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CHAPTERI

INTRODUCTION

1.1 Motivation

Electromagnetic signatures can give clues for the identification and classification
of unknown flying targets. Since World War II, it has been known that radar echoes from
propeller-driven aircraft have a superimposed modulation which make these flying targets
distinguishable from other radar reflecting objects, such as storm clouds or birds.
However, it wasn’t until later that this modulation was exploited as a feature for
distinguishing between different aircraft. The effect of rotating jet engines on the radar
signatures of aircraft remains an important problem for developing effective automatic

target identification capabilities.

Another effect of jet engines on the radar signature of aircraft is that they cause a
washing out or blurring of high resolution radar images. This blurring is due to the
presence of the engine inlets, or ducts which draw air into the front of the engine. Jet
engine inlets are resonant cavities, spreading the radar return out over time. Since the very
nature of an image 1s to assume that energy comes from points, by using standard image
processing techniques, the spreading out of energy in time due to the engine results in a

blurry image. A new technique described in [1] and applied to simple cavities on aircraft

[



in [2] allows the separation of mechanisms localized in time from mechanisms spread out
in time. Naturally, the mechanisms that are spread out in time are localized in frequency,
and these frequencies are related in complex ways to the dimensions and materials of the

inlet cavity and the face of the jet engine as seen by the radar.

Radar signatures that can be measured in practice are extremely complex. Since
the target is not stationary with respect to the radar making the measurement, the signature
is influenced by the relative motion of the aircraft with respect to the radar. It is indicated
in [2], however, that the scattering mechanisms that are localized in frequency due to the

inlet cavity and engine face may not be sensitive to the orientation of the aircraft.

Additionally, long range radars must have a relatively low (1 KHz) pulse repetition
frequency (PRF) to avoid range ambiguity. These long times mean that the aircraft may
have changed aspect from pulse to pulse. Jet Engine Modulation (JEM) however, is a fast
mechanism since jet engines rotate at approximately 20,000 RPM. JEM therefore occurs
in a small time window, on the order of the length of a single radar pulse and the effect has
been observed out to sixty degrees off nose-on aspect [3]. Unfortunately, the modulation
effect is extremely under-sampled by a radar operating with a low PRF, making the
modulation effect appear as random noise. An investigation into the signal processing of
such an under-sampled signal is given in [4], where it is shown that since the modulation is
periodic, the modulation pattern can be partially reconstructed from the under-sampled

data.

What is lacking is a robust simulation technique capable of accurately modeling

the jet engine cavity and engine face from a radar point of view. The need for such a model
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provides the motivation for the work within this thesis.

1.2 Jet Engines

Jet engines operate on a few simple principles. Their operation is basically the
same as that of a piston engine in a car, except that the combustion cycle in a jet is
continuous as opposed to the four stroke, or two stroke combustion process in automobile
engines. Early jet engines were axial flow engines. This name is derived from the fact that
all of the air that enters the engine travels down the main axis of the engine and is used in
the combustion process. In an axial flow engine, there are guide vanes which change pitch,
acting as a throttle. These guide vanes do not rotate, but are interspersed with rotating
compressor blades, which do not change pitch. The series of compressor blades and/or
guide vanes serves to compress the air many times over. The compressor section may
include dozens of compressor blade sets and at least a few guide vanes located in the front

section of the compressor series.

Once the highly compressed air leaves the compressor section it enters the
combustion chamber. Here jet fuel is squirted into the air and is automatically ignited due
to the high compression. To start the engine, a spark plug is used to initiate the process.
The explosive force of combustion causes hot gas to be propelled back towards a turbine
which then rotates and keeps the entire process going. The temperature is the hottest in the
turbine section. It is in this section that sophisticated metallurgical processes are needed to
manufacture turbine blades which can withstand extremely high heat. Once the hot gas
leaves the turbine section, which may have one or more turbines, it is expelled out of the

back of the engine. A relatively crude technique (after-burning) for increasing the thrust is



to squirt more fuel directly into the exhaust gas. While this technique allowed some
aircraft to briefly reach super-sonic speeds, or was used during take off, it tended to waste

considerable amounts of fuel.

The material used to manufacture axial flow engines was nickel alloy. In modern
aircraft, a series of incremental improvements allowed the weight of the compressor
section to be reduced by making use of titanium instead of nickel alloy. Nickel alloy is still
used in the tortuous environment of the turbine. Of the many incremental improvements
made to jet engines over the past half of a century, the development of the turbo fan was
probably the most significant. In a turbo fan engine. a large fan in front of the engine
bypasses some of the air around the compressor. The bypassed air is used to cool the
engine and decrease the turbulent flow, thus reducing engine noise. Turbo fan engines
allowed aircraft to sustain supersonic speeds without the need for fuel wasting after

burners.

An important parameter used in the specification of a turbo fan engine is its bypass
ratio. This number indicates the ratio of bypassed air to the amount of air actually used in
combustion. Early turbo fan engines had high bypass ratios while the newest engines are
being redesigned with lower bypass ratios as more optimizations are being introduced. All
of these improvements have the effect of increasing the overall performance of these

amazing, reliable machines.

From an electromagnetic point of view, we are only concerned with the part of the
engine visible to a radar. From the back, a radar will see the final turbine section only. The

turbines have very dense blades and the radar returns are dominated by the scattering from



the last turbine blade set. Of course, the exhaust flaps (sometimes referred to as “turkey
feathers”) of the engine are visible to the radar as well. These exhaust flaps are used to
redirect the thrust. thus increasing maneuverability, and to reverse the direction of the

thrust when the aircraft is braking.

From the front, the face of the engine will be visible to the interrogating radar
along with the air inlet. This front face may be a titanium turbo fan, with a cone to cover
the hub (as in most commercial carriers), or a front frame. A front frame is a stationary set
of guide vanes that holds the center shaft fixed in the engine cavity for the rest of the

engine to rotate about.

An important fact about jet engines from a radar point of view is that they rotate at
a fixed speed, usually around 20,000 RPM. This is because the mechanical turbine engine
has a natural, optimum speed at which it operates. There is a similar situation in a car
where the engine has an optimum speed and a mechanical transmission is used to supply
power to the drive shaft at a wide range of speeds. In a jet, however, one method of
controlling the amount of air/fuel mixture is by adjusting the pitch of the guide vanes. The
change in pitch alters the amount of thrust while keeping the speed of the engine relatively
constant. In modern turbo fan engines the fan may be fixed to a separate shaft which
allows the fan speed to be slower than the rest of the engine. Additionally, some modern

engines have alternating compressor stages which rotate in opposite directions.

From an electromagnetic point of view, when the radar is looking at the front of an
aircraft, only the turbo fan needs to be modeled since it has a very dense blade set.

Alternatively, a combination of a stationary front frame and one compressor section would



need to be modeled for engines so equipped. Even with this assumption, we will see that
the modeling of aircraft engines from an electromagnetic point of view is a tremendously
challenging task. The work presented in this thesis however shows that the problem has at

least become feasible for perhaps the first time.

1.3 Available Data and Modeling Techniques

Measured data on radar interactions with fan blades is available from only a few
sources. Unfortunately, this data often lacks a complete description of the measurement
technique used or the geometry of the target and is of little use for reference purposes.
Additionally, the targets modeled are often complete engines, or scale models of complete
engines. This data cannot be used to validate a modeling technique incrementally.
Incremental validation is needed due the complexity of the problem which requires that

computational electromagnetic techniques specifically suited to this problem be created.

One relatively early source of measured data for a simplified engine model is
found in [5]. This work serves as an excellent review of the techniques that were available
at the time, or that were being developed for mathematically modeling the engine face.
The measurements made in [5] were done to eliminate all of the current candidates for jet
engine modeling. For example, the proposal to use a random, statistical function for
tracing rays in and out of the duct was discredited with a careful series of measurements
showing that the total exposed blade area does not correlate to the amount of power
reflected from the blades. A random model is still often proposed today by newcomers to

the problem and therefore the measurements contained in [S] remain timely.

Also in [5] it was demonstrated that diffraction effects from the blades are essential



and that these diffraction effects must include blade interactions. This fact eliminates most
high frequency ray optics or physical optics techniques. It is concluded in [5] that only
rigorous, integral equation techniques could accurately account for the physics inherent in
engine scattering. Given the limited power of the computational resources available at the
time and the limited development of exact techniques, the task of doing rigorous analysis

on jet engines was considered to be quite daunting.

