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Chapter 1

Fundamental Concepts and
Theorems

It is assumed that the reader is already familiar with basic electromagnetic
theory usually covered in courses on general electromagnetics and antennas
beyond the required undergraduate material. Below we simply provide a re-
view of Maxwell’s equations and related theorems which are of importance in
this course. This chapter also provides the required notational definitions for
the various field quantities.

1.1 Maxwell’s equation in Differential Time
Domain Form

In 1861 Maxwell presented the electromagnetic field equations in the form
that is known today. Maxwell formulated these equations on the basis of the
electromagnetic laws that were developed already by Gauss, Ampere, Faraday,
Henry, and so on. Other than the compact form of the field relations that he
provided, his only new contribution in this respect was the introduction of
the displacement current to supplement Ampere’s law. This was essentially
postulated in order to make the equations compatible with Gauss’ law and the
equation of continuity.
Maxwell’s equations in differential time domain form are

VxH=TJ+ % (Ampere-Maxwell law) (1.1)

1



2 CHAPTER 1. FUNDAMENTAL CONCEPTS AND THEOREMS

Vx€=-M- %? (Faraday’s law) (1.2)
V.-B=+on, (Gauss’ law-magnetic) (1.3)
V.- D=y (Gauss’ law) (1.4)

where ¢ denotes time and

€ = electric field intensities in Volts/meter (V/m)

D = electric flux densities in Coulombs/meter? (C/m?)

‘H = magnetic field intensity in Amperes/meter (A/m

B = magnetic field density in Webers/meter? (Wb/m?)

J = electric current density in Amperes/meter? (A/m?)

M = magnetic current density in Volts/meter? (V/m?)

o = electric charge density in Coulombs/meter® (C/m?3)

om = magnetic charge density in Webers/m?® (Wb/m?)
Each of the field current or charge quantities is, of course, assumed to be
a function of position and time, and will be measured in the rationalized
MKSC system of units as noted above. The introduction of the magnetic
currents and charges in (1.1)-(1.4) is purely arbitrary since to date there is
no evidence of their existance. However, they have been found very useful for
constructing mathematical models of electromagnetic problems, where they
are often employed as equivalent fictitious sources and this is the primary
reason for including them in the definition of Maxwell’s equations.

By taking the divergence of (1.1) and making use of (1.4) we obtain

do

V-J+-6-t'=0 (1.5)

where we have also invoked the identity V - (V x A) = 0 which holds for any
vector A. Expression (1.5) is known as the continuity equation and implies
conservation of charge. Similarly, from (1.2) and (1.3) we obtain the continuity
equation for magnetic changes given by

Oom _
VM= =0 (1.6)

Conversely, one can derive (1.4) by taking the divergence of (1.1) 2:d making
use of (1.5). Equation (1.4) then follows by setting the integratici: constant
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with respect to time equal to zero. Likewise, (1.3) can be obtained from (1.2)
and (1.6). Consequently, we may take (1.1)-(1.4) as the fundamental equations
of electromagnetism or alternatively (1.1), (1.2), (1.5) and (1.6) could be used
to form an independent set of equations for the solution of the fields. We will
choose here (1.1) - (1.4) as the fundamental set of equation.

The four independent equations (1.1)-(1.4) actually consist of eight scalar
ones since (1.1) and (1.2) are vector equations. Noting then that each vector
field has three components, we have 20 scalar unknown functions appearing
in (1.1)-(1.4) and it is obvious that additional field relations are required for a
unique solution of the field quantities. These are provided from the constitutive
relations given by

D = €€ =€ (1.7)
B = yH=puH (1.8)
J = o€ (1.9)
M = o.M (1.10)

In (1.7)-(1.10),

€, = free space permittivity = 8.854 x 10~!? Farads/meter (F/m)

#o = free space permeability = 47 x 10~7 Henrys/meter (H/m)

¢, = medium’s relative permittivity constant

#» = medium’s relative permeability constant

o = electric current conductivity in Mhos/m (U/m)

om = magnetic current conductivity in Ohms/m (£2/m)
which characterize the electrical properties of the medium. They are referred
to as the constitutive parameters of that medium and based on their spatial or
frequency dependence, the medium can be characterized as linear or non-linear,
homogeneous or inhomogeneous, dispersive or non-dispersive, and isotropic or
anisotropic.

o If the constitutive parameters are independent of the field intensities,
the material is said to be linear

o If the constitutive parameters are constant or uniform throughout a ma-
terial section, that section of the medium is said to be homogeneous
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e If the constitutive parameters are dependent on the oscillating frequency
of the fields, that medium is said to be dispersive

o If the constitutive parameters are independent of the field polarity, that
medium is referred to as isotropic.

In the case of anisotropic media, the constitutive relations (1.7) and (1.8) take
the form ‘

D = %€ (1.11)

B =7%H (1.12)

where € and 7 are 3x3 matricies or tensors and can be more explicitly written
as

[]]
]

/e.tz €xy €z2
€yr €y Eyz (1.13)

\ € €y €

I
B = | byz Py Py |- (1.14)

\ Pzzr Pzy P2z

We remark that for physically realizable material
€ =€y Pij = I (1.15)

implying that the permittivity and permeability matricies are Hermitian. The
* in (1.15) denotes complex conjugation and in the case of real € or u the cor-
responding Hermitian matricies are also symmetric. Depending on the specific
value and/or relation of the permittivity or permeability matrix components,
the material can be classified as uniaxial, biaxial, gyrotropic, etc. In particular,
for biaxial material € and 7 take the form,

0

0 ) (1.16)

I

e 0 0 _ p 0
e=| 0 ¢ 0 p=ul=]0 g
0 0 e 0 0
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where I denotes the unit dyad and can be alternatively written as I = ## +
yy + zz. When ¢; = ¢, = € in (1.16), the material is referred to as uniaxial
with the z axis being the optics axis. Gyrotropic media are encountered in
various plasma studies, and in this case

€ —je 0 ~
e=|je € 0 g=ul (1.17)
0 0 e

Generally, biological media such as human tissues, are anisotropic. For ex-
ample, retina fibers are thought to be uniaxial whereas the cornea appears to
be similar to biaxial crystals.

Finally, when the constitutive relations are of the form

D = T-E+c-B (1.18)
B=7%H+cL-E (1.19)

where £ and  denote tensors, the corresponding medium is referred to as
bianisotropic. The representations (1.18) and (1.19) are encountered in the
theory of relativity (moving media). However, special forms of these have also
been found to hold for stationary magnetoelectric material (Astrov, 1960).
For example, Dzyaloshinskie proposed that € = 2Ze + §je + 23¢,,{ = £ =
E2E+ Y€+ 226, and T = £Zp+yjp + 22p, for chromium oxide. When = eI,

= pland ¢ = —j€/pu = —jxI the material is referred to as chiral anisotropic
or riisotropic (Engheta, Laktakia (see Post 1962)) with x being the charality
parameter. Chiral material have the characteristic property of not support-
ing linearly polarized waves. This has been experimentally demonstrated at
optical frequencies, but to date we have not found natural material with this
behavior at microwave frequencies.

1.2 Maxwell’s Equations in Integral Form

The integral form of Maxwell’s equations can be directly obtained from their
differential counterpoint. By integrating (1.1) and (1.2) over a surface S we



6 CHAPTER 1. FUNDAMENTAL CONCEPTS AND THEOREMS

obtain

//s(v"”)'ds = //7 d8+//— ds (1.20)
//s(vxe)'d’ = //M ds—//— ds  (1.21)

where ds = nds, in which n is the outward unit normal and ds denotes the
differential surface element. Similarly, by integrating (1.3) and (1.4) over a

volume V we have
///V(V-D)dv = ///gdv (1.22)
///(V-B)dv ///gmdv (1.23)

Employing now Stokes theorem in (1.20) and (1.21) and the divergence the-
orem in (1.22) and (1.23) yields the customary integral form of Maxwell’s

equations given by
oD
I near = //S(J+-§)-ds (1.24)

et = // (M+—-) (1.25)
///ngv (1.26)
+///Vg,,.dv (1.27)

where C is the contour bounding the open surface S illustrated in Fig. 1. As
usual, the circle through the single integral implies integration over a closed
contour whereas the same symbol through the surface integral implies integ-
ration over the surface S, enclosing the corresponding volume V. We remark
that the surface S associated with the integral (1.24) and (1.25) is completely
unrelated to that enclosing the volume V.

»
>
&
[

s, B-ds
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1.3. MAXWELL’S EQUATIONS IN PHASOR FORM

ft ds

de =8ae
Figure 1.1: Illustration of the differential element ds and the contour C.

1.3 Maxwell’s equations in phasor form

Of primary interest in this course is the study of harmonically varying fields
with an oscillating angular frequency w = 2= f rad/sec. The electric field then
takes the form (j = v/-1)
€(z,y,2;t) = Re [E(z,y,Z)ej'”']
(1.28)
= ZE,,cos(wt+ ¢;) + §Ey, cos(wt + ¢y) + 2E,, cos(wt + ¢,)

where the complex vector
E(z,y,2) = i'Ezoejés + gEvoejé' + szoné' (1.29)

is referred to as the field phasor, and similar representations can be employed
for the other field quantities D, H, B, J, M, ¢ and gn.. Introducing these into
(1.1)-(1.4) we obtain the simplified set of Maxwell’s equations

VxH = J+jweE (1.30)
VxE = -M - jwuH (1.31)
V-(kH) = pm (1.32)

V-(E) = p (1.33)
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where E,H,J,M, p and p,, are the corresponding field phasors. In terms of
these, the constitutive relations become

D = ¢E (1.34)
B = uH (1.35)
J = oE (1.36)
M = o,H (1.37)

where the first two were combined with (1.3) and (1.4) to yield (1.32) and
(1.33) above. Similarly, the phasor forms of the continuity equations are

V-JI+jwp = 0 (1.38)

V-M+jwpn = 0. (1.39)

Once (1.30) and (1.31) are solved in conjunction with (1.36) and (1.37) for the
phasor quantities, the associated instantaneous fields can be obntained from
(1.28).

In general, the current densities J and M appearing in (1.30) and / .31) can
be written as a sum of impressed (or excitation) and induced (or cor:* action)
currents. That is, we may write

J = J;+3.=J;+0E (1.40)

M = M;+M.=M; +0,H (1.41)

where the subscript ¢+ denotes impressed currents and the subscript ¢ implies
conduction currents. When these are substituted into (1.30) and (1.31), we
obtain

VxH = J;+ jweéE (1.42)

VXxE = -M; - jup,iH (1.43)
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where
€& =€ —J J =€ —je'=¢€(l-jtand) - (1.44)
we,
and
fir = e == = = = (1= jtan ) (1.45)

o

represent equivalent relative complex permittivity and permeubility constants.
Anyone of the representations given in (1.44) and (1.45) is likely to be found
in the literature with the quantities

tanéd = % (1.46)
tané, = % (1.47)

referred to as the electric and magnetic loss tangents, respectively, of the
material.

To summarize, in phasor form Maxwell’s equations for isotropic media are

VxH = J;+jweE (1.48)
VxE = -M; - jwuH (1.49)
V-(uH) = —=(V-Mj)/jw (1.50)
V.(E) = —(V-I)/jw (1.51)

where we employed the phasor form of (1.38) and (1.39) to rewrite (1.32) and
(1.33) as given above. The corresponding integral representations of (1.48) -
(1.51) are (see (1.20)-(1.23))

fH-di = // + jwéE) - (1.52)

fE-dZ = -//S(M.-Jrjw,zn)ds (1.53)
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ﬁsc;lH.ds = _///VV ‘i\'l.‘dvzf//vpmdv (154
ﬁscéE-ds = ///V o dv=///vpdv (1.55)

The parameters ¢ and y in (1.48)-(1.55) are assumed to be given in terms
of the equivalent complex constants (1.44) and (1.45), i.e. ¢ = ¢,¢, and ji =
Kopr. For notational convenience, hereon we will drop the dot over the relative
constitutive parameters with the understanding that these will still represent
all possible material losses.

We observe that given J; and M;, (1.48) and (1.49) imply six scalar equa-
tions for the solution of the six components associated with E and H. Thus,
for time harmonic fields, (1.48) and (1.49) or (1.52) and (1.53) are sufficient for
a solution of the electric and magnetic fields, and (1.50) and (1.51), or their
integral counterparts, are superflous. In fact, the last two equations follow
directly from the first two upon taking their divergence and noting again that
V- (V x A) = 0 for any vector A.

Equations (1.48)-(1.55) can be easily modified to apply for anisotropic ma-
terial as well. This requires that ¢E and uH be replaced by €- E and % - H,
respectively. In the case of bianisotropic media the same quantities should be

replaced by €- E +C H and 7 - H + £ - E, respectively, as dictated by the
constitutive relations (1.18) and (1.19).

1.4 Natural Boundary Conditions

Maxwell’s equations either in their differential or integral form cannot be solved
without the specification of the required boundary conditions at material in-
terfaces. The pertinent boundary conditions can be derived directly from the
integral form of Maxwell’s equations. Instead of (1.52) and (1.53), it is however
more convenient to employ the integral equations

///V(V X H)dv=///v(3.'+jweE)dv (1.56)
/ / /V(V x E)dv = - / / /V(M.- + jwuH)dv (1.57)

and
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(E,H) A
r 1 infinitesimal volume
enclosed by S

medium

medium Q)

Figure 1.2: Geometry for deriving the boundary conditions.

or equivalently

Fotaxmds = [ [ [+ jucEyas (158
feixB)ds = - [ [ [(M:+jopmydo (1.59)

obtained via application of Stoke’s vector identity (Tai, 1971). The boundary
conditions for the first two of Maxwell’s equation can now be readily derived
by selecting S. to be the surface of a small pillbox (see Fig. 2) enclosing the
volume V. The pillbox is positioned at the interface so that half of it is in
medium 1 and the other half is in medium 2. It is assumed that Ak — 0 so
that only its flat faces need be considered in performing the integrations called
for in (1.58) and (1.59). Noting that f = #, for integration over the top face
and 7t = ny = —f, for the bottom face, by taking the fields to be constant
over each face of the pillbox we deduce the boundary conditions (valid at each
point on the interface)

iy x (Hi—Hp) = i, (1.60)

I

fl] X (El - Eg) -M,', ’ (161)
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In these, J;, and M, denote the impressed electric and (equivalent) magnetic
current densities in A/m and Wb/m, respectively, at the interface. In deriving
(1.60) and (1.61) we assumed that

o1
Al’l‘l_l.lo §Ah [€1E1 + 62E2] =0
and
o1
Al}l,I-T}o §Ah (mH;y + pHy =0

implying the ¢E and uH are finite at the interface.
To generate the boundary condition corresponding to (1.54) and (1.55), we
again select the same S; and V. Through direct integration we readily obtain

iy (Hy = poHy) = ppm, (1.62)

fl] . (€1E1 - CQEQ) = p, (163)

where p, denotes the unbounded electric surface charge density in C/m? at
the interface and pp, is the corresponding fictitious surface magnetic charge
density in Wb/m?.

The boundary conditions (1.60)-(1.63) although derived for time harmonic
fields they are applicable for instantaneous fields as well. As noted earlier,
in the time harmonic case, only (1.60) and (1.61) are required in conjunction
with (1.48) and (1.49) for a unique solution of the fields.

If we ignore the fictitious magnetic currents and charges appearing in
(1.60)-(1.63) we have

fl] X (H] - Hg) = J,‘, (164)
fll X (E1 - Ez) =0 (1.65)
fiy - (mHy —poHy) = 0 (1.66)

fl] . (€1E1 - 62E2) = Ps (167)
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The first two of these state that the tangential electric fields are continuous
across the interface whereas the tangential magnetic fields are discontinuous
at the same location by an amount equal to the impressed electric current.
Unless a source (i.e. free charge) is actually placed at the interface, J;, is also
zero and in that case, the tangential magnetic fields will be continuous across
the media as well.

When medium 2 is a perfect electric conductor then E; = H; = 0. In
addition, M;, and py,, vanish and (1.60)-(1.63) reduce to

mxH = J, (1.68)
mxE =0 (1.69)
iy (mH) = 0 (1.70)
- (aE1) = p,. (1.71)

The first two of these now imply that the tangential electric field vanishes on
the surface of the perfect electric conductor whereas the tangential magnetic
field is equal to the impressed electric surface current on the conductor.

1.5 Poynting’s Theorem

We observe that the quantity
S=€ExH (1.72)

has units of power (i.e. Watts/m?) and can therefore be associated with the
energy carried by the instantaneous wave per square unit. This is in the
direction coincident with that of the vector S. As stated above, S denotes
instantaneous power, but generally of interest is the time-averaged power. We
therefore consider the quantity

1 (T

S1=7)

(€ x H)dt (1.73)
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where T is the period of the oscillation, i.e. w = 2x/T. Assuming time
harmonic fields, we set

£ = Re(Ee™) = é|E|cos(wt + ) (1.74)

H = Re (Hej‘”‘) = h|H| cos(wt + B) (1.75)
with E = é|E| = éEe® and H = hH = h|H|e’®. We then have
ExH= -;—é x h|E||H|[cos(a — B) + cos(2wt + a + B)] (1.76)

and by substituting this into (1.73) and integrating, we obtain

(S) = %e « h|E||H|cos(a — B) = %Re(E < H") (1.77)

where the superscript star implies the complex conjugate of the vector.
The quantity

S= -;-E < H* (1.78)

is known as the complex Poynting vector. Since it is equal to the complex
power density of the wave, it is important that we qualify the source and
nature of this power. To do this we refer to (1.48) and (1.49), where by
dotting each equation with E or H*, we have

E-VxH = J-E-jwe'E"-E =13} E - juc'|E] (1.79)

H - VxE = -M; H - jupH -H' = -M' . H" — jwu|H|* (1.80)
From the vector identity
V. (ExH)=H"-VXxE-E-VxH* (1.81)
we then obtain

V. (E x H") = jwe'|E|* - jwu/H? -3} -E-M; -H" (1.82)
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which is an identity valid everywhere in space. Integrating both sides of this
over a volume V containing all sources, and invoking the divergence theorem
yields

s s B xH) ds = [ [ [ [jwelBl + joulHP - 37 B M, H] dy
(1.83)

which is commonly referred to as Poynting’s theorem. Since S. is closed, based
on energy conservation one deduces that the right hand side of (1.83) must
represent the sum of the power stored or radiated, i.e. escaping, out of the
volume V. Each term of the volume integral of (1.83) is associated with a
specific type of power but before proceeding with their identification, it is
instructive that €” be first replaced by €.¢, + <. Equation (1.85) can then be
rewritten as

1
5&#&@ x H)-ds=Py; + Pni - P, (1.84)

%Imﬂsc(E xH)-ds=2w[W,—W,,,]—%Im///[JI-E+M."H']dU.

(1.85)
where
P = —-;— / / /v Re(J; - E)dv = average outgoing power due to the
source J; (1.86)
Prni = —% / / ./v Re(M; - H")dv = average outgoing power due to the
source M; (1.87)
1
Py = 3 / / /V o|E|*dv = average power dissipated in V (1.88)
1 2 . .
W, = 1 / / /V €.6-|E|*dv = average electric energy in V (1.89)

1
Wn = 1 / / /V poptrJH|*dv = average magnetic energy in V (1.90)
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The time-averaged power delivered to the electromagnetic field outside V is
clearly the sum of P,; and P,; whereas P; is that dissipated in V due to
conductor losses. Thus we may consider

1 -
P,,.,=§Reﬁsc(ExH ). ds (1.91)

to be the average radiated power outside V if o is zero in V. Expression (1.85)
gives the reactive power, i.e. that which is stored within V and is not allowed
to escape outside the boundary of S..

1.6 Uniqueness Theorem

Whenever one pursues a solution to a set of equations it is important to know
a priori whether this solution is unique and if not, what are the required
conditions for a unique solution. This is important because depending on the
application, different analytical or numerical methods will likely be used for
the solution of Maxwell’s equations. Given that Maxwell’s equation (subject
to the appropriate boundary conditions) yield a unique solution, one is then
comforted to know that any convenient method of analysis will yield the correct
solution to the problem.

The most common form of the uniqueness theorem is: In a region V com-
pletely occupied with dissipative media, a harmonic field (E,H) is uniquely
determined by the impressed currents in that region plus the tangential com-
ponents of the electric and magnetic fields on the closed surface S. bounding V.
This theorem may be proved by assuming for the moment that two solutions
exist, denoted by (E;,H,) and (E;, H;). Both fields must, of course, sat-
isfy Maxwell’s equations (1.48) and (1.49) with the same impressed currents
(J,’,M,’). We have

VXH1 = Ji‘*‘j‘#’fE], VXH2=J;+jw€E2

VxE, = -M;-jwuH,, V xE;=-M; - jwuH,
and when these are subtracted we obtain
VxH = jweE (1.92)

VxE = —jwuH (1.93)
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where E' = E, — E; and H = H, — H,. To prove the theorem it is then
necessary to show that (E’,H’) are zero or equivalently, if no sources are
enclosed by a volume V, the fields in that volume are zero for a given set of

tangential electric and magnetic fields on S.. Recalling Poynting’s theorem for
a source-free region, from (1.84)-(1.90) (with J; = M; = 0) we have

Re {ps.(E' x H") - ds

Im ﬁﬁ x H").-

- / / /V o|E'*dv (1.94)

/ / /V”(‘°‘r|E'|2—ﬂourIH’|’) dv (1.95)

Since we assumed that the tangential E and H are also given on S,, it follows
that (E' x H™) - ds vanishes everywhere on S,. Thus, the right hand side of
(1.94) must be zero and since |E'|? is always greater than zero we deduce that
E’' must vanish everywhere in V. Consequently, H' must also vanish in V
proving the uniqueness theorem stated above.

As a corolary to the uniqueness theorem, it can be shown from (1.94)
that if a harmonic field has zero tangential E or zero tangential H field on
a surface enclosing a source-free region V occupied by dissipative media, the
field vanishes everywhere within V.

In the case of lossless media, (1.94) can no longer be used to show that
E vanishes in V if no sources are enclosed. We must then resort to (1.95)
which states that no time-averaged power enters or leaves the region. It is
consequently possible that the fields be nonzero in the volume V' even when the
tangential E and H are zero on different parts of the surface S.. This implies
the existance of resonant-mode fields within V for which the time-averaged
energy stored in the electric field is equal to the time-averaged energy stored
in the magnetic field within that region. By definition the volume integral
vanishes in (1.95) for such a field. This nonuniqueness for lossless media will
be discussed in later chapters when we consider numerical solutions for the
scattered field from specific structures. In general, it will be seen that the
numerical solution fails when resonant modes are excited unless some remedies
are taken to suppress these nonphysical modes.
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1.7 Superposition Theorem

The superposition theorem states that for a linear medium, the total field
intensity due to two or more sources is equal to the sum of the field intensities
attributed to each individual source radiating independent of the others. In
particular, let us consider two electric sources J; and J;. On the basis of
the superposition theorem, to find the total field caused by the simultaneous
presence of both sources we can consider the field due each in- idual source
in isolation. The fields (E;,H,) due to J, satisfy the equation.

V x H1 = Jl +jch1 (196)

VxE = —jwpH, (1.97)
and the fields corresponding to J, satisfy

V x Hg = Jg + ijEg (198)

VxE;, = —jwuH, (1.99)

By adding these two sets of equations, it is clear that the total field due to
both sources combined is given by

E=E1+E2 H=H1+H2 (1100)

where (E;, H,) and (E,, H;) are obtained by solving seperately (1.96)-(1.97)
and (1.98)-(1.99), respectively.

1.8 Duality Theorem

The duality theorem relates to the interchangability of the electric and mag-
netic fields, currents, charges or material properties. We observe from (1.30)
and (1.31) that the first can be obtained from the second via the interchanges

M--J
E—-H
H—- -E (1.101a)

p—e
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Similarly, (1.31) can be obtained from (1.30) via the interchanges

J-M
E—-H
H - -E (1.101b)

€— U

Based on these observations we can state that if (E;, H;) represent the fields
due to the harmonic sources (J;,M,) in a linear medium (y;,€,), then the
sources (J; = —M;, M, = J;) will generate the fields (E, = —H,, H, = E,)
if radiating in a linear medium having (y; = €, €, = p;). This is a statement
of the duality theorem. If we assume M; = 0, it simply states that the
fields due to a magnetic source of equal strength, i.e. M, = J,, radiating
in the dual medium are (E, = —H,, H; = E,;). The material parameters
dual to (e1,41) are (€2 = py, p2 = €) and the fields dual to (E;,H,) are
(E2 = —H;, H; = E;). Alternatively, if J; = 0, the dual fields to (E;, H,) are
generated by the electric source J; = —M, radiating in the dual medium.

It is seen that the duality theorem can reduce computational time and
effort when one is able to invoke it for a particular application.

1.9 Volume equivalence theorem

The volume equivalence theorem shows how one can replace field disturbances
caused by the presence of a material body with some prescribed equivalent
currents.

Let us consider the harmonic sources (J;, M;) radiating in the presence of
a material structure as dipicted in Fig. 3. When the source fields (E', H')
reach the inhomogeneous (linear) body there will be additional fields (E*, H*)
generated as dictated by the continuity boundary conditions. That is, because
the fields penetrating the material will not be equal to the external excitation
fields (E',H'), it will be necessary that new external fields be generated to
ensure satisfaction of the tangential field continuity conditions. These new
fields (E°,H’) are commonly referred to as the scattered fields and the total
field internal and external to the material body can be written as

E=E+E' H=H+H’ (1.102)



20 CHAPTER 1. FUNDAMENTAL CONCEPTS AND THEOREMS

E=Ej_+ E
H=H +H®

Figure 1.3: Volume Equivalence Theorem

The incident field is, of course, expected to satisfy the equations
VxH =J;+jwe,E, VxE' =—jwuH (1.103)
whereas the total field satisfies
VxH=J;+jweE, V xE=-jwpH (1.104)

when measured within the material body having the material, parameters
(€, ). Subtracting (1.103) from (1.104) and making use of (1.102) we obtain

VxH = jw(e-¢)E+ jweE’ (1.105)

VxE = —jw(p—p,)H - jwp,H’ (1.106)

When these are compared to (1.30) and (1.31) we conclude that the scattered
fields (E*, H*) can be thought as generated by the equivalent harmonic sources

Jo; = jw(e—€)E = jwe,(e, — 1)E (1.107)

M., = jw(p—po)H = jwpo(p, —1)H (1.108)
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which occupy the original volume of the material body and radiate in free
space. That is, the material body can be removed and instead be replaced by
the equivalent volume currents defined by (1.107) and (1.108).

It would appear from (1.107) and (1.108) that six independent current com-
ponents are required to model a ferrite material scatterer. However, a closer
examination reveals otherwise and this is important in numerical simulations

of material scatterers. By taking the curl of equations (1.104) and replacing
(J:,M;) with (J.q, M,,) we have

Vx(VXE)—kE = —jupde, -V xM, (1.109)

Vx(VxH)-kEH = —jwe,M,+V xJ,, (1.110)

where k, = w,/ji.€, = 27/}, is the free space propagation constant and A, is
the wavelength. Also we have set ¢, = u, = 1 since J., and M., are assumed
to radiate in free space. Clearly (1.109) can be solved independent of (1.110)
and implies that the curl of the magnetic current appears as another electric
current given by

-~

Jeo =V x M, /jwpo (1.111)

Thus, instead of the equivalent currents (1.107) and (1.108), one could replace
the presence of a material body by the radiation of the equivalent electric
current density

Jog = jweo(er —1)E+V x [(gr — 1)H]
(1.112)
_ &-lg x H+V x (4, — 1)H]

€

again occupying the original volume of the body. Similarly, we could replace
the presence of the material body by the radiation of the equivalent magnetic
current density

M. = jwpo(pr —1)H =V x [(¢, — 1)E]
(1.113)
= —(—”'“_—I)VXE—VX[(e,——I)E]
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which is obviously the dual of (1.112). Thus, we observe that a material
body can be modelled with only electric or magnetic currents, implying that
three independent current components are required in either case. The afore-
mentioned equivalence between electric and magnetic currents was originally
presented by Mayes [], although in a different context. It should be noted,
however, that in (1.109) - (1.113), (Jq, M,) are defined over a finite domain,
and this needs to be considered when taking the indicated curls. In other
words, the fact that u, and ¢, are discontinuities at the outer boundary of
the scatterer or perhaps at other boundaries internal to the scatterer must be
accounted for when taking curl. We will discuss this in more detail when we
later make use of these equivalences.

1.10 Surface equivalence theorem

The surface equivalence theorem follows directly from the uniqueness theorem
stating that a harmonic field (E, H) in a source free region V can be uniquely
determined by a knowledge of the tangential fields on an imaginary surface
Sc bounding V. This implies that it is not necessary to explicitly know the
sources of (E,H) in order that this field be determined in regions outside
those sources. Instead, one could specify equivalent currents on the surface S
bounding the source free region V' by invoking Ampere’s law (see (1.60) and
(1.61)). This, of course, provides an alternative formulation which is often
useful since it could lead to simplifications in the analysis.

To illustrate the surface equivalence theorem, let us consider a material
region enclosed by the surface as shown in figure 4. We are interested in com-
puting the field outside the material region and thus V is the volume between
S and a surface at infinity. For the region interior to S we may arbitrarily
assume that the fields are zero as illustrated in Fig. 4b. In accordance with
the boundary conditions given by (1.60) and (1.61), the fields (E, H) outside
S can then be thought as generated by the equivalent surface currents

J, = axH (1.114)

M, = Ex# (1.115)

where 71 . the unit normal to S, pointing toward V. This form of the surface
equivaler.ce theorem is known as Love’s equivalence principle. It assumes zero
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E H Yo s, E H a
€ Ho
50. p'o Js =fixH
sources M;=Exf
(a) (b)

Figure 1.4: Love’s equivalence principle (a) original problem (b) equivalent
problem.

field within S, a condition which can be satisfied when this region is occupied
by a perfect electric or magnetic conductor. For a planar electric conductor,
image theory dictates that the net electric current on S. will be zero whereas
M, is doubled (see Fig. 5). Thus, the field outside S. can be also represented

conductor /
Js=fixH
©

Figure 1.5: Other forms of Love’s equivalence principle (a) original problem
(b) equivalent problem with a magnetic current on an electric conductor (c)
equivalent problem with an electric current on a magnetic conductor.

by the radiation of the equivalent surface magnetic current
M,=2Exn (1.116)

where E is the value of the electric field on the planar surface S.. Alternatively,
the null field condition can be satisfied when S, is the surface of a planar perfect
magnetic conductor and in this case M, vanishes whereas J, = 2 x H.

When setting up the equivalent surface currents one can also select the
field within S, to be other than zero. For example, referring to Fig. 6, if these
are set to (E°, H°), the corresponding surface equivalent currents are
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E H v 4 E H V g1
Jo=fix(H-H)
Sc S¢ M,=(E-E)xf
(a) (®)

Figure 1.6: General form of the equivalence theorem (a) original problem (b)
equivalence problem.

I, =1 x(H-H) (1.117a)

M, =(E-E)xn. (1.117b)

These will now generate the field (E, H) exterior to S, and the field (E¢, H°)

interior to S..

1.11 Reciprocity and Reaction Theorems

The reciprocity theorem for electromagnetics parallels the familiar theorem in
circuit theory. It simply states that the fields and sources can be interchanged
in a given problem or set-up without effecting the system’s response. This
implies that the transmitting and receiving antenna patterns are the same even
though in the first case the source was at the feed whereas for the receiving
antenna the source is at infinity. Another example refers to the case of plane
wave scattering illustrated in figure 7. Let us assume that the far zone scattered
field E* is measured along 7 and is caused by a plane wave excitation E'
incident along 7. Based on the reciprocity theorem, one can then state that
the scattered field is unchanged when we let #* — —# and # — —#".

