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NOMENCLATURE

The symbol for a vector is an arrow over the letter, e.g., R The unit
vector parallel to R is written as R while R stands for the magnitude of R.
Thus R = RR

The subscripts i and s stand for incident and scattered respectively.
eivt time dependence is used throughout.

The transpose of a matrix is represented by a tilde. Thus the trans-
pose of M is M.

SYMBOL MEANING SECTION FIRST
N USED IN
. A A A
a 3=§:—=axix+ayiy+aziz 2.4
A
T 2.4
A Area of equivalent aperture 2.1
b Side length of a corner reflector 2.3
b, Smallest radius of the cones in a biconical
reflector 3.4
by Largest radius of the cones in a biconical
reflector 3.4
B Radius of gyration 2.1
c Velocity of light 2.4
€1,€2:€3 D efined in Eq. (2.4-9) 2.4
d Distance between two spheres 3.2
D Cross-sectional area of a bundle of rays 3.1
-
E Electric field 3.1
A A
EF,G k+R E1 +F1Y+Giz 2.4
do-% =g  du? +2g dudv +g_ dvZand
8pq = guy du 8,y dudv + g dv®an

8uv = 8yu 3.1

iv
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The characteristic dimension of a body
The magnetic field

A unit vector parallel to the N-tuply scattered
field

Unit vectors along the x, y, and z axes

- 5 jeik§M§d;1'_”d; -

k= 2%\

P -
A Lk

'EixHil
F= Kb

Direction cosines between the direction to the
transmitter and the axes of a corner reflector

Defined in Eq. (3.3-8)

¢ = Kb"

. A A
Umtéoutward normal to surface = n,i + nyly
+ n,i,

Unit normal on the j'th reflecting surface
Number of reflecting surfaces

May equal either u or v

Radius of a sphere

Radius vector from origin to integration point
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?j Radius vector from arbitrary reference point
to a point on the j'th reflecting surface 3.3
Rl Distance from specular reflection point on upper
cone or from left hand sphere 3.2
-ﬁ Vector from origin to field point = Rfl 2.1
ﬁ Unit vector from origin to field point =
R,,:i\x + Ryli‘y + Rz'i\z 2.1
-
Rj Vector from the j'th reflection point to the
(j + })s—t- reflection point 3.3
EN Vector from the N'th reflection point to the
field point 3.3
-i' Vector from integration point to field point 2.
S Surface of scattering body 2.1
81,872,873 Defined in Eq. (2.4-9) 2.4
t Time 2.4
T Toq = 8pq - _Q.q + R(-Q-pq - cos { G, 3.1
'rg TP - gt Tyt M T 3.1
u, v Curvilinear coordinates on the scattering surface 3.1
w May equal either u or v 3.1
X,Y,2 Cartesian coordinates 2.4
1’12 Cosine of the angle between the xj and xj+1,
on21, 22 xj and Yj+1 ) yj and xj+l' and Yj énd Yj+1 axes
respectively 3.3
” cos A= Rz | 2.4
RY
Y tan” = 'ﬁ; 2.4
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‘-'P Christoffel symbol of the second kind
w {_E = Spu [q.wzu + 8pv [q.W;v:l 3.1
qw
§ Angle between symmetry axis of corner reflector
and direction to transmitter in degrees 2.3
A Measure of constructional error 2.5
.( Angle of incidence 3.1
6,6,60 P .
1 % 9, olar Angles 3.2
)\ Wavelength 2.1
3 5 .|5, 8 8
oy oy Sy 3.3
sy and §,, . =x
/o Radius of curvature 3.3
0y Radar cross-section 2.1
do Element of arc length 3.1
b 1
T T = . -—2—- sinﬂ -cosﬁ:l 2.4
sV Angle between center of beam and half-power
point 2,1
¢,¢1 '¢2'¢j Azimuth angles 3.2
2Tec
(A} W =ke = > 2.4
ik £ (u, :
N elk (u v)‘ is the phase factor for a wave
incident on a surface 3.1
n n - aﬂ 3.1
P p = ap
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PREFACE

This paper is the sixth in a series of reports growing out of studies
of radar cross-sections at the University of Michigan's Willow Run
Research Center, The primary aims of this program are:

(1) To show that radar cross-sections can be determined
analytically.

(2) To' elaborate means for computing cross-sections of objects
of military interest.

(3) To demonstrate that these theoretical cross-sections are in
agreement with experimentally determined values.

Intermediate objectives are:

(1) To compute the exact theoretical cross-sections of various
simple bodies by solution of the appropriate boundary-value
problems arising from the electromagnetic vector wave
equation.,

(2) To examine the various approximations possible in this prob-
lem, and determine the limits of their validity and utility.

(3) To find means of combining the simple body solutions in
order to determine the cross-sections of composite bodies,

(4) To tabulate various formulas and functions necessary to
enable such computations to be done quickly for arbitrary
objects,

(5) To collect, summarize, and evaluate existing experimental
data.

Titles of the papers already published or presently in process of public-
ation are listed on the back of the title page.

K. M, Siegel

ix
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I
INTRODUCTION AND SUMMARY

If a body is not convex, radiation incident on it may be reflected a
aumber of times from one part of the body to another before finally being
reflected away from the body. These multiple reflections have an impor-
:ant effect on the radar cross-section of a complicated body such as an
airplane, Therefore, as part of Willow Run Research Center's program
>f determining radar cross-sections, this study of the radar cross-
sections of multiple scatterers at short wavelengths has been made.

This paper presents a summary of known data on multiple scatterers,
:ogether with a few new formulas for special cases,

The best known and best understood example of a multiple scatterer
is the corner reflector, which is widely used as a beacon and as a stand-
ard in experimental determinations of cross-section, A corner reflector
consists of sections of three mutually orthogonal planes, and has the
characteristic property of giving a large monostatic cross-section over
1 wide range of directions of incidence.*

A simple approximation to the bistatic cross-section of a corner
reflector is given in Equations (2.1-5) and (2.1-6). An optical model to
e used in conjunction with Eq. (2.1-5) for determining the monostatic
sross-section of a corner reflector is described in Section 2.2. Explicit
:xpressions for the monostatic cross-sections of square and triangular
zorner reflectors are given in Section 2.3. A study of the bistatic cross-
jection of a square corner reflector with the transmitter on the axis of
symmetry is made in Section 2.4, A discussion of the effects of con-
structional errors, compensation, and truncation is given in Section 2.5.

