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NOMENCLATURE*
A = semi-major axis of prolate spheroid. (A is also used
as a condensation symbol.)

Ap, Ay = projections of regions of integration in the direction
of the receiver and transmitter respectively.

A(p) = area of surface up to phase plane whose position is
determined by p

B = semi-minor axis of prolate spheroid. (B is also used
as a condensation symbol.)

F = a vector used in defining o (B).

PN -

E|.E, = electric field vectors (used in discussion of rec-
iprocity).

H, = amplitude of the incident magnetic field vector.

Hsc = the scattered magnetic field vector.

—

= the tangential component of the magnetic field on the

H, the tangential P t of th gnetic field on th
scattering surface.

M

I = the unit dyadic.

IX’Iy’Iz = the x, y, and z components of a vector.

Jie , Jze = current distributions (used in discussion of reci-
procity).
J,(u) = the cylindrical Bessel function of degree v and

argument u.

L = the maximum dimension of the scattering body. (L is
also used to denote the length of the ogive and the
length of the elliptic cylinder).

R, = radius of a sphere.

*Does not include symbols employed in the appendices or in the D.S.P.
Theorem.
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NOMENCLATURE (Continued)

principal radii of curvature of a surface at a point.

the distance separating the receiver and the integra-
tion point on the surface.

the distance separating the receiver and the origin of
the coordinate system.

the double stationary-phase theorem.

a unit vector in the direction of the incident magnetic
field. (4 has the components ay, ay, and a,.)

semi-major axis of elliptic cylinder. (a is also used
as a condensation symbol.)

semi-minor axis of elliptic cylinder. (b is also used
as a condensation symbol.)

direction of semi-infinite cone axis.

a constant, (c is also used as a condensation symbol.)

the maximum diameter of the ogive.

direction of polarization at the receiver.

A (ARREATAY
N-1.

unit vectors along the x, y, and z axes respectively.

2 1/\.

unit vector directed from the transmitter, assumed
to be infinitely far away, to the origin of the coordi-
nate system.

the characteristic dimension of the body.

unit vector normal to the surface, with components
n,, ny, and n,.




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-115

NOMENCLATURE (Continued)

unit vector directed from receiver to origin, with
components Doy Doy and ng,.

AY
=Ng.

radius of circle whose arc is used in obtaining equa-
tion of the ogive; the equation of the circle in the w-z
plane is (w + h)2 + 22 = p2. (p is also used to denote
the distance from the focus to the vertex in the dis-
cussion of the paraboloid.)

radius vector from the origin to a point on the scat-
tering surface.

vectors which define the location of transmitter and
receiver in the discussion of reciprocity.

slant length of finite cone.
1/2 nose-angle of the ogive.

A
_1 n -I‘
Cos <___Q_. IR

|T]

the angle separating the transmitter and receiver.
angle used in discussion of spheroids (see Fig. 15).

1/2 nose-angle of cone.

‘'variable used in obtaining the Abelian limit.

the wavelength.

angles used in defining the location of the transmitter
and receiver in the discussion of the elliptic cylin-
der.

angle between plane of polarization of the incident
field and the plane containing the axis of the cone
and the receiver.

the effective cross=-section.

the radar cross-section for the case in which the
transmitter and receiver are separated by the angle B.

vi
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NOMENCLATURE (Continued)

o(o0) = the back-scattering cross-section.
oA A (B) = the bistatic cross-section for the case in which the
asly transmitter is located on the axis of symmetry of the
body and “c'l\m polarization at the transmitter is in the
direction iy.
o = "true” cross-section for a pair of reciprocal cases.
o

0y, 032 = two approximations to Ty for reciprocal cases ob-
tained using the current distribution method.

0'1*, 0'2* = two approximations to ¢, for reciprocal cases using
that portion of the surface “seen” by both receiver and
transmitter as the region of integration.

Miscellaneous

/

D, G, G,, Gg, a’ , 67, f(w), and g( ¢ ) = condensation symbols.

¢, 0, w, r,p, £, and 7 = variables of integration.
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PREFACE

This paper is the eighth in a series of reports growing out of studies
of radar cross-sections at the University of Michigan's Willow Run Re-
search Center. The primary aims of this program are:

(1) To show that radar cross-sections can be determined analytical-
ly.

(2) To elaborate means for computing cross-sections of objects of
military interest.

(3) To demonstrate that these theoretical cross-sections are in
agreement with experimentally determined values.
Intermediate objectives are:

(1) To compute the exact theoretical cross-sections of various sim-
ple bodies by solution of the appropriate boundary-value prob-
lems arising from the electromagnetic vector wave equation.

(2) To examine the various approximations possible in this problem,
and determine the limits of their validity and utility.

(3) To find means of combining the simple body solutions in order
to determine the cross-sections of composite bodies.

(4) To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.

(5) To collect, summarize, and evaluate existing experimental data.

Titles of the papers already published or presently in process of publi-
cation are listed on the back of the title page.

K. M. Siegel

viii
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INTRODUCTION AND SUMMARY

In this paper, bistatic radar cross-sections of simple configurations
are obtained by applying an approximation method. In most of the cases
considered the configuration is a surface of revolution, the transmitter
is located on the axis of symmetry of the body, the polarization is speci-
fied, and the position of the receiver is allowed to vary in the plane of
the axis of the body and the receiver.

The physical description of bistatic cross-sections differs from that
of monostatic cross-sections in that the receiver and transmitter are
permitted to be located at separate positions. To specify the bistatic
radar cross-section of a body for a general location of transmitter and
receiver more than one angle is required. However for most cases dis-
cussed in this paper, one angle, the angle P shown in Figure 1, suffices.

Scattering Body

Transmitter Receiver

FIG. 1 THE ANGLE B

The bistatic radar cross-section, therefore, is denoted by o(B). It
is evident that the monostatic back-scattering radar cross-section is a

special case (B = 0) of the bistatic radar cross-section and can be de-
noted by ¢ (0).
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The approximation technique used is the current-distribution or
physical-optics method. This method is applicable when the wavelength
of the incident radiation is small with respect to the characteristic di-
mension of the body and is, in fact, a much better approximation tech-
nique than many have previously believed. Tests of the validity of this
method and an explanation of why it may sometimes give better results
in electromagnetic theory than in acoustics are discussed in Section 2.

The formulas of physical optics applicable to the bistatic radar
cross-section problem, the stationary-phase technique for evaluating the
integrals encountered, and the applicability of the reciprocity theorem
of electromagnetic theory are discussed in Section 3. The physical-
optics method is then applied in determining bistatic cros s-sections for
various finite and infinite surfaces of revolution for various receiver
and transmitter locations (Sec. 4, 5, and 6). In the case of the paraboloid
with the incident Poynting vector along the axis of symmetry it is shown
that this method yields the exact bistatic result. The results obtained
for these geometric shapes have been collected for easy reference in the
conclusion (Sec. 7). This compilation is the first catalog of bistatic
radar cross-section formulas. Monostatic formulas are included to in-
crease the value of the table to the research worker.
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II

APPROXIMATION METHODS

2.1: A Discussion of the Application of Physical-Optics Approximations

In using any approximation method it is desirable to know how the
results obtained from it compare with the physically expected or experi-
mental results. In determining the monostatic radar cross-section, when
the wavelength is much less than the characteristic dimension of the
body, the current-distribution method has provided many results which
are in close agreement with experiment and with exact theoretical solu-
tions. In the study of radar cross-sections, an approximation may be
considered adequate if it is within a factor of ten of the correct answer.

In the case of the paraboloid (Sec. 5.1) the current-distribution
method (incident Poynting vector on axis of symmetry) yields a bistatic
result which is identical with the corresponding exact answer.

In the case of the sphere the bistatic result obtained by the current-
distribution method is in close agreement with the exact answer for
0 < B K 120° and RO/X >> 1 where R is the radius of the sphere
and \ is the wavelength (Ref. 1). As an example of the magnitudes of
the differences encountered between physical-optics and exact-theory
results, consider back-scattering from a perfectly conducting sphere.
Both the exact and the physical-optics back-scattering cross-sections
for the sphere and the envelopes of these curves are shown in Figure 2
(Ref. 1). It can be seen from this figure that the maximum error ob-
tained in using the physical-optics approximation of o is less than 40
per cent of WROZ and the average error is less than 25 per cent of
L RO2 providing Ro/)\ > 1. The physical-optics result, therefore,approxi-
mates the exact solution of the sphere in the back-scattering case rather
well for RO/X > 1 and, as Ro/x increases, the physical-optics result
approaches the electromagnetic theory result. In this particular case it
is apparent that the maximum error one would make in using the geo-
metric-optics result over the range Ro/x > 1 would be even less than
that obtained using physical-optics.
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The current-distribution method (sometimes referred to as a Kirch-
hoff procedure) has been subjected to much criticism on both theoretical
and experimental grounds (Refs. 2 and 3). For example, reasoning
based on the assumptions of the current-distribution method listed in
Section 3.1 would lead to the conclusion that this method should not be
used when the surface has a point discontinuity. However, the method
predicts the nose-on back-scattering cross-section of a semi-infinite
cone to within experimental accuracies, if not exactly (Ref. 5).

In this paper, an Abelian limit process is used to determine the
cross-section of a cone by a physical-optics approximation. When solv-
ing far zone problems for which the bodies are infinite in the direction
of propagation, Abelian limit processes usually are convenient unless
the configuration's tangent at infinity is parallel or perpendicular to the
propagation vector. The limit process is commonly used, because it is
not possible to get infinitely far from an infinite body. If the viscosity
or conductivity of the medium is introduced into the problem (although
these quantities may be negligible), then the problem becomes formally
the same as the previous one with the objection to the limit process re-
moved.

Some doubt has been thrown on the applicability of the physical-
optics approximations to electromagnetic scattering problems in the
past by the assertion that these approximations would always be in error
by more than the corresponding physical-optics approximations to the
acoustic problem. At least one apparent contradiction to this assertion
has been developed in the present series of papers (Ref. 5), where it has
been shown that physical optics predicts the exact electromagnetic
cross-section for cones or small angle, whereas the same approximate
methods predict a value four times as great as that predicted by the
acoustic wave equation. Although the quantitative theoretical explanation
of this factor of four cannot be elaborated at the present time, it is clear
that such a disagreement should not be unexpected.

The acoustic wave equation which has been used is merely an ap-
proximation to the exact equation of the motion. This approximation is
valid only when the wavelength is large (in comparison to the dimensions
of the scatterer), because the influence of viscosity in acoustics is great-
est at small wavelengths (Ref. 6). However, the physical-optics
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approximation is valid only when the wavelength is small (in comparison
to the dimensions of the scatterer). Hence the physical-optics approxi-
mation cannot be expected to reproduce accurately the real situation of
acoustic scattering at any wavelength, whereas the same approximation
can be expected to reproduce accurately the real situation in electro-
magnetic scattering whenever the wavelength is small.

Although in the above only an infinite body was under discussion,
there is nothing in the argument which requires that the surface be in-
finite; the same type of conclusion would be reached for a finite body in
a real fluid.