To derive a mathematical statement of the reciprocity theorem, we assume
the existance of two sets of fields caused by two different sets of sources radi-
ating in the same environment. In particular, suppose that the field (E,, H,)
are associated with the sources (J;,M;), whereas the fields (E;, H;) are due
to the sources (J;,M;). Each set of these fields and sources will then satisfy
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Figure 1.7: Illustration of reciprocity for plane wave incidence and far zone
observation.

the equations

V X E 1 = —jwﬂH 1 — M 1 (1.1180)
2 2 2
and
V X H 1 =]Q)CE 1 -J 1 - (1.118b)
2 2 2

By invoking the identity
V-(AxB)=B-VxA-A.-VxB (1.119)
we then have

V'(EIXHz—Ez)(Hl) = Hg'VXEl—El'VXHQ

-H,-VxE;+E;-VxH,. (1.120)
This can be simplified by introducing (1.118) giving
Hg -V x E1 = Hg . (—jwal - Ml) = —jprl . H2 - M] . Hz

—H] -V x Eg = —Hl . (—jw[le - Ml) =jpr1 'H2 + M] . H2
etc., which upon substitution into (1.120) yield

—V'(El XHQ—EQXH])=E1'J2+H2'M1—E2'J1-H1‘M2
(1.121)



26 CHAPTER 1. FUNDAMENTAL CONCEPTS AND THEOREMS

Integrating both sides of this equation over a volume V enclosed by the surface
Se, and applying the divergence theorem it is further deduced that

_#SC(EIXHQ—ngHI - fuds /// (Ei-J2+ H,- M,

—Eg'Jl-Hl'Mg)dv (1122)

It will be shown in the next chapter that in the far field (let S. become an
infinite circle),

E=-Z7xH and H= xE.

1
Z
where Z, = \/u,/¢, is the free space intrinsic impedance, and thus

rx E
E1 X Hg = El X (1‘ 2 2) = 7 [(E1 EQ)T - (E T)Eg] = — E1 Eg)r
E; x (f x E;)
Zo

1 .
E2 X H1 = = 7 [(E2 . E])T - (E E]] E2 E])

implying that the surface integral in (1.122) vanishes when S is a sphere of
infinite radius. Consequently, we conclude that

///V(El.J,-HI.M,)dv=///V(E,.JI_H,.Ml)d,, (1.123)

which is a mathematical statement of the reciprocity theorem (special case of
the Lorentz reciprocity theorem given by (1.122)). It states that the fields and
source can be interchanged without altering the outcome of (1.123). Integrals
of the type in (1.123) are also referred to as reactions of one set of sources with
the fields caused by another set of sources. Based on this reasoning, (1.123) is
often written as

(1,2) =(2,1) (1.124)
where

(1,2) =///V(E,-JQ—H,-M2)dv. (1.125)
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The symbolism (1,2) denotes the reaction of fields (E;, H,) with the sources
(J2,M:) and (1.125) is often referred to as the reaction theorem. If J; repres-

ents a linear source of strength I, (i.e. J2 = I,¢) and M, = 0, (1.125) reduces
to

(1,2) =///V1~:,.J,dv=12/E,-t’de=-v}”z2 (1.126)

where VQ(I) is the voltage across the terminals of source 2 due to some unspe-
cified source 1. Similarly, across the terminals of a magnetic source M = K/

pre—

+

1| v - v

(a) (b)

Figure 1.8: Illustration of circuit source (a) current source (b) voltage source.

(current loop), shown in Fig. 8, V = —K, and if we set M, = Kzé and J; =0,
(1.125) gives

(1,2) = -///Hl Mydv = -KQ/H, dde =+ (1127)

where Iél) is now the current flowing to the terminal of source 2 due to the
field excitation H; from some unspecified source 1.

To illustrate the application of the reciprocity theorem in electromagnetics
we consider the radiation of two antenna elements in free space as illustrated in
fig. 9. Each of these radiate the fields (E;, H,) and (E;, H;), respectively, and

their equivalent circuit parameters can be characterized by the usual system

Vil_|2Zu 2 I
HMEYEAIR a1z



28 CHAPTER 1. FUNDAMENTAL CONCEPTS AND THEOREMS
\\12
+ + \Y
\Y 2
1 - -
\\ iy Ez “z); \\

Figure 1.9: Reaction between two antennas.

I

which is identical to that for a two-part network in circuit theory. Reciprocity
and the reaction theorem will now prove useful in determining the elements
Z;; of the impedance matrix. They can be easily determined by shorting or
open-circuiting the antennas one at a time. Setting I; = 0, gives

Vz(l)
Iy = I
and by referring to (1.126) we may express Zy; as
(1,2)
Zy =-— .
2 T, (1.129)

By invoking the reciprocity theorem (1.123), we also have Z;; = Z3 and in
general ‘

(3,1)
Zi; = ———. .
; I, (1.130)
This expression is valid for computing the self impedance elements Z;; as well,
and will be later found useful in numerical simulations of antenna and scat-
tering problems.

1.12 Approximate Boundary Conditions

In section 1.4, we discussed the boundary conditions that must be imposed
at dielectric interfaces. These are the usual natural or exact boundary condi-
tions. However, in many cases, it is possible to employ approximate boundary
conditions that effectively account for the presence of some inhomogeneous in-
terface, a material coating on a conductor, or a dielectric layer without actually
having to include their geometry explicitly in the analysis.
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Impedance boundary conditions

The most common approximate boundary condition (abc) is the impedance
boundary condition attributed to Leontovich [ ] which often carries his name
in the literature. It can be derived by considering the simple problem of a
plane wave incidence on a material half space. Choosing the interface to be
the plane y = 0 with the y axis directed out of the half space, the Leontovich
impedance boundary condition takes the form

E,=-nZ,H, E,=nZ,H, (1.131)

where Z, = \/E and 7 is a function of the material properties of the half

space. These conditions are applied at y = 0* (just above the interface) and
can be combined to yield the vector form

nx (A xE)=-9Z,7 xH (1.132)

where 7 is the unit vector normal in the outward direction (see Fig. 10). As
can be seen, the form of the impedance boundary condition is independent of
the geometry of the interface or the boundary where it is enforced and is thus
applicable to planar as well as curved surfaces. Further, it can be generalized
to the case where there may be some anisotropy by writing it as

nx(AxE)=-Z75-7n xH (1.133)

where 7 is a tensor.

One way to derive the appropriate normalized impedance parameter 7 is to
demand that the equivalent impedance surface satisfying the condition (1.132)
reproduce the same reflected field. In doing so, for the planar dielectric inter-
face we readily find that

n=, /2 (1.134)

€&

and for this choice of  the condition (1.132) becomes an approximation for
simulating curved dielectric boundaries (see fig. 10b) provided

[Im(\/expr)| kopi > 1, (1.135)
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Figure 1.10: Simulation of dielectric boundaries and coatings with equivalent
impenetrable impedance surfaces.
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where p; are the principal radii of curvature associated with the surface. This
ensures that the material is sufficiently lossy so that the fields penetrating the
surface do not re-emerge at some other point.

For the coated conductor in fig. 10(c), the value of 7 is generally chosen to
be the actual impedance of the corresponding planar structure illuminated by
a plane wave, typically at normal incidence. Accordingly, for an homogeneous
coating of thickness r [Harrington & Senior]

n =j\/§tan(ko,/c,p,7') (1.136)

and we can readily compute the corresponding impedance for multilayer coat-
ings. However, as can be expected, the accuracy of the proposed impedance
boundary condition deteriorates for oblique angles of incidences, requiring that
7 be kept small with respect to the wavelength to achieve resonable accuracies.

Provided the material parameters change slowly from one point of the
simulated surface to another, the impedance boundary condition (1.132) still
be applicable. In this case, the normalized surface impedance for the coating
is computed from (1.136) with the material parameters now being functions
of the location on the surface. For a planar interface, if ¢, and u, vary with
respect to y, Rytov [ ] has shown that

_ B 1 9 -2
n—\/:{1+2jkoNayln(ZoN)+O(N )} (1.137)

where N = |/l €, is the refractive index and the derivative is evaluated at the
surface.

Resistive and conductive sheet transition conditions

For certain applications, it is desirable to replace a thin dielectric layer with
an equivalent model in an effort to simplify the analysis. To illustrate this
idea, let us consider a thin dielectric slab of thickness 7 as shown in fig. 11.
The slab has a conductivity ¢, and it will thus support a current density given

by (see (1.36))

J =oE (1.138)
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where E denotes the field within the slab. However, since 7 < ), we may
replace J by an equivalent sheet current (having units in A/m)

J,=1J (1.139)
and thus from (1.138)
E=1J,/or=Z,R.J], (1.140)

This condition is a mathematical definition for a resistive sheet supporting a
sheet current J,. The parameter Z,R, is referred to as the resistivity of the
sheet and is measured in Ohms/square.

In deriving (1.140) it has been assumed that E is tangential to the layer
or sheet and therefore a more precise definition of the condition is

i x (i x E) = —=Z,R.J, (1.141)

where 7 denotes the upper unit normal to the sheet. Further, it is desirable
to work with field quantities that are measured outside the layer or sheet and
since it x E is continuous across the layer we may rewrite (1.141) as

i x [ x (E* + E7)| = —2Z,R.J, (1.142q)

Ax(E*-E7)=0 (1.142b)

The superscripts + denote the fields above and below the sheet or layer and it
was necessary to introduce (1.142b) to maintain the equivalence of (1.142) with
(1.141). Alternatively, by employing the natural boundary condition (1.60),
(1.142) can be rewritten as

i x i x (E* + E7)| = ~2Z,R. 7 x (HY = H") (1.143a)

ix(E*-E)=0 (1.143b)

By allowing 7t to be other than constant, these can be employed for the sim-
ulation of curved layers, provided again there is sufficient loss in the layer to
suppress multiple field penetrations.
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The dual to (1.143) are

9Y,R, #i x (E* —E")

i x i x (HY + H)|
(1.144)
ax(Ht-H") = 0

and these define a conductive sheet capable of supporting a magnetic current
M, = -7 x (E* — E7). The parameter Y,R,, is now referred to as the con-
ductivity of the magnetic sheet measured in Mhos/square. The utility of this
sheet is not yet apparent but it will be shown below to be essential for a sheet
simulation of dielectric layers with nontrivial permeability. Also, it has been
shown [ ] that a special combination of coincident electric and magnetic cur-
rent sheets is equivalent to an impenetrable impedance sheet. This equivalence
holds when we set

1

" = —
R°_2’ 2n

(1.145)
implying 4R. R, = 1, where 7 is the normalized impedance of the sheet. Be-
cause co-planar electric and magnetic currents are independent of each other,
(1.145) is important in simplifing the analysis with flat impedance surfaces.
Let us now consider a dielectric layer having a relative permittivity ¢, and
thickness 7 such that k,7 <« 1. Based on the volume equivalence theorem, this

A

y

7% 78

Figure 1.11:

layer can be replaced by the equivalent polarization currents

. = jkYs(e — 1)E,

J, = jkY(e - 1)E, (1.146)
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J, = jkYi(e —1)E;.

On the assumption of k,7 < 1, the J, component may be neglected and the
current densities J;, can then be replaced by the equivalent sheet currents

Je =7y, Ju=7J;. (1.147)

From (1.19), it now follows that

E.=Z2,R.J,., FE,=2Z,R.J,, (1.148)
with
Ro=—= _ (1.149)
k,m(e, = 1)

Equation (1.148) are clearly identical to (1.140) except that R, is now complex.
Coordinate independent transition conditions for the dielectric layer are thus
given by (1.141), (1.142) or (1.143) with the new definition for R..

When the dielectric slab is associated with non-unity g,, (1.143) must be
complemented with a conductive sheet defined by (1.144) and in accordance
with the volume equivalence theorem the normalized conductivity R, is given
by '

=]
= — 1.15
B = e = D) (1:130)
Thus, the sheet transition conditions for a thin ferrite layer are
ix[fx(E*+E7)| = -2Z,R4x (H -H")
(1.151)
ix [ix (H*+H")| = +2Y,Rné x (E* -E)

with R, and R, as defined in (1.149) and (1.150), and 7t denoting the upward
unit normal to the layer.
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Problems

1. A chiral medium has the constitutive relations
) . B
D = ¢E - jxB, H=—]XE+;

where x is the charality parameter.
(a) Show that the vector wave equation for this medium takes the form (see
equations 1.109 and 1.110)

VxVxF-kF+V=0

where F = E,H, D or B, and V is a vector to be found from your solution.
(b) Assume now a circularly polarized plane wave (RCP or LCP) propagat-
ing along the z-direction. Find the propagation constants kpcp and kicp
so that the wave equation found in (a) is satisfied.

(c) If a linearly polarized plane wave is incident upon a chiral interface as
shown, find the reflected and transmitted fields (by enforcing tangential field
continuity at the interface).

(O
- >

either =

polarization
transmitted rays

\\\\mm\
(LCP or RCP)

Figure 1.P1. Plane wave incidence on a chiral interface,
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2. Use the divergence theorem

///‘,V-AdvzﬁscA-ds (1)
n

S
Figure 1.P2. Geometry for problem 2.

to (a) prove that

/ / ,/V V x Bdv = ﬂsj‘ x Bds (vector Stokes theorem)

where ds = nds. hint: Set A = 4@ x B and make use of the identity
V-(axb)=-a-V x b, where 4 is an arbitrary unit vector.
and that

(b)

/ / /V Vfdy = #scfﬁds

hint: set A = 4f and note that V- (é4f) =4 - Vf.
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3. Consider a surface whose unit normal is 7 = 43 and 1, , denote the prin-
cipal directions of that surface. The directions ;23 form an orthonormal
set and are associated with the metric coefficients h;, h,, h3. We are inter-
ested in obtaining the surface gradient, divergence and curl and these are
defined by taking the pertinent vector or scalar function to be independent
of v (i.e. invarient along 43 = 1) and setting hy = 1.

Figure 1.P3. Parameters and geometry for problem 3.

For example, in the case of the gradient we have

109f, 10f. 10f. _10f . 10f
hl 6v1u1+hg avg +h3 6v3u3—h1 3v1u1+h2 6v2u2

since f = f(v1,v2) on S. Similarly, for the divergence we have (h; = 1)

Vf=—

1 1 O(hyhods)
VA=
Fo; (h2A1)+ 2(h1A2)]+h1h2 o
But
1 O(hihads) 1 [8(hihy) 94
by Ovs hlhg[ Buy st hahag”
(1 0h, . 10k, 04
- [hl 3ot 00 By

where A; = A - 4;, and if we set %31 = 0 as noted above, we obtain the
surface divergence of A as

1 6 6
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where A3 =n-A =A,, A, = A -nA, and

r= (e L) [Loh, 1o

- R] R2 - h1 6v3 h2 3v3
i1s the curvature of the surface with R; and R; being the principal radii of S
(max and min radii at each point on S). More specifically, R, is the radius

of curvature of the curve on S associated with #; and R; is the same for
the curve whose tangent is 1.

a) Using a similar procedure, derive the surface curl V, x A from V x A.

(
(b) A generalization of Gauss’ theorem for the surface divergence is (b =

n x 1)
//SV.-A,ds=fci>-A,de

//SV,-Ads=£I3-Ad£—//sJ(A-r‘z)ds

Starting with this result, show that

//Sv,fds=}gafde-//s.ffﬁds

or

and that

//SV,xAds=fci,xAde-//SJ(ﬁxA)ds

(c) If the surface S in (b) coincides with a curved metal plate and A rep-
resents the current on the plate, what can you say about the value of the

surface integral
[ [V ads =



4. Consider a finite length electric current sheet of the form
J(z) = 9L, Paa(z — z,)

where

1 -A<z< A

P2A(I)=
0 elsewhere
z
J(x)
IR ——>%
Xo-A Xo Xo+4A

Figure 1.P4. Figure for problem 4. Finite width current sheet.

Find an equivalent magnetic current distribution whose radiation will be

the same as that of the given electric current sheet.
(b) Repeat part (a) for J(z) = §J,f(z)P(z - z,).

|.P5
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5. Give expressions for the equivalent surface currents on Sy and Scong.
for the structure shown in Figure 1.P5 under the following assumptions:
(2) (Ei, Hy) #(0,0)
(b)E;=0,but H; #0
(C) E; #0, but H; =0,

6. The electric field generated by an infinitesimal dipole J, = £I¢ (£ — 0)
in the presence of a dielectric scatterer is found to be E,(z,y,z). Give an
expression of the z-component of the corresponding field generated by the
source Jy(z,y, 2).

(Eo, Ho)

Sdiel.

perfect

conductor

Figure 1.P5. Geometry for problem 5.



7. Assume the plane wave

Ei — éejk.'-r — éejkc(znin0coc¢+vuin93in¢+zcoc6)

is incident upon the planar resistive sheet of (normalized) resistivity R, as
shown in figure 1.P7.

N>

\rcsistivc sheet of resistivity R,

Figure 1.P7 Geometry for problem 7

(a) Determine the reflected and transmitted fields
(b) Repeat (a) for a conductive sheet of (normalized) conductivity R,
(c) Combine the results of (a) and (b) to find the reflected field from a

planar surface having a (normalized) impedance 7.



8. Consider the material slab shown in figure 1.P8 having relative permit-
tivity €, and relative permeability p,.

A

y

SN R

Figure 1.P8. Geometry for problem 8.

On the assumption kt < 1, where k = w,/,uoeo,/p,e, ko\/lir€,, introduce

the approximations

0E, _ AE, E,(t")- E.(0%)

Q

By Ay ~ t
_@_ﬂ_ — AEy ~ Ev(t-) - Ey(0+)
dy Ay t

He, ~ [Heo(t))+Heo(04)] /2
and
E, ~ [E,(t") + E,(0%)] /2

where F(t~) denotes the field component F at y =t — 0 (i.e. just inside
the layer) and similarly F(0*) denotes the field component at y = 0%, just
inside the layer.

(a) Using the boundary conditions

&Ey(t7) Ev(t+),

&E,(0%) = Ey(07)

along with Maxwell’s equations, show that

Et) - E(0) = e (g ) 4 on)




t
2e,

2 B + B0

JkoturZ,

= [Ha(t*) + Ho(0)

E,(tt) - E,(07) =

t

b5 ar [B(E) + B(07)

(b) The derived conditions in (a) are in terms of the fields at the top and
bottom of the layer and the layer has equivalently/mathematically been
replaced by these conditions. To derive sheet conditions similar to those
for the resistive and conductive sheet, the fields at y = t* and y = 0~ can
be transferred to y = t/2. To do so employ the two-term Taylor series

expansion
t 0 tt
557 (7)

F (7) = FO)+3 %F(O)

for all field components (since the layer is no longer present) along with
Maxwell’s equations to derive the sheet conditions

e - Hp
gl (5) 2 (3)] - o)

2(5)-5(5) - 4()n()] 2Ga)
- R % [E (%) t (%)] + 0(#)

—"J €,
d RR=—9%_

}n which
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For a complete modeling of the layes these conditions must be supplemented
by their dual.

(c) Compare the conditions derived in (b) with those for the standard resis-
tive and conductive sheets. Explain which of the two sets is more accurate
and why.



Chapter 2

Field Solutions and
Representations

In this chapter we present formal solutions to Maxwell’s equations. These can
be cast into a variety of integral representations for computing the radiated
field by an antenna or the scattered field from a composite structure. Some
of these representations are given here and we will refer to them in the other
chapters.

2.1 Field Solutions in Terms of Vector and
Hertz Potentials

In the absence of magnetic currents and charges V - (1H) = 0, implying that
in a homogeneous medium the magnetic field due to electric sources can be
written as

H=H,=VxA (2.1)

where A is an arbitrary unknown vector and is referred to as the magnetic

vector potential. Its complete specification would, of course, require all point

derivatives of A, and we note that (2.1) involves only a subset of those deriv-

atives. Thus one could also independently define the V- A without interfering

with the definition (2.1) and this will be exploited later in the solution for A.
Substituting (2.1) in (1.48) yields

VxVxA=1J;+jweE, (2.2)

35
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where E, denotes the electric field due to the electric source J;. Also, from
(1.49) we have

V x (E.+jwpA) =0 (2.3)
implying
E. + jwpA = -V, (2.4)

with @, being again an arbitrary scalar function commonly referred to as the
electric scalar potential. Combining now (2.2) and (2.4) we obtain

VxVxA-kA=J; - jwVo, (2.5)

where k = w,/ji€ = 27/ is the medium propagation constant associated with
the wavelength . This can be further simplified by employing the identity

VxVxA=VV.-A-VA (2.6)
which when introduced in (2.5) gives
VA + k*A = -J; + jweV®, + VV - A (2.7)
and in rectangular coordinates
VA = iV2A, + §V?4, + :VA,. (2.8)

As stated above, since the derivatives involved in the definition of V x A
are different from those associated with V - A, we may arbitrarily set

V. A = —jwed, (2.9)

which is a relation that is often referred to as the Lorentz gauge condition.
Substituting (2.9) into (2.7) we obtain

V2A + kA = -J; (2.10)

A J;
(v’+k2){ A, }=-{ Jiy }
Az Jiz

or



2.1. FIELD SOLUTIONS IN TERMS OF VECTOR AND HERTZ POTENTIALS37

in conjunction with the definitions (2.1) and (2.8). Also from (2.4)

1
E. = —jupA + —VV . A = —jkZ (A+—vv-A) (2.11)

Jwe k?
where Z = \/p/ e denotes the impedance of the medium, and upon substituting
this into (1.51) or (1.33), it can be readily shown from (2.9) that ®, satisfies

V20, + k29, = -f (2.12)

Given the electric potential A, equation (2.11) provides the solution for the
electric field due to the electric sources J;. The corresponding magnetic field
is obtained from (2.1) and to complete the solution of Maxwell’s equations we
must also find similar expressions in the presence of magnetic sources. If for
the moment we assume that only magnetic sources as present, we could then
invoke duality to find the corresponding field expressions. In particular, in
comparison with (2.1) we now set

E,=-VxF (2.13)

where F is referred to as the electric vector potential and E,, is the field due
to M;. Following, a procedure similar to that in connection with the electric
sources or simply by invoking duality we obtain

H, = —jweF + —VV.F = —jkY <F+ivv-F) (2.14)
Jwp k?

where Y = 1/Z = ,/e/p denotes the medium admittance and F satisfies the
partial differential equation

VF + k*F = —M;
F, M;

(V2+8)S F, b == M, (2.15)
F, M;

In the process of deriving (2.15) we introduced the magnetic scalar potential
®,. such that

V.F=—jwud, (2.16)
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By employing this into (2.13) and making use of (1.32) we find that ®,, satisfies
the differential equation

V2%, + k2, = -”7’" (2.17)

which is the dual of (2.12).
The fields due to the presence of both electric and magnetic sources (J;, M;)
can now be found by invoking the superposition principle. That is

E=E.+E,, H=H.+H, (2.18)
and from (2.1), (2.11), (2.13) and (2.14) we obtain

E=-V xF - jwuA + .—I—VV -A (2.19a)
Jwe
H=V x A - jweF + .LVV -F (2.199)
Jwp
The vectors
1
I, = .LA, II,,=—F (2.20)
jwe Jwp

and usually referred to as the Hertz Potentials and in terms of these

E=—jkZV x I, + K¥*II. + VV - 11, (2.21a)

H=jkYV x I, + ¥*ll,, + VV - 1I,, (2.21d)
1 kY ;2

E—EVXH—jk—YVXVXHe-f-J,kYVXHm

2.2 Solution for the Vector and Scalar Poten-
tials

Let us first solve (2.10) for the case where J; is a small infinitesimal source
occupying the volume dv’ located at the origin (as illustrated in Fig. 2.1) given
that J; = aJ,, (2.10) becomes
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X

Figure 2.1: Illustration of an infinitesimal source (dipole) at the origin.

VA, + KA, =-J, (2.22)

where a denotes one of the rectangular coordinates z, y or z and away from
the origin A, satisfies

VA, + kA, =0 (2.23)

Further since J, is infinitesimal, A, is expected to be independent of the
spherical angles ¢ and 6 implying that (2.23) can be replaced by

10,04, .., _
5E(rar)+km-o (2.24)

upon substituting for the spherical form of the Laplace operator V2. Setting

Aa=m

- (2.25)
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(2.24) becomes

*f

and by inspection, a solution for f(r) is
f(r) = Cre ™ (2.27)

Upon restoring the suppressed time dependence e/** it follows that

f(r,t) = Re {Cle'ﬂ"ej‘“'}

= C) cos(wt — kr) = C cos [w (t - E)] (2.28)
describing an outward propagating wave where r/c denotes the time required
for the wave to travel a distance r and consequently c is the speed of the wave.
A second solution of (2.25) is associated with the inward propagating wave
and is given by

f(r) = Cyet* (2.29)
implying that the complete solution for (2.24) is
e=Ikr etikr
Aa(r) = C] - + Cg - (230)

For the particular case considered here, the source is expected to generate
outward propagating waves and we will thus set C; = 0. To find the value
of the constant C; we must return to (2.22). One approach is to note that
for k = 0 the resulting field obtained from (2.11) should reduce to the known
static solution implying that

_ Jadv’
T 4r
with J,dv’ being the strength of the equivalent point source. Alternatively,

we could integrate both sides of (2.22) over a small spherical volume of radius
r, — 0 which encloses the source J,. In doing so we obtain

[[[vawsif[] Audv = ~J,dv (2.32)

(2.31)



2.2. SOLUTION FOR THE VECTOR AND SCALAR POTENTIALS 41

Setting dv = r?sinf df d¢ dr and substituting for 4, = C, ‘.:h,
integral vanishes since r, — 0. The first integral can be rewritten as

///VV’A,,dv - /o"’/oz'/o'v.(ma)dv

- /O"/O'VA.,-forgsinodow

Evaluating the gradient of A, gives

0A(r,) . e~ Ikro
o, = —(1 + jkr,)Cy 7

and when this is introduced into the above integral we obtain

VA, - r =

/ / [ ViAo = - / i / " G 5in 8 df o + O(r?)

= —47\’01

for r, = 0. Substituting this result into (2.32) yields (2.31).
Based on the above, the electric vector potential is given by
e-ikr
4rr

where J; is the electric current density of the source occupying the infinitesimal
volume dv’ located at the origin. If the infinitesimal volume is moved to r/,
then via a coordinate transformation, the corresponding vector potential is
given by

A=];

dv’ (2.33)

-jklr-r’ -jkR
A< e~ikir-r’| e~J ,

= J{mdv = J.’Hdv (234)

where R = |r—r'| is the distance from the source to the observer (see Fig. 2.2).
Finally, if the source occupies an arbitrary volume V, then through the super-
position principle, the vector potential can be written as an integral over the
source (see Fig. 3), i.e

—JkR

e~ JkIr-r|
A= /// 41r|r-r’|dv _/// Iilr v' (2.35)
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X

Figure 2.2: Illustration of an infinitesimal source (dipole) away from the origin
at r'.
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(a)

(b)

43

Figure 2.3: Illustration of the geometrical parameters associated with field

representations.
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In the case of a surface current density J,, the electric vector potential is given
by

e-—ij

A= / /S L(r) g ds (2.356)

and similarly for a linear source /() we have

b g
A= /C 1) de. (2.35¢)
in which the contour C coincides with the wire supporting the line current
I(¢) and ¢ is the unit vector tangent to the wire. Expression (2.35b) can be
reduced directly from (2.35a) by setting J; = J,6(¢ — ¢’) where §(£) denotes
the Dirac delta function and (2.35¢c) can be obtained in a similar manner. The
electric field due to a volume, a surface or a linear electric source is now readily
obtained from (2.11) upon substituting for A as given in (2.35). In case of
a combination of volume, surface and/or linear electric sources, the magnetic
vector potential is given by the sum of the corresponding integrals.

To solve for the magnetic vector potential we can follow a procedure parallel
to that employed for the solution of A. For a volume magnetic source we obtain

e-ij

F= / / ‘/V Mi(r) S do’ (2.36a)

Similarly, the appropriate solutions for surface and linear magnetic sources are
given by

-jkR
F= / /S 1\/1,(r')“’41r —dof (2.365)
and
. -jkR
F= /C ELn(l) v (2.36¢)

in which I,(€) denotes the linear magnetic current source.
We remark that the common kernel

e=ikr-T'|

T irr—r|

e—ij

2.37
47R (2.37)

G(r,r') =G(R) =
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appearing in the integrals (2.35) and (2.36) is referred to as the Green’s func-
tion. It satisfies the differential equation

ViG(r,r') + k*G(r,r') = =§(r = r') (2.38)
and the radiation boundary condition

lim r (jkG + -6—9) =0 (2.39)

r—oo or
In (2.38) é(r — r') denotes the Dirac delta function satisfying the identity

f(r) rinV

/ / /V f(r’)é(r—r')dv':{ (2.40)

0 rnotinV

When the ambient medium is free space then k = k, = 27/}, and G(r,r') is
generally referred to as the free space Green's function, otherwise it is simply
the Green’s function of the unbounded homogeneous medium.

Were we to begin with the solution of (2.38), it is a straightforward task
to derive the solution for the vector potentials as given in (2.36). To do so for
A, we first multiply (2.22) by G(r,r’) and (2.38) be A,(r), and upon adding
the resulting expressions we obtain

Al(r)V3G(r,r) = G(r,r')V2A,(r) = —Au(r)é(r — r') + G(r,r')J,(r) (2.41)

Integrating the left side of this equation over the volume V enclosing the source
and invoking Green’s second identity it follows that

/] /V [Ad(r)V2G(r, 1) = G(r, ') V? Au(r)| dv

- ﬁ ‘ [Aa(r).a_G_é.E’_rQ —Gr, r')a/;“,f’)] ds (2.42)

where a—i denotes differentiation in the direction of the outward surface normal.
If S. (which encloses V) is now allowed to be a sphere of infinite radius, G(r,r’)
satisfies the radiation condition (2.39) at each point S, and if we assume that
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A, (r) satisfies the same condition as well, we observe that the right hand side
of (2.42) vanishes. Thus, from (2.41) we have

0 = / / /V [Au(r)V3G(r,¥') - G(r, ) VA, (r)] d

- - / / /V Au(r)b(r — ¥')dv + / / /V G, t) L (r)dv  (2.43)
and upon applying (2.40) we obtain that
A = [ [ [ 103G (r, )0 (244)

Since G(r,r’) = G(r’,r), which is a consequence of reciprocity, we may rewrite
(2.44) as

Aq(r) = / / /V Jo()G(r, £')dv’ (2.45)

which can be readily generalized to (2.35).

Before closing this section we should note that the solution for the electric
scalar potential @, can be readily derived by solving (2.12) through the same
procedure followed for the solution of (2.22). This gives

8.(r) = % [ [ [ Gte, ey (2.46)

and by invoking duality we find that the appropriate expression for the mag-
netic scalar potential is

(I>m(r)=%//Apm(r')G(r,r')dv’ (2.47)

Corresponding expressions due to the surface charge densities are obtained
directly from (2.46) and (2.47) upon replacing the volume integrals with surface
integrals over the domain of the surface charges.

2.3 Near and Far Zone Field Expressions

2.3.1 Near Zone Fields

Using the vector potential expressions (2.35) and (2.36), from (2.19) the elec-
tric field can be more explicitly written as

E= / / /V { -V x [M(r)G(r,r')] - jkZI()G(r, )
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J%v V3G, J' (2.48)

where as usual r and r’ denote the observation and source point, respect-
ively. For simplicity, in this we have dropped the subscript i from the symbols
denoting the electric and magnetic currents. As usual, r and r’ denote the
observation and source points, respectively.