During the 70’s, many researchers spent their time developing new mathematically
exact models rather than investigating large scale computational efforts. A very good
summary of these efforts is contained in [6]. While these mathematically exact techniques
were capable of giving good answers to canonical problems, such as simple open-ended
waveguides and even a cone-terminated waveguide, they were limited to electrically small
problems and could not begin to predict modulation. Still, insights gained into plane wave
to mode conversions contained in these works persist as an important contribution to the
problem, and some of the work contained in this thesis relies on those advancements.
More of the important insights were later distilled into modern works and only these

modern works will be referenced in the remainder of this thesis.

1.4 Objective

In this thesis, we apply modern finite element methods (FEM) to the jet engine
scattering problem with the goal of developing software to be used in generating radar
signatures of existing and future aircraft. A tool capable of predicting signatures from
aircraft at the design cycle would be a tremendous asset to the aircraft industry, which is

currently embracing the technology of rapid computer aided-prototyping.



Since full aircraft simulation is the ultimate goal, the FEM analysis must be
coupled to a high frequency simulation of the remainder of the aircraft. Thus, the objective
is to develop a hybrid finite element modal method where the connection to the high

frequency model will be done using a modal scattering matrix.



CHAPTER I

FULL THREE DIMENSIONAL HYBRID FEM
MODAL IMPLEMENTATION

A hybrid finite element modal formulation is presented for the analysis of cavities
with complex terminations, with the goal of characterizing jet engine inlets. The finite
element method is used to find the generalized scattering matrix for an N-port
representation of the complex termination, where N is the number of traveling modes in
the cavity. The cavity is assumed to be circular at the termination (engine), but the
remainder of the cavity can be of arbitrary cross section. The scattered fields are obtained
by tracing the fields back out of the cavity via a high frequency or modal technique with
the generalized scattering matrix used in determining the fields at an aperture near the
irregular cavity termination. “Proof of concept” results are presented and several issues
relating to the implementation of the FEM are addressed. Among these, a new artificial
absorber is developed for terminating the FEM mesh and the suitability of edge or node-

based elements is examined.

2.1 Introduction

The simulation of radar scattering from jet engine inlets is an important step
toward the characterization of aircraft structures. While high frequency techniques can

accurately simulate many scattering mechanisms on a typical aircraft, these techniques are
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not suitable for resonant or guiding structures such as antennas/radomes and jet engine
inlets. The engine face is an intricate target, possessing complex geometrical features at
the wavelength level or less, and is therefore inappropriate for high frequency analysis. By
comparison, the finite element method (FEM) [7] [8] is well suited for the analysis of
geometrically complex, inhomogeneous volumetric targets such as the engine face.
However, in spite of its inherent O(n) storage demand, the FEM analysis would still
require prohibitive computational resources were it to be also used for modeling the
volume enclosed by the inlet leading to the engine. To overcome this difficulty, in this
chapter we describe a new hybrid finite element method for the analysis of the inlet-engine

configuration.

The proposed hybrid FEM was originally proposed in [9] and combines ray
techniques (for propagating the field to and from the engine face) and the FEM (for
computing the fields scattered from the engine face). Figure 2.1 shows the regions to be
characterized either by the finite element method or some high frequency technique.
Obviously, the high frequency method is best suited for modeling the fields in the large
cavity region between the inlet mouth and the engine face. Any of the well known ray
methods such as the shooting and bouncing ray (SBR) [10], the generalized ray expansion
(GRE) [11], or even a modal decomposition technique can be used for coupling the fields
into the inlet region and guiding them from the inlet mouth to the engine face. The sarne

ray or modal technique can also be used for propagating the fields scattered by the engine

back out of the inlet.

Of importance in this analysis is the interface between the ray/modal and FEM
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Figure 2.1: Hybrid jet engine inlet analysis.

methods, and the truncation of the finite element mesh. Given that the inlet cross section
near and at the engine location is circular, and our desire to propose an efficient and
flexible coupling scheme, the coupling of the FEM and ray fields in this thesis is
accomplished via the generalized modal scattering matrix. That is, the FEM analysis
generates the modal scattering matrix which can then be interfaced with any high
frequency technique for computing the engine scattered fields without reference to the
geometry of the jet engine. Regarding the truncation of the FEM mesh, several schemes
are considered including absorbing boundary conditions, the unimoment method (integral
equation), and a new artificial broadband absorber, with the latter found most effective for

this application.

The chapter begins with a section describing the proposed hybrid FEM method,
termed as the FEM modal method because it generates the modal scattering matrix. This

section describes the role of the modal scattering matrix for interfacing with the FEM and
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ray techniques used for propagating the fields to and from the engine face. The next
sections discuss implementation issues of the FEM technique including elements,
application of boundary conditions, and truncation of the FEM mesh. Finally, results are
presented for three different inlet terminations. These terminations are rather simple and
serve to validate the proposed hybrid FEM modal method since reference calculations
using different techniques are available. Given that the emphasis of the thesis is on the
development of the FEM-modal technique and not on the inlet field propagator,
calculations refer to straight circular inlets. However, the inherent flexibility of the
generalized scattering matrix allows the characterization of the same inlet terminations

connected to different inlet geometries.

2.2 Finite Element-Modal Formulation

Consider the three-dimensional cavity configuration shown in Figure 2.1. The
cavity is excited by an arbitrary field (typically a plane wave) through its opening at the
left side and is assumed to have a complex geometrical configuration (an engine) at its
right end. We are interested in computing the field scattered by this complex cavity
termination due to a given excitation which is assumed to be specified at the left opening
of the cavity. In our analysis, the cross section of the cavity is assumed to be arbitrary and
of diameter greater than a free space wavelength up to the connectivity boundary as shown
in Figure 2.1. Beyond this connectivity boundary, the cavity’s outer perimeter is assumed

to be circular but may enclose complex geometrical configurations such as an engine.

In accordance with the proposed hybrid FEM modal formulation, the fields

entering the left opening of the inlet will be modeled and propagated up to the
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connectivity boundary using some ray technique (such as the SBR [10] and the GRE [11]
or modal method [12]). These techniques are well understood and this thesis is not
concerned with their description and implementation. Instead, our emphasis is on the
proposed techniques for modeling the complex cavity termination and coupling of the
fields associated with the different techniques at the connectivity boundary. As noted
earlier, the FEM will be used to model the fields in the vicinity of the complex cavity
termination (i.e. to the right of the connectivity boundary). We could indeed use the modal
or ray techniques to generate the excitation to the FEM system of equations. However, this
approach would require the solution of the FEM system for each field excitation, a rather
inefficient way of characterizing the interior cavity scattering at all incidence angles of the
impinging plane wave. Instead, given that the cavity is circular at the connectivity
boundary, a convenient way to characterize the termination is by determining its
generalized modal scattering matrix. Since each field distribution at the connectivity
boundary can be expressed as a sum of incoming (or outgoing) cylindrical waveguide
modes, the modal scattering matrix provides us with a unique method for characterizing
the cavity termination without consideration of the technique used for modeling the fields

to the left or right of the connectivity boundary.

The generalized scattering matrix [S] of a given termination relates the

coefficients of the incoming modes to the coefficients of the corresponding outgoing

modes. That is

[SKa} = {b} (2.1)



14

where the elements of the vectors {a}and {b} are simply the coefficients of the

incoming and outgoing modes respectively. They are defined by

J

a =1L (2.2)
J
r

Jés(x, ¥ 20) - ‘-{—’S*m(x, ¥, 2o)ds
by = T (2.3)
m —S —g%
J‘\Pm(-x’ y; ZO) - \Y m(X, y, Zo)ds
r

B . —inc =S ..
for m = 1,2,3,...N, in which ¢  and e are the incident and scattered transverse

electric fields, respectively, on the connectivity boundary surface I", and ¥,, denotes the

mode functions of the circular waveguide of a given radius. A single mode index is used 1o

compactly represent the totality of the even/odd, TE or TM modes, each of which is
associated with indices n and p. Additionally, each ¥,, is an odd/even pair, having either

sin[n@] or cos[n@] angular dependence.

In accordance with the proposed FEM-modal method, the entries of the
generalized scattering matrix are computed from the solution of the FEM system. More
specifically, the FEM solution proceeds as follows:

Given that the cavity accommodates N traveling modes,

(a) Use the q’th mode as the excitation
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(b) Find a g a the connectivity boundary I"
(c) Solve the finite element system to find the scattered field

(d) Calculate the inner product of the scattered field with each out-going traveling
mode on the connectivity boundary T to find bp (p=1,2,3,..N)
by

(e) Calculate the g’th column of the scattering matrix as S pg = =
a
g

(f) Repeat forallg = 1,2,3,...N

It was observed that if the connectivity boundary is placed A/4 from the

o . : . -2
termination, the coefficients of the outgoing evanescent modes were quite small (<10™°)

and were not therefore included in the final calculation of the scattering pattern.

