are
very complicated and are not Gaussian or exponential functions. Finally, the most
important reason is that in most cases natural surfaces are not homogeneous dielec-
tric surfaces, i.e., the moisture content is not uniform in depth. The top rough layer,
which includes clods and rocks, is usually dry and the underlying soil layer is moist
and smooth.

In this chapter we model a soil surface as an inhomogeneous dielectric random
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Figure 5.1: Geometry of the scatter problem for a two-dimensional rough surface.

surface comprised of a large number of randomly positioned two-dimensional dielectric
humps of different sizes, shapes, and dielectric constants, all lying over an impedance
surface as shown in Fig. 5.1. At microwave frequencies, the moist and smooth
underlying soil layer can be modeled as an impedance surface, and the irregularities
above it can be treated as dielectric humps of different dielectric constants and shapes.
For the field scattered by a single dielectric hump over an impedance surface, we have
an available efficient numerical solution that uses the exact image theory for the
Green’s function in conjunction with the method of moments [Sarabandi, 1992]. In
the solution of a single hump, it has been shown that the bistatic scattered field is
very weak at points in close pproximity to the impedance surface; thus, the effects
of multiple scattering between humps can be ignored. In this case the scattered field

from a collection of randomly positioned dielectric humps can easily be obtained by
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summing the scattered field of all the constituent humps coherently. The scattering
coeflicients (0°) and the phase difference statistics are obtained by a Monte Carlo
simulation.

In Section 2 we summarize the procedure for the numerical solution of a single
hump above an impedance surface. Section 3 outlines the procedures used for gen-
erating the random surfaces and for evaluating the statistics of the scattered field.
Numerical results and their comparison with theoretical models are presented in Sec-

tion 4.

5.2 Scattering From Individual Humps

In this section we briefly review the procedure used for the numerical solution
of scattering from a two-dimensional dielectric object above a uniform impedance
surface [Sarabandi, 1992]. The radiated field for a dipole source above a dissipative
half-space medium (Green’s function) is usually evaluated using the Sommerfeld in-
tegral [Stratton, 1941]. This infinite integral, in general, is highly oscillatory and
computationally rather inefficient. Recently, the Green’s function of an impedance
surface was derived in terms of rapidly converging integrals using appropriate integral
transforms similar to those employed by Lindell and Alanen [1984] in their derivation
of the exact image theory. The scattering problem was then formulated by integral
equations which were solved numerically using the method of moments.

Suppose a dielectric object, possibly inhomogeneous, is located above an impedance
surface and is illuminated by a plane wave. The incident field E’ induces conduc-
tion and displacement currents in the dielectric object which together are known as
the polarization current J.. The polarization current can be represented in terms of

the total electric field inside the dielectric object, which is comprised of the incident,
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reflected, and scattered fields denoted by E', E", and E?, respectively. Thus

Je(p) = —ikoYo(e(p) — 1)(E'(p) + E'(p) + E*(p)), (5.1)

where ko = w,/lo€o, Yo = y/€o/ o, and €(p) is the relative dielectric constant of the

object at the point p(= zz + y7j). The fields E, E", and E* are, respectively, given

by
E'(p) = (Ejhi + Eli;) explikok: - 7], (5:2)
E"(p) = (RwEjh, + R,Eb,)explikok, - 7], (5.3)
E'(p) = ikoZ | G(7,7) - 3(7)d7, (5.4)

where E} and E! are the horizontal (E-polarized) and vertical (H-polarized) compo-
nents of the incident field, respectively. R, and R, are the horizontal and vertical
Fresnel reflection coefficients and E(ﬁ, 7') is the dyadic Green’s function of the prob-
lem. The dyadic Green’s function can be decomposed into two components: (1) the
dyadic Green’s function of the free space E—o(ﬁ,ﬁ’) and (2) the dyadic Green’s function

due to the presence of the impedance surface Er('ﬁ, 7'); that is:

o7,7) + G.(5,7) . (5.5)

Ql
I
S|
I
)

Since 2 = 0 in a two-dimensional scattering problem, the dyadic Green’s function of

8z —

free space EO(”,F) takes the following form

[ _ _
(1 + }%%) gO(Paﬁ,) 1%2)_32::213790(% P’) 0
Go57)=| a3 ) (1425 )0@7) 0 (5.6)
RAg) koaylgxlgo(pa P ) + K28y’ gO(Pa P ) ’
L 0 0 go(ﬁaﬁ) ]

where go(pp, p') is the scalar free-space Green’s function given by

wlp, ) = tH (o ), o= fla— 2P+ - (5.7)
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and Hél) is the Hankel function of the first kind and zeroth order. The computation-

ally efficient dyadic Green’s function Er(ﬁ, 7') is given by [16]:

-

(1 + ;55;7) 9, (7, 7) ;’:7,%2@79:/ (,7) 0
Gp)=| -g=d G (1) Gr) o | 63
i 0 0 9 (3.7
where
g (5,7) = a1(p1) — 20/ g2(p2)d
o (7.7) = (p1) 28 [ e P galps)dv (59)
with
’ (1) . _ 2 N2
g(p) = 7H (hopd), =12, p=yfla =P+ +y)?, (5.10)

pr=\/lz—2)2+ (y+y +iv)?,

and a = ko/n, B = kon. Here 7 is the normalized impedance of the impedance surface
defined by n = Z/Z,.