When the multiple scatterer has surfaces which are curved the
:ross-section may be obtained by applying Eq.(2.1-4). The application
f this formula involves the geometrical optics approximation to the
ields on the scattering surface and this is given in Eq.(3.1-1). In the
special case when the radii of curvature of the scattering body are finite
it all of the reflection points the cross-section may be obtained by using
£q.(3.3-10) and (2.1-3). To illustrate the methods used, the cross-
jections of a biconical reflector and of a pair of spheres are obtained
Sec. 3.2 and 3.4).

*Certain closely related configurations are also commonly referred to
as corner reflectors.
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A sampling of experimental data on corner reflectors is quoted in
Section IV, The authors wish to express their appreciation for the kind
permission of the Bell System Technical Journal to reproduce Figures
17-21, and of Dr. R, D. O'Neal to reproduce Figures 15 and 16 and the
figures in the appendix,
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II

THE CORNER REFLECTOR,,

2.1 Analytical Method for Determining the Radar Cross-Section of the
Corner Reflector

Although the simplest method for obtaining radar cross-sections is
the method of geometrical optics (References 1 and 2), this method is
not directly applicable to corner reflectors because it predicts that the
radar cross-section is infinite in the directions in which radiation is
specularly reflected and zero elsewhere. More explicitly, for a scatter-
ing body consisting only of plane surfaces, geometric optics predicts that
the incident radiation is scattered into a region which, at large distances
from the body, subtends a vanishingly small solid angle. Actually the
radiation must be spread, by diffraction, over a region of solid angle
( pY / h)Z where A is the wavelength of the radiation and h is the
characteristic dimension of the body. Near the body this objection no
longer exists so that geometrical optics can be used to obtain the fields
on the surface of the scatterer when A << h. When the magnetic
field is known on the surface of a perfectly conducting body the following
formula (Reference 3, page 466) can be used to obtain the scattered mag-
netic field at any point in space:

oIkR!

; o ds (2.1-1)

H =7~ / (nx H)xV
47
S

-
where H is the magnetic field on the surface of integration,

Rs is the scattered magnetic field,

fl is the outward unit normal to the.surface,

k =27/} .

R’ is the distance between the field point and the integration point.
The integration is to be taken over the entire surface, S, of the body.

When the field point is at a large distance from the body, (2.1-1) can
be approximated by

*Much of the material presented in this section appears in Ref, 4,
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where A is the area of the above-mentioned aperture.

The angle, cﬂl’ , between the beam direction and the direction in which
the radar cross-section has decreased by a factor of two is approximately
(Ref. 4)

gy =7.5° A/B (2.1-6)
where B is the radius of gyration of the aperture taken about an axis

through the center of gravity of the aperture and perpendicular to the
plane in which the deviation from the center of the beam is taken.

2.2 An Optical Model for Corner Reflectors.,

One of the beams in which the scattered energy is concentrated is
reflected back toward the transmitter., The value of A for this beam
determines the monostatic cross-section through (2.1-5). The task of
obtaining A analytically can be avoided by use of an optical model which,
looked at from any direction, presents an aperture whose projected area
is A,

Such an optical model can be constructed by cutting appropriate
openings in three mutually orthogonal opaque sheets (Ref. 4 and 5). For
the corner reflector in Figure 2, the openings are as shown in Figure 3.
Each of the three apertures shown in Figure 3 is obtained by cutting one
of the faces of the corner reflector-out of each of the four quadrants so
as to give a symmetrical figure, Figure 4 shows the optical model con-
sisting of the three apertures of Figure 3. An optical model for any
corner reflector can be constructed in precisely the same manner,

Z

t

Ny

FIG. 2 A CORNER REFLECTOR

5
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FIG. 3 APERTURES IN OPTICAL MODEL OF CORNER REFLECTOR

The two views form a stereo pair A three dimensional

| effect may be obtained by focusing the right eye on

| the right view, the left eye on the left view, and then
superposing the images. Alternatively a standard stereo -
scopic viewer may be used.

FIG. 4 OPTICAL MODEL OF CORNER REFLECTOR
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2.3 Monostatic Cross-Section of Square and Triangular Corner Reflectors.

In Reference 4, the value of A for the beam reflected towards the trans-
mitter has been determined analytically for both square and triangular cor-
ner reflectors (Fig. 5).

N

le— o~ —»f

Square Corner Reflector Triangular Corner Reflector
FIG. 5 SQUARE AND TRIANGULAR CORNER REFLECTORS
The value of A is expressed most simply in terms of the cosines of
the angles between the axes of the corner reflector and the direction to

the transmitter. If these cosines are js m < n, then A is given by:

For a Square Corner Reflector:

A= 4fm bz/n , (m =n/2)

........ (2.3-1)
A= 1(4 2, > w/2)
For a Triangular Corner Reflector:
A= 4,@%{!1—1%1.[’2 ,([+m.<.n)
[N (2.3-2)
A= ( +m+n -/e+m+n)bz,(1+m?n)

The transmitter direction making equal angles with the three axes
is a symmetry axis for square and triangular corner reflectors. If d
is the angle, in degrees, between this symmetry axis and the direction
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to the transmitter, then, for small 5 , A is given by:

For a Square Corner Reflector:

A~{3 (1-0.02748 )% ..., (2.3-3)

For a Triangular Corner Reflector:

A (1/J-3-\)(1-o.oooveJZ)bZ ............. (2.3-4)

From these equations and from (2.1-5) it follows that the dimension-
. 2 4 2, 4 . .
less quantity O°A /47™b = A"/b  depends only on the direction to the
transmitter, Curves of constant Az'/b4 are plotted in Figure 6 for a

2
square corner reflector using the trilinear coordinates{ ,m ,and n .

As can be seen from (2.1-5), (2.3-3), and (2.3-4) the maximum values
of 0 for square and triangular corner reflectors are 127fb4/7\ 2 and

41fb4/3 A% e spectively.
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2.4 Bistatic Cross-Section of a Square Corner Reflector for the Symmet-
ric Case.

The analytic methods described in Section 2.1 are applicable to both
the monostatic and bistatic cross-section problems by a suitable choice
of the radius vector from the body to the field point. To illustrate the
procedure for computing the bistatic cross-section, consider the case of
a square corner reflector of side length b. The orientation of the trans-
mitter is as indicated in Figure 7. The receiver is restricted to the
first octant (x 2 0, y2 0,z Z 0).