We note that the generalized scattering matrix has certain distinct properties:
* Itssize is N x N, where N is the number of traveling modes (See Table 2.1).

* It is symmetric and unitary since all modes are defined to have unit power. It has so far
been observed to be sparse since the incoming modes tend to couple more strongly to
those outgoing modes having indices similar to those of the incoming mode. As an
example, we illustrate in Figure 2.2 the scattering matrix for a stub terminated inlet as a
function of the mode index using the ordering given in Table 2.2. The results shown
were generated via the theoretically exact mode-matching technique [13], and the char-
acteristic sparseness of the scattering matrix has been observed for all terminations

investigated so far.

Given the generalized scattering matrix of the termination, the evaluation of the
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Figure 2.2:  Amplitudes of the elements of the generalized scattering matrix calculated by
mode-matching for a hub termination.
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scattered field from the structure is feasible. Since the incident field is known, the
coefficients {a} of the incoming modes are also known [15], therefore the coefficients

{b} of the outgoing modes can be readily evaluated by (2.1). In the context of the modal

technique, all outgoing modes are tracked to the open end, where an aperture integration is
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radius
o) 0.5 | 066 | 1.66 | 3 4 5 10
N 6 10 60 186 328 508 2008
Table 2.1:  Number of traveling modes for cylindrical guides with different radii.
m Mode
-0 | TMg, -TMg
1120 | TMS | -TM{
2130 | TM5 - TM; |
3140 | TEg, -TEg
41-50 TEY | -TE]
51-60 TE; | -TE; 14
Table 2.2:  Mode indices corresponding to the results in Figure 2.2.

performed to calculate the radiated field. Since aperture integration is based on the
physical optics approximation, it is often necessary to correct the result by including the
effect of the rim, i.e. by considering the contribution of the fringe-wave currents [16]. The
total far field can be evaluated in closed form for rectangular or cylindrical inlet cross-
sections [17]. Although there can be higher order scattering mechanisms involving
diffraction of the outgoing modes from the mouth which scatter back into the inlet, since
the rim effects have been observed to be rather small these higher order mechanisms are

not included in the analysis.

If the inlet is electrically very wide, one can employ high frequency techniques to
mode] the propagation through the inlet body. The most commonly used techniques are
the Shooting and Bouncing Ray method (SBR) [10], and the Generalized Ray Expansion

(GRE) [11]. Neither is as accurate as the exact modal method, but they are much simpler
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from a computational point of view. Moreover, unlike the modal technique, they do not

require that the geometry be of canonical shape.

In the context of the SBR method, the incident field on the open end 1is
decomposed into a set of parallel ray tubes which are tracked into the cavity. When using
the GRE method, the open end aperture is divided into a number of subapertures, and the
incident field is decomposed into a set of rays emanating from each subaperture. Unlike
with SBR, the rays are not necessarily parallel to each other, and GRE is thus capable of
tracing non-planar wavefronts. Regardless of which method is used (SBR or GRE), as
soon as the rays reach the connectivity boundary the incoming field is transformed into a
superposition of modes using [15] (it is assumed that modes can be defined in the vicinity
of the connectivity boundary). The generalized scattering matrix is then computed via the
FEM analysis and the amplitudes of the out-going modes are computed from (2.1). The
scattered field can be evaluated by means of the reciprocity integral method [18] thus

eliminating the need to track the rays back to the open end.

2.2.1 Convergence of the Modal Solution

For an inlet with a given radius, we would like to know how many modes for
which we will actually have to perform the rigorous hybrid FEM modal analysis, not just
the theoretical number of traveling modes that can exist. Given the large number of modes
that will be present in realistic size inlets. we wish to know if the solution can be expected

to converge before all of the modes have been used.

We will investigate the convergence of the modal solution by considering the

variation in the far field patterns for a canonical problem for which a body of revolution
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(BOR) moment method solution exists [14]. By increasing the number of modes used in
the body of revolution analysis until convergence is reached, we can determine the highest
mode index (n) that will be required in the hybrid FEM modal analysis. That is. each time
we add a mode to the body of revolution analysis, it is equivalent, in the context of the
hybrid FEM modal technique, to adding another mode group containing the next higher

mode index n.

In Figure 2.3 we plot the theoretical, highest mode index (n) for the highest order
traveling mode as a function of increasing inlet radius. Note that the TE modes always

have the highest index. A linear interpolation to the curve (TE) gives a useful engineering

formula for the highest index present in an inlet with electrical radius a,

n,.. = 59a; - 15 (2.4)

Next we consider a representative body of revolution problem whose BOR profile

is given in Figure 2.4. The BOR analysis was performed at 2, 4 and 6 GHz where the

corresponding electrical radii were 1, 2 and 3 A. By increasing the number of BOR modes
up to the maximum value of n as given in Figure 2.3, we observe the convergence of the
far field solution with respect to n. We observe in Figure 2.5 that for the 2 GHz case, the
solution converges rapidly at the lower observation angles, but converges at the highest
observation angles only once all of the modes are used. For the 4 GHz results (Figure 2.6),
we see that the solution converges rapidly at the low observation angles, but again almost
all of the modes must be used to achieve convergence at the higher observation angles.

Except for the theta-theta polarized case, we see that the solution has mostly converged
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Figure 2.3: Maximum mode index (n) of traveling modes vs. electrical radius.

out to about 45 degrees when the n=7 and 8 modes were not included. Of most importance
is the 6 GHz result (Figure 2.7) which shows that the solution has converged long before
the highest traveling mode index has been included. The solution has in fact converged
once the n=11 mode is included, even though there are traveling modes up to n=18. This is
a promising result which indicates that although there will be a very large number of
traveling modes, in practice the higher order traveling modes may be unimportant, thus

saving a lot of needless computation.

2.2.2 Finite Element Analysis
The traditional FEM analysis involves the solution of the time harmonic weak

form of the wave equation in a bounded volumetric region of space. Being a partial
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30.3175 cm

Figure 2.4: Profile of BOR cavity used to test convergence of modal solution.

differential equation method, the FEM analysis leads to sparse matrices (with about 10 to
50 nonzero entries per row) and permits the modeling of complex inhomogeneous regions
without need for special care and considerations. For the problem at hand, the FEM

analysis region is shown in Figure 2.1 and is seen to extend a bit beyond the connectivity
boundary I'" to a mesh termination boundary I"". On I it is necessary to enforce an
absorbing boundary condition (ABC) or some other mesh termination scheme which
ensures the outgoing nature of the waves. That is, I must be a non-reflecting boundary.
This will be discussed later in more detail. We remark that the cross section between I’

and I" is again assumed circular for this analysis, but this assumption has no bearing on

the actual cavity of Figure 2.1.

On the basis of the FEM-modal formulation, we are interested in computing the

fields scattered by the cavity termination due to the modal excitation

E™ =9, 2.5)
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The total field in the FEM region is then

—=inc =S

E=E +E (2.6)

It is well known that the unknown scattered electric field satisfies the weak wave equation

(see for example [7] [8] and [20])

j —T-[Ax (VxE‘S)]\ds+J _[ J( (VXE')(VXT) - koe )d
J
, ¢ ‘ ' 2.7)
-2 j j —T [Ax (VxE‘”C)ﬂds-z j j j( L (VB (VKT - kee, T - E‘”C)dv
J \u,
Q
where T is referred to as a testing function and must be at least square integrable. For

Galerkin implementations, T is set equal to one of the expansion basis functions and for

each basis function, a system equation 1s constructed. However, before proceeding with

the system construction, it is necessary to first introduce the magnetic field A’ = _—Z:ELT
JORH,
and rewrite the above weak equation as
”j{ﬁl_(wzs VXT)-T- kggfldv — [ JtikenT - (A xH')}ds +
Q Ur ; r
(2.8)

\

1 —s = inc 3 -
fgj}j{u——r(v.E)r!(v.T)J}dv - —2_[311{ (VXEV <E™ ke E )}&d‘,

a

in which € is the volume occupied by the dielectric not including the fictitious absorber

(which will be discussed in the next section). Also, the third term on the left hand side of
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(2.8) is the penalty term which ensures that the divergence condition be satisfied in the

Galerkin least squares sense and is also discussed in the next section.