The cone result shows that it is possible to treat at least some
pointed bodies by the current-distribution method. There is no proof
available at the present time that pointed bodies in general can be
treated by physical optics. Such a proof would require a stronger basis
than the present existence and uniqueness proofs in electromagnetic
theory, since the papers of Weyl and Miiller (Ref. 7 and 8) and the
Fredholm Theory are based on the assumption that the body is “suffi-
ciently smooth”.

In addition to the cone solution, a point (or rather 4 point singulari-
ties) has been treated by Kouyoumjian in his solution for the cross-
section of a square flat plate (Ref. 4) by the Levine-Schwinger variational
procedure (Ref. 9). The physical-optics result was in fairly good agree-
ment with the variational result in the region where the wavelength was
equal to or less than the side length of the scatterer. Kouyoumjian's ex-
perimental results agree more closely with the variational curve than
with the physical-optics curve, but no great error would be made if the
optics result were used.

In addition, the physical-optics determination of the nose-on back-
scattering cross-section of an ogive (still another pointed body) is also
in close agreement with experimental results (Ref. 5).

2.2: The Choice of Method

The introduction of an approximation method into a problem implies
that it is felt that the determination of the exact solution is either
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impossible or at least is much more difficult than the application of the
approximation technique. This is certainly the case, for most configura=-
tions, in the radar cross-section problem. Yet the evidence presented
in Section 2.1 indicates that, for small wavelengths, the current-distri-
bution method yields results which are in close enough agreement with
exact theory and/or experiment so as to be adequate for most practical

' purposes.¥

Thus the choice-of-method problem involved in this paper reduces
to a question of how the integrals obtained in the current-distribution
method are to be evaluated. For smooth bodies such as the sphere, the
paraboloid, and the prolate spheroid, the stationary-phase method (Sec-
tions 3 and 4) is probably the best method to use except for fields in and
near the shadow region. In Section 4 of this paper, the scattering cross-
sections are determined by evaluating the physical-optics integrals both
by the method of stationary phase and by use of analog computing equip-
ment.** The results obtained show that no clear case can be made for
using the analog answer (physical-optics) rather than the stationary-
phase (geometric-optics) evaluation for these bodies for a wide range of
the angle B. There is however, some value in obtaining the physical-
optics answer even though in the end result only the geometric-optics
result will be used. The value lies in obtaining a “feel” for the wave-
length dependence. In some cases it will even be possible to estimate
the error from this crude dependence (See Fig. 2).

For a surface whose first and second derivatives ate continuous,
the essential contribution to the cross-section for short wavelengths can
be obtained from the integral formulation of the current-distribution
method if the integration is performed by the method of stationary phase.
If the integration is performed exactly, a result dependent upon wave=-
length is usually obtained. Singe the application of the method of sta-
tionary phase and the physical-optics integrals depend on the parameter

*The procedure involved in the determination of exact electromag-
netic theory cross-section is illustrated in the first, fourth, ninth, tenth,
and eleventh papers in this series on “Studies in Radar Cross-Sections.”

**Analog equipment was chosen over other machine techniques after
a thorough examination of all available methods.
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(k/( )'1, wherek=27/\, /€ is the characteristic dimension of the body,
and )\ is the wavelength, it can be shown that the physical-optics result
is a perturbation of the geometric-optics (or stationary-phase) result.

For a pointed body, the method of stationary-phase cannot be applied
directly. The back-scattering cross-section predicted by geometric -
optics is equal to 7 Rl Ry, where R, and R, are the two radii of curva-
ture. Hence, if a finite body has a point singularity, its cross=-section by
geometric optics would be zero. In this case, the physical-optics answer
cannot be obtained from the geometric-optics answer by perturbation be-
cause there is no non-zero solution to perturb. A solution can, however,
be obtained by integrating the surface integrals obtained exactly in one
variable and by stationary phase in the other.
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III

PHYSICAL OPTICS AND THE DETERMINATION
OF BISTATIC CROSS-SECTIONS

3.1: Basic Assumptions of Physical Optics

In order to apply the method of physical optics, it is necessary to
make simplifying assumptions about the incident wave and the body. The
exact nature of these assumptions depends to a large degree on the prob-
lem under consideration and, hence, the basic assumptions quoted in the
literature differ from author to author. For example, consider the as-
sumptions made by Spencer (Ref. 10) and by Milazzo (Ref. 11). The
simplifying assumptions made by Spencer are:

Sl. “The incident wave is plane."”
S2. “The surface is perfectly conducting.”

S3. “The current distribution over the illuminated region of the
body is obtained on the assumption that at every point the in-
cident field is reflected as though an infinite plane wave were
incident on the infinite tangent plane.”

S4. “The element of surface area is continuous with neighboring
elements so that currents in a given element are independent
of discontinuities in neighboring elements. This is a valid
assumption for smooth surfaces with radii of curvature at
least as large as a wavelength,”

The assumptions made by Milazzo are:

MI. *“The scattering surface dimensions are large compared to
the wavelength.”

M2. “The scattering surface is smooth, containing no abrupt
corners, except possibly at extreme edges.”
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M3. “The scatterer is made of perfectly conducting material.”
M4. “The incident wave is plane.”

Assumptions S1 and M4 and SZ2 and M3 are identical, while assumptions
S4 and M2 are identical with the exception of the condition “except pos-
sibly at the extreme edges” if it is assumed that both authors use the
term “smooth” in the same way. However, assumptions S3 and Ml are
not in general equivalent.

In this report, the assumptions made are stated as required. In
most cases they are those made by Spencer. '

3.2: Application of the Physical-Optics Method to Bistatic Cross-
Sections

If the surface of the scattering body is assumed to be perfectly con-
ducting (S2 or M3), the equation for the scattered magnetic field (Ref. 12,
p. 466) can be written as

N . - é-ikR)
A
=— ——/ d 3.2-
Hse 47rf(ant)Xv R/ (3.2-1)
N s
where Hg. = the scattered magnetic field vector,

= the unit normal to the surface,

the tangential component of the magnetic field on the

imb o>
1}

scattering surface,

R = the distance separating the receiver and the integration
point,
k =2r/N () = wavelength),
and s = the region of integration = the entire surface of the
scatterer.

-
By assumption S3, H; can be approximated as twice the tangential
component of the incident magnetic field on the “illuminated” side of the

10
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body and zero on the “shadow"” side of the body.* Letting the incident

magnetic field have a magnitude H and a direction 4, then according to
this approximation,

-~
LN - -1 .'
H-21H elk(ﬁ r)

+ y H on the “illuminated” side of the body,

(3.2-2)
=0 on the “shadow” side of the body,

AN
where k

a unit vector directed from the transmitter, assumed to be
infinitely far away, to the origin of the coordinate system,

-

r = the radius vector from the origin to any point on the surface
of the scatterer, and

—_

i, =2 - (80

If the receiver is at a very great distance from the body and if the
body is finite, the following approximations are obtained:

Bl e

and R~ R' - T cosa_
where R' = the distance from the origin to the receiver,
éo = the unit vector directed from the receiver to the origin, and
A
n.r
COS a = - o_,
o |7

If the incident magnetic field is of unit magnitude, then the substitu-
tion of (3.2-2) and (3.2-3) into (3.2-1) yields

= _exp(-ikR') *
H == F (@) (3.2-4)

*The “shadow” curve is the locus of points on the body for which
k % = 0. This curve separates the portion of the body “seen” by the
transmitter, i.e., the “illuminated” side, from the “shadow” side.

11
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illuminated
region of
the body
The radar cross-section is given by (Ref. 13)

o(f) = 47 [|FX|Z + |Fy|Z + IFZIZ] : (3.2-5)

The amount of energy received is proportional to the square of the
magnitude of the scalar product of the vectors Hg. and d, where d is the

direction of the receiver polarization. It is convenient to define the ef-
fective cross-section as

o (B) = 4%‘?-3‘2 (3.2-6)

47

o e——

A A TN LD LR ALA ]2
v (no- a) (f-d) (no f) (2-d) .

A
If d is given by a vector whose components are proportional to the com-
—

plex conjugates of the corresponding components of F, then ¢ (B)
e
reduces to ¢(f).

If the body is a surface of revolution (the axis of symmetry taken to
be the z-axis), there is no loss of generality if the receiver is restricted

12
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to be in the yz-plane with y < 0. If in addition the transmitter is lo-

cated on the z-axis (z > 0), then the geometry shown in Figure 3 applies.

. z
Transmitter ¢—s
Receiver L\

s>

FIG. 3 BASIC GEOMETRY FOR SURFACES OF REVOLUTION

With the situation as pictured in Figure 3

° v Z (3.2-7)

If the polarization of the incident wave is 4 = /i\y and if the surface is
symmetric with respect to the yz-plane, then

AN (ﬁ) 'I ’ ‘ (3.2-8)

whereI /fn exp l:-lkr (n + k)]

illuminaied
region of body

13
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In many cases the integral I can be evaluated easily with the aid of the
following double stationary-phase theorem (hereafter this theorem will
be referred to as the D.S.P. theorem) which is proved in Appendix 1.

Let b
ik
1=fdf f(x,y) e FBE I giqy.
C a

If 1)f(x,y) = X(x) Y(y) is analytic in the region
R,={x,y a{x<b, CSysd},

2) g(x,y) is analytic in R,

3) there exists one and only one point (xg,y), in the interior of R,
_ _ 2
such that P,=qo = 0 and r t, - s, £ 0, wherep, q, r, s, and t
are the usual partial derivatives of g,* and

4) X(£) /ge(g, n) and Y(n)/gn(g, n) are of bounded variation
for (£, M) inR butnotin

R'={ , -0 <x<x 490, -€<ysy + },
X ylxo 0 <x xo yo y yo €
then

21 1 e KBX Y )

' f
[o) (Xo:yo) . o 1 a5 Kk — oo
3/2 ]
k[r’t _ s 2}1/2 k /
00 (0]

IfI, in (3.2-8) is evaluated by the method of stationary phase, the
resulting value of cross-section is equal, in the limit as \ approaches
zero, to the cross-section obtained by geometric optics. That is,

—t
|
H.

*That is p = gy, q = gy T = 8xx’ S = Exy and t = 8yy-

14
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evaluation of the physical-optics integral by the D.S.P. theorem leads to
the geometric-optics answer.

3.3: Reciprocity Relationships and the Current-Distribution Method

It is sometimes possible, by known methods, to solve the bistatic
problem if the transmitter is located on the axis of symmetry but not
otherwise. Since it is often of more interest to have the receiver lo-
cated in this position, a reciprocity theorem is presented which allows

" the cross-section to be determined for given positions of the transmitter
and receiver if the problem has been solved with these positions inter-
changed.