Transmitter

Direction of Incident Radiation

FIG. 7 TRANSMITTER ORIENTATION FOR THE SYMMETRIC BISTATIC CASE

When the wavelength of the incident radiation is less than the side
length b, the radar cross-section is determined almost entirely by the
triply reflected radiation. Thus, to apply (2.1-1), it is only necessary
to obtain the magnetic field, H , for the triply reflected rays. Consider
a ray reflected first from the x-plane, then from the y-plane, and finally
from the z-plane, and let the incident magnetic field be

A
=4 -iw<t - kf) P (2.4-1)

where Q is a unit vector. Suppressing the time factor e it the mag-
netic field along the ray going from the x-plane to the y-plane is

N RSN _.}
[Q-z(g,'{x)?x]e{lk[k Z(k.lxhx].r, )

10
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A
where i is the unit vector in the x direction, The magnetic field along
the ray going from the y-plane to the z-plane is

N oA AT {-ik['ﬁu(ﬁ.?)’i].?} |
[ : iz“z] e 2R (2.4-3)

AN
‘'r

A A A
On the z-plane T= xix + Yiy’ so that = 0. If nis a unit vector normal

‘2
to this surface, then

R

A -
an=-Z(izxa)e ....... (2.4-4)

In general, for triply reflected radiation,

[ ol 7))

A = A A
nxH=-2(nxa)e oo (2.4-5)

on the scattering surface.

It is still necessary to determine how much of the corner is illu-
minated by such triply reflected radiation. A consideration of the
optical model shows that the entire corner is illuminated for the trans-
mitter orientation of Figure 7. For orientations of the transmitter
other than that in Figure 7, the corner is not entirely illuminated, How-
ever, these orientations present no new problems, since the part of the
corner that is illuminated in these cases may also be found from the
optical model.

11
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From (2.1-4) and (2.4-5) the cross-section of the corner reflector is
N A S
-ik(k +R). r

f f i x a) X R e dxdy

AN
A~ -ik(k+R).r

b b,
+/ / (i xd)xRe dzdx (2.4-6)
(o] (o]

) A A A 2
b b A -ik(k+R). r
+/f (ixxa)xRe dydz
o o
A N A A A A A A A A A
LetR=Ri +Ri +Ri,k+R=Ei +Fi +Gi ,anda=a i +
X X Yy zz X Yy z X X
A n
ai +ai.
Yy Zz Z

In this notation (2.4-6) becomes

4w A A A b ,b -ik (Ex + Fy)
0=—||Rai +Rai -(Ra +R.a)i /e dxdy
Z X X zZyy X X YV 2|y Jy

x&
(2.4-7)
[ A A A | b b -ik (Fy+ Gz)
+ |[Rai +Rai -(Ra +Ra)i / e dydz
Xyy X 22 yy zZ 2 X
o Y%
L i

A A A b b -ik (Gz + Ex) 2
+ [Rai +Rai -(Ra +Ra)i //e dzdx
y 22 y XX Z 2z XXy

12
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After performing the integration, (2.4-7) becomes

)\2 A A A -ikb(E + F) -ikbE -ikbF
O’=-—3- Rai +Rai -(Ra +Ra)ile -e -e +1
4T ZXX 2zZYyYy X X Yy z EF

[ A A A | -ikb(F + G) -ikbG -ikbE

+/Rai +Rai-(Ra +Ra)ile -e -e +1
Xyy Xzz YyYy ZzZ X FG

L J (2.4-8)

. . . . 2
F A A A| -ikb(G+E) -ikbG -ikbE
i (Ra +Ra)ile -e -e +1
zzZ XX

+|/Rai +Ra
yzz yxx }j GE

To simplify (2.4-8), the following condensation symbols are introduced.

o =Co8 kb(F + G) -cos kbF -cos kbG -1
1 FG ’

_cos kb(G+ E) -cos kbG -cos kbE -1
) GE ‘ (2.4-9)

o = cos kb(E + F') -cos kbE -cog kbF -1
3 EF ’

g = sin kb(F + G) -sin kbF -sin kbG
1 FG ’

: 8in kb(G + E) -sin kbG -sin kbE
) GE ’

s = sin kb(E + F) -sin kbE -sin kbF
37 EF

13
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In this notation, the radar cross-section of the square corner reflector

for the symmetric case is given by
2

2
O"=—7\—3 -(Ra +Ral)ec,+Rac +Rac]
T vy zz 1 "yx2 zZx 3
4
2

+ [Rxayc1 -(Rxax + Rzaz) cz + Rzach

2
+|R ac +Rac-(Ra+Ra)c]
z X X yy 3

2

+

(Ra +Ra ) s +Rya sz+Ras3}

(2.4-10)

2
xyl

2

+{Ras -(Ra +Ra ) s +Rays3]

+ Ras +Ras -(R a +Ra)s]
X X yy 3

This formula gives the radar cross-section for any polarization of
the incident electromagnetic wave. To show how the bistatic radar cross-
section varies as a function of receiver position for this symmetric case,
(2.4-10) has been plotted in Figures 9, 10, 11, and 12 for a corner re-
flector of side length b = 25 cm., for three values of wavelength, and for
the incident magnetic field vector parallel to one of the coordinate sur-

1 1

A
faces, that is a,, = - —I_, [_‘
H

The polar angles designating receiver position are indicated in Figure 8.

14
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Aving Antenna

FIG. 8 POLAR ANGLES S AND ? DESCRIBING RECEIVER POSITION

Figure 9 shows the variation of O” with ¢ for ﬂ = 54,74° and for
wavelengths of 3, 10, and 30 cm, The variation of O~ withﬁ for a
wavelength of 3 cm, and Yt = 15%, 309, and 45° is shown in Figure 10.
The 0° = 45° values were obtained at two degree intervals while the
DA 15° and ¥* = 30° values were obtained at 10 degree intervals.
Because the 10° interval is too large to show the variation of O~ with
ﬁ accurately, curves have not been drawn for a wavelength of 10 cm.
Figures 11 and 12 show the variation of O° withﬂ for >* = 45° and
wavelengths of 10 and 30 cm. respectively. :

15
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FIG. 9 BISTATIC RADAR CROSS - SECTION OF A SQUARE CORNER
REFLECTOR AS A FUNCTION OF ¥
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FIG. 10 BISTATIC RADAR CROSS-SECTION OF A SQUARE CORNER REFLECTOR
AS A FUNCTION OF 8 FOR A WAVELENGTH OF 3 CM
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FIG. 11 BISTATIC RADAR CROSS-SECTION OF A SQUARE CORNER REFLECTOR
AS A FUNCTION OF 3 FOR A WAVELENGTH OF 10 CM
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FIG. 12 BISTATIC RADAR CROSS-SECTION OF A SQUARE CORNER REFLECTOR
AS A FUNCTION OF B FOR A WAVELENGTH OF 30 CM
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As was noted in section 2.1, the scattering pattern of a corner
reflector is approximately the same as the diffraction pattern of an
equivalent aperture. For the symmetric case considered, the diffracting
aperture is hexagonal. For X* = 459, the bistatic radar cross-section for
this aperture is

1os1fb4
0=, 4
X

where 7/?7%[-\]%—_‘- sinﬁ-cosﬂ] .