To simplify (2.48) it is necessary to carry out the indicated differentiation
and as a first step toward this we note that

V x [M(r')G(r,r")] = G(r,r')V x M(r') = M(r') x VG(r,r')

= -M(r') x VG(r,r') (2.49)

since the V operator denotes differentiation only with respect to r and not the
primed coordinates. For the same reason we also have that

V. J()G(r,r)) = G(r,r')V-I(r')+I(r')- VG(r,r)

= J(r')- VG(r,r) (2.50)
and thus
VIV-I()G(r,r')] = VI(')-VG(r,r')+I(r')- VVG(r,r)

= J(r')- VVG(r,r) (2.51)
When the identities (2.49)-(2.51) are introduced into (2.48) we obtain
E(r) = / / / [M r') x VG(r,r') - jkZ3(r')G(r,r)
jZ / / / '
- =J(r'") - VVG(r,r')|dv (2.52a)
and by invoking duality we also have that
- / / /V [- J(r') x VG(r,r') - jkYM(r')G(r, ')

1Y

- (r')- VVG(r, r')] dv’ (2.52b)
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To proceed further we must carry out the differentiation on the Green's
function. By applying the chain rule of differentiation and noting that R =
|r — r'|, we have

o d o
VG(r,¥) = —G(R)VR = - (Jk + 72-) G(R)VR (2.53)
In addition,
_OR_ OR R i(z-2)+jly-y)+iz-#) R _,
VR=t g TG, T %, = R =g R
(2.54)

where R denotes the unit vector along the direction joining the integration
and observation points. Using this result in (2.53) we have

VG(r,¥') = - (jk + %) G(r,r)R (2.55)
Also,
VVG(r,¥') = =V ’(jk + %) G(r, r')fi!]
' (2.56)
- v :(jk + %) G(r, r')] R-(jk+ -11-2-) G(r,¥)VE

where the gradient of the unit vector R is interpreted to imply the operation
VV =:VV; +§VV, + 2V}, (2.57)

Clearly, VV is a product of two vectors and in that respect it is a dyadic
whose actual meaning can be realized only when it is dotted with a vector as
indicated in the last term of (2.52). To carry out the V operation on R we
first employ chain rule differentiation to rewrite it as

()= () - S v ()

_ vr_RR (2.58)

R R

VR
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In accordance with (2.57) we can now express Vr as

Vr = V(z)+yV(y) + :V(2)

= ti+gj+2:=1 (2.59)
which is referred to as the unit dyad satisfying the identity
v.I =V (2.60)

Substituting (2.59) into (2.58) and then into (2.56) we have

/ . 1 2 /
VVG(r,¥) = RR ﬁ (]k+§)]G(r,r)

—(I- kR (jk + %) Gr.r) (2.61)

and thus

—jkZI(r)G(r,r') - j—kZ-J(r') . VVG(r,r) = —ij{ [1 - Ejﬁ - R)Q}J(r’)

- [1 - {% -1 132)2] (3()- R) R}G(r, r) (262

When this result along with (2.55) is introduced into (2.52) we obtain

E=—]k/// [M(r') x ] (1+—) (r,r')dv’
"kz///{[l"ﬁ k}ltz)]"(")

- [1 - k%- ( 132)2] (3¢ - R) R}G(r,r')dv' (2.63a)

and similarly

H-= +;k///[.1 xR](1+3m> (r,1')dv’
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'jkY///v{ [1 'Ejﬁ - (k}%)2] M(r)

-~ [1 - - -—] (M(r)- R) R}G(r,r’)dv’ (2.63b)

Before closing this section we remark that if J(r) is replaced by an infin-
itesimal dipole of length A¢ — 0 and carrying a current I, i.e. J(r) = I¢, from
(2.53) the associated near zone fields are given by

. J 1 e~ IkR
Ee = —]kZ(IA[) [1 - m e W] 47I’R
: -jkR
+ jkZ(I1AL) [1 - 7;3']1? 1 kfi)’] 84; 5 (¢-R)R (2.64a)
and
1 e-ij . .
H. = +jk(IAf) [1 + Jﬂi R (¢ x R) (2.64b)

If the dipole is z directed (¢ = %) and is located at the origin (R = r), then
upon setting z = 7 cosf — fsin0, (2.64) reduce to the usual dipole radiated
fields. Similarly, if M(r) is set equal to an infinitesimal (I, )¢, by referring
back to (2.63) or by invoking duality we find that the corresponding radiated
fields are given by

1 ]e %R

E, = —jk(InAl) [1 + =z TR B (2.65a)
_ . ] 1 e"ij a
Hp, = —jkY (InA0) [1 ~ IR (kR)’] "R
pivaan -3 - 3 1 mp (s
. kR~ (kR)?| 4xR ‘

Again, upon setting ¢ = 3 and r' = 0 (implying R = r), these reduce to the
usual magnetic dipole fields.
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2.3.2 Field Evaluation in the Source Region

The field expressions (2.63) can be readily evaluated for r # r’. However,
care is required in evaluating the integrals when r — r'. In that case R — 0
and the integrand has a non-integrable 1/R® singularity. To circumvent this
difficulty we can rewrite the portion of the integral due to the electric current

E, = —-jkZ / / /V B [J(r’) (ro,r) + kQJ( ). VVG(ro,r')] dv’

_jkZ / / / [J G(ro,F') + sz( r). vvc(r,,,r')] dv' (2.66)

where V, is an infinitesimally small spherical volume centered at the obser-
vation point r, (see Fig. 2.4) and r, is in V. It can then be shown that the
first term of the second integrand over V, vanishes and to deal with the second
term of the same integral we invoke the identity [Van Bladel, p. 488, Collin;

1986)
/ / ./v Vidv= ﬂsﬁof ds. (2.67)

This is based on a generalization of Gauss’ theorem and accordingly 1, denotes
the outward normal unit vector to the surface S, enclosing V,. Using (2.67)
and recalling that V, is a small spherical volume we have

b n

where R, = (r, - r')/|r, —r’|. For R, = |r, — | = 0, VG ~ —R"y and upon

transfering to sphencal coordinates we obtain

- lim SO(RO-J(ra))VG(ro,r')ds’=4—1r [ 0"(1‘10-J(r.,))1‘zosina,,daod¢o

Setting now fZ,, = —[Zcos ¢, sinb, + ysin @, sin, + 2 cosb,] and dropping
those integrals which vanish, we have

x 27
- Jim ﬂ 3(ro)VG(ro,¥)ds' = 3(3-3(r,)) / / cos? ¢, sin® 0,d0,de,
o JO
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X

Figure 2.4: Geometry for evaluating the field in the source region.

x 2r
+3(5-3) [ [ sint g, sin®0, ds, dg,

x r2x
+3(5-3(r.)) / /0 cos* 6, sin 6, dd, dg,

and upon evaluating the trivial integrals we obtain

, 1
Jim ﬂ )) VG(ro,r)ds’ = =z3(r.) (2.68)
Consequently, we may rewrite (2. 66)
_ 12
r) = k2 301G (e, ¥) + 53w - VVG(r, )] o' + 223(0)

(2.69)
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where the horizontal bar through the integral denotes the principal value of
that integral. That is, if r = r,, where r, is located in V, the principal value
of the integral is evaluated as

ﬂ.f(l")dv' = ‘],'E})_// - f(r')dv'. (2.70)

Otherwise, if r is not in the source region V, then J(r) = 0 and the principal
value integral is evaluated as an ordinary integral. This simply implies that
for r not in V, no special care is required for the evaluation of the integrals in

(2.63).

2.3.3 Fresnel and Far Zone Fields

When R = |r — r'| the field expressions (2.63) can be simplified substantially
by neglecting those terms whose amplitude is O(1/R?) or less. In addition, we
may approximate R by 7 (see Fig. 2.3) permitting us to simplify (2.63) to

E = —jk / / /V [M(r') x 7] e_’::;”dv'

' o emikE-r
+]kZ///er[rxJ(r)] yp dv (2.71a)

H=jk [ [ [ [36) x# C-J:::rl'

e-j

jr-r|
+]kY///Vr x [f x M(r)] rpm dv (2.716)

To proceed further, it is necessary to obtain a more explicit expression for
|r — r’| and from Figure 2.3, we obtain that

R=|r-1|= \/r2 + 172 — 2rr' cos { (2.72)
where ' cos ( = r'-# as illustrated in Figure 2.3(b). By employing a binomial

expansion for the square root, R can be written as

1(=1
(=2rr'cos ¢ + %) + 2—(2—2—)(1'2)-73(-—2"' cos¢+r?) 4.

i Ml

1
R =~ -
r+2
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and upon some rearrangement we have

r2sin? ¢ + rcos¢ (r')* rBcos3(

Rmr=rieos(y— 2

(2.73)

When the first three terms of this expansion are kept, the resulting field ex-
pressions become

e=Jkr o

47!’7‘ /-// [TXM +ZTXTXJ( )]Cjk[r"'*'l'-r—(f)]dv/
(2.74a)

-Jkr | - |

41(1" /// [—T X J + Yr X7 x M( ] Jk[r Fr/ T F=(r )z]dv’
(2.74d)

which were derived by invoking the vector identity
x(bxc)=(a-c)b~(a-b)c (2.75)

These expressions give the Fresnel zone fields and if we restrict the maximum
phase error due to the three term approximation for R to be less than /8, this
demands that the next higher order term of the expansion must contribute a
phase which is smaller than # /8. From (2.73), this implies that the sum of the
fourth and sixth terms must always be less than = /8k, i.e.

3
(3) T
max{ 573 cos {(1 — cos? () §

where D denotes the maximum linear dimension of the source. Differentiating
the left side of the above inequality with respect to { and setting the result
to zero gives (; = 0 and (; = cos~!(1/v/3). Of these solutions the second is
associated with a maximum and we thus have

3
k(D) ——=0.385 <

e
8
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3
r> 0.62\/% (2.76)

if the phase error associated with the approximate expressions (2.74) is to be
kept to less than /8.

If we retain only the first two terms of the expansion (2.73) the resulting
field expressions are

Ut
(4]

giving that

ek . ' A oA N PN
E=E”=Jk4m_ ///V[er(r)+ZrxrxJ(r)]e"‘r dv
(2.77a)
e-—jkr s
- - A A A INY JKE/F g ¢
H=Hj = —jky S ///V[zrx.l(r) Fx # x M(r')] e dy
(2.77b)

These are referred to as the far zone fields and as is the case with (2.74)
they are also valid for surface and linear sources upon replacing the volume
integrals with surface or line integrals over the domain of the source. Again, by
demanding that the maximum phase error due to the two term approximation
for R is less than 7 /8, we can find the minimum value for r for which this can
be achieved. In this case, the third term of the expansion (2.73) must satisfy
the inequality

kD?

- <
r

ool 3

implying that

r>o (2.78)

and this relation is referred to as the far zone criterion.
By comparing the E and H expressions given in (2.77) and making use of
the identity (2.75) it follows that

H”=Yf‘XEfj, E”=—Zf'XH” (2.79)
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Which are the usual relations associated with the far zone fields and imply that
the far zone field does not have a component along 7, the direction of proag-
ation. Through comparison of (2.77) with (2.35) and (2.36), it also follows
that

E;s = jki x F+ jkZF x (f x A) = —Z¢ x Hy, (2.80a)
H;; = —jki x A + jkYF x (f x F) = Y7 x E; (2.80b)

More explicitly, we may also express the far zone fields in terms of the spherical
components of the vector potential as

E;; = —05k(Fs+ ZAg) + $jk(Fs — ZA,) (2.81a)
H;; = —0jk(As — YF,) — ¢jk(Ag + Y Fy) (2.81b)

By comparison of (2.80a) and (2.80b) we can conclude that the dual quantity
of A is F and that the dual of F is —A and a more complete summary of the
dual field quantities is given in Table 2.1.

2.4 Direct Solution of the Vector Wave Equa-
tion

2.4.1 Vector wave equations

In many cases it is advantageous and, thus, desirable to work directly with
the electric and magnetic fields rather than the vector potentials. To obtain a
solution for the fields E and H we must then pursue a direct solution of Max-
well’s equations (1.48) - (1.51) without invoking the vector or scalar potentials.
Because of duality let us concentrate on the electric field solution.

Dividing (1.49) by g,, taking its curl and making use of (1.48) we obtain

V x (lV X E) — k26,E = —jwp,d = V x (PLM) (2.82q)
Hr r
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where we have again dropped the subscripts ¢ from J and M. This can be
alternatitively written as

VxVxE—k2E+p,V(£->xVxE:—ij

~VxM-uV (;1—) x M (2.82b)

where we have made use of the identity
Vx(¢A)=Vox A+¢V xA (2.83)

Equations (2.82) are the most general forms of the electric field wave equation.
The corresponding magnetic field wave equations are

V x (ZI-V X H) —ku,H = —jwe, M + V x (%J) (2.844)
or

VxVxH—k2H+e,V(;l-) XV x H = —jweM
1
+VxI+6V (?) xJ (2.84b)

In the case of homogeneous media, V (&) =V (-u‘—') = 0 and the wave
equation then reduces to

VxVXE-FKE=-jwud -V xM

(2.85)
VxVxH=-kH=—jweM+V xJ
By employing the identity (2.6) and the relation (1.51), it follows that
V2E+k2E=jpr—l_V'—J+VxM
Jwe
(2.86a)

VV-M

- -V xJ
Jwp

V?H + k*H = jweM -



58 CHAPTER 2. FIELD SOLUTIONS AND REPRESENTATIONS

In the source free region these reduce to

VE+kKE=0
(2.86b)
VH+kH=0

which are commonly referred to as the wave equations. These imply that each
field component satisfies the scalar Helmholtz equation

V% + k=0 (2.87)
where 1 denotes E., E,, E,,H;,H, or H,.

2.4.2 Dyadic representation

To solve (2.85) we may instead consider the solution of the dyadic equation
V x V x I(r,r') = k*T(r,r') = =Ié(r - r) (2.88)

where T'(r, 1) is referred to as the free space dyadic green’s function and sat-
isfies the radiation condition

lim r [jKT+7 x (VxT)| =0 (2.89)

By setting T = Ta, where a is some arbitrary unit vector, this can be altern-
atively written as

rlirgr[jk'l‘ +7ix(VxT)a=0 (2.90)
By a comparison of (2.85) and (2.88) it is then readily seen that T represents
a field vector and for (2.89) to be a valid radiation condition, (2.90) must
be satisfied when T is replaced by the E or H far zone fields. This is easily

verified by reverting to the far zone relation (2.74) and in conjunction with
the source free Maxwell’s equation, we find that

VxT=—jkixT (2.91)

where T represents the E or H fields, and from which it is seen that (2.90) is
satisfied .



2.4. DIRECT SOLUTION OF THE VECTOR WAVE EQUATION 59

To solve for T we first take the divergence of both sides of (2.88) and this
gives

-V [F*T(r,r)]| = -V - [Té(r - ') (2.92)
Also, by invoking the identity (2.6), equation (2.88) can be written as
V(r,¥) + KT(r,r') = (r - ') + V [V - T(r,r')| (2.93)
which can be combined with (2.92) to give
= - VV
(V2 + K)T(r,r') = [1 + 7] 5(r—r'). (2.94)
Setting
= - VV
T(r,r') = — [1 + ‘p‘] G(r,r) (2.95)

it follows from (2.94) that G(r,r’') must satisfy the differential equation
(V2 +k)G(r,r') = =§(r - )

This is identical to (2.38) and since it can be shown from (2.89) that G(r,r’)
must also satisfy the scalar radiation condition (2.39), it is then given by (2.37).
By referring to section 2.3.1, it is readily seen that T can be expressed as

- j 1 -
T(r,r) = (kLR'*'W-l) G(R)

_ _3 3% Y
= +(1 R kR)G(R)RR (2.96)

Also,
V x T(r,r') = -V x <i+ %) G(R)

= -V xIG(R)+V x %G(R)

= -V xIG(R) = -VG(R) x I (2.97a)

v xTi(r,r) = (jk+ %) G(R)R x1 (2.97h)
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since VR = R. However, before proceeding with field representations in terms
of the dyadic Green’s function, it is instructive to look at more explicit expres-
sions of T aimed at clarifying its use in subsequent integral equations.

Any dyadic can be written in terms of its components, and for the case of
T we have

T =#il,, + 39Tz, + #4T.,
+ Y2l +yylyy + 920,
+ 230, + 3Ty + 23T, (2.98a)

which can be more conveniently written in matrix form as

P2e Toy Tz
T=|T. I, Tw (2.98b)
r\zz: I-‘zy I-‘zz

Again, it should be noted that the meaning of the dyadic can only be realized
when it is dotted with another vector. Using (2.98b) this operation becomes
the matrix product

_ Frx 1-‘.1:y Frz VJ:
[-V=| Ty Ty Ty Yy
I-‘z:z: 1—‘zy Fzz Vz

which is convenient for numerical implementations.
To find the individual matrix components of T' we may return to (2.95)
and upon replacing the V operators with their cartesian forms we find

2 9?2 32 32
k*+ 32 dz0y 9z0z
-jkR
= 1 2 2 2 e™d
n_ __ - 3 .2 o) 3
Trr)=-— | &% Ft+d o = (2.99)
52 32 24 9%
98rdz dydz kS + 922
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and
0 - £
VxTr)=—L| 2 o —2 | (2.100)
’ 47 dz dr R
"a% 3% 0

One could now carry out the differentiations or more conveniently (2.96) and
(2.97) could be employed along with the cartesian expressions of R and I
given by (2.59) and (2.54), respectively. The cartesian components of T' are
then readily found by collecting the like terms. The corresponding matrix
components of T in the cylindrical coordinate systems are found by replacing
the V operators in (2.95) with their corresponding cylindrical forms. Upon
collecting like terms, this gives

2, o? 1.8 92
Ftaz 25000 3092
= 1 2 2 2 e~ kR
N 1. 8% 21 9% 1.9 9
) =-r—| 1 KF+i&% 1% |4 @
92 1_8? 2 4 9%
9z20p p 0209 k +822

where (p, ¢,2) denote the usual cylindrical coordinates. In carrying out the
differentiations, it should be noted that now

R=/p? + p = 2pp' cos(¢ — ¢') + (z — 2')2.

To express the E and H fields in terms of the free space dyadic green’s
function we may examine (2.52) and identify the presence of T'(r,r’) and V x
T(r,r') which are given in (2.95) and (2.97a), respectively. Then, upon making
use of the identity (2.60) and that —VG x M = =VG x I - M,we can rewrite
(2.52) as

E(r) = ///{[V x I(r, r’)] -M(r') + jkZT(r,r') - J(r’)}dv'
(2.1024)

H(r) =///{jk¥‘r‘(r,r')-M(r')— [V x T(r,r')] - 3(e")] dv’
(2.102b)
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A more formal derivation of (2.102), though, directly from the vector wave
equations (2.85) and the dyadic equations (2.88) requires use of the vector-
dyadic second Green’s identity. This is given by

/// [V x V x E(r)] - T(r, ') E(P)'VXfo(r,r')}dvz

ﬂsc{[fsz(r)]-fo(r, Y+ [ x V x E(r)] - T(r, r') }d
(2.103)

where 7 is the outward unit normal to the surface S. enclosing V. Also, E and
T can be any vector or dyadic but in this case they are chosen to represent
the electric field and the free space dyadic green’s function. We note that the
identity (2.103) can be derived directly from the scalar second green’s identity
(2.42) and this is discussed in the Appendix.

Upon making use of (2.85) and (2.88) in (2.103) along with the property
of the delta function. the left hand side of (2.103) becomes

)= [ [ [, Gendte) Tie,e) 419 x Mis) - Tieoe)} o

To evaluate the right hand side surface integral we may assume that S is
a spherical surface at infinity since V encompasses all space. Then, upon
invoking the radiation condition (2.89) and (2.91) it can be shown that the
right hand side of (2.103) vanishes. Thus, we have

/// jwrd(r)-T(r, ) + [V x M(r)] - T(r,r)} dv (2.104)

and by noting that

/// V. ) X I"(r r )}dv = ﬁsc {M(r) X T(r,r')}-ﬁds =0

(2.105)

(since M(r) is zero on S;) and the identity

V- {M(r) x T(r,r')} = V x M(r) - T(r, ') - M(r) - V x T(r, ')
(2.106)
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it follows that
/// jopd(r) - T(r,r') + M(r) - [V x T(r,©')| }dv (2.107)

To cast this into the integral form given in (2.102) it is necessary to invoke
some properties of the dyadic green’s function. We note that

f‘_(r, r') = [(r,r) (2.108a)

V x T(r,r') = =V x T(r,r') = V' x T(r, ') (2.108b)

where the tilde over the dyadic quantity denotes the transpose of their associ-
ated matrix. Thus

M(r) -V xT(r,r') = =V x I(r,r') - M(r) = V' x T(r, ') - M(r)
and

I(r)-T(r,r') = T(r,r) - J(r) = T(r,r') - I(r)

Further, since T(r,r’) = T(r/,r) and V' x I(r,r') = V x (¢, r), it follows
that (2.107) is identical to (2.102).

When making practical use of the integral expressions (2.102) it is necessary
to work with the individual field components. In the case of the cartesian
components, these can be readily found by introducing the matrices (2.99)
and (2.100) for T and V x T, respectively. We have

—]Z 5? . 0 N
/// [ (k2+—6?2-) +Jy(r)%—(9_y+Jz(r)8xaz}

R)dv' — / / / [ M,(r) gz} G(R)dY  (2.109)

- 22 /// [ axa ) (’”2 + gé) * J’("')aj;z]

R)dv' — / / / [M M.(r') 363:] G(R)dv'  (2.109b)
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"Z///[ Ve J(r'%;-;w <+ 53)

R)dv' _/// [ +M( )68.1:] G(R)dv'  (2.109c)

and the corresponding cartesian components of H follow by duality. To obtain
the ideal dipole fields from (2.102) or (2.109) and their dual we simply set

J(r) = {IAOS(r 1) =dp,b(r-1)

M(r) = {I,A0é(r—1')=dp, é(r-r) (2.110)

where dp, . are referred to as the electric and magnetic dipole moments. From
(2.102) we then have

E(r) = jkZDL(r,r')-dp,+V x I(r,r') - dpn

H(r) = jkYT(r,r')-dp, —V x T(r,r') - dp. (2.111)

which can be shown to be identical to the expressions (2.64) and (2.65) upon
making use of (2.96) and (2.97).

2.5 Two-Dimensional Fields

Two dimensional fields are generally referred to as those fields which do not
exhibit a dependence on one coordinate variable. For example, the problem
of propagation in a parallel plate waveguide is two-dimensional in nature and
so is that of plane wave scattering by a circular cylinder (see Fig. 2.5). Of
course, neither the parallel plate waveguide nor the infinitely long cylinder
are physically realizable structures but nevertheless their study can provide
important results which are applicable to the three dimensional structures
which they appr =imate. For example, results based on the parallel plate
waveguide are us ful in the analysis of striplines and the general theory of
transmission lines. In the case of scattering, elongated bodies can often be
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(a)

inc

(b)

Figure 2.5: Examples of two-dimensional problems: (a) Propagation in a par-
allel plate waveguide whose plates are infinite in the z-direction. (b) Scattering
by an infinitely long cylinder infinite in the z-direction.
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treated as infinite in one dimension to simplify the analysis. Results based
on the two-dimensional model can then be applied to the corresponding three
dimensional problem through scaling.

2.5.1 Two-dimensional sources

The most elemental two dimensional source is an electric or a magnetic line
source. Referring to Fig. 2.6, these are z-directed current filaments carrying
a constant current. They may thus be represented by

'}

observation
point

& X

Figure 2.6: Illustration of geometrical parameters associated with a line source.

3(r) = 318 p,) = 51,22 = ””j‘d’ — ¢o) (2.112a)
M(r) = 51n6(5 - 7,) = 21,28 ”°):(” = ) (2.1126)

where p = zZ + yy = p(Zcosd + ysing) = pp denotes the vector to the
observation point and p, = Z,Z + yo§ = po(Z cos @, + ysin ¢,) is the vector
to the source point. To find the field radiated by these sources we refer to
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expression (2.52) or (2.102). Upon setting dv = p dp d¢ dz and noting that

/oo e-JkR , o <] e--’kv 5-30|2+(2')2
dz =/

dz' = —jrH® (k[p - 5,]) (2.113)

- R -\l =B, + (/)2
the field due to the electric source is found to be
_ JkZI g . @D(Li= = 121, . )L —
E. = ~i—— [~inHP(kp - 7,))] - 2 VO {~jrHP(kip - 7,))}
= SIAZHE(kp~ 7)) = ~4kZ1Gai(R) (2.114)

since the dot product in the second term is zero. In this H(®*)(.) denotes
the zero order Hankel function of the second kind. The quantity R = |[p —

7| = \/p2 + p% - 2pp, cos(d — ¢,) = \/(:c —2,)? + (y — yo)? is now the dis-
tance between the source and the observer and

Gu(R) = Gu(p.7,) = ~THP(kp-7,) = -2 HO(kR)  (2115)

is referred to as the two-dimensional Green’s function for the unbounded ho-
mogeneous media. It satisfies the differential equation

V2G2d(ﬁ)ﬁl) + szH(ﬁaﬁ’) = —6(ﬁ - ﬁ') (2116)

and the radiation condition

=0. (2.117)

As can be expected (2.115) can be obtained by integrating (2.38) with respect
to z and setting 2’ = 0. Also, the validity of the radiation condition (2.117)
can be readily established by noting that as p — oo

2] : --:e'jk"
H® (k5 -7 y (| e

and when this is used in (2.115) it follows that (2.117) is satisfied.

(2.118)
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To find the electric field radiated by the magnetic line source, we substitute
(2.112b) into (2.52), yielding

En = L Ini x VHO(k7 - 7, (2.119)

Since (see section 2.3.1)

VHO(Kp - 7,]) = VHO(kR) = kd(TdeHiz)(kR)VR = —HP(kR)R

(2.120)

where H{*)(-) is the first order Hankel function of the second kind, (2.119)
simplifies to

E, = zm%ﬂf”(kozz)s x R (2.121)

where R = (P - 7,)/1p — P,]. The corresponding magnetic field due to the
magnetic line source is given by

H, = -m%mﬁ”(klﬁ—m (2.122)

which is the dual of (2.114). Also by invoking duality, the magnetic field due
to an electric current is given by

He = ileé XVH?)(klp_-p.ol)

= —I,ﬁﬂ"’(m ix R (2.123)
4 1

Upon comparing this to (2.114), it is observed that for two-dimensional 2-
directed electric sources

H, = —%2 x V(E. - 2) (2.124q)
and for z-directed magnetic sources
E.=22;xv(H, - 3) (2.1248)
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Above, we discussed the radiated fields by two-dimensional z-directed line
sources. However, it should be noted that in subsequent studies we will en-
counter two-dimensional sources which may be invariant in z but are not ne-
cessarily z-directed. That is,

3(r) = aL.8(5 - ,) (2.125)

and this represents a current filament as illustrated in Figure 2.7. Such sources,

Figure 2.7: Illustration of two dimensional current filament.

although not physical are useful as equivalent sources in formulating a given
radiation or scattering problem (as is the case with magnetic sources). Their
associated fields can be found by following a procedure similar to that outlined
for the z-directed two-dimensional sources. Alternatively, they can be obtained
from the more general expressions given in the next section which refer to
completely arbitrary two-dimensional source distributions.
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2.5.2 [Exact Integral Expressions

Let us assume the presence of the general two-dimensional sources
{J(P),M(p)} occupying the cross sectional areas A as illustrated in Figure
2.8. As discussed in the previous section, to find the field radiated by these

Y4

P x

Figure 2.8: Radiation by two-dimensional sources.

sources we refer to the integral expressions (2.52) and set

Jr) - I(p)
(2.126)
M(r) - M(p)
By making use of the identity (2.113) we then readily find
7= [ [ [M@) x VGu(p,7) - jk23(5)Gau(7,7)
]Z - — ] /
- 1(7) - VVG(p, 7)) ds (2.127a)
Hp) = [ [ - 3(7) x V6u(p,7) - jkYM(7)Guul7,7)
Yo Al
- -M(7) - VVGau(p, 7)|ds (2.1278)
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where G24(p,7') is given by (2.115) upon replacing 5, by = p'(Z cos ¢’
+ysing’).

Clearly, (2.127) are identical to (2.52) other than the replacement of the
three-dimensional Green’s function with the two-dimensional one. Also, the
volume integral has been replaced by a double integral over the domain of
the sources in the zy plane. For computational purposes it is necessary to
carry out the gradient operations which necessitates that we write out the
dyadic VVGyq in its explicit form. This can be readily done by following the
procedure employed for the three dimensional case along with the identities

(2.120) and
HO(kR) = H? (kR) - —H,(kR)

kR
(2.128)
Hu(kR) = Hu+l(kR) kR (kR)
where v denotes the order of the Hankel function. We obtain
: . HOER).
e ) = { [k kR) - 2 BPkR)| R4 DR Iu}
(2.129)

and in this case Iy = 22 + §j, R = [p- 7| = \/(:r -z')? 4+ (y—y')? and
R=(p-7)/|p - 7| Substituting (2.129) into (2.127) yields

B(p) =L [ [ M) x & HP(kR)as
] [omena s B [ o nlia
+% / LR(J<W)-R)[H£’><kR) : RH"’(kR)] ' (2130
H(p) / / ) x B H®(kR)ds'

ky// M(7) B (kR)d kY//M'p’ I ng)d
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-/ / RM [ HP(kR) - kR ”(kR)]d (2.1306)

Alternatively, we may expand the del operators in their cartesian form and in
doing so we can rewrite (2.127) as

-l

2 — a — /
( 2) +Jy(7 )51_631] G24(p, P )ds

R
H, = —% /] [Mz(ﬁ) (k'~’+§;)+M,, af; ]sz(ﬁ,'p*)ds’
+ / / J.(7 ng (7,7')ds
H, = -2 / / [Mx +M(ﬁ’) (k’+—a§;—2)]ng(ﬁ,ﬁ')ds
-/ W%Gu(ﬁ,pws’
He = =jkY [ [ M.(0)Gau(p, 7)ds
+ [/ {Jy(ﬁ)%—h(b“)%] Ga(,7)ds’ (2.131)

Obviously, (2.130) are more useful for computing the radiation of given sources,
but the representations (2.131) are more appropriate in numerical solutions to
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be discussed later. We note that (2.131) can be deduced directly from the
corresponding three dimensional expressions (2.109) upon setting to zero all
derivatives with respect to zero and making use of the identity (2.113).

2.5.3 Far Zone Fields

In the far zone, (2.130) can be simplified by introducing the asymptotic ap-
proximation

(2) (kR) o \/— e~ Iklp-7'| /21 ‘, e—ke k57 (2.132)
o= \/klp 7 n’

Then, on letting R — p, R — p and keeping only terms of O(1/,/p) we have

and

kp ‘ e
Hy~+ / [ 36 x 5+ Y x px M(z)] 7 ds

(2.133b)

and from Fig. 2.9, it is seen that -7’ = zcos ¢ + ysin ¢ = pcos(¢ — ¢').
By comparing (2.133a) with (2.133b) and making use of the identity (2.75)
it is then readily seen that

Hy=YpoxEsy, Ey=-ZpxHgy (2.134)

which are identical to (2.79) except for the replacement of # with 5. We can
rewrite (2.133) in a more compact form by introducing the two-dimensional
vector potential definitions

A

—1// (7)H® (k[p - 7'|)ds’ (2.135)

F=2 / / M(7)H (k[p — 7'|)ds’ (2.136)
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Y4
R=p

P X

Figure 2.9: Far zone radiation by two-dimensional sources.