There is no known exact solution for the integral equation given by (5.1). Hence,
an approximate numerical solution of this equation must be obtained using the
method of moments. This is done by dividing the cross section of the dielectric
structure into N, sufficiently small rectangular cells such that the dielectric constant
and the polarization current over each cell can be approximated by constant values.
Using the point-matching technique, the integral equation can be cast into a matrix

equation of the following form:

2.] (2, 0 | | (] (v
[24s] [2y] O Z,) | = | W (5.11)

00 (2] || | wi
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where [Z,,] is the impedance matrix, [Z,)] is the unknown vector whose entries are the
values of the polarization current at the center of each cell, and [V,] is the excitation

vector with p = z, y, or z. The entries of [V,] are simply given by

Upn = ikoYo[e(Tn, yn) = 1] ([Ex(2n, ¥n) + Ep(en, 1)) 5, (5.12)
and the entries of [Z,,] can be evaluated from

Zpgmn = —0pgOmn + kg[f(xm’ Ym) — 1]

./Asm [Gpa(Tmy Ymi Tny Yn) + Grpg(Tm, Yms Ty Yn)]dSm (5.13)

where §,, and 6,,, are the Kronecker delta functions, and p,q = z,y, or z.

Explicit expressions for the elements of the impedance matrix are given in [Sara-
bandi, 1992] where off-diagonal elements are obtained by approximating the Green’s
function via its Taylor series expansion around the midpoint of each cell and then
the integration over the cell surface is performed analytically. For diagonal elements
the free-space Green’s function is approximated by its small argument expansion and
then integration is performed analytically.

Once the impedance matrix for a given dielectric hump is calculated and inverted,
the scattered far-field can be computed from (5.4) for any desired combinations of

incident and scattered directions.

5.3 Monte Carlo Simulation of Rough Surface Scattering

Monte Carlo simulation of scattering by a rough surface comprised of a finite
collection of dielectric humps involves the execution of five major steps, as shown in
Fig. 5.2. The first step is to choose the type (size, shape, and dielectric constant) and
number of constituent humps. The second step deals with generating a surface sample

by positioning a large number of humps with a prescribed probability distribution
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Figure 5.2: Flow chart of the Monte Carlo simulation for the rough surface scattering
problem.
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function. The number of humps in the surface sample must be chosen large enough
so that the surface length is longer than fifty correlation length. The third step in
this algorithm is to compute the inverse impedance matrices for all constituent humps
using the numerical method explained in the previous section. Next, the scattered
field from the surface is computed by coherent summation of the scattered fields from
all of the humps in the surface sample. Finally, the scattering coefficient ¢° and
the phase-difference statistics are obtained by repeating the fourth step for a large
number of independently generated surface samples. For example, N is chosen to
be around 100 to reduce the standard deviation associated with the estimation of
mean backscattered power (0°). The standard deviation of estimated ¢° is inversely
proportional to v/N [Ulaby and Dobson, 1989].

The types of constituent humps, in addition to their probability of occurrence,
fully characterize the statistics of the random surface. Figure 5.3 shows the geometry
and dielectric profiles of different types of dielectric humps that can be handled by
this algorithm. For example, Figure 5.3(a) shows a typical hump arrangement for a
dry clod above a moist and smooth underlying soil layer (e, < €; < €3), and Figure
5.3(b) shows the same hump when the clod and underlying layer are both moist (a
homogeneous surface). The hump itself may be considered to be inhomogeneous as
shown in Fig. 5.3(c). Isolated irregularities such as rocks above a flat surface can
be represented by the hump example shown in Fig. 5.3(d) where the bump occupies
only a part of the total width allocated to an individual hump. When the surface
is very rough with a short correlation length, the geometry of the humps are more
complicated. Two examples of such humps are shown in Figs. 5.3(e) and (f). The

profiles of Figs. 5.3(a)-(e) used in this chapter are given by the following functionals;
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Figure 5.3: Hump types for the rough surface considered in this chapter.
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for (a)-(c)

W (7 14 W
- T <<t :
y(z) - cos (W) , 5 ST, (5.14)
for (d)
22

y(:c):A(l—ﬁ), -B<z<B, B<W, (5.15)
and for (e)

y(z) = A Fi(z) + B Fa(),
with

Fi(z) = cos™ (%V’E — %) (%)m
F(z) = cos™ (Z'W’- - %) (1 _ %)m

where A and B are constants, n and m are integers, and W is the width of a hump.