(sin’i’:sinfl“/3)2 (2.4-11)

The values of radar cross-section (2.4-11) as predicted by this equiva-
lent aperture are also plotted in Figures 10, 11, and 12 for comparison
with the values obtained from (2.4-10). It should be noted that the half-
power widths given by both (2.4-10) and (2.4-11) agree with the values
predicted by (2.1-6).

Although the geometric optics and physical optics approximations
are based on the assumption that the wavelength is small compared to
the characteristic dimension of the body, there is reason to believe that
the error introduced by the use of these approximation techniques when
b/A is approximately one is sometimes much less than an order of
magnitude. Kouyoumjian (Ref. 6), for example, has found that the mono-
static radar cross-section predicted by physical optics for a flat plate
at normal incidence does not deviate from the exact electromagnetic
solution by more than a factor of five for the range b/A between 0.8
and 5. Since it is not likely that exact computations will be made of
the cross-section of corner reflectors in the near future, and since
there is reason to believe that the approximation techniques do yield
order of magnitude answers for the square corner reflector for A= b,
these techniques have been applied for a wavelength of 30 cm.

(i.e. A/b=1.2).
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2.5 Effect of Constructional Errors, Compensation, and Truncation,

Corner reflectors are generally used to direct a large signal back
toward the transmitter., This large signal is reduced in intensity if the
corner is not perfectly constructed. If the faces of a corner reflector
do not meet at exactly 90° then the beam which would have been reflected
back to the transmitter is divided into several beams, none of which,
in general, are directed exactly toward the transmitter. As a result,
there will be a reduction in signal received at the transmitter. In Ref-
erence 4 the magnitudes of the errors which reduce the signal returned
by square or triangular corners (Fig. 5) to one half the maximum re-
turned signal are calculated. This error,A , is determined as follows:
if one of the faces of the corner is rotated about one of the coordinate
axes through which it passes, then A is the distance which the part of
the face farthest from the axis moves, These errors are independent
of the size of the corner, and therefore are difficult to avoid for large
corners and small wave lengths. For incidence along the axis of sym-
metry these errors are

Square Corner: one error, A = 40A
three equal errors, A

24 A

Triangular Corner: one error, A = ,70 A
three equal errors,A = 35N

For some applications, such as a movable corner used as a beacon,
it is desirable to sacrifice some of the strength of the returned signal
in order to obtain a usable signal over a wider range of incidence angles
on the corner. This flattening and widening of the monostatic response
pattern can be accomplished by truncation or compensation (Ref. 5),
i.e., the removal of some of the reflecting surface (see Sec. 4).
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OTHER MULTIPLE SCATTERERS

3.1 Formulas for Scattering from Curved Surfaces: Fock's Method.

In Section II only scattering from surfaces having infinite radii of
curvature was considered. In this section multiple scattering from sur-
faces having finite radii of curvature will be considered, In Reference 7,
formulas are developed for the scattering from curved surfaces. These
formulas, which are useful for computing the cross-section of bodies
with curved surfaces, are summarized in this section.

The scattered electric and magnetic fields, as given by geometric
optics, are

- - A - i
E :[E,-an(E.xﬁ)] D (0 elkR ,
1 1 D(R)

(3.1-1)

-ﬁ=[ﬁ,-2(g.ﬁ.)ﬁ] B-(-O-)- eikR
S 1 1 D(R)

where D(R) is the cross-sectional area of a bundle of rays at a distance
R from the specular reflection point, and Ei’ Hi is the incident field at
the specular reflection point.

The area of the bundle of rays at a distance R is given by

™ T
u \'4
v T’
u \'4

where Tz is the symmetrical tensor
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| pu pv
T = T + T 3.1-3
q 8 Tygte Ty ( )
and
T = - +R(/l -cos{( G ). 3.1-4
pPq gpq ﬂpﬂq ( Pq § Pq) ( )

Here u and v are curvilinear coordinates on the scattering surface and
8pq is the metric tensor given by

2 2 2
= 3.1-5
do~ =g du+ 2g,, dudv+g dv , ( )

where dO” is an element of arc on the surface. The gpq that appear in
(3.1-3) are related to the gpq by

r - _ -
guu guv 1 €v  “Euv
= — . (3.1-6)
€uu gvv Euv
vu \A4 g g
g g vu uu |
qu is the curvature tensor of the surface given by
‘- = irl)-:. _3_)_{ + a_n).’ _31 + & _a_Z_ (3 1 7)
PQ 3p 39 C) ST P 39 ‘

where n_ ny, and n_are the components of the unit normal to the sur-

face at a point x, y, z of the surface, The angle ( is the angle between
the direction of incidence and the normal to the surface. JL is defined
in terms of the phase of the incident wave on the scattering surface

ik
e’ J')_(u,v). _().p is the ordinary derivative of {1 with respect to p.
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. oL
BT (3.1-8)

n'pq is the second covariant derivative

2 u \'
=.a_—.‘(.).'- - aﬂ - i‘r_l_ 3.1-
Noq apaq I:q au l;: av (3.1-9)

I-:a is the Christoffel symbol of the second kind,

El:vp= ¢ [awn] + & [awv] (3.1-10)

and [p,q;w] is the Christoffel symbol of the first kind

og o8 o8

1 W qw Pq
W = - : . 3.1-11
[p,q, ] > 2q + 0 py ( )

3.2 Scattering from Two Spheres

As an example of the application of the formulas in Section 3.1,
consider the back-scattering from two spheres of equal radius for an
electric field 1 e-1kZ incident perpendicular to the common axis of the
spheres. x
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(Positive x-axis points into the paper)