On making use of (2.132) we have that in the far zone,

_ =i(kp=x/4)

A~ J e // e;kpp ds' (2.137)

P _] e-](kP"/‘) M ....r Jkpp ds' (2 138)
(7)e s )

and thus from (2.132) we obtain

Ejy=+jkpxF+jkZpxpx A=-ZpxHy,  (213%)

Hy =-jkpx A+jkYpxpxF=YpxEy (2.139b)

These are identical to those for the three-dimensional case given in (2.80).
They imply that the two dimensional far zone fields have only ¢ and z com-
ponents since the field propagation is along the p direction. More explicitly,
upon carrying out the cross products in (2.139) we find that

E;; = 3jk(Fy - ZA,) - $jk(F, + ZAy) (2.140a)

Hy; = -2jk(Ag + YF.) + ¢jk(A. - Y Fy) (2.1400)
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2.5.4 Field evaluation in the source region

When the observation point is in the source region, (i.e. p — p') the integrands
in (2.127) and (2.130) contain a non-integrable g singularity because

j 2
HP(kR) pxo

Y (2.141)

for kR — 0. To treat this situation we must proceed in a manner analogous
to that described in section 2.3.2. That is, we first rewrite (2.127a) as

Be= k2 [ [ [06ulp?) + 5I7) VY67, 7)] é

342 [ [ [37)62(pP) + GIF) - VVaulp, )| s (2142

where we kept only those terms associated with electric currents. Further, A,
is arbitrarily chosen as the cross section of a circular cylinder of radius a — 0
and is centered at the observation point p = p,. Setting ds' = p'dp'd4’, and
noting that

HO(kR) reo %111(1.1231:12) (2.143)

it is readily seen that the first term of the integral over A, vanishes as A, — 0.
To deal with the second term of the same integral we invoke the identity

//A Vfds = }g fofde (2.144)

which is reduced directly from (2.67) and thus #, is the outward unit normal
to the contour C, enclosing A, (see Fig. 2.10). Thus,

1 — g _1_ . o
kz//Ao_’oJ(P) VVG24(p,, p')ds" = k2J(po) V//AO“OV Ga4(P,, 7' )ds

1 .
~ ot fcolRa - 3(5,)IVGau(3,, 7)de
(2.145)
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Y4

» x

Figure 2.10: Geometry for evaluating the field in the source region.

where R, = (p, —p)/]pa—plandp ison C,. For |p,-7'| =a = 0,
Vng~—( ) LV(kR,) =

rka 21r

== and upon setting d¢' = ad¢, we get
a g g

a

k2 /Ao-o VVGH( )d , = —27‘-1]‘:2 ‘/02’r (Ro ' J(-ﬁo)) Rod¢o

= 5o [$e0P.) [ cos? budb + 30, (5,) [ sin® 6,48,
=~z |F(Po) | cos" o o+ ¥ y(po)o sin‘ @,d@,

We thus conclude that

- ! J —0
5[ [ 30) VVGu(p,7)s =~ (2.146)
and consequently, (2.142) can be rewritten as
1z
=._,kzﬂ [ \Gaa(P, sz( P): VVGw(5,7)| ds' + 23
(2.147)

As usual the horizontal bar through the integral denotes its principal value.

2.6 Spectral Field Representations

One readily observes that the field representations given in this chapter are
convolution integrals involving the Green's function and the source current
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density. Consequently, by taking the Fourier transform of the integrals in
(2.109) or (2.131), it follows that the Fourier transform of the fields is a simple
algebraic function. From the convolution theorem, this function is the product
of the transforms associated with the Green’s function and the current dens-
ities. To find explicit expressions for the field transform or spectrum we must
first introduce the appropriate Fourier transform pair and evaluate the trans-
form of the Green’s function. For simplicity, let us first consider the two-
dimensional case.

Two-Dimensions

In two dimensions there is no dependence in z and the Fourier transform pair
is thus defined as

flka k) / / f(z,y)e-*ke=th) g gy (2.148a)

flko, k)i k=4t gk gk (2.148b)

In these, k; and k, are the Fourler or spectral variables and in the future we
shall use the notation

flkz, ky) = F{f(z,y)} (2.149a)

f(z,y) = F7H{f (ks ky)} (2.149b)

to imply the integral expressions (2.148). By differentiating both sides of
(2.148b) with respect to z or y, it readily follows that

]—'{%f(:c,y)} = jkz.f(kzvkv) (2150)
F{ten) = iklkak) @151

7

} = —k.k, f(ks, k,) (2.152)
} = —k2f(k., k) (2.153)

5
a—
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etc. Also, from the convolution theorem we have

e gzy) = [ [ fygle -2y - y)dcdy

~

= f(kz’kv)g(kzyky) (2.154)

in which §(k,k,) = F{g(z,y)}. When this identity in conjunction with
(2.150) - (2.153) is now applied to the integral expressions (2.131) we obtain

E, k- k2 —kk, 0 Jz
E, =—%C’2d(kx,ky) —kk, K-k 0 || J,
E, 0 o k¥ /)\J
0 0 +jk )\ [ M)
+ Gaalkz, k)| 0 0 —jk, M, (2.155a)
—jk: —jk, 0 M, )
H, K-k —kk, 0 (M,
H, =—%ézd(k,,k,,) —kk, K-k 0 M,
7, o o )\
0 0 jk, J
— Gk, k)| 0 0 —jk. || J, (2.155b)
Jkz —jk, 0 J

In these, Gaa(ks, k,) is the Fourier transform of the two dimensional Green’s
function with o’ =0, i.e.

Goalkar b)) = F {‘T’Hg‘*’) (k 2+ y’)} (2.156)



2.6. SPECTRAL FIELD REPRESENTATIONS 79

and likewise j,,w and M,‘w denote the Fourier transforms of the electric and
magnetic current densities.

One can rewrite (2.155) more compactly by referring to (2.127) and noting
that the transform of the gradient function V f(z,y) is

F(V(2,) = Vf(ke, k)i (2ke + Gk,) f(kzr ky) = jkaaf (key ky)
where
k?d = -'i:kr + gkv
and we may also write that V = Jkaq4. Thus, upon application of the convolu-
tion theorem we obtain
~ L~ 12 ~
E(k, k) = [=-jkZI(k. k) + I (ke, k) - Knake

+ jM(k;, k,) x kzd] C3’2«1(]‘%:,1‘11)
(2.157)

—~

. Y
H(k k) = |- JkYM(k,,k,,)-{-%M(k,,k,)-kgdku

—-jj(k,,k,) X ku]ézd(kz, ky)

where J = 3.+ ﬁjy-*-ﬁj, and M = iﬁ,+ﬁﬁy+éﬁ,. It remains to compute
the transform of the Green’s function and to do so we recall the differential
equation

”?
(5; bt k’) Goa(7,0) = ~8(2)8(y) (2158)

obtained from (2.116) by setting ' = 0. Then from (2.156)

Gu(7,0) = ZLHP (k z2+y2)

(2.159)
1

(27)?

L[ Gualhe, )eitemhontar, d
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Also, in accordance with distribution theory [Papoulis, Fourter Int., 1962] we
may express the Dirac delta function as

§(2)6(y) = (2;)2 /_Z /_: eilks= gk gk (2.160)

Substituting (2.159) and (2.160) into (2.158) and taking the d- atives inside

the integral, we obtain

1
(27)?

[: /-Z(_k: -k + k?)Ga(kz, k) k=4 RV gk,

1 00 oo
—T (2”)2 /—oo -/-oo eJ(k’z+kw)dI dy

from which it follows that

1

Culbarb) =
v T

(2.161)

Consequently we may write

_ J 00  foo 1 i(ksz+ky
H® (k T yz)_;r_; /_ ] /_ ] me’( W dk_ dk, (2.162)

which can be referred to as the plane wave spectral representation of the
Hankel function. This is because the Fourier integral can be thought as a
sum of inhomogeneous plane waves, i.e. plane waves whose amplitude is a
function of the spectral variables k, and k, which can be associated with the
propagation constants along the z and y directions, respectively.

For the existance of the Fourier transform pair in the classical sence, it
is necessary that the function and its transform be integrable. However, as
seen from (2.162) the transform of H!?(k,v/z? + y? ) has poles in the k, plane
located at (see Figure 2.11)

k, = +/k? — k2 (2.163)

For real k, these poles are on the Re(k,) axis and in this case the integral in
(2.162) is non-convergent. This difficulty, though, can be avoic by introdu-
cing a small loss in the medium. That is, we assume that k = - jk”, where
k" — 0% and the poles (2.163) are then located off the real axi
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Im(ky)

Figure 2.11: Integration path for Fourier transform integral.

By closing the integral over k, with a semi-infinite contour in the upper
half of the k, plane, Cauchy’s theorem gives

(2) 2 2y — __ Jksz .
HP (ko\/2* + y?) w[m & e dk,; y>0 (2.164)
in which
kb =k,, Im(k,)>0. (2.165)

This is valid only for y > 0 to ensure a vanishing semi-infinite contour in the
application of Cauchy’s theorem. For y < 0, the path of integration is closed
in the lower half of the k, plane and this gives

oo elkyv
HO (@ ry) =< [T Sk sy (2169)

-0 ky-

in which

k =k, Im(k,)<0. (2.167)
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and as such k; = —k}. Combining (2.164) - (2.167) we may write

o e=Jkylvl
HY (kzyt) = = [T S ehean, (2.168)

-0 v

and since Im(k) < 0, then Im(y/k? — k?) < 0, implying that k; = \/k? — k2.
In the case of a lossless medium and for k > k., the factor k; becomes real
and from figure 2.11, it is now clear how the path of integration is chosen in
(2.162) and (2.168). In particular it must be indented around the poles and/or
branch points to ensure the convergence of the integrals and avoid the branch
cuts of k.

When |y| — 0, from (2.168) we obtain

00 jkzl—'
HO(k|z]) = 2 o=, (2.169)

T J-oo k;

and in accordance with (2.167)

JE—k  k>k,

k= (2.170)
iRk k<k,

Introducing the one-dimensional Fourier transform pair

flke) = /_ " fla)e b de (2.171a)
f(-'c)=2i1r " f(k.)et e d, (2.171b)

the result in (2.169) simply implies that the transform of H(®)(k|z|) is given
by

3 k>k,
_ Ve-i
HO (k) = F{HO (k|z|)} = (2.172)

(o]
2
o k<k;
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We note that the integral relations (2.168) and (2.169) are often the starting
point for deriving a variety of integral identities relating to the Hankel and
Bessel functions. For example, by taking the real part of (2.169) we obtain

ejk,x

Ju(klz]) = Re {HP(k|z|)} = %/_’; ﬁdk, (2.173)

where J,(k) denotes the zeroth order Bessel function. Introducing now the
variable transformation k; = kcos a, permits us to rewrite (2.173) as

1 r=/2 ez 2 (/2 . .
Jo(klz|) = -;/ / e R ;/ cos(kz sin a)da
-x/2 0
(2.174)
1

- _/2” ejkgcoaada - i/" ejkpcos(a—¢)da
27 Jo 27 Jo

which is one of the usual integral expressions for the Bessel function. Other
formulas can be derived in a similar manner.

Now that we have evaluated the transform of the two-dimensional Green’s
function and its implications, we are in a position to examine the behavior of
the field spectra given in (2.157). Substituting (2.161) into the first of (2.157)
yields

. JZ (kToa—kadkaa) . M(ks, k,) X kg
E(kz‘,k!l)=—T . k3+k3—k2 ] k2+k§—k2

(2.175)

Taking the limit of this expression as k, — oo with k, finite or alternatively
as k, — oo with k. finite yields

E(k, - 00,k,) — %”,

(2.176)
- iZ -
E(kz»kv""’o) - T v

These results imply that the transformation of the electric field is bandlimited
only if the transform of the current is also bandlimited. Thus, strictly speaking,
the inverse Fourier integral is not convergent for impulsive currents which is a
consequence of the singular kernel associated with the field integrals given by
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(2.127). The evaluation of these integrals in the source region required special
treatment as discussed in section 2.5.4 and a similar procedure can be used
for the evaluation of the inverse Fourier integral. Specifically, we may express

E(p) as
E(p) = E —'”Z/ / J(ko, k,)

.Kvm—mmu

'ﬁ:ﬁ—ﬁﬂ*i4am”m”““"

(ks z+ky
oo / [ (k) Tog) eibestianr, g,

M(k:, ;) Xk“ pilksz+hy)
/ L 4k - dk, dk, (2.177)

211'

where we have added and substracted the term

27{ e / / 3(ks, ky) - Tag) ek +han) i, di,

" J(k,, k)i b=t gk dk,

(2.178)

so that the first integral of (2.177) is now convergent and the same is true
for the third integral. In accordance with the definitions (2.148), the second
integral is simply equal to ﬁJ and thus we can rewrite (2.177) as

_ JZ

B0) = 730 - iogag [ [ 3k
kzlzd - kzdku T j(ksz+ky
’hﬁﬁfﬁ+m€‘+“““

/ / M(k,, k,) xkzd elkssth) gk dk,  (2.179)

21r -00 k2+k2

which is compatible and completely equivalent to the representation given by
(2.147), provided we set M = 0.
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Three-Dimensions
The Fourier transform pair in three dimensions is defined by

Flkz, ky k) / / / (z,y,z)e I kathuvthaz) gp gy
(2.180)

1 0o oo (o] .
f(p) = f(z,y,2) = W/_w /_oo /-oo f(kz’ky,kz)ej(kzr-i-kyy‘f-kxz)dkx dky dk,

with kz, k, and k, being the Fourier or spectral variables. In subsequent ref-
erences we shall more compactly write this transform pair using the notation

f(kzvky’kz) = }'{f(x,y,z)}

(2.181)
fl@,9,2) = F{f(ke by k.)}
It follows directly from (2.1 0) that
0? , .
f{aaaﬂf(w,y,ﬂ} = (+7ka)(+5ks) f(kz, by, k:)
(2.182)

= —kokgf(kz, ky, k)

where a and 3 represent either of the cartesian coordinates r, y or z. Also
from the convolution theorem we have

ey vy = [ [ fay2)

g(z =2y -y z - 2)dz'dy'dz’

9

= flks, by, k2)gke, kyy k). (2.183)
When the identities (2.181) - (2.183) are applied to the integral represent-
ations (2.109) we obtain
(K —k?)  —kgk, —kk, T

f)(kx,ky,kz)=_—i?-é(kr,ky,kz) —kk, K —k2 —kyk, J,

y

—kek,  —kk, K2k )\ T

z
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0 —k, &k, M,
—jGlkeiky k)| ke 0 k. || M, (2.184)
-k, k. 0 M,
as the transform of the electric field. In this,
_ e=ik\/TH 422
G(kz, ky, k) =.7"{47r\/12+y2+22} (2.185)
denotes the transform of the unbounded space Green’s function,
J(ky by ky) = 2, + §J, + 2J, (2.186)
is the transform of the electric current and likewise
M(k,, k,, k,) = i M, + §M, + M, (2.187)

is the transform of the magnetic current. By duality the transform of the
magnetic field is explicitly given by

k- k2 —kk, —kk, M.
- —-jY ~

H(k;, k, k) = —Glke by ko) | —keky k2 — k2 —kk, M,
—kk, —kk, E-k )\ M
0 -k K, T
+jGkayky k)| ks 0 =k || J, (2.188)
—k, k. 0 7,

As was the case in two-dimensions, these matrices may be written more com-
pletely by introducing the transform pair

—~

f{Vf(a:,y,z)} = Vf(k,,kv,k,)

= jkf(ks ky,k.) (2.189)
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D
-1

in which
k = 2k, + yk, + 2k, (2.190)
From (2.52) we then have

. - - kk) »
Bk, ky k) = —jkZT (ks by, k,) (1 - F) G(ks, by, ks)

+iM(kz, ky, ko) x kG (k;, ky, k)

— e - kk\ =
H(ks, ky, k) = —jkY M(ky, ky, k) - (1 - F) Gk, ky, ks)

—j¥ (koo ky k) X KG (ks kyo k) (2.191)

Also, from (2.95) we find that the transform of the dyadic Green’s function is
given by

Tk, ky, k;) = F{T(r,r)}=- (i - %) Gks, ky, k) (2.192)

Needless to mention, (2.191) are identical to the matrix representations (2.184)
and (2.188).

It remains to explicitly determine G(k, k,, k. ) defined in (2.185). However,
instead of integrating the unbounded Green’s function directly we recall the
identity (2.38)

(V2 +kHG(r,0) = —4(r) (2.193)

where 6(r) = 6(z)6(y)6(z). Taking the Fourier transform of this equation
yields

(=k-k+E)G(kz k), k) = -1 (2.194)
which gives
Gk, ky, k,) L (2.195)

TRtR+E-F
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and when this result is compared to (2.185) we deduce the identity

e-jkr e -k :2+y +22 eJ(k,:+k,y+k; z) q
k. dk
drr 4z VIi+yT+2? 27r / / ./ k2 + k2 + k2 — k2 v dz

(2.196)

As was the case for two-dimensions, the Fourier integral in (2.196) does
not exist in the classical sense because of the poles at

ko=t k- k2 - k2 (2.197)

This difficulty though can be alleviated by assuming a small loss in the medium
which amounts to setting k = k' — jk" with k" # 0. The poles (2.197) are then
shifted away from the real axis. Consequently, by closing the integral over &,
with a semi- infinite contour in the upper half of the k, plane we capture one
of the poles. Upon invoking Cauchy’s theorem we then obtain

-Jkr o eiki
/ / Ceiberthilgk dk: 250 (2.198)
- k+
in which
Kt =k, Im(k)>0 (2.199)

this is valid only for z > 0 to ensure a vanishing semi-infinite contour in the
application of Cauchy’s theorem. For z < 0, the path of integration is closed
by semi-infinite contour in the lower half of the k., plane giving

e—Jkr

-j o oo gikrz | N
21r)2./ / -—k—_-e’("”* Wk, dk,; z <0 (2.200)

4rr = 2
in which
k; =k, Im(k;)<0 (2.201)

and as such k] = —k}. Combining (2.198) - (2.201) we deduce the well known
Weyl identity

-J’" 00 e‘J" H]
== / / ke thi) gk dk, (2.202)

4rr
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In the case of a lossless medium and for k? > k2 + k:, the factor k is real and
the path of integration must then be identical to that shown in fig. 2.12, thus
avoiding the branch cuts and ensuring the convergence of the integrals.

We remark that Weyl’s identity is the starting point for deriving a variety
of other identities involving Bessel and Hankel functions whose arguments are
functions of both z and y or the standard cylindrical variables (p,¢). For
example, by setting

koa = &k, + gk, = k(T cosa + ysina) (2.203)
with k, = | /k2 + k2, it can be shown from (2.202) that

e"ﬂ" 2r k e—J[kpcoo(a—é)Hc 2(]
- / / da dk, (2.204)

4rr k;

Further, by invoking the identity (2.174) it follows that

e—jkr

-7 [k o
] / 2 J.(k,p)e 1Al dk, (2.205)
o k7

4rr  4m
and in accordance with (2.201),
\/k'*’—kz:\/k’-kz-kg k* > k?
k; = (2.206)

-k =k =5 [k k2 -k k<K

Expression (2.205) is known as Sommerfeld’s identity and several variations
of this can be derived by employing various relations among the Bessel and
Hankel functions. For example, we may introduce in (2.205) the relation

H{(k,p) + HP(k,p)

Jo(kop) = 5 (2.207)
where H{V) is the zeroth order Hankel function of the first kind, and since
H (=kop) = H(e7kop) = —H(kyp) (2.208)
it follows that
e—jkr / k, H(2) -ka |=|dk 2.209
drr kr e kop)e (2.209)
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From the wave equation or through a change of variables in (2.210) it can also
be shown that
e—jkr

= =L [T HO( [ =~ k2p)etivendk, (2.210)

4rr 87 J-oo

In closing this section we also note that when |z| — 0, from (2.202) we
deduce the identity

—Jk 2+y? ) e+1(k,x+k,v)dk dk
N R VIt +y? 87r2/ / (2.211)

and upon recalling the definitions for the two-dimensional transform pair, it
1s seen that this identity implies that

] 29 L2 4 12
A
41T + y? 1 2 2 2
W rv ke < ki + kg
This transform will be found useful in the study and modeling of thin planar

layers of material and flat metallic plates.

2.7 Radiation over a Dielectric Half Space

A particular utility of (2.202) is in solving boundary value problems associated
with boundary conditions that are invarient with respect to z and y. As an
example, let us consider the radiation of an electric source J = zJ,(z,y)
located at a dielectric interface as shown in fig. 2.12. Transforming the fields
with respect to r and y only as given in (2.148), from (2.202) we can readily
write down the transform of the field generated by £J;(z,y). For example, in
the case of the z-component we have

eFikiy
krz

B3(k, ky,2) = zZ‘ (k,,k)(k""—k’)( ’) (2.213)

1 2

in which k; = w,/ji1€; is the wave number in region 1 and Z; = (/p1 /€ is
the intrinsic impedance in the same region. Clearly, this represents a plane
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R (€0 Hy) region (D
X Jx(x, y)

Figure 2.12: Geometry of a source on a dielectric interface.

wave traveling along the z-direction with a propagation constant of ki, =
/K — k2. To consider the reflection of this wave from the dielectric interface,
it is instructive to decompose it into transverse-electric (TE) and transverse-
magnetic (TM) components. For the TE field, E, = 0 and for the TM field
H, = 0, and thus such a decomposition can be accomplished once the fields
are expressed in terms of their E, and H, components. Since % — =tk
from Maxwell’s equations it is not difficult to show that!

~ 1 - 65‘2 . a T
Eg(kx,ky,Z) = m [V¢ ('a’) +]k1212 X VgH,] (2214)

where E, = E - E, and V, = V — 2. From (2.184) and (2.202) the

E.
transforms of the z components generated by the source alone are found to be

- 7 _i\ oFiknz
Bkekys) = Fitlibebhby (2) 52 2219)
kl 2 klz
—~ ~ _j e_Jk].;|zl
Ho(karkyy2) = —jTulkerky)k, (-2-) = (2.216)
1z

Each of these wave components in (2.215) and (2.216) independently gives
rise to a reflected field which is simply given by

El(ky by z2>0) = —RT™E3 (ko ky,z = 0)e0* (2.217)

1Separate in Maxwell’s equation the z and transverse components. Then by crossing one
of them with 2, eliminate from the other the transverse electric/magnetic field.
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H (ks kyyz>0) = RTEH(ky k,, z = 0)e~*i (2.218)
where

M _ _fky — ek,

2.21
aky, + kg, ( 9)

RTE = ok, — piks,

_— 2.220
uakr, T ks, (2.220)

are the TM and TE plane wave reflection coefficients, respectively, in which
k3. = \/(k3)? — k% with k; = w,/uz€6;. The z components of the total TE and
TM fields above the interface can now be expressed as

i 5 _ - — i\ p=iki,z
Bulke, bz > 0) = B2 4 BT = =220, (ky by ok (1 — RT) (_J) =
k; 2 klz
(2.221)
_ o _j) ek
H.(kz, ky,z>0) = H + H} = —jJ.(kz, k)b (1 + RTE) (7) -
1z
(2.222)

To obtain the fields in terms of the spatial variables z, y, and z, (2.221)
and (2.222) must first be substituted in (2.213) and the result be then inverse
transformed via (2.148b). This results in an integral of the form

1(Q) = /_ : /_ : f(z,y)e™™ =V dzdy (2.223)

(where g(z,y) is real) whose evaluation must take account of any possible
integrand poles and branch cuts when the observation point is near or on the
surface of the dielectric interface [Collin: Field Theory of Guided Waves, 1991;
Felsen and Marcuvitz, 1973]. The residues of the integrand poles provide the
contribution of surface/guided and leaky wave modes which will be present
in the case of a layered -eflecting medium (i.e. a grounded slab) or simply
any reflecting surface wrich can support guided waves below the dielectric
interface. For the particular problem illustrated in fig. 2.13, the reflecting
surface is a homogeneous half space and cannot support any surface waves
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other than those below the Brewster angle which can be considered as part of
the reflected field. The last along with direct source contribution are the only
fields which are present in the far zone and can be explicitly determined as r —
oo by considering an asymptotic evaluation of the integral (2.223). This type of
evaluation relies on the principle that since Qg(z,y) = rg(z,y), the exponential
part of the integrand is rapidly oscillating and thus any contribution must come
from the portion of integration near the region where

dg(z,y) dg(z,y)

or 0, dy

=0 (2.224)
These relations define one or more points (z,,y,) referred to as .he stationary
points. Based on the analysis given in the Appendix it follows that for large

0

) , i(n/4)o
1) ~ f(z) () eteed— (2.225)
|d ¢ (axaV) T=Z,,y=V,s

where
o = sgnd, + sgnd,

in which (d;,d;) are the eigenvalues of the matrix comprising the elements of
53:—25"; evaluated at z = z,,y = y,. Also, the function sgn(z) = sign(z) = £1.

From (2.214) and (2.148b), the pertinent inverse Fourier integral to be
evaluated for the TM field is

™ A (3koki, + GhokS, + 5)ks
B2 =3 (2«) / / k2 — (kf,)?

(1 = R™)J, (k,, k,)e Rz eilksztbn) gk dk,  (2.226)

Upon setting z = rsinfsing, y = rsinfsin¢g and z = rcosb, g(k.,k,) is
identified to be

g(kz, k) = kosinfcos ¢ + k, sinfsin ¢ — cos O\ /k} — k2 — k2 (2.227)

from which we find that the stationary point is located at

ky = kzy = —kysinfcos¢ k, = ky, = —k;sinfsin ¢ (2.228)
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and consequently ¢ = 2 and

d%q
det (5k,6ky>

From the asymptotic formula (2.224), it then follows that the ™M far zone
field is given by

1/2 1

= ki cos@

(2.229)

kr=ks, .ky=l/w

7koZ, e77*"
4 r

Eo(r,6,0)=0 - E™(z,y,2) ~ — cos 6 cos $(1— R™ ), ks,, kys)

(2.230)

where we have set k; = k, = 27/A, (i.e. € = €,p1 = po) and 2, = Z, =
\/Ho/€o. Also upon setting €, = €3/€, and u, = p3/po, Rrar can be reduced to

RTM \ Erphy — sin?8 — ¢, cos 8 (2.231)

€rfhy — sin?@ + ¢, cos @

which is the plane wave reflection coefficient associated with the planar dielec-
tric interface. Clearly, this result is the sum of the far zone field generated
directly from the source and that reflected from the interface.

By following a similar analysis we find that in general the far zone fields
due to the current distribuzion J(z,y,2) = [2J:(z,y) + §J,(z,)] 6(2) located
on a dielectric interface can be expressed as

jkoZ, e~k

Eo(r,4,0) = -—2=— (1 = R™)| cos 0 cos ¢J; (kss, kys)
+cosOsin ¢J,(kzo, kys)|  (2.232)
and
Eulry,0) = ~ 22 701 4 B i ke )

+ cos ¢J, (kzs, kys (2.233)
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The first of these is the TM (to z) field and the second represents the TE
(to z) component. The expressions for k., and ky, are again given by (2.228)
whereas R™™ is as given by (2.231) and

RTE — pir cos — \/pir€, —sin® @ (2.234)

pr cos 0 + \/y,cr —sin’4

is the TE plane wave reflection coefficient.

The above elementary exercise demonstrates rather well the usefulness of
the spectral representations presented in this chapter. Of importance is that
the outlined method can be easily generalized to other source distributions and
layered dielectric planar interfaces. Further, for near zone observations, the
spectral integrand characteristics yield the physical wave mechanisms which
take place near and below the dielectric interface. However, a more element-
ary and customary approach for this analysis is to consider the radiation of an
infinitesimal dipole source above the dielectric interface, and in this case we
may write the result in terms of a single integral by invoking one of Sommer-
feld’s identities. This problem was first solved by Sommerfeld and is briefly
discussed below.

Consider again the problem illustrated in figure 2.12 with the source now
being replaced by the horizontal infinitesimal dipole

I(z,y) = £IAL8(z) 6(y) (2.235)

and as such J(k;,k,) = 2IAL. Substituting this into (2.221) - (2.222) and
inverse transforming yields

2 o poo -jki,z
E.(z,y,z>0) = Z‘(l)(me)// 0 (1- RS gk, dk,

"2k \2r 0z0z kg,
(2.236)
Hi(z,y,2>0) = -1 (-1-)2(1Ae)/oo I 9 0+ BBV i,
' 2 \2r -00 J=00 6‘y kl_z i
(2.237)
where we have also made the replacements jk, — 2, jk, — a% and —jki, =

Z. Since R™ and R”F are functions of k} = k2 + k2, the above double
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integrals can be reduced to a single integral by invoking Sommerfeld’s identity
(2.209). In particular, for z > 0 we have

Zi(IN0) 8 > k,

E(p,3) = — et pi [ 22 (1 R (b p)e vk, (2209
=0 N,
(JAD B [ k e
Hip,9,2) = ~i 0 ’a—y [° 20+ RO (kyp)e 5k, (2239
- Nz

and upon carrying out the derivatives we obtain

2, (160, . e e
Bu(p,o,2) = =52 U205 ) [ a0~ BP9 HD by e, (2240

(IA0) . . = K e
H.(p,¢,2) =J(—8;—)(p-y) / ;5—(1+RTE)H1(2)(k,,p)e adk,  (2.241)
=0 M.

Upon introducing the large argument approximation for the Hankel function
(see (2.132))

. 2 ¥4 C-jkp
H (kyp) ~ [ €' 7 (2.242)

these integrals can be evaluated via the stationary phase method when the
observation point is in the far zone. When the result is substituted into
(2.214) we again obtain the far zone field expressions (2.232) and (2.233) with
Jz(kzay kys) = (I1AL) and Jy(kzs, kys) = 0.

An alternative and more rigorous approach for evaluating the integrals is
the steepest descent method. In this case the integration path illustrated in
fig. 2.11 is deformed to one on which the rapidly varying exponential portion
of the integrand has constant phase and is decaying. To illustrate this idea let
us consider the integral (Q is large)

(@) = [ FQOM0de; ¢ =¢ +j6 (2243)

where the path C is illustrated in fig. 2.11 and ¢(¢) = u({r, &) + jv((r, G). We
now define the saddle point to be such that
dg(¢)

' |<=(' =0 (2.244)
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where (, = (;, + j(;s, and an integration path Cspp on which

u(fr’ fl) _<_ u(CT.’a Eis)

(2.245)
v(frvéi) = v(sruéia)
Then upon rewriting I.(f2) as
L(Q) = eﬂy(Cs)/CF(Oeﬂh(()-g((-)]dc (2.246)

It is clear from the definitions in (2.244) to (2.245) that the exponent [g({) —
9({,)] is real and negative along the path Cspp which is consequently referred
to as the steepest descent path. It is thus instructive to rewrite I.(2) as

I(Q) =217 Res + I)(Q) + Ispp(Q) (2.247)
where

Ispp() = W) | F(()efol@-stellqg, (2.248)
Csop
I,(2) provides the contribution of any branch points/cuts crossed in the de-

formation of the contour C to Cspp and 27j ¥ Res is the residue contribution
of the crossed poles. From the appendix

=2
Qg"(¢s)

and when this formula is employed in conjunction with the pertinent integrals
(2.140) and (2.241) we recover the same results obtained via the stationary
phase method.

Ispp(R) ~ (6 F(¢)+0(9) (2.249)
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Problems

1. Given that

R=|r-r|= \/(1- R+ (y—y) +(z - 2')

and
e Jklr-r’| )
OR) = g = flr 1)
Show that
(a)
VR = R
A 2
VR = 7
A r-r I RR
VR = V( R )—ﬁ‘ﬁ

note: VA = $VA, + §jVA, + 3VA, and I = 2% + §ij + 33
(b) Write out the dyadic operator VV in matrix form and show that

VVfr-r)=VV.fr-)I=-V'V. f(r-r)
(c) Show that

V-(3I) = Vy
V.IxA) = VxA

IxA = -AxI

Plﬁy



2. (a) Beginning with (2.82) show that if E = Zu, the wave equation in the
source free region reduces to

V. [qu] + kleu=0
e

provided u is independent of z.
(b) Multiply this by the weighting functions W(p) and integrate over the
region A to obtain

[0 {7: [ vt e bas=o

Starting from here, show that

//A{%vw-vu-kge,wu}ds—}glwa—“dho

pr On

where

Ou

and I encloses A. In carrying out this proof, you must employ a standard
identity along with the divergence theorem. Note that this integral equation
is the starting point in developing field solutions based on the finite element
method for two dimensional problems.