It has been shown (Ref. 14) that for a field with time depend-
ence el!®t incident on a perfect conductor of finite dimensions

- N -~ -
Séég (E,* J - Ep+J)dV = 0 (3.3-1)

S, -C
where S__ is a sphere of infinite radius,
C is the scattering surface,
- . - N
Jlelwt and Jzeu‘)t define the current distributions in the two
- -—
reciprocal cases (J1 and J, are assumed to vanish
-
except in the vicinity of ?1 and r,, the locations of the
transmitter and receiver),
- N .
and E] and E; are the electric vectors in the two cases.

L - -
Since J; and J, are assumed to vanish except in the vicinity of ry

- oy P
and Ty E, and E2 can be evaluated at these two points, reducing

(3.3-1) to

- - - - -~ -~
E; (rz) ‘ﬁh dv = E;(ry) - JydV (3.3-2)

15
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PN

where the integrations are performed over the regions in which J; and
-

Iy do not vanish. Thus, if El(?z) is known for arbitrary #Jl dav
— -~
and if J, is specified, then EZ(?I) can be calculated. It also follows

from (3.3-2) that for smooth finite surfaces, the effective radar cross-
section remains the same if the transmitter and receiver are inter-
changed.

When an approximation technique is used to obtain the cross-section,
the foregoing reciprocity relationship may not hold. Therefore, the
current-distribution method must be investigated to determine if reci-
procity relations exist for it. According to the current-distribution
method, the effective cross-section of a convex body is given by

oo® ==L @B iEd - @D ED 1 (3.2-6)
N

where

— Y N
f = /ﬁ exp [-ikr - (ﬁo+k)]ds

iluminaied
portion of
the surface

_, When the wavelength becomes extremely short, all the contributions
to f cancel out except those from the immediate vicinity of the stationary-
phase point on the side of the body toward the transmitter. A stationary-

N -—
phase point is one at which a plane of constant phase, (ﬁo + k) - r = const,,
A
is tangent to the surface of the body. Clearly A= (1/1\0 + /1;)/| A, + k| at
a stationary-phase point, and for extremely short wavelengths

= A
f= A(ﬁo + k) where A is not changed by an interchange of transmitter

16
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and receiver. Therefore, in this limiting case, (3.2-6) becomes

47 2 AN A A A aooAa Al2
o‘ez—;'A' l(l+n0-k)(a'd) -(no-a)(k-d)‘ . (3.3-3)

If 1/1\0 and ﬁ are interchanged, and simultaneously 2 and ,<\i are inter-
changed, (3.3-3) is unaffected. Hence, reciprocity is obtained for the
current-distribution method in the limit of extremely short wavelengths.
The same result would follow if the region of integration in the definition
of f were taken to be any region which enclosed the necessary stationary-
phase point. For the convex bodies under consideration in this paper, the
stationary-phase point lies in the region seen by both transmitter and
receiver. An illustration of the difference between these two regions of
integration is shown in Figure 4. The figure shows the projections of the
shadow curves and of the regions of integration onto the yz-plane for
each case; the transmitter is on the z-axis and a sphere is the surface
used in this illustration.

Transmitter Transmitter

Projection of Region

"Seen” by Both
Transmitter
and Receiver

Receiver

Projection of the
llluminated Region

Projected Shadow Curve

(Transmitter) Projected Shadow

Curve (Receiver)

FIG. 4 PROJECTIONS OF SHADOW CURVES AND REGIONS OF INTEGRATION
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When a wavelength-dependent expression for the cross-section is ob-
tained by the current-distribution method, complete reciprocity is not
obtained. At a casual glance it might appear that reciprocity could be
regained by choosing the region of integration to be the part of the scat-
terer seen by both transmitter and receiver. Although the region of in-
tegration is already fixed in the current-distribution method, the new
choice of the region of integration would be justified if it yielded correct
results. As noted above the stationary-phase point is included in the new
region of integration so that the correct effective cross- sectlon is ob=-
tained in the limit as X\ — 0. Furthermore, the value of T is not af-
fected by an interchange of transmitter and receiver. However,_:ch1s is
not the condition for reciprocity. As can be seen from (3.2-6), f is
operated on in a fashion which is not symmetrical with respect to an in=-
terchange of transmitter and receiver. If (3.2-6) were to give reciprocity
independently of the wavelength, it would have to give reciprocity even
for very large wavelengths. Therefore, consider the following counter-
example:

Let 27 L/\ <<l

N
where L is the maximum dimension of the body, then f cdfﬁ\ds.
N
1

y

N A N N
Let k=d and n=a =

and take a scattering body which is symmetrical with respect to the
yz-plane.

- N A
Then f = A i +Ai
ry tx

where A, and A; are the projections of the region of integration in the
direction of receiver and transmitter respectively. Hence,

Az
o = 41r-"'- .
e )‘2
Obviously, reciprocity does not hold unless A, = A;. In general this is
not the case. For example, for receiver and transmitter nose-on and

broadside, respectively, to a prolate spheroid, A, £ A;,and hence
reciprocity is not obtained by using this different region of integration.

18




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-115

If o is the exact effective cross-section for a pair of reciprocal

cases, ¢, and o, are the two approximations to the effective cross-

section obtained by the current-distribution method, o;* and o, *

are the two approximations to the effective cross-section obtained when
the current-distribution method is modified so as to make the region of
integration that part of the scatterer seen by both transmitter and re-
ceiver, then

1) As \—0 all of the values ¢, , o, , o* ,and o,*

approach the value o,
o

2) In general o, # 0, and " ¥ o ",

and 3) Only one integral need be evaluated to obtain ¢;* and o, *
while two different integrals are needed for o0; and o,
(however, each of these will in some cases be simpler than the

one required for ¢;* and ¢,* since the limits of integra-
tion are simpler).

0y and ¢, are obtained by making physically reasonable as-

sumptions while ¢,* and o¢,* have been obtained by making a

further approximation. Thus it is to be expected that in most cases

both ¢; and o, are better approximations to ¢, than either

(o)

0'1"t or U'z* . It is not necessary to calculate both ¢; and o,

Instead either o¢; or ¢, canbe used as an approximation to T
It has been established that if the body is smooth and finite in size
(e.g., sphere, spheroid), the reciprocity relationship holds for the geo-
metric-optics approximation. Although reciprocity has not been es-
tablished formally for semi-infinite or pointed bodies, experience in

computing physical-optics cross-sections has shown that 0y and 0
agree fairly well with one another even for these bodies.
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v

THE BISTATIC CROSS-SECTION OF FINITE SURFACES
OF REVOLUTION WITH THE TRANSMITTER LOCATED
ON THE AXIS OF SYMMETRY OF THE BODY

The bistatic radar cross-section of a prolate spheroid, a sphere, an
ogive, and a finite cone have been determined under the following condi-
tions: The transmitter is located on the z-axis, the direction of polari-
zation at the transmitter, 3, is 'i\y, and the geometry is that shown in
Figure 3. Under these conditions, the radar cross-section is given by

4 2
oan (B) = —% lIZ| (3.2-8)
N G

_ s _-\. A A
where IZ —/ n_exp [-ikr (n0+k)] ds.

illuminated portion
of surface

I, has been evaluated both by the D.S.P. theorem (the details appear in
Appendix 2) and on electronic analog computing equipment for the pro-
late spheroid, the sphere, and the ogive. By using both methods of
evaluation, it is possible to compare the results obtained from geo-
metric optics (D.S.P. theorem in the limit as \ tends to zero) with
those obtained from physical optics (analog computer). The analog
computing equipment consisted of standard Reeves Analog Computer
units and the evaluation was carried out by analytical integration in one
variable and electronic integration in the other.*

*The details involved in evaluating these integrals on analog equip-

ment were presented in a paper,¢“Use of the Analog Computer in Evalu-

1 -C 9 »
ating Integrals of the Form sin(),cosoJ0 (A siné) iCcoséyg

o]
by E. C. Licht and V. L. Larrowe at the October 14, 1953 meeting of the

Project TYPHOON Symposium III, at the University of Pennsylvania.
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4.1: The Prolate Spheroid

In prolate spheroidal coordinates,* the integral I, for a prolate

2 2

+y2+z

B? A?
1 2m
IZ = B? / / N exp [—i{a'\/ 1-n? sing - bn}:' dgdn (4.1-1)
o 0

where a = kB sin 3 and b = kA(1 + cos B ).

spheroid

= 1 is expressed as

Since (Ref. 15, p. 26)

2T
/ exp [-ikysing]d¢ = 27 Jo (ky), (4.1-2)

o

I, can be expressed in the form

/2
IZ = 27 B? / sinfcos J  (a sinf) eleOSG dé (4.1-3)
)

*The relations between the prolate spheroidal coordinates and the
rectangular are given by

x = cN(l-n2)(e2 -1) cos¢
y = ¢cN(l -52)(¢2 - 1) sing
z = ¢ 7
E = &g defines a prolate spheroid of rotation around
the z-axis with the rectangular form
x* + yz + z? -
cz(éé - 1) Czé;
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Thus, from (3.2-8)

oa s (P)

4y 2\
{FB/A}

Equation (4.1-4) has been evaluated on analog computing equipment for
two cases: A = 10B and kB = 100, and A = 10B and kB = 5. The results
of these evaluations are shown in Figure 5.

2 7/2 2
kA i 6
<7T ) Zn/ sinfcosfJ,(asinb) e1bCOS dé ,(4'1'4)
o)

oA A (8) can be approximated by applying the D.S.P. theorem.
=1
y

The application of this theorem yields the “geometric-optics” result:

oA (B)
4 4.1-5
— ¥y , e ( )
4, 2 2 2
{WB /A } |:(1+cos[3) +—B—2 (l-cos[i)j‘
A

Equation (4.1-5) is also shown on Figure 5. Examination of this figure
shows that for 0% ﬁ<1600 the analytic curve representing (4.1-5)

appears to be a good approximation to the analog evaluation for values
of kB which are greater than or equal to 5.

4.2: The Sphere

Rg, and

I, for a sphere of radius R, is given by (4.1-1) with A = B

a(B)/TR 2 for the sphere is given by (4.1-4) with A = B = R,,.

o
Equation (4.1-4) with both A and B replaced by R, has been evaluated on
analog equipment for the cases kR, = 100 and kR = 5. The results of

2
these evaluations and the geometric-optics result (o = 7rR0 ) are

shown in Figure 6. As inthe case of the prolate spheroid, the
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FIG. 5 CROSS-SECTION OF A PROLATE SPHEROID AS A FUNCTION OF B
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geometric-optics result obtained by using the D.S.P. theorem agrees

closely with the physical-optics result in the range of 0° éﬁ<1200.
4.3: The Ogive

The term “ogive” is not defined uniformly in the literature. For
example, Hobson (Ref. 16, p. 451) refers to the figure obtained by re-
volving a minor arc of a circle around its chord as a spindle whereas
Hansen and Schiff (Ref. 17) use the term spindle to describe the arc of
a parabola revolved around its chord. Others use the term ogive as a
general term of which both of the above configurations are examples.

In the work presented here the term ogive refers to the minor arc of a
circle revolved around its chord (Hobson's spindle) and the term spindle
will be used for the parabolic arc revolved around its chord (Hansen and
Schiff).

