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PREFACE

This paper is the eleventh in a series of reports growing out of
studies of radar cross-sections at the Willow Run Research Center of
the University of Michigan. The primary aims of this program are:

(1) To show that radar cross-sections can be determined analyti-
cally.

(2) To elaborate means for computing cross-sections of objects of
military interest.

(3) To demonstrate that these theoretical cross-sections are in
agreement with experimentally determined values.

Intermediate objectives are:
(1) To compute the exact theoretical cross-sections of various
simple bodies by solution of the appropriate boundary-value
problems arising from the electromagnetic vector wave equa-

tion.

(2) To examine the various approximations possible in this prob-
lem, and determine the limits of their validity and utility.

(3) To find means of combining the simple body solutions in order
to determine the cross-sections of composite bodies.

(4) To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.

(5) To collect, summarize, and evaluate existing experimental data.

Titles of the papers already published or presently in process of publi-
cation are listed on the back of the title page.

K. M. Siegel
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INTRODUCTION

In May 1951 it was found necessary to determine theoretically
the nose-on radar cross-section of a prolate spheroid of fixed dimen-
sions as the wavelength of the radiation decreased from the Rayleigh
region (wavelength greater than characteristic dimension) to the first
maximum in the resonance region (wavelength approximately equal to
characteristic dimension). It was known that a maximum was to be
expected in this “resonance” region; the exact location and width of
this maximum (in terms of wavelength) and its exact height (in terms
of cross-section) were in question.

The work of Mie (Ref. 28) on the sphere and of Schultz (Ref. 21)
on the prolate spheroid supplied the basis for these computations. By
1 September 1952 the necessary numerical analysis had been done and
the problem had been coded for the Mark III Electronic Calculator at
the U. S. Naval Proving Ground, Dahlgren, Virginia; and the large scale
digital computations were begun soon thereafter. By 15 November 1952,
the computations described in this report were completed.

This paper presents the solution to this problem. Although it was
not possible to compute a sufficient number of points to determine the
entire curve of cross-section vs, wavelength, the location, width, and
height of the first resonance maximum are now accurately known, as
is the entire curve for greater wavelengths; for shorter wavelengths
only certain general features are known. This curve is presented as
Figure 3, in Section VIII.

The prolate spheroid problem can by no means be considered com-
pleted. This report contains an addition to our knowledge of exact
solutions and can be considered a good start in our ability to predict
the results of the scattering of sound or electromagnetic waves by a
prolate spheroid. However, the numerical results obtained apply to
only one spheroid (ratio of major to minor axis 10:1), to only one posi-
tion of the transmitter (nose-on), and to only one direction of scatter-
ing (back-scattering).
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In addition to the solution of the scattering problem, this report
includes recurrence relations and other identities that illuminate the
mathematical structure of the spheroidal functions used for the solu-
tion. General results about the recurrence relations among solutions
of linear second-order differential equations, obtained in the course of
the present work and given in detail in References 19 and 20, may be of
value in other problems of mathematical physics.

The approach used to solve the problem of the spheroid is pre-
cisely that used by Mie forty-six years ago to solve the problem of the
sphere. Anyone who has carried out the numerical computations nec-
essary to determine the scattering from a sphere has probably felt that
there must be a less cumbersome way of handling such problems.

Until such a way is found, however, the present method must be used.
When this method is applied to determine the scattering from a spheroid,
there are added difficulties due to the fact that the only known repre-
sentations of the spheroidal functions that are of practical applicability
are representations in series of spherical or cylindrical functions. It

is hoped that the theoretical results obtained for the spheroidal func-
tions are a start towards simplifying the problem of scattering by a
prolate spheroid at least so that it is no more difficult than the problem
of scattering by a sphere.

Many people cooperated in the work described in this report, and
to give a precise assessment of each personal contribution is quite
impossible. Aside from the authors, the major collaborators were:
Dr. W. Bauer, Mr. R. Beach, Dr. D, M. Brown, Mr. H. Hunter, Dr.
L. M. Rauch, and Miss I.Wyman.