FIG. 13 REFLECTION GEOMETRY FOR TWO SPHERES

First, consider the doubly reflected ray shown in Figure 13, For
the reflection from the first sphere the coordinates u and v are

ul - 61 ,
) (3.2-1)
V1 °© 7§1

where 91 and ;51 are related to the Cartesian coordinates by
X = ro sme1 cos%1 )
= i i 3.2-
y= r_sin 9‘1 sm¢l , ( 2)
z=r cose
o

1
The normal on the surface of the sphere is

A . A . , n A
n = sin 61 cos¢1 i + sme1 sin ¢1 1y + cos 61 1, (3.2-3)
Thus, by (3.1-7)
Gg e C % ] r 0 -1
19 A
) _ ° (3.2-4)
G G ;2
- %161 %é |- 0 r_sin @1 |
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The square of the element of arc on the sphere is

2 2 2 2 2 2
= e i 2-
do r d , tr, sin 0, d¢1 (3.2-5)
so that ~ 1
i g g 1 r 2 0
o9 o, | °
- (3.2-6)
g g 0 r sin 6
?glel %1% 1
L I _
and i "
- 1 1
66  af e 0
g o
= (3.2'7)
¢1 1 ¢1¢1 !
Lg g 0 r sinZ
. S
i d
The phase factor is
£ =-2=- 2-
) (S, . ¢1) z=-r cos® (3.2-8)
and the first derivatives of the phase factor are
_Q = i
| 19, ro sin 81 , (3.2-9)
QN =
|y.<! =0 .
The Christoffel symbols of the first kind are
% % ;O | =-r 2 sin 6, cos &
1'71°71 o 1 1
(3.2-10)

2 .
[¢1 .691 ;¢1] =t sin 61 cos 61 ;

[61’61;61] =[61’91‘751] =\1@1’%‘91] =[¢1'¢1‘¢1] =0
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The Christoffel symbols of the second kind are

&
;;?l; = - sine1 cose1 ,
;1—;1 ! = cot, (3.2-11)
—8) 'F% _[—'91 _l—ﬂfél
of “ee Cleh Clht =0

Therefore, by (3.1-9) the second covariant derivatives are

e — pos

n n
1
1e, e, 19,

(3.2-12)

n A
1¢191 1%1%1

— — - -

Since §1 = 91, and ﬂ1 = -r, cos ©, the symmetric tensor (3.1-4) is

T T ne.
o0, Top " 2R, 0
- (3.2-13)
2 .2 Ry {1
T T - oy 21-1
Ao Tht 0 A 2—‘_)r 3
L — - o J v
The cross-sectional area of a bundle of rays at a distance R1 from the
specular reflection point is 2
Tel T¢l 3 0
Po (3.2-14)
Dl (Rl) = =
¢ 2R, L
1 ¢l 0 1-71
Tel Tﬂ l - 2
o

2R R
= 1 1
= cos§ (cosel +E) (l +2 — cos 91)

To
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The electric field (3.1-1) scattered from the first sphere is

A cos & ! oIk (R - ro cos &)
-1 R R] . i
'x\[(cos 6, + 2— ) (1 + 2= cos ©) (3.2-15)
To Ty 1

For the ray shown in Figure 13, 61 =T/4 so that the electric field
incident on the second sphere is

3
A : e
- elk (d \IT I‘o)

X

d d
Q(z{?r—o -z, -

L (3.2-16)

On the second sphere the coordinates u and v are taken to be u, = 92

and v2 = ¢2. These coordinates are related to the Cartesian coordinates

by
x =r, sin e, cos¢2 ,
y =d +r,sin6, sin¢2 )
(3.2'17)
z =Ty cos 82

The metric and curvature tensors, and the Christoffel symbols, for
the second sphere are obtained from those of the first sphere by replac-

ing 61 and ;251 by 82 and ;52'
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The phase function on the second sphere is given by the simultaneous
equations

(-flZ -ﬂl) sin 26, cos ¢1 r, 8in®, cos ?52 -1, 8in 6 cos%l )

(ILZ -ﬂl) sin 261 sin%l d +r,siné, sin¢2 - r,sin 51 sinfgl.

(3.2-18)
(1, -N;) cos 26, =r,cos6, - r cosO; |,
N o . 7 37
where in this example 91 = @2 =2 ¢1 = and }52 ==
Hence, the phase factor and its derivatives for this example are
.f).. =d - _3-r
2 o’
\F}
To
_f)_ze = - ;ﬂ2¢ = 0,
2 \I? 2 (3.2-19)
2d- -0 -
| Z" 2"z
26,6, d "ﬂzyfgﬁ: d | Ze¢=°
292 zJ?;—-s 272 \j'z".r_-l 292
0 0

The metric and curvature tensors at 92 = 4'//4 and %2 = 377//2 are

_ _ - —
0,6, 26,0, To 0
(3.2-20)
4,6, Ef 0 To_
2
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— —_ — _
G G, -
86 "6 To 0
_ . (3.2-21)
r
G G, 0 -9
4,6, ¢2¢2 2
Since 3' 5 = 7/4, the symmetrical tensor (3.1-4) is
T | [ N
6,6, 6,9, rl  4d - 247'r
S S -roR2 0
RE 2{2'd-3r, ° (3.2-22)
. = 2 ’
TA - T r dr. R
$:6 Tt 0 o _o?

The cross-sectional area of the bundle of rays at a distance RZ from
the specular reflection point is

To

1 Ry 4d-2{2'r R 2d
I (i Rchadiiiioh il —E————— -
> (Rz)'<z+ z{?d-3ro> 1+ro \]Z'd-ro> - (3.2-29)

Therefore, at a large distance from the scatterer, for the doubly re-
flected ray shown in Figure 13, the scattered electric field is

r2e1k(z+d-2\]_2—'ro)4

o
i, . (3.2-24)

4dz\ll_ To
y2' d
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There is a second doubly reflected ray which gives a contribution
equal to (3.2-24) and there are two singly reflected rays each of which
contribute to the back scattered electric field by an amount

r . _ A
_ 0 ik(z -2 )] (3.2-25)
2z X

In addition there are back-scattered rays which are reflected more than
twice. If the distance between the centers of the spheres is much larger
than the radii of the spheres, the radiation which undergoes more than
two reflections may be neglected and the total reflected field is
approximately