On our way to discretizing the weighted residual equation given above, it is

necessary to: (a) tessellate the volume 2 into smaller elements, (b) choose an expansion

for the field in each element, and (c) relate H  and E’ on the outer boundary of Q

including I'"". These issues are addressed in the next section.

2.2.3 Implementation of the FEM Solution
Since the focus of the chapter is to present the hybrid FEM modal analysis, only

those aspects of the implementation that are unique to this application will be discussed.

Node-based elements were used in this initial implementation because it was
found that standard edge elements [20] broke down when the field was purely TE (no z
component of the scattered electric field) for large problems. The breakdown of standard
edge elements was highly mesh dependent and was manifested in the form of a poorly
conditioned global system. In Chapter 4 we will show how the edge elements can be
modified to make them more suitable for hybrid FEM modal analysis. Although edge
elements are attractive for imposing the boundary conditions on metallic surfaces and
corners, we nevertheless resort to standard node elements for this initial implementation

because of the aforementioned breakdown.

It is well known that node-based elements can have difficulties when applied to
electromagnetic problems. The source of these problems has been reported from different

points of view [19] [21] [22] [23], and remedies have been proposed. Among them, the
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penalty-term method has been widely used, but a recent formulation using potentials
rather than fields [22] appears promising. However, difficulties again appear with the
imposition of boundary conditions on the potentials when dealing with disjointed
structures. Since the engine face is a large target with many disconnected components we
resorted to the traditional node-based formulation where the penalty term [23] was used

for enforcing the divergenceless condition in a least squares sense.

Although not rigorous, the traditional node-based implementation [23] gave good
results provided care was exercised when enforcing the boundary conditions at metallic

boundaries and edges. For a node lying on a conductor, the boundary conditions are

~ =S N —Inc

5 = -1
(2.9)
~ =S N —inc

where 7, , denote the orthonormal unit vectors tangent to the metallic surface. There are

many possible ways of coupling the global equations to enforce the boundary conditions
(2.9), but there is always a best way which preserves the system’s condition. If the
boundary conditions are enforced arbitrarily, it is then possible to completely destroy the
condition of the system and to generate wrong results. The following procedure will

guarantee a well-conditioned final system:

Given the metal surface normal 7 at the node, find the two tangent vectors ?1 and

1, as follows

<>
X
x>

*if [§ X 7A| >0.15 then set ?1 =

!
i

>
X
>



28

- XXh
elseset i} = ——
|% % 7
R 1y X7
* i = = N
T XAl

* Given the three global equations for EZ Ef and Ea at the node

- find the largest component of 7, (X, y or z) and replace the corresponding glo-

—=inc

bal equation with 7, - E' = -7, - E

- find the largest component of 7, (. y or z) and replace the corresponding gio-

—inc

bal equation with 7, - E’ = -1, E

At the open end of the mesh, the fields radiate into an infinite, cylindrical
waveguide. The boundary condition at this open end must absorb all traveling modes in
the guide (see Figure 2.1), and the most obvious choice for terminating the FEM mesh is
to expand the scattered magnetic field as a sum of all traveling modes and to couple this
expansion directly to the FEM equations through the second term on the LHS of (2.8).
While this scheme worked well for shorted inlets, it was found to be unstable for the stub

terminated inlet. Even if it was stable, the full submatrix resulting from this scheme would

make it impractical for large radius cavities. The full submatrix has a size of M X N-
where M is the number of modes in the cavity (including some evanescent modes) and

N is the number of degrees of freedom on the connectivity boundary I". Both M and

N increase as (approximately) the square of the radius of the guide. A more efficient

scheme is to use a fictitious material absorber designed especially for cylindrical, traveling

modes. The use of material absorbers in FEM computation also preserves the sparsity of
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the overall system and results in a better conditioned system than other mesh termination

schemes such as numerical absorbing boundary conditions.

The design of a fictitious material absorber to absorb all traveling modes 1s

complicated because the impedance and propagation constants of these modes vary

greatly. The impedance of the first eight traveling modes for a guide of radius 0.662 is
given in Table 2.3. These eight modes were used to design an optimized absorber. Clearly,
if the absorber was allowed to be very long, it could then be designed to have nearly
perfect absorption. However, since the absorber will be part of the FEM mesh, as a design
constraint it should be no more than about a half of a free space wavelength long to be

practical.

e

TM o1 |TM 11| TE 11 |TE 21 |TM 11| TE o1 | TES 11 | TE®2
Mode

Z(Q) 307 144 421 557 144 986 421 557

Table 2.3:  Impedance of the eight different traveling modes in a cylindrical guide with
radius of 0.66A .

A Monte Carlo optimization scheme based on [24] which has the desirable

properties of finding not only the best performing but also the most stable design was

used. A five section, metal backed absorber was used as a starting point with €, and W, set

to unity in each section. The length of each section was set initially to 0.1A. The 15
parameters (material constants and lengths of each section) were varied randomly,
independent of one another. Transmission line theory was used to calculate the reflection

coefficient for each mode (see Figure 2.8), and the algebraic sum of reflection coefficients
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(the sum of their absolute values) was used as the global optimization parameter. A pass/
fail criterion on the global parameter was set to give approximately a 50% yield. For each
random design, a pass or fail was noted for each parameter, and after a number of designs
have been sampled a pattern begins to emerge. Some parameters indicate a tightening up is
in order since most of the ‘good” designs were centered about a certain value. Other
parameters indicate a don’t care condition as all values worked equally well. A new set of
initial values and ranges was chosen and the process was restarted. Again, the global
parameter threshold was chosen to give about a 50% yield. This global threshold

continues to drop each iteration until a stable design was found.

The final design and its performance is shown in Figure 2.9. Note that the

reflection coefficient for all modes is less than 0.1 (-10 dB). The performance of this

absorber was tested for a larger guide of radius 2A having 77 traveling modes, and from

Figure 2.10 it is seen to have good broad-band modal performance.

2.3 Examples

2.3.1 Example 1

The simplest configuration that could be analyzed is a cylindrical cavity terminated

with a flat plate. To terminate the FEM mesh the absorber was placed 0.33A away from
the cavity base. We remark that no mode coupling is present in this configuration and that

the mesh was generated using the commercial CAD system SDRC I-DEAS with a global
element size of Tli M. For this calculation, the connectivity boundary was placed 0.154

from the base and the scattering matrix calculated using the FEM-modal formulation,

which was in turn used to calculate the outgoing mode coefficients. These modes were
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then traced back out of the inlet to find the radiated field. The results are shown in
Figure 2.11 for a 1A-long, 1.32A-wide cylindrical cavity. Good agreement is seen as
compared to a mode matching solution [13]. Note that the penalty parameter T, in (2.8)
was set to unity for this example.

2.3.2 Example 2

The next simplest cavity termination is a circular stub. This geometry can also be

analyzed via a mode matching solution [13] since all of the conductors are on curves of

constant coordinates. The absorber was placed 0.33A from the stub and the scattering
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Figure 2.11: Results for example 1: a shorted cylindrical cavity.

matrix was computed at a distance of 0.25A in front of the stub. The co-polarized

backscatter patterns are given in Figure 2.12.

It was found that the proper handling of the boundary conditions at the inner edge

(the rim of the stub) was critical. If the total field were set to zero at this inner edge, the
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Figure 2.12: Results for example 2: a stub terminated inlet.

results were not as good. However, if only the component tangential to the edge (E, ) was

set to zero, whereas E: and £ o were allowed to float, the results were much improved as

1s depicted in Figure 2.12.
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While the results shown are in good agreement for horizontal polarization, there is
some discrepancy in the vertical polarization. Finer sampling around the rim does improve

the comparison slightly but with very slow convergence. The results shown were obtained
. . ] . ] . .
using a global element size of A and an element size of ;A around the rim. Again, the

penalty term was set to unity.

2.3.3 Example 3
The third example is for an inlet with a ridge termination as shown in Figure 2.13.

The termination consists of four ridges (grooves) each with an angular span of 45 degrees.
The absorber was placed 0.5A from the ridge interface and the scattering matrix was

evaluated at a distance of 0.25A from the discontinuity.

For this problem, it was found that the implementation of the penalty term had
modest effects on the results. The penalty term contains an arbitrary parameter T, which
in the previous examples was set to unity. However, by using an analytical solution as a
reference, or by fitting the formulation to a higher order scheme, it is possible to find an
expression for T, as a function of the element size and local material parameters that

minimizes the net error in the FEM solution. This type of approach has been used with

success In the field of applied mechanics [25] [26]. For this example we have set

—
LI
~—

(2.10)

where V' is the volume of the element and this value of T, was determined numerically by
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minimizing the error for the shorted inlet of the same radius. It is noted that for a global

mesh size of about l—‘; A, the value of T, is unity.