We wish to express our sincere appreciation to the Bureau of Ord-
nance, U, S. Navy, for its generous support of the numerical computa -
tion on the Mark III Electronic Calculator. We are further indebted to
Mr. Ralph A. Niemann, Head of the Computation Division, Computation
and Ballistics Department, U. S, Naval Proving Ground, Dahlgren,
Virginia, and to Messrs. G. H. Gleissner, D. F, Eliezer, Karl Kozar-
sky, and A. M. Fleishman of the programming and coding staff at Dahl-
gren who spent many hours preparing the difficult machine program
and checking the numerical results.
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Section I contains a discussion of the physical problem to be solved
and the mathematical procedures employed. It may be omitted by those
familiar with the method of Hansen.

Section II, which is essentially independent of the remainder of the
report, contains a discussion of a new theory of recurrence relations
as applied to the prolate spheroidal functions. This contribution was
made after work on the original problem had been completed, and the
results of this section were not used in the computations.

Section III reviews the work of Schultz in obtaining an exact ex-
pression for the radar cross-section of a prolate spheroid.

Section IV carries out a similar analysis for the scattering of
scalar (sound) waves by a prolate spheroid.

Section V discusses the approximate expression which was actually
evaluated by machine computation, and other approximations which

made a machine program possible.

Section VI describes the Mark III digital computer on which the
calculations were carried out.

Section VII outlines the program for machine computation.

Section VIII lists the numerical results obtained, and compares the
conclusions drawn from the data with various other results.

Those interested only in the numerical results of this investigation
may turn immediately to Section VIII. '
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I
GENERAL THEORY

The radar cross-section of a perfectly conducting prolate spheroid
is to be determined for an incident field due to a plane electromagnetic
wave whose direction of propagation is parallel to the major axis of the
spheroid. It is assumed that the medium exterior to the scattering body
is free space, with fixed dielectric constant € and permeability | and
with zero conductivity. Furthermore both the incident and the scattered
field are assumed monochromatic, with fixed circular frequency w; the
solutions for polychromatic fields may subsequently be derived by
Fourier series or Fourier integral methods. The mathematical prob-
lem of obtaining an expression for the scattered field from knowledge
of the incident field, and deducing the radar cross-section, is first dis-
cussed in general terms.

Either the electric vector or the magnetic vector alone suffices to
determine the radar cross-section. In the monochromatic case, the
electric vector may be written el®Wt E and the magnetic vector eith__,
where E and H are complex vector functions of position. For this form
of time dependence, Maxwell's equations combine to form the system
of differential equations

Vx VxF-kKF =0, V-E=0 (1-1)

for F = E and for F = H, where K2=€en w?. The method of solution to
be described below is such as to ensure that the vectors obtained to
satisfy (I-1) will automatically satisfy Maxwell’s equations as well.

On the surface of the scattering body, it is required that the total
electric vector field be normal and the total magnetic vector field be
tangential. At infinity, it is required that the scattered field behave
asymptotically like a diverging spherical wave with center in the
scattering body. In the present report the scattered electric field will
be obtained.
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Mathematically, the boundary conditions on the electric field may
be described as follows. Let u, v, w be the variables of a coordinate
system in which u = ug, a constant, is the equation of the surface of the
scattering body. Denote the incident electric vector by E', the scattered
electric vector by E, and the total electric vector by E”=E' + E. On
the surface of the scattering body it is required that the components
Ez(uo, v, w) and E::l(uo, v, w) vanish, or that

Ey(ug, v, w) = -Ey(ug, v, W), Eg(ug, v, w) = -El (up, v, w).  (I-2)

At infinity it is required that on a sphere of radius R with center in the
scattering body, and with exterior unit normal N, one has

pim  R[N.V)E+ikE] =0, (1-3)

uniformly in all directions.’

Recent results of F. Rellich (Ref. 2), H. Weyl (Ref. 3 and 5), and
C. Mueller (Ref. 4) show that the mathematical problem of solving the
system of equations (I-1) subject to the boundary conditions (I-2) and
(I-3) possesses a unique solution, provided that the scattering body is
sufficiently smooth. In the present case the smoothness condition is
satisfied, and to prove that the desired electromagnetic field has been
obtained it is sufficient to show that the conditions (I-1), (I-2), and (I-3)
have been met.

If a vector F furnishes a solution of the system (I-1), each cartesian
component f(x, y, z) of the vector must be a solution of the scalar wave
equation

V¥ +x*=o0. (1-4)

Furthermore, if the vector F satisfies the “vector radiation condition®
(I1-3), each cartesian coordinate f must satisfy the scalar radiation

1. This form of the boundary condition at infinity is readily obtained,
e.g.,by combining the results of pages 68 and 85 of S. Silver (Ref. 1)
with well-known vector identities.
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condition: on a sphere of radius R, one has

gf_wR[ﬂ-(Vf)+ikf] = 0, (I-5)

uniformly in all directions.