L 0<a<W, (5.16)

The set of constituent humps for a surface can be constructed by choosing a finite
number of parameters and desired dielectric constants in the desired functionals. The
profile of Fig. 5.3(f) is very complicated and should be obtained numerically by the
procedure outlined in [Fung and Chen, 1985]. In this procedure the hump profile is
obtained from a sequence of independent Gaussian deviates with zero mean and unit
variance which are correlated by a set of weighting factors derived from the desired
correlation function.

Suppose the set of individual humps includes K different humps (including size,
shape, and dielectric constant) and the profiles of the humps in the set are repre-
sented by fi(z), ¢ =1,---, K. Then a sequence of random numbers ranging from 1
to K, which is generated by a random number generator with the prescribed proba-
bility distribution function, is used to position a large number of humps randomly to

construct a surface sample. If the total number of humps (M) in the surface sample
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is much larger than the number of constituent humps (K) and the random number
generator has a uniform distribution, the probability of occurrence of each hump in
the surface will be about M/K. A functional form of the generated surface profile
can be represented by

M m—1
=Y fi (a:— Wi[> (5.17)

m=1 1=1
where 1,7 € {1, - -, K} and W;, represents the width of the hump of the 7;th type.
The roughness parameters, rms height s, correlation length I, and rms slope m [Ulaby
et al, 1982], can be computed either numerically or analytically from the surface profile
given in (5.17). The analytical computation is possible for simple functional forms.

The average height of the surface can be computed from

Ep, / fi( (5.18)

where L = YK p;W; and p; is the probability of occurrence of the hump of type .

The rms height s and the rms slope m, respectively, can be evaluated from

s={(y(z) - 7(x % [ / (pifilz) —¥(z))’d r> (5.19)

and

m = <(di/l(xx) _ <d?;ifv)>)2>% _ [%gpi /OW‘ (fi’(x))zdz] %. (5.20)

Assuming the surface has a Gaussian correlation function, the correlation length [ is

related to rms height and rms slope by,
s
l=v2—. (5.21)
m

It is often required to generate a random surface of a specified rms height s and

correlation length [. In that case, the required surface can be obtained by an iterative
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process where some initial values for the hump parameters are chosen. Then the
roughness parameters are calculated and compared with the desired ones. Depending
on the difference between the calculated s and [ and the desired ones the hump
parameters are modified and this process is repeated until the difference becomes
smaller than a tolerable error.

Once the set of individual humps for a random surface with given s and [ is formed,
the impedance matrices, [Z,,];, i = 1,- - -, K, can be computed using the method of
moments described in the previous section. Since the scattered field of a hump near
the impedance surface is very weak [16], the effect of multiple interaction between
humps in a surface sample can be ignored. Therefore by inverting and storing the
impedance matrices of the constituent humps, the scattered field of any surface sample
comprised of M humps (M > K) can be computed very efficiently for any incidence
and observation directions. For a given direction of incidence the polarization currents

in the jth hump for the vertical and horizontal polarizations, respectively, are given

by
) || [Be] (2] [Ve] rd (5.22)
[Z,] ; [2ye] [244] . [V
[IZ]J‘ = [ZZZ]i—jl [VZ]]', (5-23)

where j € {1,---,M} and i; € {1,-- -, K} representing the hump of the ith type.
The excitation vector [V]; is computed from (5.12) where the position vector 7 is
specified by the discretization procedure and the profile function (5.17). The electric

polarization current induced inside the surface sample can be represented by

(7] = [ [Ip]f D [Ip]?" " [IP]JY\:I JT y P=4Y,2 (5.24)
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where [Z,); is the p-polarized current inside the :th hump. The radiated far field can

be evaluated from

s 2 i(kop—m
E;, = ‘/Wkope (koo=n/4) G, pp = hh or vu (5.25)

where S, is the far-field amplitude given by

koZo & ko : -
Shh — _ 04 0 Z Jz(xn,yn)Aanyne_'k" sinfszn [e—iko cos Bsyn + RE(H,)GNCO cos@syn] (526)
n=1
Nt . .
Sw _ kOZO Z AmnAyne—tko sinfszn
n=1

: {Jx(l'n) Yn) cos O, ([e‘““O cosfitn _ Ry (8, )e™ ccs0,y,,)

—Jy(Tn,yn) sin b (e‘”“’ cosovm 1 Ry (8,)e* °°50’y")}. (5.27)

Here N, is the total number of cells in the surface sample.
The statistical behavior of the scattered field is obtained from evaluation of E,
for many independent surface samples. For a sufficiently large number of surface

samples (N,), the incoherent scattering coefficient is computed from

2

. omp | 2 1 (X
o = lim YIEL L — =D_EL| |, pp=hh, vy, (5.28)
= gm0 N, Lo, | < pm, N, |z

where L,, = N% Z;VQI L;, and L; is the total length of the jth random surface.