An ogive of length L, maximum diameter d, and half-angle «
(using the cylindrical coordinates (w, ¢ , z)) is given by the equation

(w + h)2 + 22 - p® = 0 (4.3-1)

with |z |$Ap? - B? = L/2,

z
h<w + h=p, }
N
and @« = cos” (h/p). b J/
/=
/// L
These relations are shown in / /
. /
Figure 7. A > W
h d
\ 2
\
\
\
\V/___ v
|\

FIG. 7 GEOMETRY FOR THE OGIVE
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The integral I, takes on the form

p-h 27
Iz =/ / We1.kf(w) e-1kwsmﬁsm¢d¢dw (4.3-2)
o o

where f(w) = (1 + cosﬁ)'\/pz - (W"‘h)z

The application of the D.S.P. theorem to (4.3-2) yields

op (6) erz {sin(ﬁ/l) - COS}, r - 20 <p<r. (4.3-3)
y 4 sin®a sin(p./2)

The theorem implies that in the range 0$p<r=-2c, c(f) = 0 inthe
limit of vanishing wavelength (See Appendix 2). To obtain information
about o (B) intherange 0 <Bp<r - 2a ,first apply (4.1-2) to
(4.3-2) obtaining

s}
.b . 9
Iz = ZWPT/‘ (cosé- cosa) sing Jo(a[cos - cos «)) 05 % 0 (4.3-4)

(o]

where a = kp sin B , b = kp(l + cos B ), and the transformation de-

fined by w + h = p cos € has been employed.
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In obtaining information relative to ¢ (B) in the range
0£B =71 - 20, first consider the left end of the interval, the case

of back-scattering. For B = 0 (4.3-4) reduces to

o
. s
IZ = prz/ (cos - cosa) sind e1bOSln dé (4.3-5)
o
h = = = )
where b b(ﬁzO) 2kp 41 p/\.

This integral can be evaluated by parts to yield

2 b si
I = '—WLZ [tanza e1 o Siftd + (1 - COSa)] + O
z (iby)

1
™ ,3), (4.3-6)
(o]

if )\47rp<a<—27r— - Vx74wp.

Use of (4.3-6) would imply that the contributions from the tip of the ogive
and from the shadow rim (z = 0, w = p - h) are of the same order of
magnitude.* Hansen and Schiff, who obtained a similar result in their

*Use of the evaluation of I, given in (4.3-6) yields the cross-section

formula
2 4 2 cos’a cos( >
¢ (0) =x tan o 14+ cos o
16 1 + cosa (1 + cosa)?
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work on the spindle (Ref. 17), showed by a more careful consideration of
the contribution of the shadow rim that, in fact, the contribution of the
shadow rim (or rather, the penumbra) is of a smaller order of magni-
tude than that of the point and that the “correct™ answer can be obtained
by merely evaluating the integral at the “tip”. Their analysis of the
penumbra region, which is also valid for the ogive, is discussed in more
detail in Appendix 3.

By applying Hansen and Schiff's penumbra analysis to the ogive
problem, i.e., ignoring the contribution from the shadow rim (w = p - h,
or & =0)itis found that ¢ (0) for the ogive is given by

2 4
o (0) =_)‘_£‘_1_2., \/l7bola<%— '\/17b0. (4.3-7)

167

The nature of ¢ (f) inthe region 0<f<7 -2a has still to
be determined. Assuming that the tip will also dominate for most of the
values of P in this region (i.e., for 0<P<7r -2a - ‘ﬁo(x)‘ where
Bo(\) — 0 as x—>0 ) as it did for B = 0 and using an approach

similar to that employed in obtaining (4.3-7) the tip formula for the
ogive becomes*

-3
)\Ztan4a (1- tan.za ’can2 8/2))
o A (B) =
a=i 167

- (4.3-8)
y cos  (B/2)

It is obvious that for small o and for B<r/2 equation (4.3-8) may
be approximated by

2 4
\ tan a

™ sec® (8/2). (4.3-9)

AN B) =
y

%It may be readily observed that this formula is identically the same
as that obtained for the semi-infinite cone (Sec. 5.2).
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The analysis presented above, which presents a tip formula for the
cross-section in the range 0L f<71 - 24 and a geometric-optics
formula in the range 7 - 2a<B< 7 , does not give information
about the cross-section at or in the immediate vicinity of B =7 -2«
For a particular choice of L. and \, the cross~-section in this transi-
tion region can be estimated either by a curve-fitting process or by ap-
plying analog computing methods to the integral (4.3-4).

o (B) Wwas evaluated on analog equipment for the case defined
by a = 15° and 7d/\ = 100 using Equation (4.3-4). The nature of
the integrand made it difficult to obtain reliable results over the entire

range in B; however, fairly reliable results were obtained in the

interval -% <B < 7.

A plot of the ratio  ¢(B)/¢(0) determined both from (4.3-8)
and from (4.3-9) appears in Figure 8 for 0 <p < 140° . The analog

evaluations are included for comparison.
Figure 9 is a graph of the results obtained by
(1) the “tip” method of determination (Eqns. (4.3-8) and (4.3-9)),
(2) the analog evaluation (reliable for B> 7/2) , and

(3) the D.S.P. result (Eqn. 4.3-3), valid for 7 - 24<B< 7, for the
special case defined by o = 15° and w7d/\ = 100, The figure dis-
plays a plot of v (B)/\2 vs P for 0SSP <L . Examination

of this figure seems to indicate that if a single curve were to be fitted
through this data, it would follow the “tip” formula almost up to the

T-2a value of 150° and then follow the trend indicated by the analog

evaluations and the D.S.P. result. It may be observed that the analog
evaluations and the D.S.P. result are in close agreement in the range
155%< p <1759,
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4.,4: The Finite Cone

For the finite cone, I, is expressed in spherical coordinates as

2T r .
o _i
1 = sin’y / / r e FTEO) 449 (4.4-1)
[0 (o)

where g(¢) = sin? sinp sin@ + (1 + cosp) cos? and ¥ = 1/2 the cone angle.

Upon integration by parts, (4.4-1) becomes

. /Zw o ike(d)r, .
I, = sin®? [ke@ )] { ikr g(¢) - } + [-ike()]? dp (4.4-2)

(o)

which may be written in the form

sty ir 27 e-ikro(bsin¢+ c) ; +_1__ Zvre-ikro(bsin¢+ c)d
z Sk /(bsing+c) AR (bsing+ c)F 99
2w
L | 4.4-3)%
/ (b s1n¢ + c)? ( )

with b = sinp sin? and ¢ = cos? (1 + cosp).

*The quantity (b sin ¢ + c) remains non-zero (and positive) for

0£¢$27r if o<p<7-27.
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For B =0, the above expression for I, yields

2 4
rr sin 7Y
o

oAN (0) = (4.4-4)

y

cos?y

If B is bounded away from zero and (4.4-3) is evaluated by the
methods of stationary phase, the first of the three integrals in (4.4-3)
dominates and hence

iro /‘Zn e-ikrO(b sin;5+ c)
= (sin®? d
Iz (sin“?) y %

k (bsin?$+ c)

. . 2 Iy i e T
—211rr0s1n Y c cos(kr b 4) + ib sin(kr b n

s

e-ikroc
k(b? - c?) <7rkrob)l /2 y

2

(4.4-5)

If kry>> 1, the expressions inside the brackets of Equation (4.4-5) can
be replaced by their equivalent asymptotic forms. Thus (4.4-5) takes on
the form

- 2.i1rros in%y

z  k(b? - c?)

-ikrc . ] .
b 4,4-6
I e [c J_(kr b) + ib Jy(kr b) |, (4.4-6)

from which it follows that
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2 4
4rr sin ¥
0

2 2
- 2 2 _
cg___’i\y(ﬁ) e [c {Jo(krob)} £ b {Jl(krob)} ] (4.4-7)

Although (4.4-7) was derived under the assumption that >0 it
reduces to (4.4-4) if B =0,

The bistatic cross~-section of the finite cone is shown in Figure 10,
o
The curve is drawn for the special case defined by » =15 and

= 100,
ﬂro/x

It should be pointed out that the sharp edge of the finite cone con-
tradicts the assumptions of the current-distribution method. Thus, the
result obtained here for the finite cone may not be as good an approxi-
mation to the exact cross-section as the results obtained for other
bodies.
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FIG. 10 CROSS-SECTION OF A FINITE CONE OF HALF- ANGLE 7
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THE BISTATIC CROSS-SECTION OF SEMI-INFINITE
SURFACES OF REVOLUTION WITH THE TRANSMITTER
LOCATED ON THE AXIS OF SYMMETRY

Although the current-distribution method employed in this paper is
based on the assumption that the surface is finite (Section 3.2), this

method can be applied to determine tra_/i\ (B) for the paraboloid

and for the semi-infinite cone (if the integral is evaluated with the aid of
an Abelian limit process). The results obtained in this way have been
checked by comparing them with the known result for f =0 and with
the answers obtained from the Luneberg-Kline method (Ref. 18). The
details involved in applying the Luneberg-Kline method to this problem
appear in Appendix 4.

5.1: The Paraboloid

For the paraboloid defined by the equation r2

system configuration shown in Figure 3),
co
2m
1 = / r exp {-i[arsinf% br"] }dfgdr (5.1-1)
o o

where a=ksin p and b=k (1 +cos B )/4p.

= -4 pz (using the

Using the relation (4.1-2)

o

IZ = Zw/ r exp [-ibrz] Jo (ar) dr (5.1=2)

(o)
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o
=7 / T (awu) e Y gy
o
= _7;; exp (132/4b)’ (Ref. 19, p. 80).
i
Thus [ Iz,z = 4 p2\%/(1 + cos B)? and therefore the use of the
relation (3.2-8) yields
oa n (B) = 16rp%/(1 + cos B)2. (5.1-3)
a=1y

As shown in Appendix 4, the geometric-optics answer is the exact
solution to axially symmetric scattering from the paraboloid of revolu-
tion; that is, (5.1-3) gives the exact cross-section of the paraboloid.