— —
2 ik(d-2y2'r ) | i,
-2ikr o ° ° A

-r e 0 + ———F——— i . (3.2-26)
° Zd-\ll -—\1;1-9— z X
2'd

— mmnad

3.3 Formulas for Scattering From Curved Surfaces: The Method of
Stationary Phase,

Another technique for finding the scattered fields when the wave-
length is less than a characteristic dimension of the scatterer is the
method of stationary phase. The field associated with a multiply re-
flected ray, as given by this method, depends upon the radii of curvature
of the body at the specular reflection points, These radii of curvature
are assumed to be finite,

A Cartesian coordinate system is used at each reflection point.
The z-axis is taken along the normal to the surface, and the x- and y-
axes are chosen so that the x and y planes are the principal sections of
the surface, that is sections in which the principle radii of curvature
are obtained. In the vicinity of the reflection points the equations of the
surfaces are, approximately,
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2 2
y 7 5
Z,. = - — (ij=1,2,3,...,N) (3.3-1)

J -
ijl Z/JjZ

wheref’Jl and/’ p are the principle radii of curvature of the j'th surface.

Let®. and (. represent the polar angles at the j'th reflection point, r
represent thé radius vector to a point on the j'th surface from a fixed
arbitrary reference point. Assume the incident magnetic field to be

3 . -
gelk(k R) where R is the radius vector from the reference point to an

arbitrary point in space. From equation (2.1-1) the field scattered from
the first surface is

- 1 kl 1 ikf( A
Hs =-—J;n xa)xV———e & ds, (3.3-2)

and the multiply scattered field reflected from the N surfaces in suc-

cession is
- -
— 1 A A A Ty Ty
Hs =——N S an nN_lx. x{ﬁzx nlxg xVeT—i_Fl-
(277) |rz 1]
(303'3)
ikl? -T. e 3 R-7 AL
NS e TN rN-1| elklR Nl ikk.T
2 -7 X..0) X == V—-R...— d 1 .dsN.
3772 N N-1| | 'rN|
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Assume the wavelength to be so short that k|7 { -T.>> 1.
For this case 1 ]
kl|?, -7 i |7 -2
i1 T . .
Ve U T ke L (3.3-4)
: 7 B a2 Fam)
4177 |"j+1 ")

In the integrand of (3.3-3) all of the quantities except the exponential
factor can be replaced by their values at the specular reflection points.
With this approximation, (3.3-3) becomes

N FN X. . .x[{ﬁ\z x[{ﬁl X 3} X ﬁlj} X ﬁz]}x. . .}x ﬁN

s \2m R.R....R

172 N (3.3-5)

N
5 5 Z JdSI...dSN

where
7 3 :R <R.R andR-:_-® R
rj_‘_1 rj- j- i jan -rN-RN-RNRN.
Lets s ,s = , = ce e = g =
17 %) RITRRE NS AR SVIPRIR JRV N TN T YN

and expand the phase factor in Equation (3,3-5) in the 5, . The first
order terms will vanish at the specular reflection points, leaving terms
of second order as the leading terms in the expansion, Neglecting all
but second order terms, (3.3-5) becomes

A N
ik(KT+Z R, ] (3.3-6)
=197

8 \2mi R R, """ R N

N A
- k ) ()
b ( ) c0s6) cos6;  cosON .
1 2 N

33



WHAOW BUN nmmwuzr +'UNIVERSITY OF MICHIGAN
“ m s

ik SM§
where | = SSe d?l...d!,ZN

is a 2N -dim.:;oion;l Fresnel integral, ﬁN is a unit vector giving the
polarisation of the scattered wave, and ¥ and M are the matrices
- -
gl
b2 ~ (3.3-7)
3= | 3 - [31' Spreees EZN‘J
§2 N
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. Ry 2 2 :
= mo‘ 1-oin 9‘ cos }l . sin chingeouﬂl 'hola‘ﬁl'hol“‘/l"lu . . -
/- IR, IR IR, .
2 2 2
sin olllnf‘l m}‘l cos8 . 1-ein'8, lln¢1 -mq»-fz-!nol linfl L L .
ll‘ Pll ZRl i.l
sngooed g corf -4, snGeonsin siaf -, corq 211
IR 2“'1 . 27‘2‘—0(! -sin ezcooﬂz)éﬁlf»ﬁz) e e 0
llnezllnélhqeol/l-dnz -mez-mg-inelumﬂl-d‘n mze N / \ . 1 . .
ZR IR cen Gy f{‘”‘z =" =,
0 0 nhﬂ,cuﬁlh&zm%-a(m .
TR cee
2
0 0 ltneanngsh\ezeo.g.dzn .
¢R ‘
2
0 : ° °. ce 0
.
i
‘ , ’ . 2
* . ) ) , : . sin 6y -mﬁn cosﬁN
. .0 - .0 . "”-,T—_R_—
N-x( ! )
-1 N
2
cos l-alnze sin
0 [\] 0 . GN’ N ¢N
N2 ZRN-I( Ry
RN-I ’RN
d . -l o
T ) (3°3-8)
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In (3.3-8) d’jll is the cosine of the angle between the xj and the xj“_1

axes, d"lz is the cosine of the angle between the xj and the Yj+l axes,

d'jZl is the cosine of the angle between the Yj and the xj+1 axes, and
oLjZZ is the cosine of the angle between the yj and Yj+1 axes,

Evaluation of the integral I yields

i\ N
me 2 1
I= (3.3-9)
) |
where |M| is the determinant of M. Thus (3.3-6) becomes

(3.3-10)

When the radii of curvature at the reflection points are finite, Equation
(3.3-10) is equivalent to Equation (3.1-1). To illustrate this equivalence,
the method of Stationary Phase will be applied to the problem of multiple
scattering from two spheres treated by Fock’s method in section 3.2,

In this problem

1122 2/ =/022=r6’
R1=d- \J?r )

()
(3.3-11)

N
[}
N
]

and
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r
Assuming that d - J_-T'o_<< z , the substitution of (3.3-11) into

(3.3-8) gives

(2d - [2'r ) d

M| = (3.3-12)
] 8re (d - 2 )

The substitution of (3.3-11) and (3.3-12) into (3.3-10) gives

2 i -
L2 ik(z+d z\li"ro)

ffs EN ° . (3.3-13)
4d(z - Jo) |l ~lo_
7 \

If \]? 2 D>r Equation (3.3-13) reduces to Equation (3.2-26).
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3.4 The Biconical Reflector.