Suppose that the scalar wave equation separates in the u, v, w co-
ordinate system, i.e., possesses solutions of the form

f = U(u) V(v) W(w),

where each of the functions U, V, W satisfies an ordinary linear differ-
ential equation of the second order. In this case powerful tools are
furnished by the methods of functional analysis, as applied, for example,
by P. M. Morse and H. Feshbach (Ref. 6) and by B. Friedman (Ref. 7).
Corresponding to each solution f there are three separation constants,

P, q, r (only two of which are independent), which appear in the separated
differential equations. With L, L, L, denoting the appropriate linear
differential operators, one finds that U, V, and W respectively satisfy
the equations

L,[U(u), p,q] =0, Ly[V(v), p,r] =0, and Ly [W(w), p,q,r] = 0.

In the case to be considered (axial symmetry), L, depends on p alone,
and the notation is to follow this assumption.

The further condition that, for each fixed set p, q, r, the scalar
wave equation possess one solution which is finite and single-valued in
the entire range D,y of the variables u, v, and w determines se-
quences of separation constants p,,, Q> @nd Ty, and corresponding
sequences of solutions U . (u), V., (v), and W (w) of the equations

Lu [U ] = 0,

mn’ Pm: qmn] =0, I"v[vmn' pm' rmn] =0, Lw[wm’ pm

respectively (m,n =0, 1, 2,...). In the most frequently occurring case
of an axially symmetric coordinate system, the variable w = ¢ is the
azimuthal angle about the axis of symmetry. In this case one has
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Lol Wy Pl Ly Wi Pl =224 i, Wi (8) = 0.

and the condition that the solution be single-valued determines.the
separation constants p, = m? and the functions Wy = ay, a constant, and
Wm =am cos mé + by, sin m ¢, ar, and by, constants (m = 0,1, 2, ...).

The functions f(l) = U(l) (u) V(l) (v) W, (w) finite in the entire range
D,yw are called scalar wave functions of the first kind. A theorem
found to be very useful is that every solution g(x, y, z) of the equation
(I -4) which is finite and single-valued in the region D, can be ex-
pressed as a double series

o0 -]

8= EO nZO Cmn fsrllzl (x, v, z), (1-6)

m=

and that the series is uniformly convergent in any closed, bounded sub-

. 2
region of Dyyw-

If the surface u = yy of the scattering body encloses the finite
singular points of the differential equation L; = 0, a more general series

expansion appertains. Let U( )(u) be a set of solutions of

LulUmn: Pm» 9mnl] = 0 each of which is linearly independent of the func-
tion of the first kind with the same subscripts m, n. These are called
functions of the second kind, and so are the wave functions

(&) _y ) 0)

Umnn Vmn W+ In general the variable u will be infinite in range,

and the functions of the second kind can be so chosen that of the two
combinations

L)) () L) () (e)

mn =fmn t i fmns fmn = fmn - 1 fmn (I-7)

one satisfies the radiation condition (I-5) while the other satisfies the
“absorption condition” obtained from (I-5) if one replaces the imaginary

2. This theorem is easily deduced from the results about separable
equations given in Reference 6 (1953), especially in Section 6.3, in con-
junction with well-known theorems about Fourier series.
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unit i by its negative. In the present work, the functions of the fourth
kind satisfy the radiation condition. In the region D ,y exterior to the
scattering body, say described by u2 u,, the functions of the third and
fourth kinds are finite and single-valued, and therefore any solution

g’ (x, y, z) having the same behavior in D ,, may be expanded in a
double series of wave functions of the third and fourth kinds, which con-
verges uniformly in any bounded, closed sub-region of the region. By
choosing functions of the fourth kind one is certain that g’ will itself
satisfy the radiation condition, and conversely that any function satisfy-
ing the radiation condition will have such an expansion.

1
In the usual case both Vr(nz‘(v) and W,(w) form orthogonal sets over
their respective ranges Dy and Dy, that is

/l;v ‘/I;w fmn Vsrll)‘n‘(v) Wt(w) dvdw = 0 (1-8)

unless both m = m'! and n = n' (or there is a similar relation with a
weight factor under the integral sign). The standard Fourier series
methods now enable one to determine the coefficients in the series for
a function g or g' from the values of the function on u = u, alone.