The bistatic cross-section, ¢a A (B), of the paraboloid is
a=1

shown as a function of f in Figure Il.
5.2: The Semi-Infinite Cone

The computation of the bistatic cross-section of a semi-infinite
cone,which is carried out in this section,is restricted to the case in
which the entire surface of the cone is illuminated. That is, if ¥
equals 1/2 the cone angle, ,1\<1 denotes the transmitter direction, and €
the direction of the cone axis, the allowable range of Y 1is obtained
from the relation

k- ¢ | <cosy. (5.2-1)

P

~
If no' is the receiver direction, the geometry is that shown in Fig-
ure 12.
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FIG. 11 THE BISTATIC CROSS - SECTION OF A PARABOLOID
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FIG. 12 GEOMETRY FOR SEMI - INFINITE CONE

The maximum possible cross-section of a body can be written as
(Sec. 3.2)

5 {ledt + 18t 18 ) (5.2-2)

where 8y gy, and g, are the x, y, and z components of the vector
2T =@ -Af-0 .7HA
g (o] (o]

and

t - ['k“ A +k) |fd
= [ exp [ ikr (no li):]ns

surface
of cone

A A
a is the polarization of the incident wave, n the normal to the cone, and

- A " A
r = i i i

X+1 y+1i z,

X y z

K
The integral f can be expressed in the form
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- A
ikr - (0 +k
/{?(ﬁ-f)+€(ﬁ-€)+i(ﬁ-f)} Jkr-(motki)
X Xy y 'z z

surface
of cone

which in turn can be expressed in the equivalent form

- Ay A - N A
A A ikr - (n.! A A kT - (n4+k
i [V [i oI " (Mo +k1)] av +i_ |V [i o1 " (o ‘)] dv
X X y y
v! V!
(5.2-3)
A A KT - (R +Hy) Ay A ikr - (R +k)
+1 [V-|ie ° dv = ik(ng +k) | e o™l gv
\A V!
where V' = the volume enclosed by the surface. This integral can be

converted to an integral over a single variable, namely the distance, p ,
measured from the origin, perpendicular to the constant phase fronts

- A
r. (ﬁo' + lc.l) = lﬁo' + k| p. dV is expressed in terms of dp as
tan®¥
dv = 7 ian / pzdp
3/2
cos’9! [1 - tan®¥ tan®4"' ]
where @' =

A A
_1{(1{1 + nQ').é}
cos .
A
\fc\l + no'\
For simplicity, denote

7tan®?

cos?o' [1 - tan®»tan?6' ] ¥z
Then (5.2-3) takes on the form

by o'.
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Lo -]

A A
A i ' + k
ik(ﬁo' + k) /a' elklno thle pZdp. (5.2-4)
o

This integral is not convergent as it stands. To evaluate it, consider the

Abelian limitas 00— 0 of
(o o}

- A
/ o' e P exp{ik' r/;o' + k" p} pdp.

(o)

A
Let (é—iklﬁo' +k|)p = s; then

<©

lim / I A, _ 2
50 a' exp {1k|no +k1| P Gp} p-dp (5.2-5)

0o

(e o]
lim a' / -s ,
- d
50 {a- ik | ! + 1'21|}3 / € s¢ds

(ik)* [ B! + ﬁ1|3

The components g, 8y and g, can be computed with the aid of the
expression in (5.2-5) e.g.,

13 Al * . A n
SRS -2a'ik(n ! + k) 2a'ik[1+n' 1] |
={n, -a A
e (&P 8y + Tl | " (i)° 8, +Jy 2 *

O

A A A A A AA
Za' [-(no'-a) (no' + k) + (1 +ny' k) a] ik
(ik)""ﬁ'o+ ’1:{1‘3
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Therefore,
2 2 " 2
2 2 2 4q' [1 + kl . n()']
= 4 A 16 : 5.2-6
|2 ]y +|gzl KA +h (5.2-6)
and
2 4 AA 2
o = \ tan 'y [1 + k;-no’] (5.2-7)
A6 6 2 2 3
T Iﬁo' +k1‘ cos @'}l - tan 7ytan 0‘}
where
Y = 1/2 the cone angle,
A
k; is the transmitter direction (from target to trans-
mitter),
A
n/ is the receiver direction(from target to receiver),
8-k +ng
0' = cos 1| S (Al Ano) . and
| kl + no'l
2 is the direction of the cone axis.

If the notation is changed slightly to agree with that used in
previous work, i.e.,

A A
kl = +i
Z
A A
c = -i
z
A A A
N A
n, 1y sinp + 1Z cos B,

then Equation (5.2-7) can be expressed in the form
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2 4 3
N tan' vy 2 (1 +cos2y)
167 *

o (B) (5.2-8)

(1 + cosB) (cosP + cos 27)3

Since the radius of curvature at the nose of the cone is zero, the
Luneberg-Kline method cannot legitimately be applied to the cone prob-
lem. However, if the method is applied formally, the expression ob-
tained (Eq. 5.2-9) has (5.2-8) as its first term. The Luneberg-Kline
answer agrees with the intuitive expectation that the cross-section
should be a maximum in the plane of electric polarization and a mini-
mum in the plane of magnetic polarization. Also, the cross-section ob-
tained by the formal application of the Luneberg-Kline method increases
as a function of the separation between transmitter and receiver (trans-
mitter on the cone axis) in the expected fashion.

The formula obtained by this method is

2 4
o-(ﬁ)-)‘ tan 7 2 (1 + cos27) 1 +cos2?
16w (1+cos B) (cos 27 +cos B) cos 27 + cos B
1 + cos 2? 1 -cosp 1 -cosB
29 4+ —— 5.2-
cos 2 + cos P 1 +cosp cos 1 +cosB ( ?)

where ¢ is the angle between the plane of polarization of the incident
field, and the plane containing the axis of the cone and the receiver.

For back scattering, B = 0, (5.2-9) reduces to

2 4
_ A tan 7

- (5.2-10)

o (o)
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which is just the well known physical-optics result for back-scattering.
It has previously been shown (Ref. 5) that the physical-optics answer
agrees with the exact back-scattering answer both for large cone angles
and for small cone angles.

The physical-optics bistatic cross-section of a semi-infinite cone
given above is independent of ¢ . Since the Luneberg-Kline solution
is not independent of ¢ it is clear that the two solutions do not agree
exactly.

From (5.2-9) it can be seen that the maximum cross-section is ob-
tained when ¢ =0 and ¢ =7 , while the minimum cross-section is
obtained for ¢ =7/2 and ¢ = 37/2 . In Figure 13 the maximum and
minimum cross-sections and the physical-optics approximation are

(o)

plotted as a function of B for ¥ =15 This graph shows that the

physical-optics answer agrees very well with the Luneberg-Kline
answer and that it lies approximately halfway between the maximum
and minimum “Luneberg-Kline" curves.
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VI

BISTATIC CROSS-SECTIONS FOR ARBITRARY
TRANSMITTER AND RECEIVER DIRECTIONS

6.1: The Elliptic Cylinder

Consider an elliptic cylinder with semi-major axis a and semi-
minor axis b oriented with respect to the transmitter and the receiver

as shown in Figure 14.

z

A
k Transmitter

A .
n, Receiver

FIG. 14 GEOMETRY- FOR THE ELLIPTIC CYLINDER
The Figure on the left is complete in itself. The other view
is provided so that a three dimensional effect may be ob-

tained by the use of a stereo viewer.

The angular positions of the transmitter and receiver are designated by

e.,9¢

ivelv.
LN and © " o r respectively

By definition, the radar cross-section is given by

o = 41r{|F |2 +|F Iz +|F Iz} (6.1-1)
X y z
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ik ik-" 12 A
— - .
where F(® , © ,¢,¢)=——(ﬁ.g) e r-( +n0) AdS
tt r t r 2t "o

illuminated portion
of the surface

A - A A
ika ikr-(k+n) &
— J e o (n -
27 o

illuminated portion

of the surface

A
n) dS,

and all the other parameters are as defined in Sec. 3.2. The problem of
finding the cross-section is the problem of evaluating the integrals.
This evaluation can be accomplished most simply in elliptic cylindrical
coordinates ( £ , p , z).*

In this coordinate system the element of surface area, ds, is

ds = Nb®+c”sin‘y dndz

. A
and the unit normal, n is

*These coordinates are related to Cartesian coordinates by the
relations

c cosh § cosny

"
"

y = c sinh § sinn
Z = 2z
where § = £ = constant gives an elliptic cylinder with semi-axes
o

a =c cosh ¢ o and b = c sinh £ o and c is related to the eccentricity

and the semi-axes of the ellipse by

e = c/a =(1/a) Naf - b2.
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A A A bcosn } { a Sjnn
n = 16 = 1
bz+ c? smn \|b2+cz sinzn

Also,
N A A A
k = -i sing cos¢ -i sin@, sin¢ -i cos®O
X et t ¥ et t Z
A A A ) A
n = -i sing@ cos¢ -i sin® sine -1i cos®
o) X T r y T r Z r
SN
r

Al A A
= xi +y1 +2z1,
X y Z

so that the phase factor becomes
T (n +ﬁ)— sin® cos ¢, + sin® cos¢_p+ sin @, sin
B = X 8InY, COS & ¥ SInY, COShT Y g S0y
+ sin®_sino } + z{cose + cos 0 }
r r t r

By using the above relationships, the first integral appearing in (6.1-1)
becomes

- A A
—. . A i K
/ AT (kD) A /ig e1k[Ax+By+Dz] s o st dndz
S

S

where A = sin@, cos¢ 6 + sin® coso
t t r r

sin® sin ¢ + sin@® sin¢
t t r r

B

D =cos® + coso .
t T
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Since X = c cosh§ cos7, y = c sinh éosinn, z = z, this integral
becomes

A . . .
/ ig elk[Accoshgocosn+Bcsmh€os1nn +Dz] /bz+czsinzn dndz

S

Integrating with respect to z first,

ikt - (K +1) e®PL 1 /r ik [Aacosn + Bbsi ]r
- . A _
e O'nds = T/iie [ cosn smn] bz+czsinzndn.

S n

Then using the method of stationary phase to integrate with respect ton

/?5 e1k[Aacosn +Bbs1nn] m dn

n
1/2 -1/4[ T Aab+i Bab
—(31'-) l(Aa)2+ (Bb)zl X Y exp {ik[(Aa)ZHBb)z]l/ 2. i‘i‘}.
k [(aa)2+(Bb)2]1/2
Therefore

-~ JA)
-ik A A [A -ikr-(k+{r\1)
— (n -a)/ i, e o ds
27 o} §
ikDL

e -1
=[a sin® cos¢ +a sin® sing +a cose -_ )\l/z ab
X r r y r r z r 27D

ia+im
x y

: 374 eXp{ikI:}Aa)z + (Bb)z]l/z - i7r/4} ;
[(Aa)2+(Bb)z] (6.1-2)
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In evaluating the second integral in (6.1-1), it should be noted that since
the phase factor for this integral is the same as the phase factor of the
integral evaluated above, the stationary-phase value does not change.
Therefore

. - A A
/ ¢ Hkr - (ng *+ k) 4 (6.1-3)

S

ikDL b|Acos¢ +Bsin¢
-sin9r|:e D L [TAE)Z);;)Z] :/12 r] exp{ik[(Aa)z + (Bb)zll/ ‘. i;’;-}.

Finally, from (6.1-1), (6.1-2), and (6.1-3)

ikDL |2
21.2
a“b“\le -1
7 D? [(Aa)z+(Bb)2 ]
where
G, = A(a_sing_sin¢ +a cosf ) - B(a_sing sin ¢ )
y r r Z r x r r

G, = a sing (Acos¢_ + Bsing )
z r r r
G; = B(a sing cos¢ +a cos@_ ) - A(a_sing _cos¢ )
X r r Z r y r r
A = smetcosqi’t+smercos.;br
B = sing@, sin¢, + sin@_sing¢
t t r r

D = cos@9, +cos@
t r
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L = length of the elliptic cylinder
a = semi-major axis

b = semi-minor axis

a

x» 8y 8z = the x, y, and z components of the vector 2

and A = 2n/k = the wavelength.