Again, boundary conditions at the internal edges and corners needed to be handled
properly in order to achieve physically meaningful results. From example 2 it was found
that only the tangential field to the edges should be specified at the internal edges while the
other components remained as degrees of freedom. For this example, the additional
complexity of the ridge geometry gives rise to corners as well, and it was found that the
boundary conditions at these corners could modestly affect the scattering patterns. The
boundary conditions imposed at the corners must of course be consistent with the known
field behavior and discontinuities [27]. With this in mind, the total field components at the
corners formed by the ridges and the outer cylindrical guide were all set to zero. At the
inner corners, where the ridge meets the inner cylinder, the geometry is discontinuous in
the z direction only, and thus the z directed electric field was a degree of freedom while the

other components of the total field were set to zero.

Figure 2.13 shows the principal plane, co-polarized RCS patterns computed via the
modal-FEM scheme and a mode matching solution [13]. It is seen that the RCS patterns

compare adequately with the mode matching solution especially around normal incidence.
For this example a global mesh size of ,l L was used with a local mesh size of %’k around

the discontinuities. It is suspected that the errors in the modal-FEM results are due to the
simplistic penalty term and not due to the material absorber (based on the good results

achieved for the shorted inlet).
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2.4 Summary

The benchmark tests show the validity of the overall FEM-modal scheme and the
utility of the broadband cylindrical mode absorber for terminating the mesh. Also, the
results indicate that node-based elements can be used for scattering analysis if boundary
conditions are handled properly so as not to disturb the condition of the FEM system.
Additional consideration must however be given to the proper implementation of the
penalty term by fitting the numerical scheme to known, analytical solutions and selecting a
penalty function to minimize the net error. Since the edge elements broke down for the
pure TE case, no comparison between edge and node-based elements was possible for this

problem.

Several different methods and schemes were tried before the above formulation
was chosen. A mode matching technique for terminating the mesh was tried but was found
to be unstable in addition to its large storage requirements. A mathematical absorbing
boundary condition was considered, but has been found to produce poorly conditioned
systems in comparison to fictitious material absorbers. Thus, we resorted to a specially
designed material absorber for terminating the mesh, and this was shown to have good

modal absorption for inlets larger than was initially considered.

The validation of the method for non-trivial cavity terminations and the proper
implementation of the boundary conditions near edges and discontinuities were indeed
challenging tasks. With regards to the validation, a mode-matching code was written
which was crucial to the validation of the FEM-modal formulation since it is difficult to

isolate the termination scattering by measurement techniques. As seen. the comparison
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between the results from the two methods were quite good given the geometric complexity

and diversity of the solution procedures.

However, with the goal of characterizing jet engines at radar frequencies. we
clearly have a long way to go. First of all, the electrical size of the problems examined in
this chapter are small (radius about one wavelength). These small electrical sizes
correspond to engine inlets at about 100-300 MHz. Although these frequencies may be of
interest in practice for very long range radars, our primary interest is for microwave

frequencies.

Secondly, we found that when increasing the electrical size of the problem up to
about 2 wavelengths in radius, the nodal based formulation given in this chapter began to
yield highly erroneous results, regardless of the choice of penalty parameter. The failure of
node-based elements provided the motivation for finding the cause of the breakdown of
the edge elements since edge-based elements are described in the literature as being free

of the theoretical inconsistencies inherent in nodal elements.

Thirdly, the material absorber used here is a resonant design and requires a
different mesh for analysis at different frequencies. Also, this design was seen to give
measurable errors in the far field, significant enough to warrant the search for an improved

mesh truncation scheme.

Finally, nothing as yet has been done to address the fact that we must model
rotating blades. Solution of the entire problem over and over again for different blade

positions will require prohibitive computational expenses.



41

Each of these four issues: (1) enormous electrical size of the problem, (2) the need
for edge-based analysis, (3) improved mesh truncation scheme, and (4) the modeling of
rotating blades, is addressed in the following chapters and represents the most important
contributions contained in this thesis. In the next chapter, the theoretical basis for limited
mode coupling is introduced. This limited mode coupling explains the sparse structure of
the modal scattering matrices encountered so far. The limited mode coupling also allows
the solution of very large problems by considering only one unique slice of the blade
termination. The sliced FEM method is given next for small problems, still in terms of
node-based elements, but in Chapter 4 a small change to the standard definition of edge
elements is given which is found to make them well suited to the new sliced FEM
formulation. Also, a broad-band, anisotropic absorber layer is introduced as a candidate
for mesh truncation within the sliced FEM problem. In Chapter 5, the most important
contribution contained in this work is given. Here we reveal a technique for computing the
time-varying return from the rotating engine blades as a simple post-processing step,

based on a single solution for the stationary blades.



CHAPTER III

OVERLAPPING MODAL AND GEOMETRIC
SYMMETRIES

By examining the scattering from a cylindrical inlet terminated by a fan-like
structure possessing discrete angular symmetry, it is found that only very limited inter-
modal coupling is possible. The previous chapter considered the solution of the blade
structure without any simplifications due to the obvious periodicity of the engine blades.
In this chapter, the limited mode coupling from the periodic engine blades is exploited in a
node-based hybrid finite element modal scheme. We develop a very efficient solution, in
which only one slice of the geometry need be modeled. It is shown that a phase boundary
condition at the interior walls of the mesh is sufficient for the complete solution of the
problem. The implementation of the phase boundary condition is detailed for the full
three-dimensional node-based case, including special considerations for enforcing the
boundary conditions along the axis. A simple example is shown for the sliced hybrid finite

element modal scheme to validate the method.

3.1 The Need for Drastic Computational Scaling

The use of a hybrid finite element modal technique to model the radar scattering
from jet engine inlets is depicted in Figure 3.1 [28] [29]. Briefly, the finite element method

(FEM) is employed to generate a modal scattering matrix for the engine face while some
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Figure 3.1: Tllustration of the hybrid finite element-modal analysis of jet engine inlet
scattering.

high frequency or modal technique is used to trace the fields in and out of the inlet. It is
necessary to perform the FEM analysis once for each traveling mode in the circular inlet to
generate the scattering matrix. That is, the incoming field is decomposed into waveguide
modes prior to the application of the FEM, and the FEM 1is used only to generate the

modal scattering matrix.

While the hybrid finite element modal technique was validated in Chapter 2 for an
engine-like termination consisting of straight blades, the electrical sizes considered were
small (approximately 1A radius), whereas typically the inlet can have a radius of 10\ or
more. Because the number of degrees of freedom grows as the square of the radius, to
apply the method directly to large structures would involve computational costs which are
indeed staggering. Also, the number of traveling modes and the size of the scattering

matrix grow as the radius squared (note that the analysis must be repeated for each mode).
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For the inlet configurations considered in Chapter 2 approximately 50,000 elements were
needed with about 20,000 degrees of freedom. The analysis was repeated approximately
10 times, once for each mode. Accordingly, an inlet which is 10A in radius would require
100 times the computational resources (5,000,000 elements) and the analysis would need
to be repeated 100 times over (2,000,000 degrees of freedom, 1,000 times), thus
increasing the total computational cost by about 10,000. In effect, the computational cost

increases as the electrical radius to the fourth power.

Obviously, some physically derived simplification is needed to scale the problem
to a workable size. By exploiting the cyclic geometric symmetry which exists in an engine
face, it is shown that the entire problem can be reduced to a single unique slice of the
geometry. For example, if the engine face has 40 blades, it is sufficient to model, and carry
out the analysis for only a single angular period of the geometry, which encompasses one-
fortieth of the total computational volume. To achieve this computational scaling, it is
necessary to work with modal field excitations and not plane wave excitations. By
exploiting the modal (excitation) and geometric symmetries, it can further be shown that a
very limited set of scattered modes are possible. This leads to a very sparse scattering
matrix (i.e. very few observables are needed for characterizing the angularly periodic
engine face) as has been observed in the previous chapter and is mathematically proven in
this chapter. It is also demonstrated that all of the scattered modes have a constant phase
shift from one slice to another. From a computational point of view, since all scattered
modes have equal phase shift across the slice, a phase boundary condition can be imposed
at the two interior faces of the FEM mesh to bound the problem. This technique has been

used successfully in [30] and [31] and is extended to three-dimensions in this thesis.
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Section 3.2 of this chapter justifies that the problem can be scaled down to only
one slice by showing that the overlapping modal and geometric symmetries give rise to a
limited set of scattered/reflected modes. It is shown that these modes can be modeled with
a phase boundary condition on the interior walls of the mesh separating the periodic
sectors of the engine face. The theory presented is essentially a special extension of
Floquet theory to cylindrical structures. Section 3.3 describes the implementation of the
phase boundary conditions for the full three-dimensional problem including some
important numerical considerations that if overlooked can lead to ill-conditioned systems.
Also, enforcement of the boundary conditions along the axis 1s discussed in light of the
fact that the phase boundary conditions cannot be defined there, and thus a different,
physically derived set of boundary conditions must be used. Section 3.4 shows results for
the hybrid finite element modal analysis making full use of the overlapping modal and

geometric symmetries.