The solution of the vector wave equation system (I-1) proceeds in
two steps. First one must obtain an expression for the incident electric
vector, and then given this vector one must satisfy the boundary condi-
tions (I-2) on the surface of the scattering body by a vector function that
is a solution of (I-1) and satisfies the radiation condition (I-3) at infinity.
To this end a variety of methods have been devised for generating sets
Fmn of vector functions that satisfy (I-1) from sets fyyp of scalar func-
tions that satisfy the scalar wave equation (I-4). Two properties of
these sets are of importance: there must be enough functions to permit
the expression of an arbitrary wave function in terms of them (com-
pleteness) and it must be possible to satisfy the boundary conditions
(I-2). Previous treatments of such problems have generally assumed
the first property without proof, and have concentrated on the objective
of making the boundary conditions easy to satisfy. A brief discussion
of these previously suggested procedures will be followed by a sketch
of a completeness proof for the method of the present report, and this
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proof with minor modifications can be extended to any method in which
differentiation operators applied to solutions of the scalar wave equation
are used to obtain solutions of the vector wave equation.

If Frnp (u,v,w) is the given set of wave functions, and if the incident
and the scattered fields are respectively assumed to have expansions

E'= Z Z ¢mn £¥mn @and E = Z Z Cmn E£mns Where the coefficients

Cinn are known, then the boundary conditions (I-2) give
E 2 cmn Emn (uo’v ,W) * gv (uOQV sW)

=- Z E ®mn £mn (1o,v,w) "Ey (ug,v,w),

E Zcmn Fn (uo,v,w) * ey, (ug,v,w) (1-9)

= - Z Z ®mn Emn (4:v:W) - &y (ug,v,w),

where e, and e,, are unit vectors in the directions of increasing v and
increasing w, respectively. For the plane, the sphere, the cone, the
paraboloid, and the wedge, wave functions can be found that permit
evaluation of the coefficients cp,,, individually., For other scattering
bodies it seems that an infinite system of equations for the infinite set
Cmn ©f unknowns is required.

Some sets of wave functions that have been used may be briefly re-
viewed. Let f,(x,y,z) denote throughout the set of solutions of the
scalar wave equation (I-4) obtained by separation in the appropriate
system of coordinates. In the more general case when div E # 0, i.e.,
when the region surrounding the scattering body has a non-zero charge
density, Maxwell’'s equations combine to form the wave equation

VxVyFE-V(V-F)-RF =0 (I-10)

for F = E or F = H, and the additional boundary condition div E = G(v,w),
a given function, on the surface of the body, is needed to determine a
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unique solution. For this more general problem the plane wave functions

fran 2 fmn 2 X by fmn (axb)xa

may be used, cf. Reference 8, p. 395, where a is a vector in the direc-
tion of propagation of the wave and b is another constant vector. If a is
replaced by the radial unit vector e,, and if any one of these functions
is multiplied by an amplitude factor that is a function of direction and
integrated over the unit sphere of all possible directions, the result is
a more general wave function.

For a sphere, the method of P. Debye (Ref. 9) has been shown by
A. Sommerfeld in Reference 10, Ch. XX, to be based on the use of the
vector functions fmn er alone. Since these have a zero component in
the direction of increasing azimuthal angle ¢, in general both electric
and magnetic vectors of this type are required for the construction of
a field, see Reference 10. For axially symmetric bodies, Morse and
Feshbach (Ref. 6) suggest the functions Uy (u) Vip (v) e ¢ and the curl
of each of the functions, where U}, and V}, are the functions obtained
by separation of variables as discussed above and eg4 is the unit vector
in the direction of increasing azimuthal angle. However, the appli-
cability of these vector wave functions is limited by the fact that the
field expressed by them must have its component in the direction of &b
independent of ¢. For such a case they would greatly facilitate the
satisfaction of boundary conditions on an axially symmetric body.