3. (a) Show that the z-component of the near zone magnetic field can be
written as

He= [ [ [l = )3,0) - 0 =)L) K (R) !

where
-jkR

K(R) = (1+ jkR)

(b) Show that the far zone Ey spherical component due to the electric cur-
rent can be written as

Ey = %i—‘-e"j"' / / /[-—J,,(r') cos(¢ — ¢') cos 8 — J4(r')sin(¢ — ¢') cos 8
+J.(r') sin 6]e’ 9 dv’
with
g=p'cos(¢—¢')sinf + 2’ cosd, dv' = p'dp'd¢'dz’
or as

Ey = %:fe'j"'/// { [sinf cos & — cos@sin @ cos(¢ — ¢')] Jo(r')

— [sin@sin @ + cosf cos &' cos(é — ¢')] Jo(r")

— cosfsin(¢ — ¢')J, ¢(r')}cjkgd”’
with
g = [cos @ cos & + sin @ sin & cos(¢ — ¢')] '

and

dv' = r?sin§'dr'd¢'d¢’

213
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In these J,,Js and J, are the cylindrical components of the current and
likewise J,, Jy and Jy are the spherical components of J. Depending on the
integration volume or surface, one of these expressions is likely to be more
convenient than the other.
(c) Obtain similar expressions to those in (b) for the E, component.
(d) Obtain the Ey and E4 far zone field components due to the magnetic
current using

(1) cylindrical coordinates for integration and spherical for

observation.
(2) spherical coordinates for integration and observation.

4. Consider the plane wave
E' =E,e*

incident upon a small dielectric sphere of radius @ < A. Based on the
volume equivalence principle, the presence of the sphere can be replaced by
the radiation of the equivalent volume current

J = jw(e—¢)E

where E = E' 4+ E* with E* being the scattered field which is that radiated
by J.

(a) Since the sphere is small, assume that E = ZE; in the sphere with E;
being a constant. Determine E; (hint: see equ. (2.69))

(b) Determine the scattered field in the far zone

(c) Show that

o = 4rr? |E*|* _ 4rk%e, — 1)%a® sin? 6
Cr-w [E2 (€, + 2)?

where o is the bistatic echo area of the sphere. This result is a form of the
Rayleigh law of scattering.

(d) repeat (a) - (c) if the sphere is replaced by a small cube of volume k3,
where h € A. hint: You must derive a replacement for the last term of
(2.69).

(e) repeat (a) - (c) if the sphere is replaced by a small cylinder having length
h and radius a, such that h € A and a € A.




5. Give the explicit matrix or components of the free space dyadic Green'’s
function using spherical coordinates. Do not carry out the derivatives.

6. Give the explicit matrix of the two dimensional dyadic Green'’s function
in cylindrical and rectangular coordinates. Do not carry out the derivatives.

7. Show that the right hand side of (2.103) vanishes when S, is placed
at infinity.

8. Find the explicit components of the dyadics g, , such that

eI fa 3o
F=///g,-Mdv'

where A and F denote the magnetic and electric potentials, respectively.

and

9. Verify equation (2.128).

10. Derive appropriate replacements for the last term of (2.147) if 4,
in (2.142) is chosen to be the cross section of a small rectangular cylinder
having width w and height h.

11. Consider the plane wave
E' = ze77*

incident upon an infinitely long (along the z direction) dielectric cylinder
having € = €,¢, and yu = p,. Given that the echowidth is defined by
_ |Ea|2
o= A4mp [E?
where E* denotes the scattered field and p is the usual cylindrical distance,
find:
(a) The echowidth of a circular dielectric cylinder of radius a < A.
(b) The echowidth of a rectangular dielectric cylinder whose dimensions
are much smaller than the wavelength in the dielectric.

.P5
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12. Show that

~kr N 00
" I e ko) e*4-dk,

4rr

hint: Take the transform of the wave equations (2.193) with respect to z to
obtain an equation similar to (2.116)

13. Consider the planar current distribution J = zJ,(z,y)é(z) over the
dielectric interface, as shown

Idm I’ €, Mo “’gimi
7///////////(/\%“/////////////////2 i O

(a) Using the plane wave spectrum representation (2.202) show that for
2>d=0
H,= _1_/] ” fy;(k,, k,)e~%*(1 + RTE)dk, dk,

2
8« -o‘-oo 2

Generalize this result to the case when d # 0 and identify RTZ.
(b) repeat for J = §J,(z,y)é(z).



AP7

14. (Sommerfeld problem) Assume a 7 directed vertical electric dipole
(VED) located a distance d over the interface of problem 3. Using the
Sommerfeld indentity (see class notes) show that the radiated field by this
dipole in the presence of the interface is

0 3 o o
E,= C/ Qk_p-)_H‘(,?)(kpp) [e-Jk, |2| + RTMC—Jk, (z+42d) dkp

Identify RT™ and the constant C.
Note: k, = [k + K2, k; = JEE — k2.

15. Give explicit expressions for the transform E(k,,k,,k,) is terms of
H(k, k,, k) for all rectalinear components.

| 6. V?A‘ifg 9_1“0}(0\/\ QIQ‘\) amdd  Jerve @.ISO)
7. Eveluote +he M{'?{)T“Q
[, Terr<mocesen

WLM Vo 'S & UM‘J\\M&% small Uo'\LMe_

‘?. Modify the right hand side of 3.10 to account for the case when the
observation point r is at P, where P coincides with the tip of a cone.

P



Chapter 3

Integral Equations and Other
Field Representations

The field integral representations given in the last chapter, although of suf-
ficient generality are often inconvenient and possibly inefficient for specific
applications. Also, their integrands are highly singular requiring special treat-
ment, when the observation point is in the source region. This difficulty cannot
be eliminated but any reduction in the integrand’s singularity is desirable for
achieving higher accuracies in numerical computations involving such integrals.
Obviously, there are a variety of field representations, integral equations and
formal solutions that could be derived, many of which can be only applicable
to a specific situation. Below we shall consider some alternative field rep-
resentations from which we then construct integral equations that are among
the most frequently used. First we shall develop three dimensional repres-
entations. Many of the two-dimensional representations can then be reduced
from the three dimensional ones. However, for scattering ar ~iications a larger
variety of two-dimensional representations are available primarily because the
topic has been extensively studied.

99
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3.1 Three-Dimensional Integral Equations

3.1.1 Kirchhoff’s Integral Equation

Perhaps the simplest integral representation can be derived by considering the
wave equations (2.86) in conjunction with Green’s second identity (see (2.42)).
To proceed, we assume the existance of certain structures whose surfaces will
be denoted by Si,5;,...,Sn. The collection of these surfaces, henceforth
referred to as Sp (enclosing the volume V4), are illuminated by sources which
are enclosed within the volume V;,. The voiume region exterior to Sq shall
be denoted by V., which as seen is also bounded by the surface Sy, placed at
infinity.

Without loss of generality let us consider one of the electric field component,
say E,. Then from (2.86)

F,(r) reV,
V2E, + K’E, = (3.1)
0 réV,

in which Fo(r) = F(r) - & represents the source terms in the right hand side
of (2.86). Multiplying this by the free space Green’s function and integrating
yields

[ I, Fa(r)G(r,r)dv reV,

/ / /V _G(r.¥) [V2Ea(r) + KE4(r)]dv = { : v,

(3.2)

Also, from Green'’s second identity (see (2.42)) we have
/ / /V [Eo(r)V?G(r, ') - G(r, ¥)V?EL(r)) do

- ffo [ B2 - 61r, B0

on on |

. [0 250 - g 20 o 53)
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Figure 3.1: Geometry for the application of Green’s second identity.

where ;3; = 11~V and we remark that the negative sign in front of the integral
over Sq was introduced because the unit normal #i points toward the interior of
V.o. Further, by noting that G(r,r’) and E,(r) satisfy the radiation condition
(2.39), it follows that the integral over Sy, in (3.3a) vanishes. Thus we have

[} et d»-///v,,w., —

on
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and when this is combined with (3.2) we obtain

/// V2 G(r,r') + K*G(r, r) dv_. ﬂsn[ BG((a:r’)

_G(r,r’)a—%'—fi)-] +///v.-. Fi(r)G(r,r')dv  (3.5)

We now recall the differential equation (2.38) satisfied by the Green'’s function
and when this is introduced into (3.5), upon interchanging r and r’ we obtain

ﬂsn [Ea(r’)ga—(,()%lﬁ -G(r,r')?-’-f;—g'—)] ds' - / / /V E(r)G(r,')ds
{&mrmm

0 r not in Vo

(3.6)

in which the differentiation is on the primed coordinates and is taken along
the normal directed away from S, S,,..., SN.

The above result given by (3.6) is often referred to as the eztinction or
Kirchhoff’s integral equation and is valid for all field components provided
these satisfy the radiation condition. No other boundary condition is required
to be satisfied by the field and since E,(r) is completely arbitrary we can
generalize it to the case of vector fields. We have

ﬂsn [E( ")BG(;(,:’,P’) 6(e, ) 2B r’)] i — / / / Fe(r)G(r, /)dv’

{ E(r) rin V,

0 r not in V

(3.7a)

and by duality

. [ 55 - ey Bt - [ [ [ FuwrGie. e
{ H(r) rin V,

0 rnot in V

(3.7b)
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in which
. A\VAVRR [F'd
Fe(r) = jwpd(r) - —# + V x M(r).
Jwe
and
) VV.-M(r)
Fy(r) = M(r) - ———— -V x J(r).
) = jueM(r) - ()

If no external sources are present or if all sources are located on or within
the surfaces S, 53, etc, then Fg = Fy = 0. In that case E, H, 35, or %g
when integrated over Sq play the role of equivalent sources of the same type
as Fg and Fy. This will become apparent in later applications. Alternatively,
the integrals associated with Fg and Fy can be recognized to yield the fields

radiated by the sources within V., and we may thus set

[ fravese < v
- / / / Fu(r)G(r,r')dv’ — H(r)

where (E', H') denote the excitation or incident fields. For scattering compu-
tations these are usually plane waves whose source is at infinity.

In practice, additional boundary conditions would be imposed on the fields
at the surfaces Sy, Sy, etc. This leads to the construction of integral equations
for a unique solution of the fields. However, in their present form, (3.6) and
(3.7) are not applicable to the case where r is on Sq, i.e. at the boundary of
Va coinciding with Sq. To make them applicable to this case we shall consider
the limit as the observation point P at r = r, approaches the surface from
outside or inside Sq. In order to simulate the last situation, we distort the
surface Sq about the observation point P as shown in Fig. 3.2, i.e. by adding
a hemispherical surface to Sq of radius R, — 0 which has its center at the
observation point P. Accordingly, from (3.7a)

,0G(r,Y) . EE)] .,
[ [P - s e

// [ 6Gr r' _G(r’r)agir’)] ds'
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hemispherical

Figure 3.2: Geometry for evaluating the field on Sq.

For the integral over the hemispherical surface S, we have ds’ =
R?sin 6,d¢,db,,

, e~JkRo
G(r,r') = oy
and
%GnT) k. 9G(r,r)= k. VG(r r’)-iG-——('Hi) B
on' T """ 8R, J R,/ 4xR,

Substituting these into the integral gives

[ [ s =B [F [T (% + ) S Resinudsie,

x Vis aE e-jkno 2 .
- /0 /o 5 o Fosin udbudo,

and it is seen that the last integral vanishes as R, — 0. Also,

3 [ 1\ e7*Re 7 . 1
E(r,) /o /o (,k+ﬁ:) R sinOudénds, = SE(r) (3.8)
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and thus we can write

aG(r,r JE(r
#JW ) {f,,',, ) G(r,r) afl,)] ds' = SE(r) (3.9)

for r on Sq. This simply states that the field on the surface Sg is obtained by
averaging its values just inside and just outside Sq. Using (3.9) we can now
revise the integral expressions (3.7) to read

B [er 550 e )aﬁﬁf)] ds' + E¥(r)

E(r) rinV,
={ 3E(r) ronSp (3.10a)
0 r within Sq

p—

dG(r,r) _ ~OH(M)| ,, ..
# 112520 - ey B a4
H(r) rinV,
= { 1H(r) ronSp (3.100)
0 r within Sg

and it should be noted that these are valid provided the observation point is not
at a corner or an edge formed by Sq. They are evocative of Huygen’s principle
which states that the fields caused by the presence of the volume enclosed by
the surface(s) Sq can be determined uniquely everywhere from a knowledge of
that field and its normal derivative on Sq. Alternatively, it will be shown in
the next section that a knowledge of the tangential electric and magnetic fields
on Sq is sufficient to uniquely determine the fields exterior to Sq regardless
of the volume composition enclosed by Sq. These statements are valid even
if (E‘,Hi) are zero and sources exist within Sq. In that case we can state
that the fields exterior to Sq can be determined uniquely from a knowledge
of the surface tangential electric and magnetic fields or a knowledge of the
electric/magnetic field and its normal derivative. By referri~g to chapter 1,
one concludes that the surface equivalence principle can be th :ght as another
statement of Huygen's principle.

Equations (3.10) can be referred to as the vector form of I .rchhoff’s equa-
ticas who first emplovad (a scalar form of) these for computing diffraction
by apertures. To obta a the standard Kirchhoff’s scalar equations the vector
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field in (3.10) is replaced by a scalar function or a component of the field.
Because of their simplicity, Kirchhoff’s equations are widely used for obtain-
ing the diffraction by apertures or scattering by closed surfaces whose surface
fields are known or can be reasonably approximated (using physical optics, for
example).

3.1.2 Stratton-Chu Integral Equations

The Stratton-Chu integral formulae for field representations are among the
most popular in scattering and antenna related problems. Perhaps a primary
reason for their popularity is their reduced kernel singularity in comparison
to the representations (2.52) or (2.102), which integrate the current sources
directly over the volume. The main feature of the Stratton-Chu representations
is the transferring of one of the del operators from the Green’s function to the
current reducing the kernel singularity from R™3 to R~? (see (2.63)). There
are several ways to derive the Stratton-Chu equations but it is instructive
to begin their derivation by considering one of the integral expansions given
earlier. Let us for example begin with equation (2.52a) where our goal is to
reduce the singularity of the integrand (or kernel) associated with the last
right hand side term of this equation. This term can be written as

/// ). VVG(r, ¥ dv--—v{/// VGrrdv}
o] ] f-woterm]

and by invoking the identity (2.50) we have

[ ] [3w)-v6eryw = [ [ [v-@3@)6e)
///[V' r')] G(r,r')dv’

Next, by employing the divergence theorem we obtain

/ / /V V' {3(K)G(r,r')} dv' = #S‘G(r,r’) [B(r)-a(r))ds'  (3.11)

where 7 is the unit normal pointing outward of the surface S. enclosing the
volume V containing the source J(r’). A natural boundary condition is that
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the current be confined within the volume V implying that the component of
J normal to the surface S. must be zero. Thus, the integral in (3.11) vanishes
and we can then write

-z / / / ). VVG(r, r')dv’ = / / [ V- 3(+)) VG(r, ) dv’

(3.12)

When this identity and its dual is used in (2.52) we obtain the equations

=]/ /[ (F) x VG(r,r') - jkZ3(r')Glr, ¥

iz
Jk 129 . 3(¢)VGIr, r')] dv' (3.13a)

- / / /V [-J(r’) x VG(r,r') - jkYM(r)G(r, )
- %V' - M(r')VGl(r, r')] dv’ (3.13)

Alternative representations can be obtained by invoking the continuity equa-
tions (1.38) and (1.39) to replace the divergence of the current quantities with
volume charges. Doing so yields

E(r) = / / /V [M(r') x VG(r,¥) - jkZ3()G(r,r)
_ ﬂ(cﬁVG(r, ) dv (3.14a)

= / / /V [ 3() x VG(r,¥) - Y M(r)G(r, ¥
- %")vc(r, )| do’ (3.14b)

which are the natural equations that result if we introduce the scalar potentials
®. and ®,, in equations (2.19).

When the above expressions (3.13) and (3.14) are applied to an antenna or
scattering configuration such as that shown in Figure 2.10 it is convenient to
employ Love’s equivalence principle. This allows one to replace the presence
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of the volume enclosed by the surfaces S;,S;,..., S~ (comprising the surface
Sa) by a set of equivalent sources

J=nxH, M=Exn (3.15)

placed on the surfaces S;,S;,...,Sn. Also, in accordance with the boundary
conditions (1.62) and (1.63) we may set

ps =€ -E), pm, = p(n-H) (3.16)
Introducing these into (3.14) yields

E(r)=E'+ ﬂsn{ [E(r') x 2] x VG(r,r') = jkZ [7' x H(r')] G(r, 1)

-7'-E(r')VG(r, r')}ds' (3.17a)

H(r)=H'+ ﬂsn{ [H(r') x '] x VG(r,r') — jkY [E(r') x 7] G(r,r")
-a'-H(r)VG(r, r')}ds' (3.17b)

in which n’ = 7(r'), where ii(r’) denotes the outward unit normal outward to
Sq at r. We have also included the incident fields (E', H') to account for any
source exterior to Sq. We remark that (3.17) give the most common form of
the Stratton-Chu equations.

An alternative field representation in terms of the dyadic Green’s func-
tion can be obtained by substituting (3.15) into (2.102). Since the equivalent
sources are only over the surface(s) Sq we have

.

E(r)=E + / /sn { [V x T(r,¥)] - [E(') x #]
+ jkZT(r,r') - [7' x H(r')] }ds' (3.18a)
H(r) = H‘//sn {jka(r, r') - [E(r') x /']

- [V x I(r, r')] -[a" x H(r")] }ds' (3.18b)
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and this is equivalent to (3.17) only for closed surfaces in which case the
identity [Van Bladel, p. 503]

ﬁan-[J(r' (r,r'))ds' = ﬂsn [Rn ;2] (r,¢') [3(r') - A(r')] ds’ = 0
(3.19)

holds when J is replaced by &' x H(r’) or E(r') x #(¢’). In (3.19), R, and R,
denote the principle radii of curvature at the surface point r’ but in the event
Sq is not closed (i.e. Sp is the surface of a flat or curved conducting sheet as
shown in Fig. 1.1) then this identity must be replaced by [Van Bladel, p. 502]

/ [ V-G = + f ¥ . 3(c)G(r, r')dt!

-/ /s,, [E}{ + 721;] Gr, ) [I(r) - A(r')] ds'

fc B . 3(c)G(r,')dl (3.20)

in which C denotes the contour defining the outer perimeter of Sq and ¥ =
# x &' where # is the unit tangent to C at r'. Thus, one cannot specialize
(3.13) to open surfaces such as curved plates (see Fig. 3.3) by simply changing

Figure 3.3: Geometry of a rurved plate representing an open surface.

the volume integral to one over the boundary domain of J and M. Such an
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interchange of the volume and surface integral is permitted for the dyadic
representations (2.102) or (2.42) which are similar to Franz’s integral formulas
whose precise form is given in one of the problems. However, in the case of
(3.13) it is permitted only if the contour integral in (3.20) also vanishes. The
last is often referred to as Kottler’s boundary line integral and its presence is
necessary to ensure the divergenceless of the field for all r. If, however, one
thinks of J and M as representing the net currents on the open surface, then
J.b=*-J3*)-b=0and M-b=(M*-M")-b =0 at the boundary line
C. Consequently, the Kottler integral in (3.20) again vanishes implying that
with this interpretation of J and M, (3.13) remains valid when the volume
integrals are replaced by ones over the surface of the curved plate.

We remark that (3.18) are again evocative of Huygen’s principle as dis-
cussed in the previous section in connection with Kirchhoft’s integral equa-
tion. In practice, however, the Stratton-Chu equations are more attractive
than (3.18) because of the lower singularity of their kernel leading to a more
accurate numerical implementation.

Integral equations such as those in (3.17) can be used for solving the fields
on Sq by enforcing the specific boundary conditions associated with the sur-
faces comprising Sq. To enforce these boundary conditions it is necessary to
have the observation point directly on Sq leading to singular kernels which
must be carefully integrated as done in the previous section. As before we
refer to figure 3.2 and rewrite (3.17a) as

E(r,) = E'(r, +// B { ') x @] x VG(r,, r)
 JRZ X BN Gleae) = & B G(r ) '
+ /./s { [E(r') x 7] x VG(r,,r') — jkZ [#' x H(r")] G(r,, ')

- r‘z'-E(r’)VG(r,,r’)}ds’ (3.21)

in which S, is a vanishingly small hemispherical surface. Noting the identities
(Ex?')x VG = VG x (7' x E)
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= #(E-VG)-E(# - VG) (3.22)

~(#-E)VG = —#'(E-VG)+E x (7' x VG) (3.23)

it follows that
(Exn')x VG - (7'- E)VG =E x (n' x VG) - E(n’ - VG) (3.24)

When the last is substituted into (3.21) the surface integral over S, becomes
/ / {E(r’) x [ X VG(ro, )] = E(F) [# - VG(ro, )]
—jkZ 7' x H(r')] G(ro,r’)}ds'

For this integral 7’ = flo, ds' = R?sin0,d¢,dl, and since S, — 0 we may set
E(r') = E(r,) and H(r') = H(r,). When we substitute for VG as given in
(2.55) with R = R,, we find that the first term of the integral vanishes because
VG = R,|VG| and # x R,. Also the third term goes to zero as R, — 0. The
second term (see (3.8)) when integrated gives —1E(r,) and thus we can rewrite
(3.21) as

E(r,) = 2E'(r,) + 2 #s { [E(r") x #'] x VG(r,,1')
—jkZ @' x H(r')] G(ro,r') = 7' - E(r’)VG(ro,r’)}ds' (3.25)

Incorporating this result into (3.17) we have

#5 { [E(r') x #] x VG(r,r') - jkZ [#' x H(r)] G(r, ')

. E(r) rinV,
-7’ E(r)VG(r, r')}ds' +E'(r)={ JE(r) ronSq (3.26a)
0 rwithin Sg

#S { [H(rl) X fl'] X VG(I‘, l") - JkY [E(l‘) X fz'] G(r, r')
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H(r) ron Sq (3.26b)

. H(r) rinV,
-a'-H(r')VG(r, r')}ds' +H'(r)={ 1H(r
0 within Sg

For completeness we note that the impressed fields (E', H') may be replaced
by their volume integral representations (3.13) or (2.52), However, when the
observation point is within the volume of the impressed or equivalent volume
sources (J,M) we must then revert to the principle-value integral representa-
tion given in (2.69). It should also be noted that the Stratton-Chu equations
are completely equivalent to the vector Kirchhoff equations (3.10). Notably,
both sets of integral equations involve the normal and tangential field compon-
ents on the surface Sq but Kirchhoff’s equations decouple each field component
from the others. However, these are unavoidably coupled upon application of
the boundary conditions on Sg. Nevertheless, in the case of two-dimensional
applications where only a z-directed electric or magnetic field exists, Kirch-
hoff’s equations are the most simple to use. By setting E = 2E, or H = zH,
in (3.10) a scalar equation is obtained instead of the vector integral equa-
tion resulting from (3.26). Consequently, the extinction or Kirchhoft’s integral
equations are, generally, the preferred choice in formulating two-dimensional
problems.

3.1.3 Integral Equations for Homogeneous Dielectrics

Man-made structures such as vehicles made of composites and microstrip an-
tennas are typically composed of piecewise homogeneous dielectrics. The ef-
fects of these materials must therefore be accounted for in computing the
radiated or scattered fields. So far, field representations were given which ap-
ply in the presence of structures enclosed within a surface Sg by invoking the
equivalence theorem. In this section we will specialize these expressions to the
case where the surface Sg encloses a piecewise homogeneous dielectric body.
We shall first consider the simplest case, i.e. that pertinent to a homogeneous
dielectric body.

Consider the homogeneous dielectric body enclosed by the surface Sq =
Sy as shown in Fig. 3.4. The dielectric is immersed in some excitation field
(E',H') generated by the sources (J', M) which are exterior to S; and we are
interested in finding a representation of the field in the exterior region (region
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Sd
Region #2
e'2’ u’z
g € e
i Region #1
E, H)
(a)
fi =1, Sq
o by
Region #1
€, H)

(b)

()

Figure 3.4: Application of the equivalence principle fora  -iectric. (a) original
problem (b) equivalent problem for Region #1, (c) e valent problem for
Region #2.
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#1) and perhaps interior to Sy (region #2). One of the simplest integral
expressions in this case is obtained by invoking the surface equivalence theorem
and with this in mind we set up the two problems illustrated in Figure 3.4. The
set-up in Figure 3.4(a) assumes zero field interior to Sy and thus the equivalent
current (J;,M;) can be used for computing the fields (E;, H;) exterior to S,.
In contrast, the set-up in Figure 3.4(b) assumes zero exterior fields and thus
the equivalent currents (J2,M3) can be used for computing the interior fields
(E2v H?)

It should be remarked that the set-up assumed here, where the fields are
set to zero in the indicated region, is not unique. Any other non-zero field
could have been used and this would result in a different, albeit equivalent,
formulation. In fact, certain judicious choices for the interior fields of the set-
up in figure 4(b) or the exterior fields in figure 4(c) lead to formulations which
may involve a single surface equivalent current [Glisson, AP-T, 1984]. An
alternative approach will be to eliminate the introduction of the equivalent
surface currents altogether and express the scattered fields in terms of the
tangential electric and magnetic fields at the dielectric interface. In this case,
the representation (3.18) may be used (or some other equivalent expression) to
set-up integral equations for the tangential fields upon invoking field continuity
at the interface. Nevertheless, below we shall consider the solution of the
scattered /radiated fields in the presence of a dielectric via the set-up in fig. 4
since this appears to be one of the most often used approaches.

The introduced equivalent current illustrated in fig. 4 can be substituted
into (3.13) to obtain integral expressions for the exterior and interior fields
upon changing the volume integral to one over the closed surface S;. However
before doing so, it is important to note that by enforcing the tangential field
continuity equations

fll X El = fll X Eg, fll X H] = fll X Hg (327)

(7, denotes the unit normal pointing away from Sy) across the surface Sy, it
follows that

Ji==-J,=J, M\j=-M;=-M (3.28)
In arriving at (3.28) we could have also implied that (see section 1.10)

Jl = ﬁ1XH1, M1=—fl1XE1
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(3.29)

J: = Ay xH;=-n; xH, M;=-n; xE; =17, xE,
However, it is not necessary to introduce these expressions since the surface
fields are unknown and it is thus more convenient to retain (J,M) as the
variable functions to be determined by enforcing the boundary conditions as-
sociated with problems defined in Figure 3.4. From Figure 3.4a, since the
interior fields have been set to zero, we have that on S; (actually just inside

Sa)
ﬁ] XEl =0
(3.30)
ﬁ] XH] = 0

By defining the total fields (E;, H;) to be the sum of the source fields and
those radiated by (J, M) we may rewrite (3.30) as

f;l XE“:""H XE;
(3.31a)
ny xHi=—f11 XH;
where
E; — ﬂs‘ [M(l") X VG](P, l") —jkoZoI‘nJ(r')Gl(r’ l")
- j%—Z:—V: -J(M)VGy(r, r’)] ds' (3.315)
0oCry
H: = (s, [ - J(l") X VG](I‘, l") - jk,,Y,C,-,M(l")Gl(r, !")
- j%-v’, -M(r')VGi(r, r')] ds' (3.31c)

In these k,, Z,,Y, are the free space wavenumber impedance and admittance,
respectively, whereas ¢,, and pu,, are the relative material constants of the
exterior medium and are usually unity. Also,

e—ikIP=F'|  =jkoy/BritrIF-I'|

Gi(r,¥) = irfr—r|  4xjr—r|

(3.32)
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is the Green's function associated with the exterior region. The fields (Ej, H})
are customarily referred to as those scattered by the dielectric body due to
the excitation (E', H'). Instead of repeatedly using the explicit integral rep-
resentation (3.31) it is convenient to define the operators

Lig.(M) = §§ M(r') x VGy(r,r')ds’ (3.33)
')/O ! / / li
L. (M) = — ﬂs,, [jkoYoe,,M(r’)Gl(r, r')+ k’ =V, M() VG, ¢ )]ds
oferl
(3.34)
. (] (] ]ZO ] ’ / !
Lie(d) = - ﬁs., [JkoZop,lJ(r )Gi(r,T) + £, - 3() VG e )] ds
(3.35)
Lin.(3) = - #SJ(r’) % VGy(r,r')ds’ (3.36)
d
Then, since
a 1} / ! 1
ny X #sdA(r) x VG,(r¥,r')ds' = §A(ro)
+7y X SA(r’) x VGi(r,, 1) (3.37)
d

where r¥ implies that the-observation point is just exterior (+) or interior (-)
to Sg, we can rewrite (3.31)/more explicitly as
) ~ o & LT '
—5 (l') - fh X LIE,..(M) - ﬁ] X L]E.(J) = fll x E'

(3.38)
1 )
+‘2'J(l') - fl] X L1H¢(J) - fl] X LIH...(M) = ﬁ'l x H'
valid for r on S;. We note that (3.37) can be proven by following a similar
procedure to that employed for the derivation of (3.9).
Another set of equations to be coupled with (3.38) can be obtained by

enforcing the boundary conditions on (E;, H;). From Fig. 3.4(b) we have that
on Sy (actually just outside Sy)

fl]XE2=f11XE; =0
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(3.39)
fl1XH2=7‘11XH; =0
and upon making use of (3.37) these can be more explicitly written as
1 . .
-§M(l‘) =iy X Lag, (=M) = 7y x Lag,(-3) =0
(3.40a)

1 R R
+-2-J(l‘) -y X Loy (=J) = 1 x Loy, (-M) =0

In these, the integral operators Ljg,,, Lk, L2n, and Lap,, are identical to
those defined in (3.33) - (3.36) provided ¢,, and u,, are replaced by ¢,, and
4,,, respectively. By inspection, it is also seen that the minus sign in the
argument of the operators can be factored out giving

1 . .
-2-M(l‘) -n X LQEM(M) -n; X LQE.(J) =0

(3.40b)
1 . R
—§J(r) -n X Lgy.(J) -n; X LQHM(M) =0

valid for r on S;.

It is apparent that (3.38) and (3.40) are four integral equations involving
only two unknowns. This is because we had initially enforced the continuity
conditions (3.27) to relate the equivalent currents introduced for representing
the exterior and interior fields. It is also a consequence of the fact that only
the tangential electric or magnetic fields are needed over a closed surface for
determining the fields away from Sq. Thus, we are essentially free to use one
from each set of equations (3.38) and (3.40) to obtain a pair of them to be
solved (usually numerically, and this will be discussed later) for (J,M). For
example, we could select the equation resulting from the pair of conditions

fiy x E' = =i, x E}
(3.41a)
n xE3=0
or from
iy x H' = —#; x H}
(3.41b)

fll)(H;:O
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The integral equations resulting from (3.41a) are usually referred to as the
electric field integral equations (EFIE) whereas those implied by (3.41b) are
referred as the magnetic field integral equations (MFIE).

3.1.4 Integral Equations for Metallic Bodies

When S, encloses a conducting surface (i.e. €, — 1 — joo) we may then set
M = 0 (see sections 1.4 and 1.10) and in that case the first of (3.41a) gives

. - / / 1 ! / / !
iz s, [30G 00+ 9 30)VG 1)
=, xE' (3.42a)
whereas from the first of (3.41b) we have
%J(r’) i x IO X VG(r, s =i xH (3420
d

These are, respectively, the well known EFIE and MFIE for perfectly conduct-
ing surfaces. This MFIE is also known as Maue’s integral equation and is the
most common for solving the fields scattered by a closed conducting surface.
It will be shown later that Maue’s MFIE leads to a better conditioned mat-
rix than (3.42a), and this is a primary reason for its popularity in simulating
closed conducting surfaces. An EFIE which is of the same form as the MFIE
(3.42b), can however be derived from (3.41a) by invoking image theory to
eliminate the electric currents (since Sy is perfectly conducting). This gives

lM(r) + iy X # M(r') x VG (r,r')ds’' = -y x E! (3.42¢)
2 S¢

which is clearly the dual of (3.42b). Since (3.42c) and (3.42b) simulate the
same metallic surface, it is not surprising that one can be derived from the
other. Specifically, (3.42b) can be derived from (3.42c) by taking the curl of
the last and making use of the equivalence relation (see (1.111))

J= vVxM
JWhopir1
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The fact that (3.42b) and (3.42c) are equivalent (i.e. they predict the same
scattered fields) is a vivid demonstration that in the case of perfectly conduct-
ing surfaces, one could formulate the fields in terms of electric or magnetic
currents.