3.2 Overlapping Modal and Geometric Symmetries

Within a cylindrical waveguide, electromagnetic radiation propagates as modes.
These modes are classified as being either TE (transverse electric) or TM (transverse

magnetic). Each of these two mode classes are associated with four parameters: the

integers n, p, G, and ©.. The index n is associated with the angular dependence of the

modes, while the index p is associated with the radial dependence of the modes. Although
it is often convenient to use cylindrical waveguide modes whose angular dependence is

either cos(nd) or sin(nd), to exploit the symmetry of the engine face, the modes must

be defined as having A dependence. It is the simple angular phase shift of the modes
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across a sector that makes possible the exploitation of the geometric symmetry [30]. The

index G, determines the sense of rotation as the mode propagates down the guide, while

the index G determines the direction of propagation. Both of these indices take on the

C.jPz .
values of £1. All modes have a 7 dependence of e P where the propagation constant B
1s a function of the mode indices n and p and the radius of the guide. A mode having
G, = +1 corresponds to an incoming (incident) mode while a mode having G, = -1

corresponds to an outgoing (scattered) mode. The modal electric field will be denoted by

=i . =S .
¥y, , for incident modes and ¥, p for scattered modes, each actually corresponding to a

TE/TM pair.

Consider a unique slice of an engine-like termination as shown in Figure 3.2. Let

0, be the angular extent of the unique slice of the geometry. For any fan-like structure,

hub

symmetry face 2

symmetry face 1

A
7
<

Figure 3.2: A unique slice of an engine-like termination.
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o, = Z%T-t where N is the symmetry number (number of blades). Since the incident field
N

tjn
will be a cylindrical mode with an angular dependence of the form e "7 the FEM

system resulting from a solution of the entire problem would take the form

— - 1
K’ E; f
5 2 ij”inq)s
K E’
pE £ = féiEﬂnﬁs 3.1)
] KN_\-H E-/v\’_‘./ fei(NS -1 )J'"m‘f’s

k . . .
where Es denotes the components of the unknown scattered electric field in slice k.

. . . 1 2 3 N,
Because the geometry is the same in each slice, K’ = K* = K°... = K ' and by

linearity, the unknown scattered fields must all be equal to within a phase factor. That is

tjn. ¢
2 1 = Min%
E =Ee
o +/2n. 0
1 210
E> =E.e
$ s (3.2
N | N o
E. =E.e

and consequently, the scattered field is a periodic function in ¢ with period ¢, and a

. jn;,0, . . . . . .
progressive phase advance of e in each period (slice). This restricts the possible

scattered field modes, and to find which scattered modes can make up such a field, we
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consider the modal decomposition of the scattered field. Specifically. on a cross section I

of the guide located somewhere within the termination region (say at z = z;)

oo

E(xy.20) = % Y b, Fu p0652) (3.3)
0

n = -0 p=

our

where the coefficients b,  are found by taking the inner product of the transverse

out

scattered field (2° ) with each of the outgoing (scattered) modes ‘T’f, :

- o5
JeS(x’ y’ ZO) ' l}I”aur’ p(x’ y’ Zo)ds

_ r
Roup P - i) —s* (3‘4)
Jqlll » D(x’ Y ZO) ' \P”pwx P(x’ Y5 ZO)dS

Considering the angular dependence only, the above expansion is seen to reduce to

. - . ijn{)ll.Q.\
a Fourier transform with respect to ¢ since the scattered modes have an e

dependence. That is, the variables ¢ and n,  are a Fourier transform pair. It is thus
important to investigate the spectral content of a signal which is periodic in ¢. but has a

- ijnin¢\ - .
progressive phase advance e from one period to the next. In so doing, the set of

possible scattered modes will be found.

Consider a signal S(¢) which is periodic in ¢ but has a progressive phase advance

+in,
7% gs illustrated in Figure 3.3. This signal $(¢) can be thought of as a sum of N,

signals, each with an angular offset and a phase shift from a reference signal S,(¢) which

1s shown in Figure 3.4.
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Figure 3.3: A periodic signal with progressive phase advance.

£0 £0
5o(0) |

Figure 3.4: Reference signal used to construct S(¢) .

Mathematically,

N, -1
5(0) = Y Sp(9-ko,)e
k=0 (3.5)

Jkn;, 0,

and the Fourier transform (¢ <> n, ,) of such a signal can be readily found using the

out

properties of shifting and linearity to give

N -1
s pe . jk(”/n _”ﬂu/)Q\
S(n,,,) = So(n,,,) z e =
k=0
(ejN_\'(”in_nrml)q‘).\' _ 1 _ (3.6)
| j(nin'_nnul)¢\ 1 SO(noul) = O noul ¢ nlnimN3
—__. e R 1
| 3 :
\ NSo(n,,,) Mowr = NiytMN



50

where m is any integer. That is, only if

n,, =n,tmN, m:any integer (3.7)

is S (n,,,)nonzero. Thus the spectrum of S(¢) is made up of a limited set of modes,

whose index 1s given by (3.7).

The implication of (3.7) is that for a given N (symmetry number or number of

blades), only certain scattered modes can exist for a given incident mode, and this of

course implies a very sparse scattering matrix. For example, if there are 17 blades and the

incident mode is associated with n;,, = 1. then only scattered modes which have

S
i

our = 1,18,-16,35-33... can exist. For n, = 2 only scattered modes with

=
1l

2,19,-15,36,-32... will be present in the scattered field.

out

For an inlet termination with axial symmetry (a body of revolution, such as a
circular stub, a cone, a bulb etc.) the symmetry number N goes to infinity. Consequently,
on the basis of the above discussion coupling can only occur to modes which carry the
same angular dependence (i.e. n,,, = n;,). This is consistent with what is known from

classical body of revolution theory [32].

An interesting observation from the above analysis is that coupling does not occur
to modes having n,,,, = n; * 1 since a symmetry number of 1 (N, = 1) implies that the

termination has no angular symmetry. This fact will turn out to be of great importance for

establishing boundary conditions on the axis of the FEM solution. To consider further the
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impact of the limited mode property on the FEM solution, note that all of the possible
scattered modes share a common phase shift from symmetry face 1 to symmetry face 2.

Thus, all scattered modes are related, on a cut of constant z, from face 2 to face 1 by

2 ;L0
Ep = Epe
+.
2 1 “jninq)s 3.8
2 1 ijnirz¢s
E- = E._e

where E- is the scattered field on face 2 and E' is the scattered field on face 1. This fact
was first exploited in [31] to efficiently compute eigenmodes within a cyclotron using
FEM. The implementation of the phase boundary condition for node-based three-

dimensional FEM analysis of the engine face is discussed next.

3.3 Phase Boundary Conditions for 3-D FEM with Node-Based
Elements

In the previous section it was shown that the only condition needed to relate the
fields on the two symmetry faces is a phase boundary condition (3.8). However, the
implementation of this condition is complicated because it must be enforced over a surface
which includes the cylinder axis. The phase conditions cannot be defined on the axis and

must therefore be replaced.

For the initial implementation of the FEM, the mesh which is generated to model

the slice must have coincident nodes and elements on the two symmetry faces. In this

2 .2 2 . .
manner, for each degree of freedom on face 2 (E.E., E_), there is a corresponding degree
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of freedom on face 1 (Ei,Ei, Ei ). During assembly of the FEM system, degrees of

freedom on face 2 can be discarded in favor of degrees of freedom on face 1 by enforcing

the phase boundary condition as

222 a1 0

p ~(xEx+yEy) =0 -(xEx+yE),)e

2 1 zjn. O

0 (RES+3ED) = & - (GE,+JE)e " (3.9)
2 1 ianinq)s
E.=E.e

<

After some algebra (3.9) becomes

1 1
el | 3.10
O RN

I 1 2 2 :
where p(, ), &, y) and p(, 1y, O, ) are the components of the polar unit vectors at face

1 and 2, respectively. Expression (3.10) can be used directly to assemble degrees of

freedom on face 1 in favor of degrees of freedom on face 2.