In the past, the study of scattering by random surfaces was confined to examina-
tion of the incoherent scattering coefficients, o2, of,, and op,. With the introduc-
tion of radar polarimetry, it was recently shown that the co-polarized phase angle ¢.,
defined as the phase difference between the HH- and VV-polarized scattering ampli-
tudes: ¢. = @nr — Pu, also depends on the roughness and dielectric constant of the
surfaces [Sarabandi et a]., 1992; Oh et al., 1993]. In this chapter, the statistics of

the phase difference, in addition to the scattering coefficients, are used to study the
radar response of rough surfaces. It is shown that the PDF of ¢., f(¢.), can be ob-

tained from the Mueller matrix of the distributed target and characterized completely
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Figure 5.4: Probability density function of the co-polarized phase angle ¢. = ¢pp— oy
for a fixed value of ( and four different values of a.

by two parameters; the degree of correlation a and the polarized-phase difference ¢
[Sarabandi, 1992]. The degree of correlation is a measure of the width of the PDF
and the polarized-phase difference is the value of ¢, at which the PDF is maximum

as shown in Fig. 5.4. The f(¢.) is given by

_ 1 —a? acos(¢. — ()
f(¢e) = 211 — a? cos*(¢. — ()] {1 * \/1 — a2 cos?(¢. — ()
T 4 tant 200 =0 5.29
2 Jl—a%oswc—c)” o2
with

_ 1 [(Ms3 + Myg)? + (Mg — My3)?

_ 2\/ T , (5.30)
_1 [Mag — Mys

¢ =tan [m] ) (5.31)

where M;; are the elements of the ensembled Mueller matrix.
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Table 5.1: Roughness parameters corresponding to constants A and B.

Approx. 1 Exact At 5 GHz
Case | A| B 8 l S ) ks kl Remarks

in cm in em

1 [15]0.20]0.115 2.21]0.115 2.03|0.12 2.13 | SPM region

2 115]0.36|0.208 3.98]0.207 3.63|0.22 3.80

3 |15(0.70 | 0.405 7.74 | 0.405 7.15|0.42 7.49| PO region

t Approximation by equations (32-33) and (21),
1 Numerical evaluation with 4000 humps,
s : rms surface height,

[ : correlation length.

5.4 Numerical Results

To demonstrate the performance of the technique proposed in this chapter, we
shall use it to compute the scattering for some sample surfaces and then compare
the results with those predicted by the available theoretical scattering models, when
conditions apply. First, we consider a surface with homogeneous dielectric humps as
shown in Fig. 5.3(a). The functional form of the humps are given by (5.14) where
the parameters A and W are varied to generate the set of the constituent humps.
Keeping A as a constant controlling the height and varying W, a set of similar humps
can be generated. A random number generator with output : € {1,---, K'} selects the
parameter W; = BAi, where B is a constant controlling the width of the humps and
A 1s the wavelength. In this example the hump parameters were chosen according to
Table 5.1 and the random number generator was given a uniform distribution with

K =10. Before presenting the statistical scattering behavior of the surface, it is useful
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to demonstrate the validity of the assumption regarding the significance of the effects
of multiple scattering among the humps. Figures 5.5 (a) and (b) show the bistatic
echo width of a squared-cosine hump with W = 0.72)\, H = 0.07), ¢ = 15 + 13
above a surface with n = 0.254 —20.025 (which corresponds to e; = 15 +13) at 5
GHz when the incidence angle 6; = 0° and 6; = 45°, respectively. It is shown that
the bistatic echo widths at the large scatter angles (near the surface) are very weak
which implies that the effect of multiple scattering between humps can be ignored.
In order to illustrate the effect of multiple scattering, a surface segment comprised
of three squared-cosine humps with ¢; = 15 + ¢3 above an impedance surface with
n = 0.254 —10.025 was considered (see Fig. 5.6). Dimensions of the three humps
are, respectively, given by: W; = 0.8A\, H; = 0.08); W, = 1.0\, H, = 0.1}; and
W3 = 0.6A, H; = 0.06)\. The backscatter echo width of the surface segment was
computed twice. In one case the scattered field was computed from the polarization
current of isolated humps (ignoring the effect of mutual coupling) and in the other case
the polarization current of the three-hump structure was obtained directly from the
method of moments solution (including the effect of mutual coupling). Figures 5.6(a)
and (b) show that the effect of multiple scattering is negligible for both polarizations.
As long as the ratio of rms height to correlation length of the surface (s/) is small,
this approximation provides accurate results. For most natural surfaces s/l < 0.3
which satisfies this condition [Oh et al., 1992]. However if the ratio (s/I) is relatively
large, the hump type of Fig. 5.3(f) must be used to include the effect of multiple
scattering at the expense of computation time.