We should remark that neither of (3.42) are valid for open conducting
surfaces such as a metallic flat or curved plate (see figure 3.5). This is : :-ause

Figure 3.5: Piecewise homogeneous dielectric body.

the surface equivalence principle was used to introduce the equivalent surface
currents. To construct an integral equation for the surface currents on a curved
plate we may return to the original integral expression (2.52a) or (2.147) and
set M = 0. Then upon en’rcing the boundary condition # x (E* + E') = 0,
we obtain the integral equ “ion (also an EFIE)

ﬁh&mmx/APhMMnﬂ+ I(r)) - VVGy(r,r')| ds’

k31 pr1
=axE (343

In contrast to the current appearing in (3.42), the one in this integral equation
should be interpreted to represent the net flow between the top and bottom
surfaces of the plate as illustrated in figure 3.3. With this interpretation of J
and from the discussion in section 3.1.2, it is then seen that (3.43) is equivalent
to (3.42a). Nevertheless, (3.43) is more difficult to implement than (3.42a)
because of its higher kernel singularity.

3.1.5 Combined Field Integral Equations

Returning now to the original integral equation for the dielectric body we must
address their uniqueness. Since they were formulated by assuming a null field
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within certain enclosed volumes, in accordance with the uniqueness theorem
(3.41) or (3.42) will fail at those frequencies associated with a resonant mode
within S;. Fortunately, the EFIE is associated with different resonant modes
than the MFIE and this has been exploited to construct sets of equations
which yield a unique solution. The most obvious approach is to consider
various linear combinations of (3.41). For example, we could consider the
combination [Mautz and Harrington, AEU, 1978]

Ay x [E! + aE})] = -y x Ef
(3.44)
Ay x [H + pH)) = —#y x H'

where a and B are arbitrary non-zero scalars. If we set a = § = 1 we obtain
the PMCHW formulation [Poggio and Miller, 1973, Mittra, ed.] while the
choice of @ = —¢,,/¢,, and B = —pu,,/p,, leads to the Miieller formulation.
Another combination which was proposed [Govind and Wilton, 1979 is

A X .H;+Z%E; - -n,x[H, ——E']
(3.45)
iy X H;-% =0

in which Zy = Zo\/pir, /€ry, Z2 = Zo\/ ir, / €+, Whereas @ and 3 are again arbit-
rary scalars. Finally, a third coupled set of integral was proposed by Yagjian
[Radio Science, Nov.-Dec. 1981] who noted that the continuity equations are
not necessarily satisfied when resonant modes are present. On this basis, the
continuity equations can be combined with (3.41) and (3.42) to yield the con-
ditions
Ay x B! 4+ V. J 4 jwe6, i -E = -ty x E'
(3.46)
iy x H + V- M + jwgop, - H = =y xH'
From these we can readily derive integral equations for (J, M) upon substi-
tuting for the fields as given in (3.31). The integral equations based on (3.44)

or (3.45) are generally referred to the literature as the combined field integ-
ral equations (CFIE) whereas the integral equations resulting from (3.46) is
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referred to as the augmented field integral equations (AFIE). They have all
been used primarily for scattering computations and their solution will be
considered later. The CFIE have also been used for radiation problems relat-
ing to various types of cavity antennas. As can be expected, the CFIE cannot
yield unique solutions at those frequencies where the electric and magnetic
field integral equations fall concurrently. In addition, for very large structures
the spurious resonant modes of Sy are congruent leading to inaccuracies in the
solution of CFIE. Further, it has been noted that the AFIE does not ensure
the removal of all spurious resonances and later we will discuss other remedies
which can ensure uniqueness at the resonant frequencies of the cavity enclosed

by Sd.

3.1.6 Integral Equations for Piecewise Homogeneous Dielec-
trics

The formulation presented in the previous section for treating homogeneous
dielectrics can be readily extended to bodies composed of various homogeneous
dielectric sections as shown in Figure 3.5. Let us for example consider the
structure in Figure 3.6 consisting of a dielectric and a perfectly conducting
section. We shall denote the surface of the conducting section which borders
the exterior region (region #1) as Sy, and that which borders the dielectric
region of the body (region #2) as Sy,. Also, the surface of the dielectric
which borders the exterior regions will be denoted as S;.. The exterior region
has relative dielectric constants (e,,, s, ) and a characteristic impedance Z, =
Zo\/-f-f?. Correspondingly, the interior dielectric region has relative dielectric

constants (€,,, sr,) and a characteristic impedance Z, = Z, (—"_‘1 We shall

assume that the excitation fields (E', H') will be in the exterior region although
they can also be placed within the interior dielectric region as is likely the case
with cavity type antennas [IEEE AP-S Magazine, April 1991].

Following the formulation presented in the previous section, we refer to Fig.
3.5 and introduce the equivalent currents J., and J., on the conducting sur-
faces Sy, and Sy, respectively. Since Sy, and Sy, border perfect conductors
we choose to retain only the electric equivalent currents although one could
also choose to formulate the fields in terms of magnetic currents as discussed in
the previous section. On the dielectric surface Sy, which borders the exterior
region we introduce the equivalent electric and magnetic currents (J4,My). In
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(a) (b)

Figure 3.6: Application of equivalence principle for a conductor dielectric body.
(a) original problem (b) equivalent problem for the exterior fields (c) equivalent
problem for the interior fields.
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accordance with the model in Figure 3.6(b) the boundary conditions are

AxE = ax(E'+E})=0 on Sy,

AxH = ax(H +H})=0 on S,

(3.47)
nxE = r‘zx(E‘+E{)=0 on S,
nxH, = ﬁX(Hl'{'H:):O on Sy,

in which the scattered fields are given by

=~ [ [ [hainda)Girr) + V’ 3, (F)VGi(r,¥)]ds’

dq

+ //s [Md(l") x VGi(r,v') = jkoZopr, Ja(r)Gi(r, ')

12,
ko 71

v, 34(r)VGi(r,r')]ds’ (3.484)

—//sk 3., (r') VG,(r,r’)ds'+//s [ 3dr) x VGy(r,r)

— kYol My(F)Gr(r, ) = L9 . My(F)VGy(r, ¢ r)]ds’  (3.485)

kol‘r;

It should be noted that J., does not enter into the representation of the exterior
fields (E;, H;) because it is completely enclosed by the surface S, and Sg..
Thus, in accordance with the equivalence principle it does not contribute to
(Ey, H,). However, it does radiate in the dielectric region and its effect in the
exterior region is observed through the modifications it causes to (J4, Mg).
This will be more apparent when the interior fields (E,, H;) are formulated.
To solve for the current densities, (3.48) are substituted into the boundary
conditions (3.47) and upon making use of the identity (3.37) and the operator
definitions (3.33) - (3.36), we obtain the integral equations

—f x Lig, (Mg) = x Lig,(Ja) = 4 x L1, () = # x E*
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ron Sy, (3.49a)

1 .
+5de(r) =7 x Lig,(Je,) = x Lig(Ja) = 2 X Lg,(Ma) =0 x H'

()
ron qu (349b)

--;—Md(l‘) -n X LlEm(Md) -n X L;E,(Jd) -n X LIE.(Jc,) =nX E'I
ron S¢e (3.49¢)
1 . . . . ;
S34(r) = x L (3e)) = # x Ligt(Je) = # x L (Ma) = o x B
ron S; (3.49d)

In addition to these, we can derive another set of four integral equations by
referring to Figure 3.6 and enforcing the boundary conditions relating to the
interior fields (E,, H,).

Since we have assumed that no sources exist within the dielectric region
the boundary condition for the interior fields are

nxE; = axE}=0 on 54,

nxH;, = axH;=0 on Sq,
(3.50)
nxE; = axE}=0 on Sg

nxHy; = anxHy=0 on Sg

By invoking tangential field continuity across the dielectric boundary S, it
follows that the interior fields are generated by the negative of the currents
used for formulating the exterior fields. Thus, the interior fields are given by

E,=E= / /s g [jkoZ,p,,Jc,(r’)Gg(r,r')

+ -&-Vi 3., (') VGy(r, r')] ds’

ko Crg
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- //; [Md(r') x VGa(r,r') = jkoZop,, Ja(r')Ga(r, 1)

Z
- ’z—CV’, - J4(r')VG,(r, r’)] ds' (3.51a)
otry

H, = H! =//ng 3., (r') x VGy(r, ')

+ //s,, [Jd(r') x VGy(r,r') = jk.Yoer, My(r')Ga(r, 1)

- k]:‘/" V! - Mqy(r')VGa(r, r’)]ds' (3.51b)
in which
e~ Tko /Byt IF-T|
Ga(r,r') =

4x|r - r|

Substituting these into the boundary conditions (3.50) and making use of the
identity (3.37) and definitions similar to those in (3.33) - (3.36) we obtain the
integral equations

-1 X LZE...(MJ) - X Lzs.(Jg) -t X Lgs.(Jq) =0 ron qu

(3.52a)
1 . .
-—-2'Jc2(l') -n X LQH.(JC2) -nX Lg}{.(Jd) -n X Lz”m(Md) =0 ron Sdc,
(3.526)

-;-Md(l') - X LQEM(M,‘) -7 X Lgs.(Jd) - f X LQE.(Jq) =0 ron Sg
(3.52¢)

—%Jd(r) i x L) = # x Lan,(3)) — # X Laga(Ma) =0 T on Sac
(3.52d)

which can be combined with (3.49) for a solution of the surface current dens-
ities. We have, of course, eight vector equations whereas only four are needed
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to solve for J.,, J.,, J4 and My. We may choose the four EFIE which result
from the boundary conditions

ax(E'+E}) = 0 on S

n X Eg =0 on Sdc,
(3.53)
n x (E‘+E{) = 0 on S
nxE, = 0 onS,
or the four MFIE which result from the boundary conditions
i x (H‘ + H;) = 0 on Sg,
nxH; = 0 on Sy
(3.54)
n X (H‘-{-H{) = 0 on Sg
nxH;, = 0 onSg

However, as noted in the previous section the integral equation set based on
(3.53) or (3.54) fail to yield unique solutions when the excitation frequency
coincides with an internal resonance. In this case we may again combine (3.53)
and (3.54) to obtain, for example, the CFIE set resulting from the boundary
condition

ix[El+aE;)] = —ixE' on Sg

ix[H]+BH; = —axH on S
(3.55)

n X (E‘ + E;) 0 on Sy,

nxE;, = 0 on Sy
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in which a and B are arbitrary scalars and can be set equal to the values dis-
cussed below equation (3.44). Another CFIE set can be obtained by enforcing
the boundary conditions

X [E‘ + E{] + -;—lﬁ X [H‘ + H{] 0 on Sg,

fZXEz'*'ﬁleHg = 0 on Sy
Z,

(3.56)

ﬁx(E‘+E;)+Zlﬁx(H*+H;) = 0 on Sy
1

nxE,+=nxH;, = 0 onS,

where again a,f,7, and é are arbitrary scalars similar to those appearing
in (3.45). As can be realized there are several other CFIE which could be
generated through various combinations of the EFIE and HFIE [Shafai, etc.,
AP Magazine, April 1991], [Rao and Wilton, Electromagnetics, 1990, pp. 407-
421). Alternatively, one could combine the EFIE and HFIE with the integral
equations derived from the continuity equations as discussed in the previous
section in connection with the augmented field integral equations (AFIE).

3.1.7 Integral Equations for Inhomogeneous Dielectrics

In the previous section we developed integral equations for piecewise homogen-
eous structures. This was accomplished by treating each homogeneous section
separately in a manner permitting us to employ a uniform set of dielectric con-
stants over the entire region of interest. The fields and equations generated
from each homogeneous section were then coupled by enforcing tangential field
continuity at the transition boundaries of the different dielectric regions. An
important aspect of this approach was the use of the unbounded space Green’s
function for the treatment of each homogeneous region. Obviously in the case
of an inhomogeneous dielectric region (i.e. a region in which the permittivity
and permeability are arbitrary functions of r) this approach cannot be used
because of a lack of an appropriate Green’s function.

A standard approach in modeling inhomogeneous dielectrics is to employ
the volume equivalence principle rather than the surface equivalence principle
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used for sectionally homogeneous dielectrics. Let us consider the inhomogen-
eous dielectric vqume V4 as shown in Figure 3.7 in the presence of some excit-
ation field (E', H') whose source may be within V; or exterior to it. The total

--

(E, H)

Figure 3.7: Volume equivalences for an inhomogeneous dielectric. The equi-
valent sources J.,, M, J,, and M, are respectively defined in (3.58), (1.112)
and (1.113).

field (E, H) in the presence of the dielectric volume V; can then be written as
E=E+E' H=H+H’ (3.57)

where (E*, H®) are the scattered fields caused by the presence of the dielectric
(i.e. they may comprise the reflected, diffracted fields and their interactions).
In accordance with the volume equivalence principle (see section 1.9), the
scattered fields may be represented by the field generated from the equivalent
volume sources

J., = jwe(e, = 1)E, M, = jwp,(p, — 1)H (3.58)
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where ¢, and yu, can be arbitrary functions of position. Obviously, since ¢,
and u, are unity exterior to Vj, these equivalent currents exist only within
the dielectric volume (see Fig. 3.7). From (2.52), (2.69), (2.102) or (3.13) the
scattered electric field can now be expressed as

E' = ﬂ,‘[Meq(r')xVG,(r,r’)— 7koZodeq(r')Go(r, )

_%J,q(r’) . VYG,(r,r )] dv' + 32

3%, 3 Jeal(r)

]%/V {M,,(r’) X VGo(t,F') = jkoZodeg(F))Golr, ¥')

]Z

E ==V Iy (') VG,(r, 1 )] dv' + 3f Jeo(r)

= ]% [foo(r,r’)-M,q(r')+ ko ZoTo(r, 1) - Teg(r') | dv'
d

1Zo
+ 3% Jeq(r) (3.59)
and H’ can be obtained by duality. In this, G,(r,r’) denotes the free space
Green’s function given by (2.37) with k = k.w,/li.€,, i.e.
emikoll=T'|  =ikoR

Go(r,r') = axr—r| 4rR

(3.60)

and Z, = 1/Y, is the free space intrinsic impedance. Also, T, is the free space
dyadic Green'’s function given by (2.95) upon replacing k with k,, i.e.

[I ,r') (3.61)

To obtain an integral equation for the solutlon of the currents (J.,, M,,) we
substitute (3.57) into (3.58) and this yields

3., = jkYoler = 1) [E' + ] (3.62a)

M., = jkoZo(s, — 1) [H' + H'| (3.62b)
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By introducing the integral expression for the scattered electric field and its
dual we then obtain a coupled set of integral equations for the solution of
(Jeqs Meg). The solution of such an integral set will be considered later.

By this time, it should be obvious to the reader that the introduction of
the equivalent currents is a matter of convenience since one could instead for-
mulate the scattered fields without invoking such currents. For example, the
Stratton-Chu surface integral equation can be written in terms of the surface
fields as given by (3.17) or in terms of equivalent currents as given by (3.13).
Also, the integral equations presented in the previous section for homogeneous
dielectrics could be rewritten by replacing the equivalent surface currents with
tangential surface fields. This amounts to substituting, for example, (3.28) -
(3.29) into the integral equations (3.38) or (3.40). These can then be solved
to find the unknown surface fields from which we can obtain the fields else-
where by employing, for example, the Stratton-Chu integral equation (3.17)
or some other equivalent expression. Not surprising therefore, we can rewrite
the scattered field expressions (3.59) by replacing the equivalent currents with
quantities which involve the electric and magnetic fields within the volume.
For example, (3.58) can be substituted into (3.59) and then (3.57) provide a
coupled set of integral equations for the solution of the fields within the dielec-
tric’s volume V. This integral equation set, as well as that implied by (3.62)
in conjunction with (3.59) involve a total of six unknown field or current com-
ponents per volume location for non-trivial ¢, and g,. If g, = 1 then M., =0
or 4, —1 = 0 and the number of unknowns reduce to three, involving the three
components of the electric field within each point in the volume Vj;. Altern-
atively, if ¢, = 1 only the three components of magnetic field or the magnetic
equivalent current are required for determining the fields everywhere.

As will be seen later, the traditional numerical implementation of the
coupled set (3.62) for non-trivial ¢, and y, demands substantial computer
memory and it is thus of interest to reduce the number of unknown quant-
ities as much as possible. One approach is to employ the equivalent current
expression (1.112)

& —1
J’eq=

VxH+V x|[(g - 1)H]

&

which combines the radiation effects of J., and M., given by (3.58). The
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scattered fields can then be expressed as

E* =jkoZo///V‘T°(r,r’)-{e';1

+ V' x [(4 = DH(r')] }av’ (3.63a)

v’ x H(r')

H'=—// V,V xfo(r,r’)-{e'—IV’xH(r')

€r

+ V' x [(4r = DH(r")] }dv' (3.63b)

in which the primed del operator V' implies differentiation with respect to the
primed variables and in the integrals ¢, and x4, may be functions of r'. By
substituting (3.63b) into the second of (3.57), we obtain the integral equation

H=H-[] V‘foo(r,r')-{e—'-—lV'xH(r')

+ V' x (4 = DH(r)] }dv’ (3.64)

We may also substitute (3.63a) into the first of (3.57) and by taking the curl of
the resulting equation we recover (3.64). Alternatively, we may formulate an

integral equation for the electric field by introducing the magnetic equvalent
current (1.113)

' l‘r-l
M, =-2 " VxE-Vx|[e-1E

r

to replace J., and M., of (3.58). The scattered fields are then given by

E'= -///V‘v xf,(r,r')-{"' ~ 1o « E(r)

e

+ V' x [(e, = 1)E(r"))] }dv' (3.65a)

H' = —jkY, / / /V ‘-I-‘o(r,r')-{’—"—‘:—lV' x E(r')

+ V' x (e, = 1)E(r)] }dv' (3.65b)
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and when these are substituted into (3.57) we obtain the integral equation

_///V‘ero(r,r')-{#'#jl ' x E(r)

+ V' x [(e = 1)E(r)] }dv’ (3.66)

which as expected is the dual of (3.64).

From (3.63) - (3.66) it is seen that one could formulate the fields in an
inhomogeneous dielectric volume, either in terms of the magnetic field or the
electric field. In contrast, the integral expressions (3.59) require knowledge of
both the electric and the magnetic fields. Clearly, the numerical solution of
(3.64) or (3.66) requires only three unknown components per volume point but
the presence of the curl operations on the unknown volume fields complicates
their implementation. It is, thus, instructive to find alternative expressions
to (3.63) or (3.65) which do not involve the curl of the unknown field. This
is possible, and to develop the resulting integral expression let us begin with
(3.59) which upon introducing the volume equivalent current expressions (3.58)

becomes
E = -k / / /V (& — DE(F) - T, (r, ')dv’

~jon¥x [ [ [ (i - DH(IGA(r, ) (360)

We can rewrite the second integral in this by introducing Maxwell’s equation
V xE = —jwp,u.H giving

E. = —jupV x / / / H(r')G, (r, ')dv’

= Vx / / /V ‘ (1--:) V)V x E(r)dy’  (3.68)

Further by using the identities
Vx[V x(¢E)] = Vx|[VéxE]+V x[¢V' x E] (3.69)

V() = $Vo+¢Vy (3.70)
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we obtain

E. = Vx///V‘V'x{(l—%) G,(r,r’)E(r')} dv’
~V x / / /V {(1 ')V’G,(r,r') xE(r’)}dv'
+VX///{ o (r)xE(r’)}dv’

= F,+F, +Fy, (3.71)

The first of the integrals in (3.71) can be transformed to a surface integral by
invoking the vector Stokes identity

/ / /V (V x F)dv = ﬁsc(ﬁ x F)ds (3.72)

V x ///v. V' x {(1 - %) G,(r,r')E(r’)} dv
= Vx ﬂs. (l - %) Go(r,r')i’ x E(r')ds’

- - (1 - ”i) @' x E(r')] x VG, (r, r)ds (3.73)

in which 7’ = fi(r’) is the outward unit surface normal to the surface S; and
e = pr(r'). For the second integral in (3.71) we have

F, = -ij//v (1——:)V'G (r,r') x E(r')dv’

= - / / /V ‘ (1 - “l) V x [V'Go(r,r') x E(r')]dv'  (3.74)

and by employing the identity [Van Bladel, p. 487)

V x(V'G,xE) = VG, V-E-EV-VG,+E-VV'G,-V'G,-VE
(3.75)

This gives

Fi,

= Eszo hand E ¢ VVGo
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(since VG = =V'G and E is a function of r'), it follows that

+k2///"d(l-—r) [i+zk-v-] o(r, F')dv’ +( #lr>E(r)
° (3.76)
= K ///V (1 - —') To(r, r)dv’ + ( :) E(r)

for r in V. In deriving this expression we also employed the differential equa-
tion (2.38) satisfied by the scalar Green’s function and the definition for the
free space dyadic Greens’ function (3.61). Clearly, with the derivation of (3.73)
and (3.76), the first two integrals in (3.71) have been rewritten only in terms
of undifferentiated electric fields and we would like to do the same for the last
integral of (3.71). We have

F, = Vx/// { rr’)V'( ) xE(r’)}dv’
/] Vx {Go(r,r’)V' (,,l) x E(r’)}dv’
= / / / VG,(r, ¢’ [v'( ) xE(r')] & (377

where again the last integral involves only the undifferentiated electric field
within the volume of the dielectric.

We can now rewrite E,, by using the simplified expressions (3.73), (3.76)
and (3.77). When the result is substituted in (3.66), the complete electric field
expression involving undifferentiated volume fields is

-eff ‘(c, - pi) E(r) - Ty(r,r)dv’
] ., [E(r’) < V' (Ll_)] % VG, (r,r')dv’

#s,(l - ,T) [ x E(r')] x VGo(r,r')dv’ + E

Fp
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E(r) rootinV
= % (1 + l) E(r) ron S; (3.78a)

e

(€ + 2p,)E(r) rin Vg
and by duality

- k? ﬂ,‘(;‘, - ;1:) H(r') - T,(r,r')dv’

s ()] v

_ #s‘(l - ;1-) (3 x H(r')] x VG,(r,r)dv’ + H

( H(r) r not in Vj
=13 (1 + &) H(r) ronS; (3.78b)
| 3(4r +2¢,)H(r) rinV;

It should be noted that in evaluating the right hand side of (3.78) we made
use of (2.69) and (3.25). Either (3.78a) or (3.78b) can be used for a solution of
the fields within the volume of the dielectric. As seen, these integral expres-
sions/equations contain both surface and volume integrals and we shall there-
fore refer to them as volume-surface integral equations (VSIE). The second
integral of (3.78a) involves the gradient of the dielectric constant (which van-
ishes for a homogeneous dielectric) whose effect is indistinguishable from the
equivalent volume magnetic current E x V (ﬁ) Similarly, the surface integ-
ral in (3.78a) involves the tangential electric field which can be thought as
representing equivalent surface magnetic currents.

3.2 Two-Dimensional Representations

All integral equations and expressions presented in the previous section can be
readily modified for two-dimensional structures which are invarient with re-
spect to the z variable. As discussed in section 2.5, in this case the excitation
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is an electric or a magnetic line source. Typically, this is a z-directed source
generating z-polarized electric or magnetic fields, respectively, which become
the excitation fields (E: or H). Consequently, the corresponding total fields
and scattered fields will be z-directed as well. This fact along with the field’s
independence on the z variable leads to a substantial simplification of the
three-dimensional integral equations and expressions given earlier. In addi-
tion, by introducing the two-dimensional Green’s function (see equ. (2.113)),
the volume integrals reduce to surface integrals over the cross section of the
structure, and those over a three-dimensional surface reduce to a line integral
over the boundary of the two-dimensional cross-section. Below we consider
some two-dimensional boundary (surface) and domain (volume) integral equa-
tions which are among the most popular in the literature.

3.2.1 Boundary Integral Equations
Upon setting E = 2E, and H = ZH,, directly from (3.10) we have

' -y - _ Ez(ﬁ) Pin Ay
£, £ ) - i 25 D a4 1) - {

0 pin A
(3.79a)
S— - H,(p) 7Pin A
’ aG y - aed aHz $ [
. ) ) - ot 3 2P a4 = { o
(3.79b)

In these G24(p, ') is the two-dimensional Green’s function defined in (2.115).
Also as illustrated in fig. 3.8 C is the sum of all contours C;,C,,...,Cx which
enclose the regions Ay, A,,..., A, respectively, and A, is the region outside
A=Y, A.

As usual the contour integrals in the left hand side of (3.79) contains non-
integrable singularities when 7is on A and must thus be evaluated by distorting
the contour C at that point and take the limit as this distortion vanishes. In
parallel with the previous approaches, we proceed by rewritting (3.79a) as

/' [ aG?dPo!p)_G2 (- -:aE( ) dr
c-C,

a ’
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on' on'

where C, is a vanishingly small semi-circular contour whose center is at the
observation point 7, and this is illustrated in figure 3.9. To evaluate the right
hand side integral of (3.80) as C, — 0 we let d¢’ = ad¢, where |p,—7| = R, —
0 and recall the small argument expression for the Hankel function (2.141) and
(2.143). In particular from (2.143) it follows that the second term of the right
hand side integral in (3.80) vanishes as @ — 0 and the first term can be written
as

- [ [ %R Gup D e )

—9G24(P, P
—/c,E'(p)ng)dl’ = °/ 7) 7 - V'Gau(p,, 7)) df

/ E(7) [Ro- VGau(7, 7)) a dé’

~ +E(7) | R;”fad#
| Q.
- +§E8(po)
In general, one can also show that
_n0Gu(P5, BG -
§ o0 2By 11455 Ot g, 7). (381)

where 77 is the observation point just exterior (+) or interior (-) to the contour
C. This identity (generalization of the result in (3.8)) can be viewed as the
scalar form of the vector identity (3.37) and as stated earlier, the field discon-
tinuity at the boundary C is due to the implied surface currents responsible
for the scattered field.

When the identity (3.81) is incorporated into the integral equations (3.79)
we have

' Ex(—l’) Pin A

40 T - o) B e+ Ei)={ E) Fon

0 pin A

\
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Figure 3.8: Geometry for the two-dimensional application of the excitation
integral equations.
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(3.82a)
' Hl(.ﬁ) ﬁ iﬂ Aoo
1 0G2u(p,7 - nOE.(? ‘= -~ -
§ |1 2T Gt ) a4 )= 1) Fon
L0 7in A
(3.825)

These should be compared with (3.10) which apply to three dimensional sur-
faces. Of course, one could have derived (3.82) directly from (3.10) by integrat-
ing with respect to 2’ (see (2.113)). Also, the Stratton-Chu integral equations
(3.26) can be shown to reduce to (3.82) upon making use of (2.124) and noting
that 2 - E = 0 on the boundary C. The first of (3.82) is commonly referred to
as the E-polarization or transverse magnetic (TM) boundary integral equation
since the electric field is transverse to the plane of incidence. Correspondingly,
(3.82b) is referred to as the H-polarization or transverse electric (TE) integral
equation.

3.2.2 Homogeneous Dielectrics

The boundary integral equations for two-dimensional homogeneous dielectric
cylinders can be derived directly from the corresponding three dimensional
ones given in (3.38) and (3.40). However, it is simpler to consider their deriv-
ation beginning with the boundary integral equations (3.82)

Let us consider the dielectric cylinder whose cross-section is illustrated in
figure 3.9. The cylinder’s constitutive parameters are (¢,3, ur2) Whereas those
of the exterior region are (€1, 1), and #i denotes the unit normal pointing
in the outward direction of the cylinder. We shall denote the total field in
medium #1 as E;; or H;, and that in medium #2 as E,; or H,;. Then, from
(3.82) if we let 5 approach C from the exterior (medium #1) we have

fc [En (ﬁ’)—G%'-'(f,'-—p—) - G4, (5,7) a:,(,p) dt +E,(p)=5Ea(p) 7€ C
(3.83a)
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Figure 3.9: Geometry for evaluating the fields on C.

for TM excitation and

N

f[ AV BT o 3. + B = 3 Hatp) e C
(3.83b)

for TE excitation with

G14,(5,7) = == H® (kor/rifims [P = 7)) (3.84)

Alternatively, if we let p approach from the interior of C (3.82) yields

-f;' [Eﬂ(ﬁl)m—) = G24,(P, P )aEﬂ( )] d = %Eﬂ(ﬁ) peC

on' on’
(3.85a)
for TM incidence and
- aG?dz (ET") _ - - asz(ﬁ') - =
- § |Hatr) T 6,570 22 = Shap) 7

(3.85b)
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for TE incidence with
Gay(57) = L HP (kor/Gaira [P - 7). (3.86)

We remark that in (3.86) there is no explicit appearance of the excitation field
since this is confined in the exterior region of the dielectric (i.e. there are no
sources in the dielectric).

To obtain an integral equation set for the unique solution of the boundary
fields and their derivatives it is necessary to couple the respective equations of
(3.83) and (3.85). This can be accomplished by enforcing the tangential field
continuity conditions

n x E] = nx Eg
nxH, = nxH;
For the TM case, the first of these conditions implies

E,] = E,z (3870)

and from the second condition, in conjunction with (2.124), we have

—_——_——=— 3.87b
Br1 a" Br2 3n ( )
Likewise, for the TE case the appropriate boundary conditions are
Hy = Hy
(3.88)
_1_ aHzl - _1_ aH:2
€1 On &3 On
Substituting now (3.87) and (3.88) into (3.85) yields
- aG?d(ﬁ?W) & - d aExl (ﬁ) - l -
—f [Ezl(p )_'3_'1_,— - fin GMQ(P’/’) on' dt' = 2Ezl(p)
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and

1 0Gu(p, P r - nOH, (P 1 -
—f [Hn(P)——zg%'Q"%me(P»P) 6:1(,p) dl’=§Hzl(P)

(3.896)

The integral equations (3.83a) and (3.89a) now form a coupled set of integral
equations for the solution of E,; and %‘1 on the boundary C. Similarly,
the H-polarization integral equations (3.83b) and (3.85b) form another set of
coupled integral equations which can be solved for H,, and a—g’:l on C. The
solution of these integral equations will be considered in a later chapter.
Upon solution of the boundary field and its derivative, the fields in the
exterior (medium #1) and interior (medium #2) regions can be found by

returning to (3.82). For example, the exterior field is given by
¢=¢"+¢' (3.90)

where

o= [ [0 22D 572D e o

is the scattered field and ¢ represents the E,, or H,, field depending on the

polarization of the excitation field. For computational purposes, we may write
(see also (1.120))

a?? =n-VGy, = -%(ﬁ ' fZ)HS”'("R) =(f- R)J_kﬂ_:leﬁ

HP(kor/Bme, B)  (3.92)

and when this is substituted in (3.91) along with the large argument expres-
sions for H(®(kR) and H{z)(kR) given by (2.132), it follows that in the far

zone (p — o0)

£ e-ilke+x/4) o
¢’ kop ™ oo “\/8—;6 /[J(" - )8(F) + (7)) 7 de (3.93)

where we have set
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and ky = k,/fir, €,. The evaluation of the field in the interior region can be
accomplished in a similar manner. It follows that the interior total field is
given by the negative of the right hand side of (3.88) provided G4, is also
replaced by G4, and ¢ is identified as E;; or H;;. That is

0G24, (P, 7P r OE,
Ba=- . [Eu(m——"gfj;) G20 (7,7) 5 7 )]df (3.94a)

for the TM case and

10G2u,(P,7) €& OH,
o=~ [, [ 22487 226, 6.3 50 )| 0 a0

€r1

for the TE case.