A very general method can be obtained by extending the idea of
W. W. Hansen (Ref. 11), described in detail in Reference 8. This method
was originally devised for the solution of problems in spherical and
circular-cylindrical coordinate systems. For the spherical case the
sets

and for the cylindrical case the sets

Ve Vxa f Vx( Vxaf,,)

mn’ = ‘mn’

10
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are appropriate, where f . denotes the solution of the scalar wave
equation in the particular coordinate system and where a denotes a
vector along the axis of the cylinder. The gradient vectors have zero
curl but non-zero divergence, and it is expected that they would have

to be employed for the solution of the more general equation (I-10).
The other two sets have zero divergence. If the expansion of an arbi-
trary solution of the first equation in (I-1) in terms of functions from
these two sets can be carried out, in other words if completeness of
one or both sets can be established, the solution will automatically
satisfy the second equation div F =0, and the problem is solved. The
more general method to be described includes, besides the spherical
and circular-cylindrical cases, all scattering problems such that the
scattering surface is a contour surface of a coordinate system in which
the scalar wave equation is separable. Equations (I-9) will not, in
general, reduce to a finite system, but completeness of the sets of
wave functions employed will be an immediate consequence of the com-
pleteness of the set of scalar wave functions. As has been pointed out,
a vector function which has been shown to solve the vector wave equa-
tion and to satisfy the boundary conditions on the body and at infinity is
the unique solution (Refs. 2-5).

The incident wave and the scattered wave are expanded by essen-
tially the same method. The most general incident wave to be con-
sidered is a plane elliptically polarized wave. Both the electric and
the magnetic vector may be obtained from the superposition of two
linearly polarized waves lying along the axes of the ellipse, and it is
intended to give an expansion for only one of these linearly polarized
waves. This wave has electric and magnetic vectors of the forms

E'= E'oeik(l‘i) and H' = I;I_:)eik(z.é),
respectively, where a is a unit vector in the direction of propagation
and where E; and H, are constant, complex vectors whose amplitude
factors are real, mutually perpendicular vectors lying in the plane
normal to a. First, in terms of the scalar wave functions fy,, for the
given coordinate system, write

2 . Y o )
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The coefficients c'\,,, are determined from the relations

f ,/ mn mn( ) Wp(w) dv dw
=f / e‘k(l'é’vr(,i,lwmdvdw.

This scalar expansion leads immediately to an expansion of the incident
wave in terms of the vector wave functions of the first kind

(1) _

an

() 0 g ) ) g )

V xeyx fmn; YMmn €y !mn» 2 mn’

obtained from the second set of Hansen circular cylinder functions if
one chooses the constant vector as a cartesian unit vector.

The incident electric and magnetic vectors have the forms

B =By 2 2 chun S B 2 Hy L 2 o fe (411

The two vectors together form an electromagnetic field, and so

Maxwell's equations
i ’ﬂ i !e
= e {—VX = - — V E I-12

must hold for E=E', H=H'. Applying (I-12) to (I-11), one obtains

£-iE S 3 e [ W)+ i, ) + 1, ") |
m=0 n=0 (1-13)
y, (1), _, = (1):‘

LS © (1) . E
jl_ ch ox M +Eomen+ oz Mmn |’

m0n=0

"

where

LI | 1 = H | |
—E—o'Elox-e-x*-Eoygy*‘Eozgz 5 Hoxgx*'Hoy-gerHoz =z’
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1
The series (I-13) may be rewritten as series in the functions afl(,n)n/ax,

afl(_:))n/ay, and af&)n /0z, with coefficients that are precisely the coeffi-

|
cients of f, in the expansions (I-11) of the cartesian components of E'
and H'. In the analogous expansion in vector wave functions Mmn of the
scattered field E, H (or of any electromagnetic field), again the compo-

(1)

nents of the gradient of f,,,;, would appear, and the coefficients would
come from the expansions of the cartesian components of E and H in

(1)

terms of the scalar wave functions fy,,,. (Of course functions of the first
kind must be used for fields finite at the singularities of the separated
functions, while functions of the fourth kind must be used for fields finite
in more restricted regions but possibly having singularities outside
those regions.) These expansions in terms of scalar wave functions are,
like (I-11), absolutely and uniformly convergent in any bounded, closed
subregion of space containing no singularities of the field. The derived
series (I-13) or their analogs have the same convergence properties in

(1)

all cases v}here the derivatives of f;,,, at a fixed distance from the
origin, vanish asymptotically for suitably large m and n to at least as

(1)

high an order as do the functions f,;, themselves. A brief computation
will show that the spherical, the circular-cylindrical, and the spheroidal
scalar wave functions will have this property. It is to be expected, in
fact, that all wave functions My, derived by the Hansen method have the
same sort of asymptotic behavior.