For the special case of back-scattering in which Gt = er =6 and

¢t = ¢r = ¢ (6.1-4) becomes

2.2

4
ab X\ sin 6

3/2

e

ikDL_l‘Z

c(6,4) = . (6.1-5)

TrCOSZ 0 [(Aa)2 + (Bb)z]

Figure 15 is a plot of the ¢ of (6.1-4) versus ¢ for the spe-

cial case defined by 9 = et = /2 and ¢t = 0. For this case
r
(6.1-4) reduces to
2_2
47b L (1 + cos ¢r)2

c(s ) = (6.1-6)

\a [(1 + cos ¢ )2 +(§)2 sin2¢ ]3/2
r a r

where a, = 0.

6.2: The Prolate and Oblate Spheroids for Particular Choices of Trans-
mitter and Receiver Directions

In Section 4.1 the bistatic cross-section of a prolate spheroid was
determined for the case in which the transmitter is located on the axis
of symmetry. In this section it will be shown that for each transmitter
position (not necessarily on the symmetry axis) there is one particular
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receiver direction for which the current-distribution integral can be
evaluated exactly, both for a prolate and an oblate spheroid.

According to the current-distribution method the bistatic radar
cross-section is given by

4
- = —-):21' g'z (6.2-1)

where

e (ﬁ'o.?) é‘—(ﬁ'o-a)?

k(' +k).T
= e o L ds
S

ind 4

S is the part of the surface seen by the transmitter,

A
n} is the direction to the receiver,

A
k] is the direction to the transmitter,
A
a is the magnetic polarization of the incident radiation,
N= 27/k is the wavelength, and

ﬁ is the normal to the surface.

If S* is a second surface bounded by the shadow curve and V is the
volume contained between S and S* then

N a N ' A ."‘ oA ' A ..A
: =/ ﬁelk(no +k,) rdS =/ (ﬁ :f) e1k(n0 +k,;) rdS
S S

A A S A A -
i ' . i ' .
=/ div{i"eﬂ‘(n0+k‘) r}dV -/ 8 elkMotk).T o
A\ S *
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A N -~ A A >
3 ' . 3 1 .
= ik (ﬁ'o‘i'%l) / elk(no tha) Ty "/ ?lelk(no tl)er g9
\'% S*

Wy
where I is the unit dyadic.

VY

A A - 'I\ A
If p is chosen so that (ng+ky) -r = |nz)+k1|P = 2p cos

(B is the angle of separation between transmitter and receiver) then

AN s
> . . , . )
f = -lk(ﬁb+’1;l/e.21kpcos(ﬁ/2) A(p)dp _/ ﬁelk(no+k1) TS (6.2-2)

where A(s) is the area of the intersection of the volume V with the
plane p = s. The plane p =sisa plane of constant phase or a phase

plane. For a spheroid, S* can always be chosen as the interior of an
ellipse so that the second integral is easy to evaluate. If S* lies in a

phase plane,A(p ) is a polynomial and the first integral is also easy to
evaluate. This case is the particular case for which the cross-section
integrals can be evaluated exactly.

The geometry used in this evaluation is shown in Figure 16. The
axis of the spheroid, ﬁ:)' and ﬁl all lie in the same plane. The angle
between the axis and the normal to the phase planes is B 1+ The angu-
lar separation between the transmitter, T, and the receiver, R, is B .

For this geometry A( p) is given by

AR? , , (6.2-3)
A = -
(p) = m o [po p ]

where
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FIG. 16 GEOMETRY FOR PROLATE SPHEROID

The substitution of (6.2-3) into (6.2-2) gives

f=-

wABz{ﬁ' +R) |1 - eZikpocos(B/Z) i eZikpocos([S/ZJ (6.2-4)
i)

x + ;
P, Ao+ 2k*p? cos{B/2) kpgcos(B/2)

Then, substituting equation (6.2-4) into equation (6.2-1)

2
_ 7rA'ZB4 1 -3 sin (2X) + sin (X) (6.2=5)
- 4 2X X2
Po

where X = kpg COS(IS/Z).

Equation (6.2-5) applies only when the shadow curve lies in a phase
plane. This condition is satisfied when

2 _ p2 -
A - B, sinf; cos By . (6.2-6)

tan(B/2) =

o

55




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-115

The maximum separation between transmitter and receiver which is
obtainable is given by

A% - B?

SiB and tan (B,) = A/B.

tan (B/2) =

Figure 17 shows the cross-section of the prolate spheroid (kB = 2.5
and kA = 25) as a function of the receiver angle with the corresponding
transmitter angle, determined from Equation (6.2-6), indicated at regu~
lar intervals. The range in the receiver angle shown in the figure is
from 0° up to 162.9° which is the receiver angle corresponding to the
maximum separation obtainable for A/B = 10.

The method used in this section could also be applied to other quad-
ric surfaces, For example, special cases could be integrated exactly for
an ellipsoid having three non-equal axes.

6.3: Determination of ¢ by Numerical Integration Techniques

The determination of ¢ by the current-distribution method in-
volves the evaluation of an integral of the form

n exp {ik?- (n, + 1'2)} ds. (6.3-1)

illuminated portion
of the body

This integral is, in general, difficult to evaluate in a form which lends
itself readily to the determination of numerical values of ¢ . How-
ever, it can be approximated for use in numerical computations as fol-
lows:

Planes of constant phase (phase planes) are planes which are de-
fined by an equation of the form

A A -
(n0+k)-r = ¢

where c is a constant for each particular plane. Let r represent the
radius vector from the origin to the point at which these planes first
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57




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-115

strike the body. For a smooth body this point corresponds to a station-
ary phase point while for a conical tip this point, in certain cases, is the
tip of the body. Let p represent the distance of each point on the body
from the “first phase plane”.

Let ’i\x, /i\y, and /i\z represent three orthogonal vectors forming the
base for a Cartesian coordinate system and let x, y, and z be the cor-
responding coordinates. Let A(p)y be the area of the illuminated por=-
tion of the body up to the phase plane which is located at a distance of p
from the first phase plane projected in the /i\x direction. In projecting,
care must be taken to count the contribution of those regions of the body
for which n  is negative as negative area. A(p) and A(p), are de-
fined analogously. In terms of these functions the integral (6.3-1) can

be written as

'k(n +ﬁ) N \ P=Pend R
i . -
JEM k) ra o exp{ik‘ﬁo+klp} dA(p) (6.3-2)
X X
R Po
P=Pend
+ ? ex {ik'ﬁ +ﬁ‘ d A(p)
0
P=Pend
I N, A
+i exp {1k|no+k|p}dA(p)z.
Po

If the area functions A(p),, A(p)}” and A(p), cannot be ex-
pressed analytically or if the aralytic functions lead to integrals which
are difficult to evaluate, then polynomial approximations to these area
functions can be used in (6.3-2). The best results will be obtained when
these polynomial approximations have the same degree of “smoothness”
as the area functions; that is, if the actual area functions have a con-
tinuous first derivative for all p in the interval of integration then the
polynomial representation should have a continuous fir st derivative in
the interval of integration.
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This method can be modified so that it is readily applicable to those
cases for which the shadow curve is a plane curve. Such is the case, for
example, for all quadric surfaces. For surfaces such as the ogive the
“shadow” curve is plane only when the transmitter is nose-on or broad-
side. This modification is accomplished as follows: transform the sur-
face integral (6.3-1) into the sum of a volume integral over the volume
enclosed by the surface and the shadow plane ( V) and of a surface inte-
gral over that region of the shadow plane which is bounded by the shadow
curves (S). This procedure yields

AT AN
/elk(noJ'k)'rﬁdS:?x/div{fx elk‘no+k)'r}dv

R \4

S AN
A : .
+ i / div{/i\ elk(no tk) r} dv
y y

v
N A -~
A 1 .
+i div {; elk(no tk) r} dv
z v Z

. A fa) -
- /ﬁﬁelk(no*'k)'r ds (6.3-3)
S

If A( p)is the cross-sectional area of the body cut by the phase plane
which is a distance p away from the reference plane (the first phase
plane which strikes the body), then (6.3-3) can be written in the form,

P Pend
A AN > A N NN o
ik(n_+k). A i i .
/e (n,+k) TAdS = ik(no+lh()/e1k|n0+k|pA(p)dp-ﬁ' e1k(n0+k) T s

R p=0 S
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N
where n' is the outward normal to the “shadow” plane.

The surface integral on the right is readily evaluated for awide vari-
ety of shadow curve shapes so that the main concern is the evaluation
of the volume integral. The advantage of this particular representation
over the previous more general one is that there is only one integral to
approximate instead of three and that negative areas do not appear.

The area function A( p ) can be evaluated analytically or graphical-
ly at various points and polynomial approximations can be constructed
which can be used for A( p ) in the integral.
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VII

CONCLUSION

Approximate formulas have been derived for the bistatic radar
cross-section of simple geometric shapes. These formulas, together
with the formulas for the monostatic cross-section of these shapes, are
listed in Table 1 on the following page. This table is the first catalog of
bistatic cross-section formulas, one which can readily be extended to
include other configurations upon application of the methods presented
in this paper.* In addition, each of the bistatic formulas has been ap-
plied to a specific problem and the answer to these problems has been
presented in graphical form. The reciprocity relationships make it pos=-
sible to apply the bistatic formulas of Table 1 to the reciprocal case in
which the positions of the transmitter and receiver are interchanged.

Evidence is presented in this paper in favor of using the current-
distribution method as a method of approximation when the wavelength
is small with respect to the characteristic dimension of the body. The
results in Section 4 lead to the conclusion that for small wavelengths
application of the method of stationary phase to the problem of evaluating
o is sufficient for most practical purposes. Figures 5, 6, and 9 show
that if the method of stationary phase is applicable, then the results ob-
tained from this method are as good as those obtained from a combina-
tion of exact integration and analog computer integration for most values
of B . The results obtained for the paraboloid and the semi-infinite
cone give strong support to the belief that the methods used in this paper,
including an Abelian limit process, suffice for determining the cross-
section of semi-infinite bodies which are entirely “illuminated”.