The rms surface height s and the rms surface slope m for this surface can be
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computed from (5.19) and (5.20) respectively and are given by

1
s = [ﬁé (%%3 ~ —v%im W,-f)l 2 : (5.32)
T
m = A (5.33)
where
1 K K
Y= m;lflff , and Ly =;W},

[t should be noted that the rms surface slope m of this surface depends only on the
constant A. Therefore for a fixed value of A, both the rms height and the correlation
length increase at the same rate with increasing B. Table 5.1 shows several values of
roughness parameters, s and [, corresponding to different values of A and B.

A random number generator was used to select and position 4000 squared-cosine
humps over the impedance surface (7 = 0.254—10.025). Then this surface was divided
into 100 segments to obtain 100 independent surface samples each having 40 humps.
The length of the surface segment was chosen to be in the range of 44\ to 154\
depending on the correlation length of the surface which corresponds to the size of
individual humps. In the method of moments solution of individual humps, the size
of a discretized cell was chosen such that Az = Ay = A/15 (where X = Ao/, /671).
Table 5.2 summarizes the characteristics of the surfaces and their constituent humps
used in the examples considered in this study. Figure 5.7(a) shows a surface sample
with A=30 and B=0.2 (Case 1 in Tables 5.1 and 5.2). In Fig. 5.7(b) the correlation
function of the surface is shown. The correlation function, as computed from the
surface samples, is compared with Gaussian and exponential correlation functions
with the same correlation length. Within the mainlobe of the correlation function
(small displacements), the actual correlation function is very similar to the Gaussian

function; however, the tail of the correlation function is very much different from
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Table 5.2: Constants used in the numerical computations.

Individual hump size No. of humps | Length of | No. of
Case Width Height for each surface | segments
No. | min. | max. | min. | max. surface segment for a
A) | () (A) (A) segment (A) surface
1 0.2 | 2.0 |0.0066 | 0.066 40 44 100
2 1036 | 3.6 | 0.012 |0.120 40 79 100
3 0.7 | 7.0 | 0.023 |0.233 40 154 100

the Gaussian function. The correlation function of this surface is very similar to
the correlation functions determined from measured height profiles of natural rough
surfaces [Oh et al., 1992].

The backscattering coefficients for the surface at 5 GHz with ks = 0.12 and
kl = 2.13 (Case 1 in Table 5.1) are computed by the Monte Carlo simulation tech-
nique for a homogeneous surface with €, = €, = 15 413 (Fig. 5.3(b)), and compared
with the analytical results based on the SPM as shown in Figs. 5.8(a) and (b). For the
SPM solution, the scattering coeflicient ¢° is proportional to the roughness spectrum
(Fourier transform of the correlation function). Both the actual and Gaussian cor-
relation functions are used in the calculation of the backscattering coefficients using
the SPM. It is shown that the Monte Carlo simulation agrees very well with the SPM
prediction when the actual correlation function is used. The discrepancies between
the Monte Carlo simulation and the SPM with Gaussian correlation function indicate
the importance of the tail section of the correlation function in the estimation of o°.

Using the first-order SPM solution [Ulaby et al., 1982; Tsang et al., 1982], it



124

(a)
0 L L | | | I I 1 1
100 F .
3
~  -20. -
-]
o
o 30, .
5
S 40, ] -
§ hh-pol.
j§ 50, 0] This Technique 4
M SPM, (numer. corr.)
-60. -
----------- SPM, (Gauss. corr.) ]
_70-44.I.I.I.I.II
0. 10. 20. 30. 40. 50. 60. 70. 80. 90.
Incidence Angle (Degrees)
(b)
O0r——T——7T 71T 71T T 71—
a
3
=)
o
o
8
Q
£
g I
g 50 F 0] This Technique ll‘._
[Q SPM, (numer. corr.)
-60.
----------- SPM, (Gauss. corr.)
o b
0. 10. 20. 30. 40. 50. 60. 70. 80. 90.
Incidence Angle (Degrees)
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125

1.0 @ OGO O @ pgmrmrmcmmmirreremrneteneneened]

. '@'G """"""""""""""""""

(0X0X0]
©%000000000000

3 0.8 .

g

kS

8

0 L i

b Oc6

3

O 1

3

5 04 s

]

g" ]
02 -
O‘O.l.l;l.l.l.14l.l.

0. 10. 20. 30. 40. 50. 60. 70. 80. 90.

Incidence Angle (Degrees)

Figure 5.9: Degree of correlation a of the random surface with ks = 0.12, kI = 2.13,
and €, =€ = 15 +13.

can easily been shown that the degree of correlation () for the phase difference
(uw — Prn) 1s equal to unity (a=1). For the surface under consideration (case 1), Fig.
5.9 compares the values of co-polarized a computed using the numerical simulation
with those derived from the SPM. The SPM is a first-order solution; hence, it predicts
that the degree of correlation o between the HH- and VV- polarized scattering fields
is always equal to unity (a=1). A plot of @, computed using the numerical simulation
technique, is shown in Fig. 5.9. At small incidence angles (6; < 20°), the degree of
correlation a = 1, and then it decreases slowly as §; increases. It should be noted
that the measured angular response of a for smooth bare soil surfaces at L-band
frequencies shows a similar trend [Sarabandi et al., 1992; Oh et al., 1993].