It follows that the vectors men' men’ szn form a complete set

of vector wave functions, if by completeness is meant the property that
any solution of the system (I-1) has a convergent series expansion in
these vector functions. For the spherical or the circular-cylindrical

)

scalar wave functions f,n, the components of the gradient can be ex-
plicitly expressed as finite linear combinations or as absolutely and uni-

formly convergent series in the wave functions fl(r:m by use of the recur-
rence relations for the functions Ump (u) and Vipn(v), and for spheroidal
functions analogous expressions are given on page 79 of Appendix A,
Substitution of these expressions into the series (I-13) and application of
well-known theorems on the convergence of double series is an alterna-
tive method for proving the completeness of the vector wave functions.

13
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The radiation condition (I-3) at infinity is automatically satisfied
since functions of the fourth kind are used for the expansions. To satisfy
the boundary conditions (I-2) on the surface of the scattering body, one
must solve the equations similar to (I-9) obtained by setting equal to
zero the v and w components of the total field. In the most general case
it will be necessary, in addition, to utilize the boundary condition for
the total magnetic vector:

H{'l(uo,v,w) =0 or

Hy(ug, v, w) = - Hy(ug, v, w).

The previously detailed theory shows that the magnetic vector H of the
scattered field has an expansion
e )

H = Z Z[Q;{nn-e.x"'cgm Y+cmn ]f(4) (I-15)

= m=0 n=0

The first equation in (I-12) consequently gives

RRLTD D M Sy LR ARG TOATET

m=0 n=0

When all the functions in (I-13), (I-15),and (I-16) are expressed in
terms of the unit vectors e, ey, and ey, and substituted into the bound-
ary conditions (I-2) and (I-14), there result three sets of infinitely many
equations in the infinitely many unknowns cfin, Cfan. and cZn. Another
form of the solution may be obtained by first expanding the scattered
electric field as in (I-15), then deriving the scattered magnetic field as
in (I-16) by the second equation in (I-12). This procedure leads to three
sets of equations for the three sets of coefficients in the expansion of
the electric field.

In all attempts to produce numerical results from solutions of this
type, certain simplifying assumptions are made. If either the incident
electric or the incident magnetic vector is linearly polarized so that
the line of polarization lies in a cartesian coordinate plane, one set of
wave functions and the corresponding set of coefficients ¢, fall out
entirely. If the incident wave lies along the axis of an axially symmetric
scattering body, say the z-axis, the dependence on the azimuth angle ¢

14
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becomes very simple. Consequently the double sums in (I-13), (I-15),
and (I-16) become sums over n alone, with only one value of m appear-
ing in each sum and with one set of wave functions eliminated as above.
There remain relations equivalent to two sets of infinitely many equa-
tions in infinitely many unknowns. An approximate solution of this
system of equations is obtained in this report and applied to give an
approximate expression for the electric vector of the field due to the
scattering of a plane wave by a perfectly conducting spheroid.

From the electric vector E of the scattered field, the radar cross-
section 0 is derived as follows. Consider an electromagnetic field
whose electric and magnetic vectors are given by elwt E and eiwt H,
respectively, where E and H are vector functions of position., With E*
and H* denoting the complex conjugates of E and H, respectively, define
the real numbers \

Ep = (E’E*)%» H, = (I_i‘l'l.*)i-
These “magnitudes” are in the ratio

Ho = VE/U' Eo.

For a monochromatic, harmonic field of this sort, the mean (time aver-
age) intensity of energy flow per unit area, or mean power density, is
described by the real vectors '

S =1 Re(E x H¥), (1-17)

that is, the direction of S is the direction of energy flow and the magni-
tude S of the vector is equal to the mean energy per unit time crossing
a unit area whose normal is oriented like S. A substitution in (I-17) and
a simple computation show that

(NI

S=3EqHy =3 Ve/t E]. (1-18)

3. A proof of this fact appears in Reference 8, page 137,
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As before, let E' and H' denote the complex, time-separated elec-
tric and magnetic vectors of the incident field, and let E and H denote
the complex, time-separated electric and magnetic vectors of the

scattered field, respectively. Besides E4 = (E;E*)& and Hy = (E-B_*)é,

introduced above, define Ey = (E' -E' *)'&, H'o = (H -I_-I_'*)& (the symbol *
again denoting the complex conjugate vector). From (I-18), the mean
power density for the incident field is equal to S' = % W (E:,)z, while
for the scattered field it is equal to S =-12- VG-W (Eg)2. For the definition
of the radar cross-section, one introduces a fictitious isotropically
scattering body. The total mean power intercepted by this body is
equal to the product of mean power density by the projected area of
the body. If such a scatterer of cross-sectional area ¢ is placed at
the origin, the total mean power scattered is equal to g S’, and the
mean power density observed at a distance r from the origin is equal
tog S'/4mr3