*Appendix 5 contains two tables of cross-section formulas for a few
bodies not considered in this report; these formulas are readily obtain-
able upon application of the methods discussed in this paper.
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TABLE 1

MICHIGAN

Type of [Orientation of Body Monostatic, Back- Bistatic, Scattering Code to Symbols
Body with Respect to Scattering Cross- Cross-Section
Transmitter and Section?
Receiver trazzi\y(ﬁ)
4, 2
41B /A
Prolate ' 2 2 | A = semi-major axis
4,2 B
Spheroid B /A (1 + cos B) +—2-(1 - cos B)
A B = semi-minor axis
(0¢p<m
Sphere ey '§ nRZ wRZ R = radius of sphere
<7 3
@ @ (0¢p<m
> -
4 2 2 -3
',: e \Ztanta (1 - tan atan{g/2)
2 ? - _— 167 cos (B/2) a = 1/2 nose-angle
b o ©
Ogive S g v A tan a 04 BLr-20 B .
@ E, > 161 (0¢P ) L = length of ogive
s ° -
2 f 5 TL [sm(ﬁ/Z)-cosu]
g ° g 2
a0 4 sin”a sin(B/2)
-
q %>y
0o @ (m-2a¢ )
T o &
g & E - y =1/2 nose-angle
— o A o _
2 F oo K . 2 .n47 ) ) ., r, = slant length of
53¢k drrosin gl sl ol LS
o g 3 g [ 2 2 2 (bz _ cZ)Z - b =sin?sinf
Finite s 5 8 v Trgsin 7 tan’y ¢ =cos»(l + cosf)
Cone 2 2aa P J, and J, = Bessel
g - where u = —-—Q-—x . functions of order
3 E 2 zero and one
— [ s
QC: g 9 (0¢p(T-27) respectively.
o m
0 Q
g 0 v
< & B
o .
The o % 2 167 pZ Surface defu.1ed by
Paraboloid S g 47p —_— the equation
v 9 (1 + cosp)
o ¥ 2
5 9 ‘ z = -4pr
A & 3 (cylindrical coord.)
a]
2, 4 2, 4 3
Semi- \ tan ? \ tany 2(1 + cos27)
ini — . = 1/2 nose-angle
Infinite 16r 16 (1+cosB)(co ﬁ+cos27)3
Cone o s
(04 B<m-27)
a = semi-major axis
b = semi-minor axis
The 222, |oIDL _ 1l2 sinte ’; : lze:ii‘::f iylmder
Elliptic (See Figure 14) L (See Equation 6. 1-4) = 2sing cos
Cylinder ﬂcosze (AzA)2 + (Bb)2]3/2 B = 2singsin¢
D = 2cosé
k =27/\

!These formulas hold when the wavelength is small with respect to the characteristic dimension of the body.
2For all entries in this column except that for the Elliptic Cylinder the back-scattering answer is given by

B = 0. In the case of the Elliptic Cylinder a more general monostatic result is presented.
3This formula is exact (Sec. 5.1).
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APPENDIX I

PROOF OF THE DOUBLE STATIONARY-PHASE THEOREM

d b iKg(x, y)
Theorem: Let I = § f f(x,y) e gix. y dx dy.
c a

If 1) f(x,y) = X(x)Y(y) is analytic in the region R =§(, y‘ a<x¢b,
csys d};

2) g(x,y) is analytic in R;

3) there exists one and only point (xo,yo), in the interior of R, such
that py = q, = 0 and roto-sg £ 0, where p, q, r, s, t are the

usual partial derivatives of g*, and

4) X(E)/gg(é ,n) and Y(n)/gn(g, n) are of bounded variation
for (&, n) in R but not in R' = x,y‘xo-d$x5x0+6,
Yo "€ 2ysy, t e},
then

. iKg(X4, Yo)
I = t2ire f(%0. Yo) n 0(1/K3/Z) as K=»o0°

2]1/2
K[roto— so] /

Proof: LetI be written as

4 d ) +4 +e X +40
J—+ X5~ Y- € XO YoTe o
IR N A Y A S |
° c a ¢ %5798 Yoo %o 0
C
x d xoté d b
A P
a b Yot € Xg= 0 c xyt4
*That is p = 8x, q = 8y, T = Gyy» S = Bxy» and £ = gyy
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In the regions indicated by the limits of integration of the first two and
last two integrals, g is a monotone function in x and in y (since gy and
g, do not vanish in R-R'). Thus by a double application* of Riemann’'s
Lemma** it can be argued that each of the first two and last two inte-
grals is of the order l/K2 as K—» 09 , The middle integral (which

will be called Iée ) is:

I, =jff(x,y) e Ke®Y) 4o gy (A.1-1)
Rl

Replace g by

~ 1
g = & +"'2"‘[I‘0(X-XO)Z+ZSO(X—XO) (y-YQ)'l'to(Y'yO)z]

and make the transformation

x-xo=ucose-vsin9
Y - Yo = 4 sinb + v cos®
where 0 -—I—-a‘rctan i = 450 if =1
> ro-ty ,[ore— ifry = o]-

Then
g¥ g + [Au2 + sz] ,

where

p P} 2 2'
4

*The hypotheses are sufficiently strong to allow iteration of the
double integrals.

**Riemann's Lemma, (Ref. 20, p. 431) For any function f(x) of
bounded variation

b b
f f(x) cos A x dx = O(I/A),f f(x) sin A x dx = 0(1/A).
a a
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The expression (A.1-1) can then be replaced by

T 0
. . 2 2
1, - e1Kgo ff F(u,v)elK[Au + Bv]

-T -0

where the region -T<v<r, -osug o is contained in the region
R'.

Expand F(u,v) in a Taylor series about the point (Xg,Yo) and assume
that its circle of convergence contains R'. Then the Taylor series is
uniformly convergent in R' and *

. oiKgo Z z = [(H -m)u, mv)]( >ﬁun-mvmeiK E‘\uz+Bv2]du dv.
n!
Rl

n=0 m=0
For n-m and /or m odd ff . Integrating the remaining even

T .
powers by parts and letting U flKAu du and V = felKsz dv

yields -7

. ke o\ I:Z(n-m)u,va]
1, =e1Kgo{Uv[Z (_;‘;2 (“) e }

(2iK) A B

. 200 _ 2n+2m- 2> ) —
, Voo Z ™ L. 5 em- 1)2( 2m-2 ) (-t PRIV 0
iKA ol 2 KB) (2n+2m-2)! (ZiKA)n‘l ]
. 2 oo 2n+2m 2 —
AVgde KA [ (_l)m (Zm I)Z am-2 ) )n-l Fo(Znu,va)_l_s_  (2n-1)
A 3. 1 =
(2iKA)*(iKB) e (21KB) (2n+2m 2) (ZiKA)n ) i
nu, mv o1 . . . . .
*Fy ( ) indicates the mixed partial derivative of F with

respect to u and v , ntimes with respect to u and m times with re-
spect to v, evaluated at (x,, Yo).
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2n+2m- z)
-n"

+_”+U-reiKBTZ‘:i'( ™ L1 2m- 1)Z( 2m-2
m=1

(Znu Zmv) |, 3.5---(2n-1)J

1 -
iKB (ZiKA)m 2n+2m AN (21KB)n T
o0 Zn+2m 2
iKBT? -
, BUTe " |: - (Zm 1) > 2m-2 ) (-1 R P ZmV)-1-5-~-(2n—1)]
2 & ' -
(2iKB)’(iKA) o3 (21KA) (2n+2m 2) (ZiKB)n 1

+00 + [similar terms in products of powers of ¢ and T (with no U

and V factors) which are of order I/KJ, j)Z]}.

The result of integrating the uniformly convergent Taylor series
iK(Au? + Bv?)

[each term of which is multiplied by e is an absolute=-

ly convergent series in R' and hence may be rearranged as above.

Thus
v " elKgO[UVFO +UV-O(K™) + V-O(K™) + U-O(K™) + O(K'z)] |
(A.1-2)
Since v / / »*
iKAW: . ~(1+i)7Y? 5” iKBVZ . A (12i) 77?2
U= 5 :L—Vz— = = R
e du (KA) and V e dv (KB)

-0 -7

U and V are both of the order K"l/z ; (A.1-2) may be rewritten as
1= eFBo [UVFO + O(K'3ﬁ)] or

1=1,, + O(K-%/?) .

*Ref. 20, p. 473, Prob. 15; these are Fresnel integrals.
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Therefore, using the above expressions for U and V, as K -» oo

tzrie 80 Yol gy Yo)

I = + O(K-¥?.
K[roto - soz] 1/2
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APPENDIX 2
DETERMINATION OF ca_;i\ (B) BY THE D.S.P. THEOREM

y
FOR THE PROLATE SPHEROID, THE SPHERE, AND THE OGIVE

The Prolate Spheroid by the D.S.P. Theorem

1 27

-ik [B sinf sin6y1 - n% - A(l + cosP) 7.
Izszffne [Bsinf sin61 - n? - A QLA
(0] (o]

f(,n) = B?n

gle.n) = -BSinﬁsine-Jl - 7% + A(l + cosB)n

(0g.1,) - (%7_[ ’ A(l + cosp) >
[BZsin®p + A%(l + cosp)?] V2

2
r %ﬁ-= Bsinﬁsine-‘/l -nt

- B? sin’p
r =

(0] -
.\/stinzﬁ + A% (1 + cosB)?

2
s =28 _Bsinpcosg (l - n?)Y?y

ondb
So = 0
o’g
' el Bsinpsin@ [n2(1-r2)"¥2 4 (1-52)-1£] - B sin B sin 0(1-n?)"%/2
i o= O [B? sin?B + A%(1 + cos 813/
o

B? sin®B
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A2 B*(1 + cos B)?
B2 sin® B + A%(1 +cos B)? 4n® A2B*(1 + cosB)?
" k2 [B? sin®p + AX(1 + cos mz} " [B?sin?p + A%(1 + cos ] %?

4yt

. K 4w B*

w BZ 2
AZ[P (1 - cosB) + (1 + cosﬁi‘

The Sphere by the D.S.P. Theorem

The solution of the sphere problem is the same as that for the pro-
late spheroid problem except for the meaning of parameters. If both A
and B in the prolate spheroid derivation are replaced by R, the deriva-
tion for the sphere is obtained. The cross-section of the sphere turns
out to be

o =T Rz.
The Ogive by the D.S.P. Theorem

p-h 2w

. f f Weikﬂl+cosﬁh/pz-(w+h)z-Wsinﬁ sin¢] apa

o o]

Apply the Theorem of D.S.P. using

f(w,@) = w; g(w, @) = (1+cos {3)-./pz--(w+h)Z - w sinp sinﬁ:
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%8 -Wsinﬁcos(P = 0 if ¢=—g—or-§2£-;

-

_%gv_ = -(1 + cosp) [Pz - (w+ h)?] a (W +h) - sinf Sin¢:

(1 + cosB) [pz - (w+ h){,’l/z (w +h) = sing if ¢= -3—2“-;
solving for w, yields w =p sin-z— - h,

. . h
Since w20, andsince — = cosa,

B is restricted to angles greater than or equal to 7 - 2a.