Since the hybrid FEM modal formulation as shown in Figure 3.1 makes use of an
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absorbing layer to truncate the mesh, the space between the engine face and the absorber
must include the axis of the guide. Consequently, some degrees of freedom are located on
the axis (since part of the axis is non-metallic) and this introduces a complication in
applying the slicing scheme not previously encountered in the literature. While the
transverse polar field components cannot be defined on the axis, the transverse cartesian
components have specific values. This fact is a motivation for formulating the finite

element solution in terms of cartesian rather than polar components.

In practice, boundary conditions on the axis must be imposed differently for each
modal excitation. By considering the field behavior along the axis and the limited mode
coupling effect, a consistent set of boundary conditions can be applied along the axis.

First, consider the behavior of the modes on the axis as shown in Table 3.1.

MODE n=0 n=1 n>1
TEE,E, =0 0 =0
TEE. =0 =0 =0
TME,E, =0 0 =0
TME, #0 = =0

Table 3.1:  Behavior of modes on axis.

Since it was previously noted that mode coupling does not occur to modes having

n_ . =n. 1, there will never be a mode from column | and column 2 that exist
concurrently. If a mode included in column 1 is present, i.e. n;,, modulo N, = 0. then the
boundary conditions to be enforced on the axis are £, = E_ = 0 which holds for all

possible scattered modes. If a mode from column 2 is present, i.e. (rn, £ 1) modulo

m =
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N, = 0 then the boundary condition E_ = 0 is enforced. If all scattered modes are such

that n,, > 1, then the conditions E . = EV =E = 0 are imposed.

Careful implementation of the boundary conditions on conductors that cross the
symmetry faces was also necessary to preserve the condition of the system. In this case,
conditions must be enforced so that during assembly, both the phase and the metal
boundary conditions are enforced without causing deterioration of the system’s condition.
This can be accomplished using the following procedure which is performed at the

element level.

For a degree of freedom located on a conductor surface with normal 7 at

symmetry face I:

«if | x 4| >0.15, then set 7, = ?Xn elseset 7, = pxn
64 [p Al
. Ixi
*h =3
2x1|

s S
* Given the three local equations for Ex ,Ey and Ei

- find the largest component of 7, (x, y or z) and replace the corresponding

equation in the element system with 7, - E* = =7, - E"

- find the largest component of 7, (x, y or z) and replace the corresponding

equation in the element system with 2, - E’ = =3, - E"*

For a degree of freedom that is located on a conductor at symmetry face 2, the
procedure is the same except that the largest component of the tangent vectors (7, and 7, )

must be found for the corresponding degree of freedom on face 1 (not face 2) and the local
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equations replaced accordingly. In this manner, when (3.10) is used for assembly, both
boundary conditions (on face 1 and face 2) will be enforced correctly and the condition of

the system will be preserved.

3.4 Example

As an example, an inlet terminated in a short with radius of 0.66 is analyzed by
using only a 4 degree slice of the original problem. While this geometry is in fact a body

of revolution, it is nevertheless an important benchmark for validating the correct

implementation of the phase boundary conditions. The absorber is placed 0.5A from the
short and the connectivity boundary (where the scattering matrix is calculated) is located

0.25A from the short. In this case, any size slice is sufficient, but a balance was achieved
by considering that if the slice is too thin, more elements will be needed as the element
size must shrink to fill the narrow slice. The calculated scattered fields on the slice
boundary for two modal excitations are depicted in Figure 3.5 and Figure 3.6 and are seen
to have the correct behavior everywhere including the axis. When calculating the
scattering matrix, this termination should simply generate a diagonal matrix with each
mode having a reflection coefficient of -1. The errors in our calculations using a 4 degree
slice are given in Table 3.2 for the first five modes. These errors are within acceptable
ranges for finite element implementations and are mainly attributable to the finite

reflections from the absorber used to terminate the mesh.

Mode | TMy | ™M, | TE, | TE, | TE,

% error -0.99 -5.77 +.12 +2.35 -.06

Table 3.2:  Error in the calculated reflection coefficients for an inlet terminated in a
short, using a 4 degree slice.
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Figure 3.5: Calculated scattered field Re(E,) for TMy; excitation of a shorted inlet

using a four degree slice.
tel O

3.5 Summary

In this chapter we introduced the concept of limited mode coupling for simplifying
and scaling the hybrid finite element modal solution of jet engine inlet scattering
applications. It was shown that angularly periodic inlet/waveguide terminations lead to
very sparse scattering matrices and mode-to-mode coupling can be predicted a priori to
reduce storage and computing requirements. Most importantly, it was shown that periodic
phase boundary conditions can be used to restrict the computational volume to a single
periodic cell, as 1s typically done with ordinary planar periodic antenna arrays. The theory
presented here is essentially a special extension of Floquet theory to cylindrical, periodic

structures. Since the analysis of jet engine inlet scattering by 3-dimensional FEM requires



57

Figure 3.6:  Calculated scattered field Re(E ) for TE; excitation of a shorted inlet using

a four degree slice.

that electric field degrees of freedom be defined along the axis, a consistent set of
physically derived boundary conditions for the fields along the axis was given. The phase
boundary condition alone is not sufficient to solve the problem, as the conditions for the
fields along the axis must be included. Also, the extension of the periodic phase boundary
conditions to a full node-based 3-dimensional FEM solution required the development of
practical procedures for enforcing the boundary conditions without destroying the system
condition. It was shown that the above analysis could accurately predict the modal fields

scattered from a shorted inlet using only a 4 degree slice of the actual cylindrical region.

In this chapter, we have addressed one of the four practical issues brought up at the

end of Chapter 2, namely the enormous electrical size of the problem. The computational
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cost associated with the solution of this enormous problem has been scaled by many
orders of magnitude in two ways. First, the storage requirements for the sparse, modal
scattering matrices as predicted by the limited mode theory presented in this chapter are
drastically lower than for the full modal matrices. In Table 3.3 the storage requirements on
the modal scattering matrix for a realistic size (1m diameter) inlet with either 20 or 87
blades at 2, 10 and 18 GHz are given. Note that the storage savings realized with the
sparse scattering matrices over the full matrices is of 2-3 orders of magnitude for the 10

GHz case.

f GHz Modes Blades ?gpgz;z; M(f‘i{lt)es
2 228 20 01 8
10 5550 20 6.2 500
18 7972 20 12.7 1000
2 228 87 .002 8
10 5550 87 1.4 500
18 7972 87 29 1000

Table 3.3:  Storage requirement on [S] for 1m diameter inlet.

Another computational cost saver developed in this chapter is the scaling of the
FEM solution down to a single slice of the blade termination. The slicing scheme will be
more fully developed in the next chapter where we introduce a special edge-based
formulation for discrete bodies of revolution. This formulation and the resulting software
discussed next are a general contribution to computational electromagnetics even though

they are developed here specifically for the jet engine scattering problem.



CHAPTER 1V

THREE DIMENSIONAL, EDGE-BASED,
FINITE ELEMENT ANALYSIS FOR DISCRETE
BODIES OF REVOLUTION

A simple modification to the standard edge element definitions is found to allow
edge elements to be used within the context of the jet engine analysis problem. This
modification tends to make the overall FEM system less sensitive to element distortions
which always occur in large meshes. An extension to three dimensional, edge-based finite
element analysis for modeling electrically large fan-like structures as discrete bodies of
revolution is given. By exploiting the overlapping symmetries between a fan-like structure
and a modal expansion of the electromagnetic fields, only one lobe of the problem need be
solved by the edge-based finite element method without introducing any approximations.
This computational scaling makes it possible to solve electrically large structures much
more efficiently. A periodic phase boundary condition must be applied to the faces of the
mesh describing a single slice of the body, and it is found that the phase boundary
condition must be applied to both the electric and magnetic fields for a robust solution
with edge-based analysis. Details of the implementation of the phase boundary conditions
with edge elements are given along with results to validate the overall technique which

involves the concurrent enforcement of phase boundary conditions on both electric and

59
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magnetic fields. Although developed for the jet engine, the implementation of phase

boundary conditions is applicable to any other periodic problem in electromagnetics.