The numerical simulation was also performed for a surface at 5 GHz with ks =

0.42, kIl = 7.49 (Case 3 in Table 5.1), and ¢, = €, = 15 +:3. The roughness
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Figure 5.10: Backscattering coefficient ¢° of the random surface with ks = 0.42,

kl = 749, and ¢, = ¢ = 15+ 13 as computed by the PO model and
the numerical technique for HH-polarization.

parameters of this surface fall within the validity region of the physical optics (PO)
model; therefore the numerical solution can be compared with the PO solution. The
scattering coefficient oy, predicted by the PO model using the actual correlation
function agrees very well with the results computed by the numerical technique, as
shown in Fig. 5.10. In this figure the PO solution using a Gaussian correlation
function with the same correlation length as the actual correlation function is also
compared with the numerical simulation. It is shown that the agreement is good only
for low incidence angles (6; < 20°) and the discrepancy between the two solutions
becomes very significant for higher incidence angles. In this case, similar to the
previous case (SPM), it is shown that the tail of the correlation function plays an
important role in determining the angular patterns of the backscattering coefficients.

With the success of the Monte Carlo simulation in predicting the scattering be-
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havior of rough surfaces in the small perturbation and physical optics regions, the
numerical model can be used to study complex surfaces with intermediate roughness
parameters and inhomogeneous dielectric profiles. For example, consider an inhomo-
geneous surface at 5 GHz with ks = 0.22 and kI = 3.80 (Case 2 in Table 5.1). Figures
5.11(a) and 10 (b) show the backscattering coefficients of the surface for both polar-
1zations with €; = 15413 and two values of ¢;, namely ¢; = 3+10.6 and ¢; = 12+:2.4.
To demonstrate the sensitivity of radar backscatter to the moisture content of the top
layer, the scattered fields for three other surfaces with ¢, = 6 +11.2, ¢, = 9+4141.8, and
€, = 15 + 13 were also computed. The backscattering coefficients ¢° and the degree
of correlation « are shown in Figs. 5.12 and 5.13, respectively, as functions of the
dielectric constants €; at § = 44°. We note that the scattering coefficients, o2, and
ohy, as well as the ratio of o, /05, increase as the dielectric constant increases. The

degree of correlation a also shows sensitivity to the dielectric constant of the surface;
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Figure 5.13: The sensitivity of the degree of correlation a to the dielectric constant
in case of ks = 0.22, kl = 3.8, and e = 15413 at § = 44°.

i.e., a decreases as €, increases. All of these trends are in line with experimental

observations [Oh et al., 1992; Oh et al., 1993).

5.5 Conclusions

In this chapter an efficient Monte Carlo simulation technique is proposed for com-
puting electromagnetic scattering by inhomogeneous one-dimensional rough surfaces.
The surface irregularities are represented by inhomogeneous dielectric humps of dif-
ferent shapes and the underlying layer is represented by an impedance surface. A
moment-method procedure, in conjunction with the exact image theory, is used for
calculation of the field scattered by the dielectric humps. It was shown that the
scattered field near the impedance surface is weak , and hence the effect of multiple
scattering between humps can be ignored.

To check the validity of the Monte Carlo simulation, the numerical results were

compared with the existing analytical solutions for surfaces at extreme roughness con-
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ditions. A smooth surface that satisfies the validity region of the SPM and a surface
that satisfies the validity region of the PO model were considered, and in both cases
excellent agreement was obtained between the analytical results and those computed
using the proposed technique. It was found that away from normal incidence the
tail of the correlation function plays an important role in the determination of the
backscattering coefficients.

The analysis presented in this chapter is only for one-dimensional surfaces and
therefore is incapable of predicting the cross-polarized scattering coefficients. A nu-
merical simulation for a two-dimensional rough surface using a similar method is

computationally tractable.



CHAPTER VI

MEASUREMENT PROCEDURE - RADAR
CALIBRATION FOR DISTRIBUTED
TARGETS

6.1 Introduction

The recent interest in radar polarimetry has led to the development of several
calibration techniques to retrieve the Mueller matrix of a distributed target from the
multi-polarization backscatter measurements recorded by the radar system. Because
a distributed target is regarded as a statistically uniform random medium, the mea-
surements usually are conducted for a large number of independent samples (usually
spatially independent locations), from which the appropriate statistics characterizing
the elements of the Mueller matrix can be derived. Existing calibration methods rely
on two major assumptions. The first is that the illuminated area of the distributed
target is regarded as a single equivalent point target located along the antenna’s
boresight direction, and that the statistics of the scattering from all of the measured
equivalent point targets (representing the spatially independent samples observed by
the radar) are indeed the same as the actual scattering statistics of the distributed
target. The second assumption pertains to the process by which the actual mea-