In the examples considered thus far the radii of curvature of the
scattering surfaces have either been all finite or all infinite. However,
many problems that arise in practice involve both finite and infinite
radii of curvature. Rather than attempt to give a general formula for
all the cases that might arise, the scattering from a biconical reflector
will be treated to illustrate the appropriate technique. A method of
attack for this problem has already been given, namely the use of (2.1-4)
with the value of H in the integrand given by the geometric optics formula
(3.1-1). As with the examples which have already been treated, it is
usually advantageous to make simplifying approximations in the evalu-
ation of the integral appearing in (2.1-4). One approximation is to take
into account only the current induced on the scattering surface by the
last reflection of a multiply reflected ray. A second approximation is
to use stationary phase in evaluating the integral whenever appropriate.
In the following computation only the case of transmitter and receiver
along the x-axis is considered (Figure 14).

Az

-
INTA
/ IWON .
—

2
FIG. 14 THE BICONICAL REFLECTOR

The equation of the upper cone is

2
X +y2 =(z +b,) . (3.4-1)

while the equation of the lower cone is

2 2
X +y2=(z-b) .

1 (3.4-2)
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Equation (3.1-1) can be used to obtain the field reflected from the upper
cone to the lower cone. If the surface coordinates are z and ¢ , then

x=(z +b1)cos¢,
y=(z+b, )sin @,
! ¢ (3.4-3)

z =z,

The outward unit normal on the upper cone is

-‘ngPQ + Fii‘lé“y =1 (3.4-4)
2

Applying (3.1-7) ylelds

0
. ¢  (3.4-5)
G¢¢ :bl .

The arc element is given by

o

dO'2 = 2dz2 +(z+b1)d;52 (3.4-6)
so that
g g 2 0
z2z 2 ) (3.4-17)
- 2
¢ g¢ 0 (z+ bl )
The inverse of the metric tensor is ‘
gZZ gZ 1/2 0 ( )
= 3.4-8
g¢z g¢¢ 0 _‘1_2' .
(z + b1 )

The phase fac_tor is

.ﬂ_(Z,?g) =-x=-(z+b1)cos%. (3.4-9)
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The derivatives of the phase factor are.
A, =- °°Sf5’ (3.4-10)
ﬂ¢ (z +b1) sinyf .
The Christoffel symbols of the first kind are
[ Z, Z; z‘l = [z. z5¢] =[ z, f; z] =[¢./;/¢]=0 (3.4-11)
[%a/éi z] =-(z +b )= '[}é, z;%]-

The Christoffel symbols of the second kmd are

e [ =

2 - (1/2<z+b),

PPy |
so that Wz i +b1

_ﬂ.zz -D-z¢ 0 0

- ) (3.4-13)
-Qﬁ —Qf}{ o (1/2)(z +b1.) cos¢
Since cos | = ?xﬁ = cos?g/\j? ,
;zz ng —.;. - coszﬁ (z +b1) sin;écos¢
Tyfz T¢¢ ) L—(z +b1) sin%cos%,(z +b1)2 cbs2¢+ Rl(z + bl)cos%
_ - (3.4-14)
Tzz T}: ] 1 -(l/z)cosz¢ (1/2)(z +b )sin¢cos¢
T’é T¢ i sin¢cosé coszﬁ R cos¢
2 z+b z+b

where R, is the distance from the specular reflection point on the
upper cone,
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Thus

R
D(R,) =(1/z)cos2?f[1 + = +1b1 (cozs?s- cos¢>].

N -ik
If the magnetic field incident on the upper cone is i e . x, then the
magnetic field scattered from the upper cone is

(- Sin¢cos ¢Ii\x + coszyﬁgy + sin/i\z) eikB‘I “(z+ bl) cos 7{'

(3.4-15)

.(3.4-16)
1+ - cos ;é)
z +b cos;zﬁ
For @ = € the reflected magnetic field on the surface of the lower
cone is
z+b1' elk(z-b1)4 (3.4-17)
3z +Db 1y

1

where z is the height at which the incident ray strikes the upper cone.
If (3.4-16) is written in terms of the coordinates ¥ ,y’,z’ on the lower

cone with
x' =(b, -2')cosQ!',
: ? (3.4-18)
y' = (b, -2') sin;é'
it becomes 2
l: 2V 4
- ! - -l U
b, -z eik b, -z +(1/2 5 -3z +O%' ):l (5.4-19)
b, - 32 i+ O(g -
1 [1}’ (P ):l

where O(X) is a function for which lim O(x)/x = constant which is

x—> 0 k
neither zero nor infinity, If (3.4-19) is used in (2.1-2) and the integra-
tion over @' is carried out by the method of stationary phase, it is

found that the doubly scattered field at a large distance x is given by
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1k(x Zb) b > (b,+z) (b, +22)
A ik 1 3/2 b1 1 2
1 (b +z) ik
y 27 X o b1+3z d%'dz
(b, +32)1/2
0 1 Zeo
(3.4-20)
3mi b, -b
_l‘_.l_e 4Aelk(x-Zbl) 2 1
m 2 ly X b1+Z
— dz .
/ \Jb1+ 2z
Integrating the last expression with respect to z gives
3
— ik(x - 2b,)
12,4 = 1 3/2 A
T\ © - (b,\2b,-b, -b )1y. (3.4-21)

Therefore, taking into account the radiation reflected from the lower
cone to the upper cone, the radar cross-section of the biconical re-
flector is

-327’< "\IZb bl-b3/2) . (3.4-22)

Numerically, the cross-section given by Equation (3.4-22) is in
excellent agreement with experimental results that appear in Reference
5. Furthermore, the dependence on wave length is in agreement with
Robertson's experimental results.
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EXPERIMENTAL DATA ON MULTIPLE SCATTERERS

Many experimental measurements have been made of the radar
cross-section of the corner reflector. Of the bodies considered in this
paper, data are available for square and triangular corner reflectors
(Ref. 8) and for biconical reflectors (Ref. 5). In addition, the effects of
compensation (Sec. 2.5) are discussed in detail in Reference 5. The
material in this section is taken from these two references.

Theoretical curves and experimental points for the back-scattering
from square and triangular corner reflectors are shown in Figures 15
and 16 respectively. The results are plotted so as to be independent of
the size of the corner. The experimental dependence of the cross-
section on the size of the reflector is shown in Table 1 for a square
corner reflector.