3.2.3 Metallic Cylinders

A special case of a homogeneous cylinder is the perfectly conducting or metal-
lic cylinder. Then, on the boundary C the tangential electric field vanishes,

implying

E,=E, =0 (3.95a)
for E-polarization and
0H, _OH, _
T = on (3.95b)

for H-polarization. Incorporating these into (3.83) we obtain the integral equa-
tions

OE.(7')

S —2 Gy, (7, P)dl = Ei(p) PEC (3.96a)

and

fH ) BG“’ "’ )dl'+H‘( ?) = ;H () peC (3.96b)

for E and H polarizations, respectively.
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E, H)

e1'1’ u’rl

(Ey, Hy)

Figure 3.10: Geometry of an inhomogeneous dielectric cylinder.



3.2. TWO-DIMENSIONAL REPRESENTATIONS 145

As noted earlier, we could have instead formulated the problem by intro-
ducing on C the equivalent current

J = nxH

= ) (3.97)
(H,, TE case

where £ = ? x 7 denotes the unit vector tangent to C as illustrated in figure
3.11. Substituting (3.97) into (3.96) yields

Figure 3.11: Geometry of a metallic curved strip.

ik 2, f J.(7)Gu, (5,7)dl = Ei(7), PEC (3.98a)
for the TM case and

pr*aG"' PP o + HiP) = Lap), BeC  (3.98)

!
2
for the TE case, with J = £J,. It is now readily recognized that (3.98b) is the
two-dimensional counterpart of the MFIE given by (3.42b). As was the case
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in three-dimensions, this is only valid for closed boundaries. In contrast, the
EFIE (3.98a) which is the counterpart of (3.42a) for three dimensions, can be
shown to be valid for closed as well as open surfaces such as a curved strip.
This can be verified by rederiving it from (2.217a) upon setting M = 0 and
then enforcing the boundary condition 72 x E = 0 on the boundary. Using the
same procedure for H-polarization, we find directly from (2.127a) the integral
equation

iz
Ei= /]klzlff').][( \Gaa, (7,7 dl’—Jk—lla(/J, az'G“’ 2)dt

(3.99)

in which E} = ¢ E', and 2= ¢ - V implies differentiation along the direction
tangential to the boundary C. The three-dimensional counterpart of (3.99)
is (3.43) and it is readily seen that the EFIEs (3.98a) and (3.99) can be de-
duced directly from (3.43) through the application of the identity (2.113). As
explained in connection with (3.43), when the EFIEs (3.98) and (3.99) are
applied to open surfaces, the current density in those equations represents the
net current flow on the curved strip (see fig. 3.11). It should be noted that
the non-integrable singularity of the kernel in the second integral of the EFIE
(3.99) requires special attention when this integral equation is solved numer-
ically. Thus, although (3.45) is valid for both open and closed surfaces, it is
preferable to use the MFIE whenever possible.

3.2.4 Piecewise Homogeneous Dielectrics

The treatment of piecewise homogeneous dielectrics is important in many in-
dustrial and biomedical applications involving the characterization of the field
behavior in materials. The structure in figure 3.12 is a typical configuration of
interest. To compute the interior and scattered fields from this configuration
due to an exterior TE or TM excitation one approach is to formulate appro-
priate boundary integral equations at each of the dielectric interfaces [Wu and
Tsai; MTT-T, 1977; AP-T, 1977]. Following the procedure discussed earlier
for three dimensional structures, we can proceed with the construction of the
boundary integral equations by setting-up the three equivalent problems il-
lustrated in figures 3.12 (b)-(c). As before, we can then introduce equivalent
surface currents at the interface boundaries C, and C; satisfying (3.28), thus
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()

Figure 3.12: Geometry of the layered dielectric cylinder and equivalent prob-
lems to formulate the field in each region.
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ensuring tangential field continuity. Integral equations for the solution of the
equivalent current can then be constructed by enforcing conditions such as
those in (3.47).

An alternative to the above procedure is to bypass the introduction of the
equivalent currents and work directly with the z-directed field and its normal
derivative as was done in the previous section for homogeneous dielectrics.
Such an approach could also be used in the three dimensional formulation
and in this case use of (3.26) or (3.18) would be required. However, when
employing (3.26), one must deal with the presence of 7 - H and n - E. These
can be replaced by

V,,M _V, (7 xE)

n-H=- o Y (3.100a)
) V,-J V, (A xH)

.E=- = 3.1006
n-E o 3% (3.1000)

implying that we could derive integral equations similar to those in sections
3.1.3 - 3.1.6 which involve only the tangential electric and magnetic fields
instead of the equivalent surface currents. Thus, mathematically the two pro-
cedures are equivalent but one could argue that the introduction of the equival-
ent surface currents is physically more appealing. With this understanding, we
now proceed to construct boundary integral equations for the layered dielectric
in figure 3.11(a).

Assuming TM excitation and denoting the field exterior to C; by E.,, from
(3.83a) we have

--I aG?d: PP ) - = aE (.’) ‘
il[ z1 p anl -G2d1(P,P) anll +E( )

E.(p) peC.
(3.101a)

wl»—‘

When we approach the observation point on C; from its interior surface, it is
convenient to choose the closed boundary to be the sum of C; and C, when
making use of (3.82). Then, since there are no sources in region #2, it follows
that (E,; is the field between C; and C3)

- aG?d: (-ﬁvp) aEl? '
+ § [Batr) BTG 7) 2
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(3.101)
%Ezl(ﬁ)$ ﬁ € Cl

dn fhr1 on}

0G24, (P, 7 . N ) A
_fc[gﬂ(p)__i‘!z_(_’i_ﬁl_ﬁlgm(p,p) ’]dl’:{
’ 3E2(p), pe

which except for the appearance of the integral over C; is identical to (3.89).
Finally, by approaching the observation point on C; from its interior surface,
we obtain

_n0G24,(p,P)  pr3 —nOER(P)| 1
- e AL LA —=dl' ==
fcs [Ezz(p) o, . Ga4, (P, P) o t=3Ea(p) €0
(3.101¢)
where
sz;(ﬁ?") = —%Hiz) (ko\/ €r3fir3 lﬁ - ﬁll) (3102)

Together, the integral equations (3.101) form a coupled set for the solution of
the fields and their derivatives on the boundaries C; and C;. The correspond-
ing set of integral equations for the TE case is obtained directly from (3.101)
by invoking duality. Once (3.101) are solved via some numerical procedure,
the exterior fields can be found from (3.90) - (3.91) with C = C). The interior
fields can be evaluated using one of the equations given in (3.82). For example,
the field in medium #2 between the boundaries C, and C; is given by

] Al ’ -— ] — f aEz . /
Ex(p) = J{c, [Ezz(p ) (7 - V'G24, (5, 7')) = G24, (P, P )5;‘7:- dt

(3.103)

;_' - 7] — r — aEz ] 7]
-4 [Ezl (7) (5 - V'Coay(7,7)) = =2 Gaas (7,7 | 1
G |

HBr1

and the dual of this must be used for TE incidence.

3.2.5 Domain Integral Equations

In modeling the cross section of inhomogeneous dielectric cylinders we must
resort to a volume/domain formulation as discussed in section 3.1.7 for three-
dimensional dielectrics. Consider the inhomogeneous cylinders shown in figure
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€(P), (P

X

Figure 3.13: Inhomogeneous dielectric cylinder of arbitrary cross section.

3.13 whose relative permittivity and permeability are €,(p) and u.(p). In ac-
cordance with the volume equivalence principle, for TM incidence/excitation,
we may replace the presence of the cylinder by the two-dimensional currents

J. = jk.Yy(e, — 1)(E + EY) (3.104a)

M =M, + §M, = jk,Z,(p, — 1)(H* + H') (3.104b)
Then, from (2.127) or (2.130) we obtain

k2
ES (2) 0~o - (2) /
E? / / 7) x R) H(k,R) : / /A J.(7)HP (k, R)ds
(3.105a)

/ / 7)2 x VGau,(,7) - jkoYoM(7)Gas, (5, 7)
- k M( ) VVG,(7,7)]ds’ (3.105b)
with

Gas,(7,7) = L HP (kolp = ) (3.106)

Substituting these expressions into (3.104) results in a coupled set of integral
equations for the currents J, and M. The corresponding equations for the TE
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case are
MZ - [ s
m —H3+Hz (3107(1)
S +E 3.107b)
JkoYo(er — 1) - @
where
H’=_if£//s-(J(-p')xR)H"’ ”//M )H®)(k,R)ds’
z 4 A
(3.108a)
and
—-//M,( ) x VGaa,(5,7)ds' —// [JkZJ )Gaa, (7,7
+ 2223(3) V9G53 a6 (3.1085)

are the associated scattered fields.

When g, = 1 in (3.104), M vanishes and thus the solution of (3.104)
- (3.105) involves a single unknown. However, for non-unity u,, the integral
equations involve three unknowns which can be reduced in number by following
the procedure discussed in section 3.1.7. That is, the effect of the currents
(3.104) may be replaced by the single magnetic equivalent current

M = ‘”',: 19 x GE.) = V x [#(e, - 1)E.]
(3.109)

- "'ﬂ‘ s X VE, +3 x V[(e, - 1)E,]
which can be used in the first integral (3.105a) to obtain the scattered field
expression

A s .ko - r-l. )
S = —’—4—//,11%({"#r 3 x VE,(7)

+5 x V(& = 1) E.(5)] }H (ko R)ds' (3.110)
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When this is substituted into (3.57) we have

£ = B9 -1 [ [ Rx{Eix B

+ £ x V(e = 1) Eo(p")] }H{ (k. R)ds' (3.111)

which is an integral equation for the solution of the field E, across the cross-
section of the cylinder. Similarly, by invoking duality the corresponding integ-
ral equation for the TE case is

tH(F) = sH;(-p)_ifs//ARx {(£=1: « VA7)

er
+2 % V(4 = DH.(7)] }H (ko R)ds' (3.112)

and the implied equivalent source for this field is the electric current

€& —1

J=-

- 2x VH, — 2 x V|(u, — 1)H,] (3.113)
which can be deduced from (1.112).

Special forms of (3.111) and (3.112) have been solved by Peterson and
Klock [AP-T, 1988] and Peterson [JEWA, 1989] (see also AP-T, April 1991).
Because they involve derivatives of the unknown quantities E, or H,, their
solution requires use of higher order expansion functions. However these can be
replaced by domain-boundary integral equations which again involve a single
undifferentiated unknown quantity. Such a domain-boundary integral equation
can be deduced directly from the volume-surface integral formulation described
in section 3.1.7. In particular, by making use of (2.113) and setting E = ZE,
in (3.67) - (3.77), it follows that [Jin, etc., JEWA 1988]

E.=E,,+Enm+E (3.114a)
where

E..(5) = K / /A (€ = 1)E,(7')Go(r, r')ds’ (3.1148)

Enp) =R [ [ (1 - #i) E.(7)Go(5,7)ds'

r
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-[[¥ (#i) - E(P)VGo(p, )] ds’
1 —laGO(_p.’F) !
o4 (1) o Pgr P

((1-1)E.(p) 7peA

+{ 1(1-1)E(p) peC (3.114c)

0 elsewhere

\

which is an integral equation for the solution of E,(p) in the domain A and
on the boundary C. Clearly, E,. + E,n = E} is the scattered field from the
dielectric cylinder. To derive the corresponding expression for H-polarization
we follow the same procedure which yields the dual of (3.114).

We remark that an alternative and equivalent integral equation to (3.114)
was derived by Ricoy and Volakis [IEE Proc.-H, 1989] who chose to work
with equivalent currents rather than the fields themselves. In this case, the
scattered field by the cylinder is expressed as

=—chZ//J \Go(, 7 ds+Z/M’p)G( 7)) (3.115)

where J, and M are some unknown equivalent current density quantities.
They can be found by solving the integral equation

L <)<>1
(3.116)

= -—J' )= ik, [ [ L@ @GP + [ MK 7t

in which the kernel K(p,7’) is given by

. o\Cribr — ] r 1

K(3,7) = [M—Q ~ly (i‘-——) : v] G,(r,r)  (3.117)
#r ko "‘T

Both integral equations (3.114) and (3.116) involve the same (undifferentiated)

number of unknown quantities and have the same kernel singularity. As a

result, there is no advantage between the two integral equations.
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Chapter 4

Solution of Integral Equations
for Wire Radiators and
Scatterers

4.1 Formulation

Let us consider a wire of length 2£ and radius a (¢ >> a), as shown in Figure 4.1.
The wire is excited by an incident field E' and we are interested in computing
the current generated on the wire due to this excitation. Upon determination
of the current we can then compute the radiated field in the usual manner.

To solve for the wire surface currents, we must enforce the boundary condi-
tion demanding that the total tangential electric field vanishes on the surface
of the perfectly conducting wire. That is,

EM=E.+E =0 (4.1)

where E7 is the field radiated by the wire surface current density J(¢,z) =
2J.(¢,2) + ¢J¢(¢, z). However, on the assumption of a very thin wire, i.e.
k.a < 1, where k, = 27/}, is the free space wavenumber, J4(9, z) will either
be negligible or not effect the radiated field. Thus, from (2.52a), (2.109c) or
(2.102a) in conjunction with (2.101) we may express the wire radiated field as

:o-jkoR

r rot 1 62_ - 131
E'(p, 6, 2) —]kZz// (4,2 ( Bar R (4

155
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«>

27

3 Y

Figure 4.1: Cylindrical wire geometry.
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in which Z, = 1/Y, denotes the free space intrinsic impedance and

R=|r—r'|=\/p?-+-a"’—2pacos(d>—d)’)-f—(z—z’)2 (4.3)

sincer = pp+22 and r’ = ap’+z'2. This expression can be further simplified by
assuming that J,(4, z) is symmetric with respect to @, a reasonable assumption
since the wire is very thin and is typically part of a transmission line fed
by a voltage source at its center. The surface current J,(¢,z) can then be
equivalently replaced by a filamentary line current I(2) placed at the center of
the tubular conductor. For the two currents to generate the same field when
p > a, it is necessary that they satisfy the relation

2%
I(z) = _/0 J:(9,2)add = 27al,(z). (4.4)
Introducing this into (4.2) yields
r r N ¢ ! 1 d2 ! /
E(p,6=0,z)= E(p,2) = —3k,Z, /_ll(z) (1 + k_g @) Gu(z - 2')dz
(4.5)
where
2 -J'ko\/p’+a’ —2pa cos¢’'+(z-2')?
Gulz - 7) = — [ —F i (46)
2r Jo 41\/;2 +a?—2pacos ¢’ + (z — 2')?

and we have arbitrarily set ¢ = 0 since by symmetry the radiated field is
expected to be independent of ¢.

To construct the integral equation for the solution of the current I(z) we
set p = a in (4.6) and substitute (4.5) into (4.1). This gives

N . ¢ / 1 d2 / !
E,(p:a,z)=+JkOZo/_‘I(z) 1+ 55 0 | Gmlz =22 (47)

The kernel G (z — z') is now given by

, 1 2x e-jkoRu ,
Guulz = #) = 5= /0 T (4.8)
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with

Ry = \/(z — 2)? + 4a?sin¥(¢'/2) (4.9)

Gy is often referred to as the unreduced thin wire kernel. In practice, though,
to avoid the integration over ¢', G, (z — 2’) is replaced by the reduced kernel

e—_ilco\/(z—z’)?-{-a2 e—jkoRo

Gur(z=2")= =
( dmf(z-2")2+a2 4R,

(4.10)

which is obtained by letting r = 2’2, That is, the reduced kernel refers to
the problem where the filamentary current is introduced from the start of the
analysis. Substituting (4.10) into the integral equation (4.7) gives

1 & ) e~ 3koRo

. . ¢
E;(p=aaz)=1kozolll(2)(1+—— W—

5 T dz' (4.11)

with R, as defined in (4.10). One readily observes that the right hand side of
this equations is simply the negative of the field radiated by the filamentary
current I(z) and evaluated at p = a, (i.e. on the surface of the perfectly
conducting wire as shown in Fig. 4.2. Obviously, (4.11) could have been
derived in a more direct manner by first invoking the approximation (4.4)
and then referring to the integral representation (2.109c). Nevertheless, the
above steps should serve to clarify the implied approximations. Also, as will be
shown later (4.7) and (4.11) can be solved with equal efforts when an iterative
solution scheme is employed.

The thin wire integral equation (4.11) is commonly referred to as Pock-
lington’s integral equation. More generally, it belongs to the general class of
Fredholm integral equations of the first kind. These are characterized by the
presence of the unknown function only under the integral whose limits are
constant. Integral equations which have the unknown quantity both under
and outside the integral are of the second kind and we shall consider them at
the end of this chapter. Also, if the integral limits are not constant, then the
corresponding integral equations are of the Voltera type which are the typical
equations for non-harmonic (time-dependent) field quantities.

An analytical solution of (4.11) is not possible unless the wire is semi-
infinite in which case function theoretic techniques such as the Weiner-Hopf
method [ ] can be employed for its solution in the transform domain. However,
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Figure 4.2: Geometry for testing on the wire surface.

Pocklington’s integral equation can be numerically solved without difficulty,
particularly because the integral’s kernel is never singular since R, > a for
all values of z and 2’. Nevertheless, to reduce the kernel’s singularity, it is
still instructive to transfer one of the derivatives from the Green’s function to
the current as was done in section 3.1.2 in conjunction with the Stratton-Chu
integral equation. In particular, from the one-dimensional form of (3.12) via
integration by parts we have (note %GM = —j:—,Gw,)

ton ngy — [C () d Nt
/lI(z)d—zsz,(z—z)dz _/-e I EGw(z—z)dz

2'==l

L ule - MEEE, (412)

Since the current at the wire ends must vanish, we observe that the last term
of (4.12) is zero and thus Pocklington’s integral equation can be -ewritten as

) q ¢ ! ! 1 d ! d ! !
E;(p=a,z)=]k°Zo/_l [I(z)Gw,(z—z)-{-?i-J;;I(z)—Gw,\ ~-2')| dz

dz
(4.13)
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An alternative way to derive Pocklington’s equation is through the use of
the vector and scalar potentials. Accordingly, from (2.4) E can be expressed
as

. : 09,
Ez(p,z) = —]koZoA, - —6? (414)
where
/4 ' e-jkoRo '
A:(p=a,2)= /-t I(Z") ey dz (4.15)
and
e [ R
b.(p=ga,z2)= & TR dz (4.16)

From the continuity equation (1.33) we have

"_Ef_) = TZE' d{i(:) (4.17)

and, thus, when (4.14) along with (4.15) - (4.17) is substituted into (4.1) we
obtain (4.13).

The standard procedure for solving the above integral equation amounts to
first expanding the currents in terms of a class of basis functions. That is, I(z)
is approximately expressed as a linear sum of N known expansion functions.
Upon substitution of this expansion into (4.13) we obtain an equation for the
coefficients of the expansion which is a function of the surface observation
point z. The second step in the numerical solution process is the enforcement
of the integral equation at specific values of z. In this manner we obtain a
single linear equation for each enforcement point. If we have N expansion
coefficients, a total of N linear equations must then be generated by changing
the location of the testing point. These comprise a system which can be solved
for the unknown expansion coefficients. Depending on the type of expansion
functions or enforcement scheme, different linear systems will be obtained. The
procedure of expanding the current in terms of a finite set of functions and
then enforcing the boundary condition is referred to as the discretization of
the integral equation. Discretization is therefore the procedure which generates
the linear system. In turn, the resulting system can be solved through various
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direct or iterative methods to obtain the coefficients of the expansion. A
knowledge of these provides an approximation for the current distribution and
once the current is known we can proceed with the computation of the radiated
field, input impedance, radiated power and gain of the antenna using standard
formulae.

Before proceeding with the discretization of the integral equation (4.11) as
discussed above, we first present some of the most commonly used expansion
basis for the current distributions.

4.2 Basis Functions

A first step in discretizing (4.9) is to expand the current distribution as
N-1 N-1
I(z) = E I fa(2) = Z I.f(z — z4) (4.18)
n=0 n=0

where f,(z) are the basis functions of the expansion and I, are unknown
expansion coefficients. Referring to Figure 4.3, some of the most popular
choices for f,(z) are

(1) Pulse basis functions/Piecewise constant (PWC):

fa(z) = Paz(z —2,) =

1 zﬂ—%<x<z"+%
(4.19)

0 elsewhere

(2) Triangular function/Piecewise linear:

|z = z,|

fa(z) = Ta(z) = (1 T AL ) Pyaz(z — z4) (4.20)

(3) Piecewise sinusoidal (PWS):

_ _sink,(Az — |z - z,])
fa(z) = Sa() = sin k,Az

Pyaz(z — z,) (4.21)



162CHAPTER 4. SOLUTION OF INTEGRAL EQUATIONS FOR WIRE RADIATORS AND S

/ PAx (x - xp)
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— A—— '
Xn+l Xn Xp-1

Figure 4.3: Three subsectional expansion functions.

where Az is usually small (of the order A,/10) and N = 2{/Az. Because
their domain is confined to a small section of the wire, they are commonly
referred to as subsectional or subdomain basis functions. A major reason for
their popularity is owed to their capability to model any arbitrary function
provided Az is sufficiently small.

As illustrated though in figure 4.4, they cause artificial discontinuities in
the current or its derivatives at the transition between two consecutive ex-
pansion functions. Specifically, the current expansion with the PWC basis is
inherently discontinuous at the junction of two adjacent segments and from
(4.17) this implies the existance of a fictitious charge at that point. Neverthe-
less, in spite of this difficiency when the segments are sufficiently small, they
provide a reasonable approximation to the current distribution. In that case,
the constant value over the segment should be interpreted to represent the
average of the true current over that segment. Because of their simplicity, and
this will soon be apparent in the next section, they have been used extensively
in electromagnetics but more so for scattering than antenna parameter com-
putations. In the last case, excessive sampling may be required for the correct
evaluation of the antenna’s input impedance.

The piecewise linear basis are seen to generate continuous current distri-
butions. This is because the adjacent basis are overlaid as shown in figure
4.4(b). Thus, the current at any point on the wire is obtained by summing
the overlaid basis. From their definition, though, when one of the overlaying
expansion functions is at a maximum, the left and right adjacent expansion
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@ (br—=

Figure 4.4: Illustration of wire segmentation and current approximation with
subdomain basis (a) pulse basis expansion (b) triangular basis expansion.

functions are zero. Further, because each expansion is normalized, the coef-
ficients correspond to the current’s value at the middle of the nth segment.
The PWS expansion functions are very similar to the linear basis in nearly all
respects. One difference between the two is that the PWS basis can be dif-
ferentiated any arbitrary number of times within its range without vanishing.
Nevertheless, similarly to the piecewise linear basis they also yield a current
expansion that has a discontinuous first derivative at the middle of each wire
segment. The only advantage of the PWS basis is drawn from their property
to yield potential integrals which can be evaluated analytically once S(z) is
expressed as a sum of two exponentials.

Instead of using the above subsectional or subdomain basis to represent
the wire current one could alternatively employ the usual full basis expansions
such as cos nz and sinnz. For example, noting that I(+£) = 0, an appropriate
expansion for the wire current would be

I(z) = i C. cos [Q'l;—;l’if] (4.22)

n=1
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or

I(z) = i C.sin [@l (4.23)

In contrast to the expansions (4.19) - (4.21), the coefficients of these expan-
sions do not coincide with specific values of the current I(z). More importantly,
N may have to be quite large in case I(z) is rapidly varying or not sinusoidal
in form. However, for wire antennas I(z) is generally sinusoidal, particularly
when the wire is excited by an external incident field. In this case only a
few terms of the full basis expansions (4.22) or (4.23) may be required, mak-
ing them attractive. Generally, though, (4.22) - (4.23) cannot be effectively
used for curved wires or other complex wire structures on which the current’s
distribution is much more irregular. In the following, we shall therefore con-
centrate on the discretization and solution of Pocklington’s integral equation
using subdomain/basis functions since such a solution is less specific to the
straight wire.

4.3 Pulse Basis—Point Matching Solution

For simplicity, let us first consider the pulse basis expansion to represent the
wire current distribution. This results in a summation of shifted pulses over
the total length of the wire, i.e.

N-1
I(z) = )_ IPa(z = zn) (4.24)
n=0
where
2
N= oy (4.25)

are the number of pulses used to approximate the current distribution on the
wire and

zﬂ=-l+<n—%)Az; n=01,2,... (4.26)
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Substituting (4.24) into (4.13) yields

in+8E g—ikoRo 1 N-1
{Z I '+ 52 1 —
n=0 R 0 n=0

(4.27)

e—jkoalﬂ e-jkon2n
Rin Ran
where

Az\? Az\?
Rln=\/(2—2n+"2j) +02a R2n=\/(2_2n__2€) +a? (428)

and we have invoked the expression

L

n=-N/2

in deriving (4.27). After differentiating the last term of (4.27) with respect to
z, we obtain

Bilp=a9)= 22 % L0 + 84(2) (430

where ~
W (z) = /_f e';:&dz' (4.31)

and 2

~ Az\ (jkRin+1) _jiR,.
®.(z) = -k, [(Z Zn + 2) (koRin)3 €

(4.32)
e‘jkonﬁn

Az .
- (z - 2n = —2—) (]koRzn + l)m

Equation (4.30) can now be solved for I, by demanding that it be satisfied
(matched) at N points on the surface of the wire. A convenient set of such
points is

z=zm=-€+<m-§)Az m=0,1,23, ...
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with ¢ = 0, i.e. along the line formed by the wire surface and the zy plane.
This results in a set of matrix equations which are commonly written as

[Zma] {In} = {Vim} (4.33)
In (4.25)

T
{Iﬂ} = {Io’lla-['b-"aIN/Qa-"aIN-l} (434)

is a column matrix, [Zmn] is a square matrix referred to as the impedance
matrix and {V,,} is the excitation column whose elements are given by

Vo = —Ei(p = a,2m) (4.35)

The corresponding elements of the impedance matrix can be obtained directly
from (4.30) - (4.32). We find

Zon = -%f— (Yo (zm) + B (2] (4.36)

where ¥, (zn) can be rewritten as

(2m=2n )+Ag—‘ e"jk"’m

b= [ T
(2m) (2m—2n)- 42 t2 4+ a?

It is seen that Z,, = Zn, indicating that the impedance matrix is symmetric.
It is also observed that [Z,,] is completely independent of the excitation.

The integral ¥,,(2,) cannot be evaluated analytically but can be approxim-
ated in closed form with sufficient acccuracy. For m # n,/t? + a2 is not very
small and we may therefore employ midpoint integration to approximately
express it as

e‘jko\/ (2m~2n)%+a?
V (Zm - Zn)2 + a2’

When m = n, v/t? + a2 is nearly zero over the midrange of integration. In this
case we can employ the two term expansion

VUo(zm) = Az m#0

e~kR>~1_ kR
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allowing us to approximate ¥,(z,) as

a: ar)t | g2y A
2[;—jko}dt=ln (%) 2| Z kA

\/t2+—02 \/(%)2+a2_%

and for Az > a this can be further simplified to give

Un(2n) = 2In (éz_) - jk,Az; Az>> a.
a

Vo (zn) z/

=4z
2

An alternative way in computing the integral ¥, (zy) is to regularize its
near singular integrand with the addition and subtraction of the term N

. . . . t°+a
which can be integrated analytically. This gives

(zm'zn)+%'{ e-jk°vt +a 1
Un(zm) = / |
(zm—zn)-% \/t2 + (12 Vv t2 + (12

\/(zm_z"+%)2+a2+zm_zn+%

+ In =
(Zm-zn—%) +02+2m-2n-%

The new integrand is now slowly varying and can thus be evaluated numerically
without difficulty.

To compute the current coefficients we must solve the system (4.33) and
there are a number of commercially available routines which can perform this
operation in a manner transparent to the user. Commonly used software
libraries such as IMSL, LINPACK, and NAG include a variety of subroutines
for a solution of (4.33). These are based on solution methods such as Gauss-
Jordan elimination, Gaussian elimination, Crout or LU decomposition, most
of which are discussed in numerical analysis textbooks.

If we choose to solve {I,,} by inverting the matrix [Z,,,], the required CPU
time will be approximately

t~ AN? + BN + CN?N; (4.37)

where N, of course, denotes the number of unknowns or the length of the
column {I,,} and N; is the number of different excitations for which {I,,} must
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be computed. In addition,

A = time required to compute each value of Z,,
BN?® = time required to invert [Zpy]
and
CN? = time required to perform the matrix
multiplication [Zmn] ™" {Vin}-

The actual values of the constants A, B and C are machine dependent. Ex-
pression (4.37) holds regardless of the procedure used to obtain the inverse, but
clearly, for large N the second term of (4.37) dominates. However, a solution
for {I,} can be obtained without a need to complete the inverse. In this case
the Gauss-Jordan elimination requires N3 operations to complete the solution
whereas the Gaussian elimination needs 5N3/6 operations. In contrast, the LU
(Lower-Upper) decomposition approach requires N3/3 operations and is thus
much faster. The LU decomposition scheme is also preferred because it results
in better accuracy and stability as compared to other methods, particularly
when N is large. Nevertheless, when N becomes very large, a direct solution of
the linear system (4.33) may yield an inaccurate result due to machine round-
off errors. An alternative in this case is to use an iterative solution scheme
allowing some control of the solution error, and such a scheme is discussed at
the end of this chapter.

Often, as is the case with the linear wire discussed here, the impedance
matrix will posses certain symmetries which can be exploited in the solution
of (4.33). It is easy to observe from (4.28), (4.31), (4.32) and (4.36) that
Zom = Zmn = Zm-n = Zjm—n. Matricies of this type are referred to as
symmetric Toeplitz and require order N? operations to complete the solution.
Also, since the elements of [Z,,,] can be generated from those in one row or a
column, the fill time of the matrix can be reduced to only order N operations.
Note, that if we were to consider a solution of the currents on a curved wire,
then Zmn # Zjm-n| but Znm = Zmn as a consequence of reciprocity (i.e. the
matrix is still symmetric).
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Figure 4.5: Source modeling for the center fed cylindrical dipole.

4.4 Source Modeling

4.4.1 Delta gap excitation

The wire antenna is usually center fed by a transmission line whose voltage
can be measured at the terminals of the antenna. Assuming, the transmission
line voltage at the wire terminals is V; (see Figure 4.5), we may then write

52 ) 6 ',
Vi=— /_ R /_ o Fidz = +Ei8 (4.38)
from small §. Consequently
. 1A 2=0
i
E = { 0 elsewhere (4:39)

and this is referred to as the delta gap excitation model for the source field
E:. Note that (4.39) is equivalent to having a magnetic current loop

M'=-jxE = ¢% (4.40)
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of radius a as the excitation. In fact, the derivation of (4.38) requires that
the delta gap is first closed making the conductor continuous. The excitation
field E! which is confined over the original gap length can then be replaced by
the equivalent magnetic current loop M'. This, in turn generates a scattered
field ET at the conductor’s surface so that the total field E; + E vanishes as
required, a condition which was imposed in deriving (4.38). Inherently, the
presence of the magnetic current generates discontinuous electric fields across
its surface and for this particular case the electric field is zero in the interior
side of M; and equal to ZE! at its exterior side.