surements made by the radar for a given illuminated area are transformed into the
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scattering matrix of that area. The process involves measuring the radar response
of a point calibration target of known scattering matrix, located along the boresight
direction of the antenna, and then modifying the measured response by a constant,
known as the illumination integral, when observing the distributed target. The illu-
mination integral accounts for only magnitude variations of the illuminating fields.
Thus, possible phase variations or antenna cross-talk variations (between orthogonal
polarization channels) across the beam are totally ignored, which may compromise
the calibration accuracy. To rectify this deficiency of existing calibration techniques,
a new technique is proposed with which the radar polarization distortion matrix is
characterized completely by measuring the polarimetric response of a sphere over the
entire main lobe of the antenna, rather than along only the boresight direction. Addi-
tionally, the concept of a “differential Mueller matrix” is introduced, and by defining
and using a correlation-calibration matrix derived from the measured radar distor-
tion matrices, the differential Mueller matrix is accurately calibrated. Comparison
of data based on the previous and the new techniques shows significant improvement
in the measurement accuracy of the co-polarized and cross-polarized phase difference
statistics.

The literature contains a variety of different methods for measuring the backscat-
tering cross section of point targets. In all cases, however, the calibration part of
the measurement process involves a comparison of the measured radar response due
to the unknown target with the measured response due to a calibration target of
known radar cross section. Under ideal conditions, both the unknown and calibra-
tion targets are placed along the antenna boresight direction, thereby insuring that
both targets are subjected to the same illumination by the radar antenna. The sit-

uation is markedly different for distributed targets; the unknown distributed target
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is illuminated by the full antenna beam, whereas the calibration target - being of
necessity a point target — is illuminated by only a narrow segment of the beam cen-
tered around the boresight direction. Consequently, both the magnitude and phase
variations across the antenna pattern become part of the measurement process.

Accurate calibration of polarimetric radar systems is essential for extracting ac-
curate biophysical information of earth terrain. The concept and formulation of
polarimetric calibration were developed by Barnes [Barnes, 1986], who used three
in-scene calibration targets. Many other polarimetric calibration techniques were re-
ported, including the generalized calibration technique (GCT) [Whitt et al, 1991],
the isolated-antenna calibration technique (IACT) [Sarabandi et al, 1990], and the
single-target calibration technique (STCT) [Sarabandi and Ulaby, 1991]. The phase
variation across the antenna pattern, however, has been ignored among those calibra-
tion techniques while the magnitude variation usually is taken into account through
a calculation of the illumination integral [Ulaby et al., 1982; Sarabandi et al., 1991;
Tassoudji et al., 1989; and Ulaby and Elachi, 1990]. The role of this phase variation
across the beam with regard to polarimetric radar measurements and the means for
taking it into account in the measurement process are the subject of this paper.

Terrain Surfaces, including vegetation-covered and snow-covered ground, are treated
as random media with statistically uniform properties. In radar measurements, the
quantities of interest are the statistical properties of the scattered field per unit area.
One such quantity is the scattering coefficient o°, which is defined in terms of the
second moment of the scattered field:

o lim L drr? < E*|*>
7T IeAl A T E

where E* and E* are the incident and scattered fields, A is the illuminated area, and r

is the range between the target area and the observation point. The above definition of
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0 is based on the assumption that the target is illuminated by a plane wave. Although
in practice such a condition cannot be absolutely satisfied, it can be approximately
satisfied under certain circumstances. The correlation length £ of a distributed target
represents the distance over which two points are likely to be correlated, implying that
the currents induced at the two points due to an incident wave will likely be correlated
as well. Thus, the correlation length may serve as the effective dimension of individual
scatterers comprising the distributed target. The plane-wave approximation may be
considered valid so long as the magnitude and phase variations of the incident wave
are very small across a distance of several correlation lengths. In most practical
situations, this “local” plane-wave approximation is almost always satisfied. When
this is not the case, the measured radar response will depend on both the illumination
pattern and the statistics of the distributed target [Eom and Boerner, 1991; Fung and
Eom, 1983].

An implied assumption in the preceding discussion is that the phase variation
across the antenna beam is the same for both the transmit and receive antennas.
When making polarimetric measurements with dual-polarized transmit and receive
antennas, the phase variation of the transmit and receive patterns may be different,
which may lead to errors in the measurement of the scattering matrix of the target,
unless the variations are known for all of the polarization combinations used in the
measurement process and they are properly accounted for in the calibration process.