The electromagnetic wave actually scattered from the given non-
isotropic body behaves asymptotically like a diverging spherical wave,
cf. (I-3). Consequently the mean power density actually observed at a
point far from the scattering body depends (asymptotically as r—=)
on the direction of the ray from the origin to the point of observation.
In terms of a spherical coordinate system, let r = re,. denote such
a ray. The radar cross-sectiong of a scattering body is a function of
the direction of ey, defined as the cross-section¢ of an isotropic body
of the type described which scatters the incident wave with a power
density in the direction of e, asymptotically equal to the power density
of the wave actually scattered by the given body. In a formula, the
radar cross-section is that value of 0 for which 0 S'/4mr2and S are
asymptotically equal for arbitrarily large values of r, or

0 = lim 47r?(E))?/ ()2 (I-19)
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II

PROLATE SPHEROIDAL FUNCTIONS AND
RECURRENCE RELATIONS

The scalar wave equation separates in the prolate spheroidal co-
ordinate system, in which the coordinate surfaces are confocal ellips-
oids and hyperboloids of revolution, and halfplanes through the axis of
the system, say the z-axis. Denote by ¢ the azimuthal angle about this
axis. The foci of the system are placed on the axis, a distance F to
either side of the origin. In each halfplane ¢ = const., the curves
7] = const. are portions of hyperbolas, while the curves § = const. are
portions of ellipses (Figure 1). It is customary to call 7] the “angular”

FIG. 1 PROLATE SPHEROIDAL COORDINATES

and & the “radial” variable, by analogy to the spherical case, since
£—=r/F, N—=cos g, as é— «.

17
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The prolate spheroidal variables are defined by the formulas

F(1 - 21/2 (£2- 1) V2 ¢,

X =
y = F(1 -n?)Y72 (82 - 1)V2 sin ¢, (1I-1)
z=FnN¢

where -17 £ 1,1 £ £ < ,and 0 £ @ < 27. The partial derivatives
of the spheroidal variables with respect to x, y, and z are
} 3

m _ _nz 22 cos¢ 0N _ 772 T sm¢ o _6_2_
ox FA '3y FA ' 3z
11
Q_f_ €ZzT cos ¢ BE &ZETisin¢ _6_ nT (11-2)
ox FA ' ¥y FA ' 0z FA’

0¢ _ sm¢ 0¢ _ cosp 99 _
o ppieh & ppigh O

where

A(é»n) = 62 - ﬂz,z (n) =1- nz’ T(é) = 62 - 1. (11'3)

(These three abbreviations will be used throughout Sections II and III.)
The cartesian unit vectors are given in terms of unit vectors of the
spheroidal system by

1

T2 z2
ex = - —t7cos gi>__e_77 + —1 bcos ¢ eg - sin¢ e,

A’ A?

7t st
e, = -—Nsind ey +— Esind e+ cos ¢ e (I1-4)
€z = 1e 1 5

AZ n'
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The scalar wave equation (I-4) has solutions of the form

fn = Umn(€) V(") (app cos m ¢ + b, sin m ¢).

The prolate spheroidal functions Umnn and V. must satisfy the differ-
ential equations

% (62-1) %‘l - [g—z—i - A, -c? ﬁz}Umn =0, (II-5)

dv 2 ,
d;dn( - M3 d;",nn_lil l;nnﬁ*'Amn'*'Cz‘nz}vmn =0, (1-6)

respectively, where ¢ = kF. The separation constants Ay are fixed by
the requirement that the angular functions of the first kind
v s

mn = Smn (€:7) be finite for -1< 17 £ 1. The radial functions of the

(1)

first kind Uy, = Ry (c,§) are solutions of the equation (II-5) for the
same values of Amn; they are finite in the range 1 £ 6 < «, and are
normalized to behave asymptotically like the spherical Bessel functions:

m+n+1

RSI?n (c,€)~?lé—cos(c€ -——Z———‘n) (1I1-7)

as c—w, or more precisely, if (c§)? (§2-1)>> m? and (c£)?2>> Amn.
The radial functions of the fourth kind are of interest for present pur-
poses, as indicated in Section I; these are determined by the radiation
condition (I-5) as the solutions of (II-5) with the asymptotic behavior