Wire current distributions obtained by solving the system (4.33) in con-
junction with a delta gap modeling of the source are illustrated in figures 4.6
and 4.7. The curves in each figure correspond to A,/2 and A, long dipoles,
respectively, of radius a = 0.005),. It is seen that a rather large number of
pulse basis are required for the current to converge to its final value. Generally,
(i.e. provided the system has acceptable condition number), the correct distri-
bution is obtained if the computed values of I(z) do not change appreciably
as N is increased. Having the correct value of I(z) is extremely important
for input impedance computations but the radiation pattern can be predicted
with sufficient accuracy once I(z) is known approximately. As expected, the
computed current is sinusoidal in form except near the feed point and, thus,
it is not surprising that the often assumed sinusoidal behavior of the wire cur-
rent is sufficient for pattern prediction but much less so for input impedance
computations. This is more apparent for the )\, long dipole in which case the
sinusoidal distribution will predict zero current at the feed.

Perhaps one of the reasons for the large number of expansion pulses re-
quired to reach convergence is the difficulty of the point matching procedure
in satisfying the boundary condition at all z. As seen, from fig. 4.8, the wire
surface fields obtained by integrating the numerically computed current given
in fig. 4.6 do not vanish except at the match points z,,. Nevertheless, on the
average, the surface field is zero as can be atested from the oscillatory behavior
of the computed surface field given in fig. 4.8. Later, it will be discussed that
higher order expansion functions and more robust testing procedures yield
more satisfactory results with less unknowns.
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Figure 4.6: Computed current on a center-fed \,/2 dipole of radius a = .005A,
via the pulse basis-point matching solution method as a function of the
sampling density. The source/excitation is a delta gap as given in (4.39).
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Figure 4.7: Computed current on a center-fed ), dipole of radius a = .005), via
the pulse basis-point matching solution method as a function of the sampling
density. The source/excitation is a delta gap as given in (4.39).
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Figure 4.9: Magnetic frill model for a coaxially fed monopole/dipole.

4.4.2 Magnetic frill generator

As can be expected, (4.39) is not as accurate since the field is unlikely to
be concentrated only within the gap. An alternative source model giving a
smoothly varying excitation field around the gap is the magnetic frill generator.
In this case the gap is equivalently replaced by a circumferentially directed
surface magnetiuc current density existing in the region between p = a and
p = b, as shown. The value of the outer radius b is computed from a knowledge
of the transmission lines characteristic impedance Z.. When the wire antenna
is fed by a coaxial cable it is shown below that the equivalent magnetic frill
current can be computed in terms of the aperture fields in the usual manner.

Using the equivalence principle, the aperture is closed and replaced by the
surface magnetic current

M'=E°® x 3 (4.41)
where
. . Vi
B = b5 nv/a

as dictated by the lowest order mode supported in the coaxial transmission
line. The radiated field by M' may now be evaluated after invoking image

(V; is a constant) (4.42)
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theory to double its strength and the length of the monopole to that of a
dipole. From (2.63)

e—JkR

Blor)=-[ [ M) B ikt 1) opisdy (409

where

R=|r-r|

r=pp+z2z, r=pp=p(Zcos¢’+ysing’)
For p = 0 (observation at the center of the wire)

R=\/(¢F)+2

r-r

R

R=——=[-§p'+23]/R

S0 Vi (A A 5 ’ '
M(p)-’ ¢p’lnb/a—(zsm¢ ycos¢)p'lnb/a

Y D A g N ‘/t
M'(p') x R=[-zp —PZ]W

Substituting the above expressions into (4.43) yields

-jkoR

; V; b por 1\e BV
E:(p=0,2) lnb/a/a/o (]k°+‘§) 4rR2pd¢dp

‘/‘. b . 1 e"jkoR, ,
B 2lnb/a/a (Jk +72) R? pdp

d [e-i%R ' 1\ e-ikR gt
S G VAN il
i’ | R R/"R R

(4.44)

Noting that
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(4.44) may be written as

i(p=0,2)=-—2 [ 2 dp'
Ep=0) 2lnb/a/a dp’{ R } P

to yield
. V. e—ikoVTTHR  —jkoV/TTHa?
(o — = ! - 4.45
Ele=02) =5 | Vorw ~ Vo (4.45)

For simplicity, we may assume
Ei(p=a,2)~ Eip=0,2)

to be substituted into (4.30) and (4.33) for the solution of the wire currents.
Alternatively, we may pursue a direct evaluation of (4.43) to find [Tsai, IEEE
Trans. Antenna & Propagat., Vol. AP-20, pp. 569-576, Sept. 1972]

‘o kalb? = ad)esboRe [ 1 pya
Elp=ad)=+t—grm i " 2R

446
a? 1 b+ a? . 2 1 b2+a
R [( BRI )("’“"‘E)*( T )]}

where now

R, = V22 +a?
with
-l<z2<lt.

Figure 4.10 illustrates the current on a 1), dipole computed with a mag-
netic frill model excitation. The current near the feed is now smoother than
that obtained with the delta gap model. However, more samples are required
to reach convergence and this is owed to the near singular behavior of the
excitation field in (4.45).
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Figure 4.10: Computed current on a center-fed ), dipole of radius a = .005,
via the pulse basis-point matching technique as a function of the sampling
density. The source/excitation is the magnetic frill equivalent current as given

in (4.45).
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4.4.3 Plane Wave Incidence

If the cylindrical wire is considered as a scatterer, then E' represents the
incident field. The simplest form of this is a plane wave given by

B = kol s (4.47)
where
ro=ap+z:=ai+ 22|,
if measured on the surface of the wire and
#; = £ cos ¢; sin 0; + 3 sin ¢; sin 6; + 2 cos 6; (4.48)

with (6;, ¢;) being the usual spherical angles denoting the direction of incid-
ence.

Figures 4.11 and 4.12 show the current on the \,/2 and 1), wire dipoles
due to a plane wave incidence excitation. In contrast to the current on a
center-fed dipole, this current has no discontinuous derivatives throughout the
length of the dipole. Its form on the \,/2 dipole is clearly sinusoidal with its
amplitude depending on the incidence angle. The same holds for longer wires
with the exception of having a more complex lobing structure which can be
explained by invoking the traveling wave theory.

4.5 Calculation of the Far Zone Field and An-
tenna Characteristics

Upon a solution of the system (4.33), one can proceed with the evaluation of
the radiation or the scattering patterns if E is given by (4.48). From (2.77)
we have

e=skoll~T'|

L 4
-1

!

{
E; ~ jkZ,sin0 /_ 1)
(4.49)

Jkor ot

~ jk,Z,sin 05—

I(zl)ejkoz' cooedzl
47r J-¢
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Figur. 4.11: Current on a \,/2 wire of radius @ = .005\ generated by an
incide - plane wave at §; = 90° and 6; = 150° as computed by the pulse
basis-point matching technique (a = 0.005A,, N = 101).
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Figure 4.12: Current on a ), wire of radius a = .005) generated by an incident
plane wave at §; = 90° and 6; = 150° as computed by the pulse basis-point
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Figure 4.13: Geometry for computing the linear antenna'’s radiated field.

Using (14), we get
—jkor N 1 o+ B2 ,
I,./ P gikot! cosd gt (4.50)

;‘o m-4

E;(r,0) =~ jk,Z, sm0

and upon performing the trivial integration we have

-Jkor sin koAzcos8\ N-1
E'(r,0) = jk,Z, Azsmﬂ(T(A;-J)—)- ZOI efkotn cosd
2 n=
(4.51)
.kZ -jkofA . 0 . k Az 0 N—II sz coad
= jkoZo———Qzsin smc( o= Co8 )E; e
The radiation intensity of the antenna is given by
2
U,¢) = U= 7 " (8)[?
(4.52)

ing\’ N 2
= _Z2_o (koA: :mﬂ) sinc? (k,,-A—2E cos 0) (Z I e3kon co.o)

n=1
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and the radiated power can be computed from

2T .
Pra = / / U(6,8)sinf db do = 2r / U(6)sin8 db (4.53)
o Jo 0
with the integral to be evaluated numerically.
Given the radiated power, the directivity is found from

d7Umax _ 47U(0 = 7/2)
Pud a Prad

Finally, the gain of the antenna can be easily computed from

P! ) (4.55)

n=1

D=

(4.54)

Go,9) = UG _ 2 | kAz (

Pin o=r/2 21)!0

where P, denotes the input power from the generator.
A parameter of crucial importance in controlling the efficiency of the an-
tenna is its input impedance. This is given as

Za=1-=— (4.56)

where I, = 1 Hoiy is the value of the current element at the terminal under the
obvious assumption that N is odd. However, the accuracy of (4.56) depends on
the accuracy of Ii, as computed from the solution of the system (4.33). Since
we discretized the actual current distribution, I, is only an approximation
to the input current and is often not of acceptable accuracy unless N is very
large. To avoid this difficulty when employing (4.56) we may instead use a

stationary expression for the input impedance based on power relations. From
Poynting’s theorem we have

SalnZn = 5 (& xH" ds=~ [ [" EiHads de

(4.57)
= ; El(a,2")I"(2")d?’
Since J = j x ¢H, giving Hy=J, = 3(;} Thus,

Zin =47 I.iP / Ei(a,2\I"(z')dz (4.58)
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where we have set E”(a,z) = —E'(a, z) as required by the boundary condition
on the surface of the wire. Substituting (4.24) into (4.58) we obtain

Az NV .
TAE Z El(a,z,)I; (4.59)

n=0

Zin =
It is observed, that for a delta gap excitation (s (4.39)) (4.59) again
reduces to (4.56). Note also that

2Prad
I

Re(Zin) = Rin = . (4.60)

The input impedance as computed from (4.56) is shown in figure 4.14 as a
function of the wire’s length and for various wire radii. As can be concluded
from the presented current computations using the pulse basis-point matching
solutions, up to 120 segments per wavelength may be required to accurately
sample the current near the feed. When Im(Z;,) = 0, the dipole is said to
be at resonance and its first resonance occurs when 2/ is just less than 0.5),,
depending on the value of its radius. The bandwidth of an antenna is related
to the slope of Z;, as a function of frequency and it is seen from figure 4.14
that thicker dipoles have a larger bandwidth. Radiation patterns for the A,/2,
X, and 3),/2 dipoles are given in figure 4.15. We note, however, that these
are identical to those predicted with the assumed sinusoidal distribution which
follows from the transmission line model.

When the excitation is a plane wave, we are generally interested in the echo
area or radar cross section (RCS) of the wire structure. The RCS is measured
in units of square length and is given by

— Jim 4er? B

o= lim 4rr TUE (4.61)
If the wire length is measured in wavelengths then the units of o are square
wavelengths ()?) and if the wire length is measured in meters then o will be
given in squared meters. The RCS of the A/2, A and 3] long wires are shown in
figures 4.16 and 4.17. The effect of wire thickness on the wire’s RCS is pedicted
in figure 4.18 where the value of broadside (6; = 90°) ¢ is plotted as a function
of the wire’s length for three different radii. This is a characteristic curve for
the wire scatterer and displays its resonant behavior when 2/ =~ (n + 1)A,/2
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Figure 4.14: Input impedance of a dipole as a function of its length 2£ for
three different wire radii. (a) resistive (b) reactance; The dipole is resonant
when the reactance is zero.
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180

Figure 4.15: Radiation power patterns for the \,/2, 1), and 1.5), dipoles
computed from the numerical solution of the dipole currents (a = 0.005),).
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for odd n. Basically, the RCS of the wire at those lengths reaches a local peak
with each successive peak becoming larger as 2¢ is increased. This property of
the wire has been explored in many practical situations and we remark that
the location of the RCS peak should correspond to the wire length at which
Im(Z;n) = 0.

We observe that the echo area pattern of the longer wire as given in fig. 4.17
has a very strong lobe near § = 7 (near grazing). This is a lobe characteristic
to all thin wire scattering patterns and is always the one closest to § = 0°
or § = n. It is often referred to as the traveling wave lobe and to explain
its presence let us assume that the wire is infinite in length. The incident
plane wave (4.47) will then generate a current of the form I e?%*<>*% where
I, is a complex constant proportional to the incident wave’s strength and
can be computed analytically. This is, of course, a traveling current (whose
propagation constant matches that of the incident wave) and if the wire is of
finite extent, when it reaches the wire ends, it generates additional reflected
currents of the form I,e’** and Ie~7** where I, and I5 are again complex
constants. Thus the current on the wire due to a plane wave excitation can
be approximately represented as

3
1(z2) = Y Le* (4.62)
. n=1

with k; = k,cos,, k; = +k, and k3 = —k,. From this representation it is

not difficult to observe from the radiation integral (4.49) that the scattered
field would peak at § = 7 — ; and at 8 = 0 or = if the coefficients I, were
comparably weighted. However, this is not the case and it turns out that the
traveling wave lobe peak occurs when I, 3 are at maximum.

The expansion (4.62) is, of course, a linear sum of three full wave basis
functions, similar to those given by (4.22) - (4.23). It was constructed on the
basis of the physical phenomena that take place on the straight wire and is
thus most efficient for computational purposes. However, as noted earlier, this
expansion is specific to the straight wire scatterer and cannot be employed for
other wire shapes or arbitrary multiple wire structures.
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Figure 4.16: Bistatic radar cross section of three straight wires of length 2f =
Xo/2, A, and 3),. The wires have a radius of a = 0.005), and the incident plane
wave is illuminating the wire at an angle of §; = 150° (PWS-basis solution).
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Figure 4.17: Backscatter radar cross section (§ = 6;) for the three straight
wires whose bistatic patterns are given in fig. 4.16.
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4.6 Piecewise Sinusoidal Basis-Point Match-
ing Solution

The piecewise sinusoidal (PWS) basis expansion renders a continuous current
distribution and is thus more representative of the actual solutic ~ This usually
translates in less subsections/zones to reach convergence.

Substituting (4.21) into (4.18) yields

Az — |z — z,|)
sin k,Az

where z, = —{ + (n + 1)Az. When this is substituted into (4.13), we obtain
(see Appendix)

1) = i . Sinks(

n=0

(4.63)

. - N-1 —jkoRyn
Elp=0,2)= sin]l:::)Az = I [e Rin
(4.64)
e=ikoRan  g=ikoRan
—2cos(k,Az) i + o ]
in which
Rin = \/(z = 2p-1)? 4 a?
Ry = \J(z2=12)*+a?
and

R3n = \/(Z - zn+1)2 +a?.

The fact that the radiated field by a sinusoidal source can be evaluated in a
closed form is the principal advantage of S,(z) over T,(z).

A point matching solution of (4.64) follows the same procedure as discussed
previously in connection with the pulse basis expansion. Upon evaluation of
the coeflicients I, the radiation pattern is again given by (4.49). From (4.63)
we obtain
ejk.,z’ cocodzl

Ey(r,0) =~

jko2Z, e~3kor N1 /’n+Az sin ko(Az — |2/ — 24])
sind 4rr o Jam-a: sin(k,Az)

(4.65)
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and on carrying out the integration we find

. €7* cos(k,Az cos8) — cos(k,Az
Eo(r,0) ~ 560 r sin @ sin(k,Az)

element pattern

) N-1 ‘
Y Ietomnef (4.66)

, n=0

~

The evaluation of other parameters such as radiated power, gain, directivity
and input impedance can be performed in a straightforward manner. Not
surprisingly, the PWS representation can be shown to yield more accurate
results for input impedance computations. This can be attested by examining
the wire surface fields generated by the PWS-point matching solution. In
contrast to the results in fig. 4.8, it is found that the surface field of this
solution is now practically zero without even resorting to the more robust
weighted residual method discussed next.

4.7 Method of Weighted Residuals/Moment
Method

The point matching technique described above for solving integral equations
ensures that the boundary condition is satisfied only at the match points z,,,. In
general, however, the boundary condition is not necessarily satisfied elsewhere,
unless the sampling or testing interval Az is extremely small and this fact was
illustrated in figure 4.8. This is, of course, not cost effective since the CPU
time is proportional to N3 as given by (4.37).

An alternative testing procedure is to satisfy the boundary condition on
an average sense over the length of the segment from 2, to z,4;. To express
this mathematically, let us first define the interproduct

(R(a), () = [ BW;(2)ds (4.67)

-

and we will hereon refer to R(z) as the residual and Wp,(z) as the weight-
ing/test basis functions. Setting

R(z)=E;(p=a,2) + E}(p=10,2), (4.68)
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choosing
1 m— S <z<zn+ &
Wn(z) = (4.69)
0 elsewhere
and demanding that
(R(2),Wn(2))=0 (4.70)

leads to the integral equation

z"‘+Az_' . lm+%—‘
_/z s E;(p = a,z)dz = / o E;(p = G,Z)dz (4_71)
m= 2m-42

Upon substitution of the expression for E] as extracted from (4.30) yields,

2m+E . Z N-1 zm'i'u
L _ -] o 2
[ Bip=a9)=—37 2 I, /zm_% [Un(z) + 8(2)]dz (4.72)
from which we obtain the system
[Zmn] [In] = (V] (4.73)
where now
4"7»"‘%é .
Vm=- E(p=a,z)dz (4.74)
tm-8
_ —jZo Zm+A2'!
Zmn = e Jon-te [Un(z) + @n(2)] d2 (4.75)

These can be evaluated numerically using, for example, Simpson’s, midpoint
or Gaussian rules of integration. Clearly, (4.70) along with (4.68) and (4.69)
demand that the boundary conditions be satisfied on an average sense over
the wire subintervals. When the weighting functions are piecewise constant
(PWC), each current value over the subinterval is given equal weighting in this
averaging process. A variety of other choices for Wy, (z) have, though, been
employed successfully in the past. When W,,(z) are chosen to be the same as



192CHAPTER 4. SOLUTION OF INTEGRAL EQUATIONS FOR WIRE RADIATORS AND ¢

the current expansion basis function, the procedure for deriving the resulting
system of equations is referred to as Galerkin’s method. We also note that
when

Wn(z) = 8(z = 2p) (4.76)

(4.70) reduces to the system (4.30) derived by the point-matching technique.
The above procedure for discretizing the integral equation is formally referred
to as the weighted residual method but is most often called the method of
moments (MoM). Also, the pulse basis-point matching proceedure is more
formally referred to as the collocation method.

The application of Galerkin’s technique in conjunction with the piecewise
sinusoidal basis functions to solve the linear antenna currents has been stud-
ied extensively and there are several general purpose programs based on this
procedure. It is, therefore, instructive to describe the formulation and derive
the resulting system of equation.

From (4.70), with
SR i< <o

Wn(z) = (4.77)

0 elsewhere

and (see (4.64))

' : N-1  [,=ikoRin
R(z) = Ei(p = a,2) = —320 lf_

~ sin(koAz) LI

n=0 Rl"

(4.78)

2 k A e‘jkoRba e—jkoRau

—2cos(k,Az) o + e ]

we obtain the usual system (4.62) with
mt+dz sin [k,(Az = |z — zy])]
Vm = _/ ' = a, . .
m=Az Elp=az) sin(k,Az) dz (4.79)
_ =330 /*m'*'Az sin [ko(Az = |z = 2,,] [e77*oRan
sinkoAz Jom-4z sin(k,Az) Ry,

(4.80)

—2cos(k,Az)

e_jkORﬁn e-jkORSII
+ dz
R2n Ran
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The impedance matrix elements may be easily evaluated numerically as given
in (4.80) since the integrand is non singular. However, after some manipu-
lation, the integral expression can be simplified and written in terms of the
exponential integral which is tabulated. A compact expression for Z, is
[Pozar, Artech House, 1985] [Richmond and Geary, |

1 2 :
DS S A el nSp (G (481)

p=-2 ¢=-1,2

Zmn = kA7)

where

AQl) = A(5)=1

A(2) = A(4) = —4cos(k,Az)

S
A~
w
N—

]

2 + 4 cos?(k,Az2)

qu = \/02 + [|zm - an +pAz]2 - q[IZm - an +pAZ]

and E(a) is the exponential integral [Ambramowitz and Stegan, p. 228]. It
can be defined in terms of the cosine and sine integrals as

E(a) = Ci(a) — jSi(a) (4.82)

where
. ® coszT

Ci(a) = —/ —x—d:z: (4.83)

and
Si(z) = /0 : 2. (4.84)
Forz <1
, 2 I z’
Sile) % - 13% 566 ~ 35,280
2 g4 46

4

: T
Ci(z) ~ 0577216 +Inz - T + %~ 130
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and for z > 1
Si(z) = 3" f(z)cosz — g(z)sinz
Ci(z) =~ f(z)sinz —g(z)cosz,
with
fl2) ~ 1 [x: + 7.2411627 +2.46394] ’
z |z4 +9.06858z% + 7.15743
and

)% 1 [ 2%+ 7.54748z2 + 1.56407
I\ ™ T3 | 74 1 12.723682 + 15.72361 |

As shown in figure 4.19 a smaller number of PWS basis are required to reach
solution convergence.

4.8 Some Generalizations

The moment method application described above has been restricted to a
linear wire antenna or scatterer. It can be easily though generalized to the
case when several parallel wires are present describing, for example, a Yagi-Uda
or a dipole log-periodic antenna. The discretization must now be extended to
all parallel segments and some minor modifications should be introduced in
the expressions for the impedance elements. In particular, the parameter ‘a’
defining the radius of the linear antenna should be replaced by p where (p, 2)
is the observation or testing point on the surface of one of the linear elements.

4.9 Moment Method for Non-Linear Wires

Typically, the antenna or scatterer will be composed of curved wire elements.
Also, it is possible to model continuous metallic surfaces with a wire grid of
sufficient density as shown in the figure. Acceptable grid densities are often
10 or more wires per linear wavelength on the surface.
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Figure 4.18: Backscatter RCS of three thin wires as a function of length (2¢)
illuminated by a plane wave at normal incidence (6; = 90°). (PWS-point

matching solution with AZ = 0.01),)
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Figure 4.19: Current distribution on a center-fed 3\, dipole of radius a =
0.005),. The source is a delta gap.
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Figure 4.20: Segmentation of a curved wire for numerical modeling.

To develop a Moment Method formulation applicable to curved wires let us
consider the curved wire geometry shown below and we may assume for sim-
plicity a constant wire thickness equal to 2a > A. As usual, we are interested
in determining the wire surface currents or more specifically the equivalent
line current through the center of the wire.

In proceeding with a numerical solution, it is first necessary to discretize
the wire as shown. This amounts to generating a model of the curved wire
that is composed of a set of linear segments. Denoting the unit vector along
the direction of the mth element as #,,, the boundary condition to be satisfied
on its surface is

(E+E) ln=0 (4.85)

If the curved wire is divided into N straight segments then E™ can be expressed
as

N N |
E'=) E,=) LE, (4.86)
n=1

n=1
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where E; is the field radiated by each linear segment. When employing PWC
basis to expand the current on each element, E] can be found from (2.52) or
(3.13) upon performing the necessary coordinate transformations. Alternat-
ively, if PWS basis are used the applicable expression for the radiated fields
are given in the Appendix, after again incorporating the required coordinate
transformations.

Following the usual moment method procedure, a system of N equations
can be constructed from

(E"+E) bn, Wn(®)=0 (4.87)

or

N 2 . A
+2 /Az... (E; . e,,,) Wn(0)dt = - e E' - (,Wn(0)de (4.88)

n=1
where W,,(¢) is the weighting or testing function for the mth element.

In the above we have consistently assumed a very small wire radius with
respect to its length. This assumption allowed us to replace the wire surface
current with an equivalent filamentary current at its center. From experience,
this approximation which is highly desirable for simplifying calculations is
generally valid for ¢ < 0.01A. For thicker wires a more exact formulation must
be followed [see for example Miller and Deadrick, Ch. 4 in Numerical and
Asymptotic Techniques in Electromagnetics, Springer-Verlag, NY, 1975.

4.10 Wires of Finite Conductivity

When the wire (or a portion of it) is of finite conductivity, the boundary
condition to be satisfied is

J, = oE® (4.89)

where E** is the total field within the wire, J, is the volume current in A/m?
and o denotes the wire conductivity. For a < ¢ we can again replace J,, by an
equivalent filamentary current at the center of the wire given by

I =7d®J, (4.90)



4.10. WIRES OF FINITE CONDUCTIVITY 199

Incorporating this into (4.89) yields the condition

E“ =(R,I({) or Ei+E; =R, (4.91)
where
1
=— (4.92)

can be referred to as the resistivity of the wire.

The boundary condition (4.91) must now replace the one given in (4.1).
This amounts to a modification of the impedance elements from Z,,, to Z,,,,
where

Zmn n#Em
Zn = (4.93)
_R‘”(Zm) fAlm fM(e)Wm([)de + me n=m

in which R, ({x) denotes the resistivity of the wire at the mth element and
E; is the field radiated by the nth element. The wire current is expanded in
the usual manner to yield the system

[Zmnl {In} = {Vm} (4.94)

for a solution of the element amplitude coefficients I,.

Often the wire antenna or scatterer with distributed loads is characterized
with a surface impedance Z,. The boundary condition satisfied on the surface
of the wire then is

E = Z7,J, (4.95)

where J, denotes the surface current. Since

o
1 =i (4.96)

(4.95) may be rewritten as

Et! =(7£’_

—=1(0) (4.97)
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This is similar to (4.91) and thus a solution for the wire currents is found by
setting the impedance elements equal to

Z,

2ra Jatm,

Z,, = FulOWn()de + Znr (4.98)

where Z,,, are the corresponding elements for the perfectly conducting wire.
The integral in (4.98) is only over the common domain of the weighting and
expansion functions. Thus, if Wi (€) and f.({) are among those in (4.19) -
(4.21) Z],, will be equal to Zn, except for the matrix elements Z,,(m+,) and

Z(m:kl)m-

4.11 Construction of Integral Equations via
the Reaction/Reciprocity Theorem

The integral equations derived earlier via the application of the Moment
Method procedure can also be derived by invoking the reaction or recipro-
city theorem discussed in chapter 1. The reaction theorem is a mathematical
relationship between two sets of sources and their generated fields. Assuming

(J,M) generate the fields (E, H) and that (J;, M,) generate the fields (E,, H,),

the reaction theorem states

///(E'J"H‘Mt)d”=///(E:-J—H¢-M)dv. (4.99)
Let us now set
(E.H)= (E'+E,H' +H')
where (E", H") are the fields radiated by the wire current J, in the presence

of the incident field (E*, H') having their source at infinity. Expression (4.99)
then becomes

[] & s mgas [ ] [(E-nmrm)

=ﬁ(E,-J,—H,-M,)ds

(4.100)
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We now choose M; = 0 and set
3, =0 Wn(l) = 3 (0) (4.101)

concentrated at the center of the nth element of the perfectly conductive wire,
where W, (€) is usually chosen to be equal (Galerkin’s method) to the equival-
ent line current of the wire’s mth element. The field generated by :  source is
now zero (essentially J, radiates inside a closed hollow conductor) -..d (4.100)
further reduces to

ﬁ wie B dmds=- ﬁ e E'-Jnds (4.102)

surface surface

when J,, is replaced by its equivalent line current at the center of the wire we
have

/ / E i Wa(0)de = — / / E -6, W,(0)de (4.103)

which is the same as (4.77) derived by the method of weighted residuals.

4.12 Iterative Solution Methods: The Con-
jugate Gradient Method

Instead of inverting the impedance matrix [Zp,) for a solution of the system
(4.33) or (4.73), one could employ an iterative solution sheme. Among the
numerous iterative solution schemes for such a system, the conjugate gradi-
ent (CG) method is most attractive because it guarantees convergence in a
maximum of N iterations for an N-dimensional system (ignoring round-off
errors). The CG method is a non-linear, semi-direct iterative scheme and
was introduced by Hesteness and Steifel | | independently more than 40 years
ago. Beginning with a random initial guess of the solution (including the zero
vector) vector {I,}, convergence is accomplished via a systematic orthogon-
alization of the solution vector with respect to the residual vector defined as
the difference between the left and right hand sides of the system. The re-
sidual vector is computed at the end of each iteration and is used to find the
next correction to the solution vector. The correction vectors are chosen to
be orthogonal to the residual vectors which are linearly independent. This is
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an essential condition for guaranteeing the convergence of the algorithm since
at the Nth iteration the solution vector would have been constructed by N
independent vectors (conjugate directions) which form a basis set of the N-
dimensional space. Moreover, the algorithm will first proceed with corrections
which will most greatly impact the minimization of the next residual vector.
Consequently, convergence to within a reasonable degree of accuracy can be
achieved after only a few (normally less than N/3) iterations.

The CG algorithm is derived in the Appendix and for the pertinent system
it proceeds as follows:

Initialize the residual vector and conjugate direction:

{n} = {v}-[Z}{I}

1
b = P
n = B[Z]*{r}
Fork=1,...,n DO
1
* T 2ir

{1} = {I"} +au{m}

{risi} = {ne} = alZ){m}

1
2] {res }*

{Penr} = {pe} + Bl 2] {rir}

terminate loop when normalized residual error

B =

r
—I-ﬂ—- < tolerance

[Z]{V}|
or when k = N.
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In the above algorithm, the columns or vectors {I*} represent the current
expansion coefficients after the (k—1)th iteration, {ry} are the residual vectors
and {pi} are the conjugate directions discussed above. Also, [Z]* denotes the
adjoint of the impedance matrix which is equal to the complex conjugate
transpose of [Z,) and

N
T2 = 30 Iy (4.104)
n-1

is the square norm of the vector {I*}. Typical values for the tolerance range
from .01 to 1074.

Excluding initialization, the above CG algorithm requires 2N? + 5N + 2
multiplications and divisions (i.e. operations) per iteration. Thus, the CPU
time required to reach convergence is of order N2Nj, if N; is the number of
iterations required to satisfy the tolerance condition. Thus, if N; is not a
small faction of N, the required CPU time to solve the system will again be of
order N3. However, the major advantage of the CG method is realized when
the [Z] matrix is Toeplitz as is the case for the straight wire. In this case,
the fast Fourier transform (FFT) can be combined with the CG method to
reduce the storage requirements and speed-up the solution. To see how this
is accomplished let us first return to the original integral equation (4.11). By
invoking the one-dimensional Fourier transform pair defined in (2.171) and the
convolution theorem we can rewrite (4.11) as

(Bip =00} = L2F {T0)E - B)Guib)) (0105
where

k) = FUG) = [ He)Palz)e oz = /’ I(z)e=dz  (4.106)

-

and G, (k) is correspondingly the Fourier transform of Gur(2) defined in
(4.10). It is given by

- o e—jko\/zi+05 1
= —————dz = —K,(a\/k? — k? 4.107
Gur(k:) /_oo 47‘_\/22_*_—02‘12 or (ay/k? 2) ( )

where K, is the modified Bessel function of the second kind and from (2.170)

vV k2= k? = —j,/k? — k2. If we were to use the integral equation (4.7) which
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involves the unreduced wire kernel then G'w,(k,) need be replaced by the trans-
form of Gy.(z) given by

Gunlke) = 5= Lu(ay/kE — KE) K. (/R — B2 (4.108)

in which , is the modified Bessel function of the first kind. Note that although
K, in (4.107) and (4.108) becomes infinite when k, = k,, the argument of the
inverse transform operator in (4.105) vanishes at that point because of the
multiplying factor (k2 — k2).

The importance of the algebraic expression (4.105) is apparent when it
is realized that its right hand side gives the value of the entire column (i.e.
for all z,,) resulting from the operation [Z]{I} without having to actually
generate and store the square matrix [Z] or perform the matrix multiplication.
However, before we can make practical use of this advantage, it is necessary
to rewrite (4.105) in terms of the discrete Fourier transform (DFT) to permit
its implementation on a computer. As a first step toward this, we define the
discrete transform pair

N-1

I, = I(pAk,) =Y I(nAz)W™ (4.109a)
n=0
1 N-1

I, = I(nAz) = — Z (pAk,)(W™)" (4.1008)

where W = e~2*/N_ Ak, is the subinterval in the spectral domain given by
Ak, =1/NAz and I = I(pAf ) is the discrete transform of the sequence I,.
Upon rewriting the expansion (4.18) as

Z Lifa(z — z,) = z I6(z - 2,) (4.110)

n=0

where the * indicates convolution and taking its Fourier transform it is seen
that the discrete form of I(k;,) is given by

Kk.) = f(k.)Ia (4.111)
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