TABLE 1
Variation of Cross-Section with Corner Side Le:gth b
(A=9.1 cm)
Value of n in
Size of Reflector o = Kb"
6 inch 3.3
2 foot 4.0
3 foot 3.8
4 foot 3.8

A one foot corner reflector was used to obtain the constant K. For the
6 inch reflector, whose dimensions are of the same order of magnitude
as the wavelength of the incident radiation, the cross-section deviated
from that predicted by physical optics by a factor of approximately 1.6.
The discrepancies between physical optics theory and experiment for
the 3 and 4 foot reflectors can be attributed to non-perpendicularity of
the reflector sides.
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FIG. 15 RELATIVE INTENSITY OF REFLECTION FROM SQUARE CORNER REFLECTOR
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FIG. 16 RELATIVE INTENSITY OF REFLECTION FROM TRIANGULAR
CORNER REFLECTOR
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Compensation, i.e., reduction of scattering surface, can be used to
widen the response pattern of a corner reflector (Sec. 2.5). The re-
sponse pattern of the compensated triangular reflector, shown in Figure
17, is compared with the response pattern from an uncompensated re-
flector of the same dimensions in Figure 18, A special case of the
compensated corner reflector is the corner which has been modified so
as to yield a minimum response along the axis of symmetry (which
usually yields the maximum response). The response pattern from
this corner (Fig. 19) is shown in Figure 20.

The response pattern from a biconical reflector is shown in
Figure 21. This response pattern is independent of azimuth since the
biconical reflector is axially symmetric.

In conclusion it is felt that the profusion of multiple scatterers and
the widespread use of corner reflectors warrants theoretical investiga-
tions, even though the corner reflector may be a poorer standard than
the sphere since its exact solution is not known, This paper shows that
when A< h the cross-section of these bodies can be predicted within
an order of magnitude,
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FIG. 17 COMPENSATED TRIANGULAR CORNER REFLECTOR
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APPENDIX

THE USE OF CORNER REFLECTORS FOR CAMOUFLAGE

The corner reflector, because of its large back-scattering cross-
section, has long been used as a device for creating false radar echoes.
This technique has been employed primarily by bomber aircraft for con-
fusing search radars and tracking radars used in air defense. Dr. R.D.
O'Neal, Assistant Division Manager of the Fort Worth Division of Con-
solidated Vultee Aircraft Corp., and others** have suggested the use of
corner reflectors for camouflaging geographic features (such as bodies
of water, cities, terrain irregularities, and large military or industrial
installations) against recognition by means of navigation and bomb-sight
radars.

To test the feasibility of such camouflage, an experiment was
carried out recently by Consolidated Vultee in which an attempt was
made to divide Eagle Mountain Lake, near Fort Worth, Texas, in half
when seen by an AN/APS-23 X-band navigation and bombing radar. This
experiment, which is described in Figures A-1 through A-7 inclusive,*
met with striking success. The results of this test show clearly that
the use of corner reflectors for camouflage merits further investigation.

*These figures are presented here through the courtesy of Dr,
O'Neal and the Consolidated Vultee Aircraft Corporation.

**Dr. O'Neal points out that Mr. L, H, Moffatt of Consolidated
Vultee Aircraft Corp. originated the idea independently at Consolidated
Vultee Aircraft Corp. and had much to do with getting the program
started there. '
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Tie Tube to Reflector

A Dia.

V, Plywood (Typ.)
Aluminum Foil Cemented on
both Sides. Use Epon 6 Cement

K

Inner Tube 7:00 x 20
or Equivalent

Dash No A
-6 30"
-8 20"
-10 45"

1 Screw and Glue Plywood Discs
2 Spray Aluminum Foil after Com-
pletion with Light Coat of Zinc

Chromate Primer

FIG. A-2 SCHEMATIC DRAWING OF CORNER REFLECTOR ASSEMBLY

55



WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-106

Marine Air Bovs

The first test runs in the camouflage tests were
used to determine the optimum size corner re-
flector for confusing the AN/APS-23 radar, For
this purpose 20, 30, and 45-inch diameter re-
flectors were placed in one corner of Eagle Moun-
tain Lake and observed by an APS-23 flown at
40,000 feet. Two runs were made, one approach-
ing from the north and one approaching from the
west. The radar scope was photographed once
per minute from a range of 150 miles to a range
of 59 miles and four times a minute from 50 miles
to zero miles.

( 6) 30" DIA. REFLECTORS
(6) 20" DIA. REFLECTORS
(6) 45" DIA. REFLECTORS

Reflectors Spaced 500’

Dam
.
Barnes
- T 1
0 5,000 10,000
FEET

FIG. A-3 GEOGRAPHY OF EAGLE MOUNTAIN LAKE SHOWING FIRST
TEST ARRANGEMENT
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FIG. A-4 TYPICAL PPl PHOTO, FIRST TEST ARRANGEMENT
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FIG. A-5a SECTOR PPI PHOTO, FIRST TEST ARRANGEMENT
30 - MILE RANGE NORTH - SOUTH RUN

It can be seen from these photographs (Figs. A-5a and A-5b) that the 45-inch
diameter reflectors are more effective than the 30-inch diameter reflectors
and that the return obtained is independent of the direction of flight.
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FIG. A-5b SECTOR PPl PHOTO, FIRST TEST ARRANGEMENT
25- MILE RANGE WEST - EAST RUN
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Marine Air Base

The procedure used in the second test was the
same as in the first test, eighteen 4S-inch di-
ameter reflectors spaced 500 feet apart were
placed across a narrow portion of the lake in
an attempt to divide the lake in half.

Hicks Rd

(18) 45" DIA. REFLECTORS

Azle Rd

Reflectors Spaced 500’

Power
Station
Azl
zle £ e
)
|
Dam
‘%_‘2.) Dam
% ]
Barnes
i I 1
0 5,000 10,000
FEET

FIG. A-6 SECOND TEST ARRANGEMENT
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FIG. A-7a SECTOR PPl PHOTO, SECOND TEST ARRANGEMENT
30-MILE RANGE NORTH-SOUTH RUN

Both these photographs (Figs. A-7a and A-7b) show the rearrangement obtained
by use of the corner reflectors. In both cases, Eagle Mountain Lake is seen as
two separate lakes.

h1



WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-106

FIG. A-7b  SECTOR PPl PHOTO, SECOND TEST ARRANGEMENT
17 - MILE RANGE NORTH - SOUTH RUN
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