4.1 Introduction to Edge-Based Discrete Body of Revolution Analysis

For electrically large objects, brute force application of the Finite Element Method
(FEM) for scattering and radiation problems leads to very large systems. However, for
some classes of large problems, the domain of the FEM solution can be scaled down by
taking advantage of symmetries. Ideally, this scaling should be done without introducing

any approximations as is the case for the new technique presented here.

Some large problems can be scaled down to workable size without introducing any
approximations into the solution but other problems can only be solved approximately. For
example, a finite antenna array can be analyzed rigorously element by element with the
assumption that each element is a member of an infinite array of elements [33]. However,
the infinite array approximation is valid only for elements that do not lie near the edges of
the array. Also, scattering from three dimensional Bodies of Revolution (BOR) can be
solved by scaling the problem down to a two dimensional one without introducing any
approximations into the solution [32]. The power of the exact BOR formulation for
electromagnetic scattering computations has allowed modeling of practical vehicle
communications problems that would otherwise be prohibitively expensive to simulate

due to their large electrical size [34].

In this chapter we extend the application of the edge-based Finite Element Method
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to Discrete Bodies of Revolution (DBOR). No approximations are introduced when using
the DBOR formulation to solve the scattering from fan-like structures within a cylindrical
guide. A finite number of discrete modes exist within a cylindrical guide, making the exact
solution available by solving the problem on a mode-by-mode basis. For open DBOR
structures, such as a fan in free space, the same technique for scaling the problem can be
used, but an approximation is introduced since in this case a continuous spread of modes
exists. For solution, the continuous spread of modes for the free space case must be made
discrete to solve the DBOR problem and thus an approximation is introduced. Resolving
the free space fields into a discrete set of modes involves converting a plane wave
spectrum into an equivalent set of cylindrical mode functions [35] which can in turn be

used to solve the DBOR scattering problem mode by mode.

For a fan-like scatterer within a cylindrical guide, the edge-based FEM solution
need only be done for one lobe (a unique slice) of the scatterer and then solved for each
mode supported by the guide. If the fan-like structure is situated in free space, we can also
solve the FEM solution for only one lobe of the scatterer, but we must then use as many
modes as are necessary to represent the plane wave excitations of interest. In any event, to
scale the domain of the problem down to one lobe of the DBOR structure, we must again
introduce a local periodic phase boundary condition on the sides of the mesh used to

represent a single slice of the scatterer.

Justification for the use of local phase boundary conditions for the analysis of fan-
like structures using hybrid FEM modal analysis was given in [36]. The implementation of

phase boundary conditions was also discussed in Chapter 3 for node-based elements. In
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this chapter, phase boundary conditions are implemented with edge-based elements which
are known to be more robust than node-based elements and are free of spurious solutions

[20] [39].

A fresh perspective on the reasons node-based elements tend to fail for
electromagnetics problems while edge-based elements work is given in [37] from a fluid
dynamics point of view. In [37], the authors rigorously demonstrate that when the strong
statement of the boundary value problem (Maxwell’s equations and boundary conditions),
is converted to the weak form, the divergence equation from the strong statement becomes
an additional boundary condition on the outer edge of the domain. That is, the divergence-
free condition which is enforced throughout the domain in the strong statement of the
problem is shifted to the boundary of the FEM domain in the weak statement of the
problem. Therefore, in the absence of impressed charges, the zero divergence condition
must be enforced on the boundary of the FEM domain. This indicates that any element of
sufficiently low order (so as to meet the criterion of zero divergence) and having tangential
electric field continuity will be appropriate. This result is consistent with first order
tetrahedral edge-based elements which have zero divergence, and is consistent with the
simplest type of element known to work for electromagnetics, the brick element [38].
However, it appears that only those elements on the boundary of the mesh must enforce

the divergence condition.

A small change to the standard edge element definition was required in order to
avoid the problems discussed in Chapter 2 (pg. 26). Although lengthy analysis went into

determining the source of the numerical problems in the edge element definitions, a
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simple remedy was found by redefining the edge-based scalar degrees of freedom to be
E, = E- e—l- instead of E; = E- éi, where E is the unknown scattered electric field and &,

is the i’th edge unit vector, while &, has magnitude equal to the length of the edge. That is,

the edge-based element degrees of freedom are the projection of the field onto the i'th
edge, not simply the electric field in the direction of the i’th edge. This redefinition has the
effect of reducing the sensitivity of the system’s condition number to element distortions.
Fairly severe element distortions inevitably occur in large meshes. While this simple
remedy was sufficient to allow solution of the large FEM systems presented here, it should
be noted that modifications to edge-based approaches are continually evolving to address
the fact that large problems often give rise to poorly conditioned systems when edge-based

analysis is used [40].

It has been found that the phase boundary condition must be applied to both the
electric field and the magnetic field for a robust solution when using edge-based analysis.
This fact is in contrast to what was shown in the previous chapter using node-based
elements and the available literature for low frequency motor problems [31] and two-
dimensional edge-based eigenfunction/eigenvalue (resonant field) problems [30]. The
need to enforce the phase boundary condition on both the electric and magnetic field with
edge elements will be shown algebraically as well as with examples. Enforcement of the
phase boundary condition on the magnetic field adds a constraint on the FEM system
which must be condensed out at the global level. An efficient procedure for assembling the
FEM system with the correct enforcement of the phase boundary condition (on both E and

H) will also be given to aid the code developer.
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This chapter is structured as follows. In Section 4.2, the implementation of phase
boundary conditions is given for three-dimensional, edge-based elements on a mesh with
internal symmetry (coincident nodes and elements on the faces of the slice). In
Section 4.3, results are shown to validate all aspects of the technique. Since our
implementation is one of the first to make use of the phase boundary condition for wave
applications, validation of the correct implementation of the phase boundary condition is
stressed, especially the need to enforce the phase boundary condition on both the electric
and magnetic fields. In the summary we indicate how the overall computational scaling
yields immense reduction in computational costs over brute force methods. It is stressed
that this DBOR method will be able to solve problems which would otherwise be

prohibitively expensive to solve.

4.2 Phase Boundary Conditions for Wave Electromagnetic Problems
Using Edge-Based Elements

A cylindrical guide, terminated by a fan-like structure (see Figure 4.1) is the
geometry most amenable to the Discrete Body of Revolution (DBOR) analysis technique
presented here. For the type of structure shown in Figure 4.1, the DBOR formulation does
not introduce any approximation since the cylindrical guide supports only a finite set of
modes. For this work, we will consider only the internal problem of a fan within a
cylindrical guide as a means of validating the DBOR formulation. This problem is of

practical interest in determining the radar scattering from jet engines.

For a cylindrical guide or inlet terminated by a fan-like structure, where each lobe
of the structure is itself symmetric. it is possible to generate a mesh for a single lobe

having coincident nodes and elements on the two symmetry faces. For example, a guide
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Figure 4.1: A cylindrical guide terminated by a tan-like structure.

terminated in a set of symmetric straight blades can be analyzed by considering only a
single lobe and employing a phase boundary condition to connect the fields on the two
faces of the slice (see Figure 4.2). For this case, a mesh can be generated having
coincident nodes and elements on the two slices by exploiting the internal symmetry
within the slice itself. In the case where there is no internal symmetry, such as a set of
curved blades, we cannot generate a mesh having coincident nodes and elements on the
slice faces (see Figure 4.3). Thus, for curved blade structures, the phase boundary
condition must be interpolated from one side to the other. This interpolation is a standard
FEM technique commonly used for joining dissimilar mesh areas, or for joining FEM
meshes to boundary elements [41]. However here the implementation of the phase
boundary condition is made considerably more complex by interpolation. The details of

the implementation will be saved for future work.

As noted earlier, it has been found that the phase boundary condition must be
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Figure 42: A guide terminated in a set of straight blades (left). For this geometry a
symmetric mesh for one lobe (right) can be generated with coincident nodes
and elements on face 1 and face 2.

face 2

Figure 4.3: A guide terminated in a set of curved blades (left). For this geometry a
symmetric mesh for one lobe (right) having coincident nodes and elements
on face 1 and face 2 cannot be generated.

applied to the magnetic as well as the electric field for a robust solution with edge
elements. To see mathematically that the phase boundary condition must be applied to

both E and H fields, consider that the general electric field variational formulation for
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Maxwell’s equations (see for example [7]) leads to a global FEM system of the form

[ 1 E po
LSS K12u 0ut$ _ ) om} @.1)
LKQI Kzz‘;ILEin,! 0 )
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