In this paper, we introduce a calibration procedure that accounts for magnitude
and phase imbalances and antenna cross-talk across the entire main beam of the
antenna. By applying this procedure, we can make accurate measurements of the
differential Mueller matrix of a distributed target using the local plane-wave approx-

imation. The differential Mueller matrix can then be used to compute the scattering
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Figure 6.1: Geometry of a radar system illuminating a homogeneous distributed tar-
get.

coeflicient for any desired combination of receive and transmit antenna polarizations,
and by employing a recently developed technique [Sarabandi, 1992], the statistics
of the polarization phase differences can also be obtained. By way of illustrating
the utility of the proposed measurement technique, we will compare the results of
backscatter measurements acquired by a polarimetric scatterometer system for bare
soil surfaces using the new technique with those based on calibrating the system with
the traditional approach which relies on measuring the response due to a calibration

target placed along only the boresight direction of the antenna beam.

6.2 Theory

Consider a planar distributed target illuminated by a polarimetric radar system

as shown in Figure 6.1. Suppose the distributed target is statistically homogeneous
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and the antenna beam is narrow enough so that the backscattering statistics of the
target can be assumed constant over the illuminated area. Let us subdivide the illu-
mination area into a finite number of pixels, each including many scatterers (or many
correlation lengths) and denote the scattering matrix of the ¢jth pixel by A§(:z:;, Y;)-
The scattering matrix of each pixel can be considered as a complex random vector.
If the radar system and its antenna are ideal, the scattered field associated with the

17th pixel is related to the incident field by

Ei 62ikor(zi,yj) ASUU(CL',', yj) A.S'vh(xi,yj) Ei

v

=K (6.1)

2
E T(Iiayj) AShu(xi)yj) AShh(xi, yj) E;l

P~

where F, and FE}, are the components of the electric field along two orthogonal direc-
tions in a plane perpendicular to the direction of propagation, and K is a constant. [n
reality, radar systems are not ideal in the sense that the vertical and horizontal chan-
nels of the transmitter and receiver are not identical and the radar antenna introduces
some coupling between the vertical and horizontal signals at both transmission and
reception. Consequently, the measured scattering matrix U is related to the actual
scattering matrix of a point target S by [Sarabandi and Ulaby, 1990]

eZikoT

U=

RST (62)

2
where R and T are known as the receive and transmit distortion matrices. For small
point targets where the illumination pattern of the incident field can be approximated
by a uniform plane wave, measurement of S is rather straightforward and in recent
years this problem has been investigated thoroughly by many investigators [Barnes,
1986; Whitt et al., 1991; Sarabandi et al., 1990]. The distortion matrices are ob-
tained by measuring one or more targets of known scattering matrices, and then by

inverting (6.2) the scattering matrix of the unknown target is obtained. In the case of
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distributed targets, however, distributed calibration targets do not exist. Moreover,
the distortion matrices and the distance to the scattering points are all functions of
position. That is for the ijth pixel the measured differential scattering matrix AU

can be expressed by

e2iko7‘(-l‘.',yj)= ASvu(l'i,y') ASvh(xiyyj) =
———R(zi,y;) ’ T(z:,y;) (6.3)

AT = — e
T ASh(ei,y5)  ASkn(zi,y;)
The radar measures the sum of fields backscattered from all pixels within the illumi-

nated area coherently; i.e.,

e2ikor(z¢,y,-)=

R(z;,y;) AS(:,y;) T(zi,y;) (6.4)

T-T%

i g ri(zi,y;)
Thus, the measured scattering matrix is a linear function of the random scattering
matrices of the pixels. For uniform distributed targets, we are interested in deriving
information about the statistics of the differential scattering matrix from statistics of
the measured scattering matrix U. One step in relating the desired quantities to the
measured ones is to perform a calibration procedure to remove the distortions caused
by the radar and the antenna systems. The traditional approach used for calibrating
polarimetric measurements of extended-area targets relies on two approximations.
First, it is assumed that for each measured sample, the differential scattering matrix
of the illuminated area is equal to some equivalent scattering matrix at boresight.
Using this approximation it is hoped that the equivalent scattering matrix has the
same statistics as the original differential scattering matrix. This approximation is
purely heuristic and cannot be justified mathematically. Second, the measured data
for each sample is calibrated as if it were a point target and the result is modified

by a constant known as the illumination integral to account for the non-uniform

illumination [Tassoudji et al, 1989; Ulaby and Elachi, 1990]; thus, the cross-talk
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variations away from the antenna’s boresight direction over the illuminated area are
ignored. The illumination integral accounts for only magnitude variations of the
gain patterns of the transmitter and receiver antennas, and no provision is made for
accounting for any possible phase variations in the radiation patterns.

In this paper we attempt to derive the second moments of the differential scattering
matrix from the statistics of the measured matrix without making any approximation
in the radar distortion matrices or using the equivalent differential scattering matrix
representation. In random polarimetry, the scattering characteristics of a distributed
target usually are represented by its Mueller matrix, which is the averaged Stokes
matrix [Ulaby and Elachi, 1990]. The Mueller matri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>