Hence, the stationary-phase point is

(wo,¢o) =<psin-§--h, i;—'-) where p2 7 - 2a.

og %8 with respect to ¢ and w to find

Differentiating —= and —_—
0 ow
8% ag 02 .
r = , 8 =T ——, t = yields
oW’ owo g og*

-1/2 .3/2
-(1 + cosB) {[p2 -(w+ h)z] + (w +h)? [pz - (w+ h)z] } ,

r =
s = -sinBcos¢,
t = wsinBsin¢,
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and
r = 2
o B’
pCOS-E-
So =0,
ts = -(p sin—g--h) sinB, B # w.
Thus
pr® (p sinE--h)
| - :
zl k? sin-P-
2
and
. B
kZ pw(psm7—h)
¢=|I|z—= , fora>B2w - 2a.
zZ| W sin-g-
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APPENDIX 3

THE HANSEN AND SCHIFF TREATMENT OF
BACK-SCATTERING FROM A SPINDLE

Hansen and Schiff in Reference 17 discuss back-scattering from a
spindle. The integral expression which they obtain for the cross-section
leads to a result which implies that the contributions from the tip and
the shadow edge are of the same order of magnitude. They then consider
the way in which the contribution from the shadow edge has to be altered
to take account of the finite width of the transition region from light to
shadow (the penumbra region).

Their discussion of the penumbra region is as follows:*

“The width { of the penumbra region is expected to depend on the
wavelength A and on the radius of curvature R of the intersection of
the body surface and a plane that is parallel to the direction of illumina-
tion and perpendicular to the shadow edge. We first give a qualitative
physical argument which indicates that

L~ ar2)/* (7)

and then make use of a quantitative treatment (due to V. Fock) to show
that the shadow edge contribution to g is of smaller order than the point
contribution.

“The shadow may be thought of as being due to an interference be-
tween the incident plane wave and the secondary waves produced by the
current elements induced in the front (illuminated) part of the scattering
object. For short wavelengths, this interference is complete except
near the edge of the geometrical shadow. We can thus obtain an order
of magnitude estimate for /f by finding the distance over which this
interference is incomplete. In doing this we need consider only current

*Note: The g used by Hansen and Schiff corresponds to the Iz(p = 0)
used in this paper.
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elements close to the shadow edge, since the effect of more distant ele-
ments is diminished by the inverse square law.

p

|
" —

A

e
——

N~ ]

“In the diagram, the current element at A produces an effect at B
with the path length r, which interferes with the plane wave that travels
the path length r . For given 0 , the most effective elements will be
those for which ¢ is of order 0 , because of the inverse square law.
We therefore determine the value of 6 (and ¢ , which is of the same
order of magnitude) such that the path difference r - rj is of order \ .

This determines the region of incomplete interference, and hence the
penumbra.

“We see that
_ . 0+ ¢ _ . )
r = 2R sin 5 s rO—R(sme+s1n¢),

so that for small 6 and ¢ :

3.3 3
~R [e+¢ i w+¢)}'

r-r 6 24

o

Since 0 and ¢ are of the same order, we see that

["“Re where R63 ~X\,

from which it follows that € is given by equation (7).
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“A quantitative treatment that leads to the same expression for V4 )
and also gives the current density as a function of the distance from the
geometrical shadow edge, has been given by V. Fock (Journal of Physics
of the USSR, 10, 130 (1946)). He shows that the induced current in the
shadow falls off approximately exponentially with the distance, the char-
acteristic length being ¢ ".

Hansen and Schiff then go on to say that this result suggests that the
integral in question be supplemented by the inclusion of a contribution
beyond the geometrical shadow edge. The net result being that if the
wavelength is small with respect to the linear dimensions of the body
then the point makes the dominant contribution to the cross-section.

It is of interest to compare the Hansen and Schiff results obtained
for the spindle, the answers obtained for the ogive (Sec. 4.3), and the

“exact” answer for the semi~infinite cone.

The results obtained by Hansen and Schiff are

)\Z ta.n4 0,
T spindle (o) = T (ignoring the contribution
of the penumbra)
2
A2 tan? 8o ik 1
= e X0 4 —r (using the contribution of
16w lkj the penumbra)

where 8 = 1/2 the nose-angle of the spindle, x, = 1/2 the length of the
spindle, and [N(XRZ )1/3 where R = the radius of curvature of
the intersection of the body surface and a plane that is parallel to the

direction of illumination and perpendicular to the shadow edge.

It is readily obvious that with the “shadow” contribution neglected
in each case, the ogive, the spindle, and the semi-infinite cone back-
scattering cross-section formulas are identical.
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APPENDIX 4

THE LUNEBERG-KLINE METHOD

Professor M. Kline (Ref. 18) has obtained an asymptotic expansion
for solutions to Maxwell’s equations which is valid for small wavelengths.
The coefficients of this expansion are obtained recursively as the solu-
tions of ordinary differential equations. As pointed out by Kline the
equations for the coefficients can be obtained formally by assuming the
existence of the asymptotic expansion. This formal development is as
follows: Let the electric field be given by E exp (ik[¥- ct ])  where
¥(x,y,z) is the real solution of the eikonal equation (v w)z‘ =1, which,
for large negative values of y represents the phase of the incident
plane wave. The requirements that the electric field satisfy the wave
equation and have zero divergence then take the form

-—
2 > ->
\Y; E+Zikg—§+ikEdiv's\=0 (A.4-1)
- A -
divE+ik §- E = 0 (A.4-2)

A d
where S=V y and rr is the directional derivative along the normal
: d _ A
to the surfaces of constant ¥ (i.e., rraih v )

—
Assume that E has an asymptotic expansion of the form

o0
S -
E = § ! E, - When this expansion is substituted into (A.4-1)
n=0 (ik)"
and (A.4-2) the result is
E (4.4-3)
dE A.4-3
n -> . A _ 1 2 =
15 +7 E,divs = —?V E _1»
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(A.4-4)
where E_; =0.

The coefficienizf En are obtained recursively from these equations.
One component of E_D‘p is given immediately by (A.4-4) while the other
two components of E, are obtained by integrating (A.4-3). The integra-
tion is carried out along the rays (i.e., the orthogon:a’l trajectories to the
surfaces of constant ¥ ). For large negative ¥ , Eo is chosen to
represent the incident plane wave,and all the other E,, are chosen to be
zero. The value of E, is then determined along any ray until that ray
strikes the scattering surface. At the scattering surf%ce tll’_e initial
Xalu_e.of En along the reflected ray is determined by n x E = 0 and
s « E = -div E -1 where E is the sum of the fields on the incident
and reflected rays and D is the normal to the surface. When Eo is de-
termined as above, it gives just the geometric-optics approximation to

the field.

Accuracy is guaranteed by this method only when the wavelength is
small compared to the radii of curvature of the body. Furthermore the
application of the Luneberg-Kline method used here applies only to
bodies without any shadow regiorl’(i.e., the bodies must be infinite in
extent) since the initial value of E, on a ray in the shadow region can-
not be determined in the simple way shown above.

As an example this method can be applied to a paraboloid of revo-
lution with the incident field incident along the axis of the body. Using
polar coordinates, the equation of the paraboloid takes on the form

R (A.4-5)

r= 1 +cos 9

The equation of the wave front is

1}

¥ = -rcos 9 (before striking body)

(A.4-6)

r - R (after striking body).
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~ A
-cosOr +sin® 6 (before striking body)
A
s = A (A.4-7)
r (after striking body),
A 0 (before striking body)
div s = ’
A.4-8
2/r (after striking body). ( )

If the incident field is polarized in the x-direction and is of unit ampli-
tude, then, along the rays incident on the body

- A A A
Ei = {sin 0 cos ¢}r + {cos 0 cos ¢}9 -{sin ¢}¢ . (A.4-9)

-
Let E. denote the field along the reflected rays,

d é
then — = —, and (A.4-3) and (A.4-4) take on the form
ds or
By , 13 o (A.4-3")
or r or
A > .
r+E.=0. (A.4-4")

A -
Using the boundary condition n x E = 0, it follows that on the sur-~
face of the paraboloid

A ->

¢.E, =sin¢ (A.4-10)
A -

0«E,.=cosg .
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The solution of (A.4-3') subject to (A.4-4") and (A.4-10) is

= R A A
For “ 1(1 + cos 0) {[Cos $] e+ [sin 9] ¢} . (a4-11)

- - - -
It can be verified that div E .2 V% E( 2 0. Thus Ejp = Epp = E3r = ... = 0.
Therefore the Luneberg-Kline asymptotic expansion of the electric field
is

—

E -ikr cos 6 | X ik (r - R)

ie +E0re

A A A >
={r sin 8 cos ¢ + 0 cos Gc05¢_¢sin¢}e ikr cos 6

(A.4-12)

ik (r - R)

R n AR
+r(l+cos 6){6cos¢>+¢sm¢>}e

which, as noted above, is just the geometric-optics expression. This ex-
pression is not only an asymptotic expansion of the field, but it is also
the exact solution to the problem of axial scattering from a perfectly
conducting paraboloid of revolution since the expression satisfies all of
the necessary ionditions. That is, if the right hand member of (A.4-12)
is denoted by V, then

—>
(1) the tangential component of V vanishes on the surface of the
paraboloid,

-
(2) the divergence of V is zero,

—
(3) V satisfies the vector Helmholtz equation:

-h . - -y
grad div V - curl curl V + kZv = 0,

-

and (4) the radiation condition is satisfied by V.
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APPENDIX 5

CROSS-SECTION FORMULAS FOR OTHER SURFACES*

The methods of physical-optics have been applied to the problem of
determining monostatic and bistatic radar cross-sections for surfaces
other than those discussed in the body of this paper. Table 2 contains a
partial list of the monostatic formulas.

TABLE 2
OTHER APPROXIMATE MONOSTATIC CROSS-SECTION FORMULAS

Orientation of Code to
Surface Surface and Radar Cross-Section Symbols
Torus Direction of prop- 3 2 R; = distance from
agation is parallel o = 8m Ry R,/\ axis to center
to the axis of the of ring
torus R, = radius of ring
Flat Plate Direction of prop- 2 2
agation is normal ¢ =4r W H /\ W = width of plate
to the surface H = height of plate
Large Disc Angle between 2 = radiy f di
g -g .e 21ra2 cos 8 J(x) a = radius of disc
direction of prop- 4w
. ¢ =— 4mra
agation and normal A2 X X = sin 0

to disc given by ©

*The formulas appearing in this appendix are valid for \ small
with respect to the dimensions of the surface.
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TABLE 3

The D.S.P. theorem can be applied to the problem of determining
for a variety of surfaces other than those discussed in

Y
the body of the paper. Table 3 contains a partial list of these formulas
which were obtained using the geometry shown in Figure 3.

OTHER APPROXIMATE BISTATIC CROSS-SECTION FORMULAS

Hyperboloid of
Two Sheets

Paraboloid
(axis of symmetry
is Z - axis)

Paraboloid
(axis of symmetry
is Y - axis)

Surface Geometry Equation of Surface angi\ 8)
Ellipsoid 2 YZ ZZ 1’AZ B 4
et P
5 A B° C C B 2 )
pet (1+cosp)+—z(l - cos ﬁ)]
E p<
5 ]
R
o 3
°]
h of v * 2 4
One Branch o [ rA°B

7
2 2
[(1 + cos B) ~-B—2 (1 - cos B)j!
C

B< 2 tan 4(%)

2

ﬂAZB
Cz(l+cosﬂ)2

Xt 2y ralct

-—é+——2=—B— > > B o

A" C B” (1 - cos B)
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