Rik (c,£)~ %exp [ (ct -ﬂ;”—lm] (11-8)

as c£-=w. The function Rr('xs'x)n has similar behavior with -i taking the
place of i. The radial functions of the second kind, appearing as the
imaginary part of those of the third kind [cf. (I-7)], thus behave asymp-
totically as follows:

m+n+1
_— 7

2. (11-9)

RS;)n (c,E)~ —Cl—é—sin (c& -
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The asymptotic behavior of the derivatives of these functions may be
obtained by differentiation:*

REh (c.6)~ -%sin (ct - 22121 o, (11-10)
Rffu: (c,§)~-€1—cos (ct 5"’—;‘1—1- ). (II-11)

The angular functions of the second kind will not be needed in the
present work. Both the radial and the angular functions.of the second
kind have singularities, at£ =1 and at?” =t 1, respectively. Since the
argument c will remain fixed except in the tabulated results of machine
computations, it will be omitted in writing the spheroidal functions.

The radial functions Wy, = Ry and the angular functions
Wmn = Smn are solutions of the same differential equation,

—d'qf [(1 'ZZ) dzlznn] + [1 tflz_r- c24'2 - Amn] Wmn = 0, (11_12)

but refer to different portions of the real 2,' -axis as range of the in-
dependent variable. This equation is similar to the Lamé or the
Mathieu equation, with regular singular points at{' =t ] and with an
irregular singular point at( = o, The older literature about the theory
of this equation is listed by H. Bateman (Ref. 13) and M. J. O. Strutt
(Ref. 14), the more recent literature by J. A. Stratton et al. (Ref. 15)
and by C. Flammer (Ref. 16). In the present report, the notation of
Reference 15 has been adopted, except that the subscript (has been
replaced by n for typographical reasons.

B I . (1) (2) - )

y multiplying equation (II-12) for Rpypn by Rmpn ., multiplying equa

(2) (1)

tion (II-12) for Ryn by Rmn, and subtracting, one obtains a linear
first-order differential equation for the Wronskian of these functions,
and the value of the arbitrary constant is easily deduced from the
asymptotic value of the Wronskian by use of (II-7), (II-10), and (II-11)

4. A proof of this fact appears in J. F. Ritt (Ref. 12).
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[cf. Reference 16, Formula (67)]:

T R N T (11-13)

The Wronskian of the angular functions is similarly found to be

st s8) sl Lz, (1-14)

and the constant h will now be determined. Since RI(-:H)l (§) and 5511121 (4
are both solutions of (II-12) regular at{ = 1, their ratio must be a
constant, and the functions of the second kind are also so selected that
their ratio is constant:

sbd@) = k0L RGN, 20 - xR )

(in the notation of Reference 16, Formulas (68) and (69); but note that
Flammer’'s index n coincides with n + m in the notation of Reference 15
and of the present report) If the resulting identity

Km1)1 Rmn/Rm1)1 = K Smn/S is differentiated and compared to

(II-13) and (II-14), one finds that Kmn/c[Rmzl = - Kmn/h[Smn , since
Z({)= - T (). Finally, the first equation of (II-15) gives the desired
evaluation:

- o/xll) ¢ (2) (11-16)

In the literature about spheroidal functions and their applications
one sometimes finds the statement that great simplifications could be
achieved if recurrence relations for the functions Sy and Ry, were
known. By a method employed for Mathieu functions by E. T. Whittaker
(Ref. 17) the existence of such relations for the radial functions of the
first kind was established by I. Marx (Ref. 18), and integral representa-
tions for the coefficients were obtained. Further methods, detailed in
References 19 and 20, give alternative representations that permit
deeper insight into the structure of these relations, and incidentally
enable one to extend the recurrence relations to radial functions of the
second kind and to both kinds of angular functions. The coefficients, in
either representation, are at least as difficult to evaluate as the
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functions whose computation they are supposed to simplify. What is
really needed is a representation of the solutions of such non-hyper-
geometric equations as (II-12), with the simplicity of the hypergeometric
series--enabling one to identify the recurrence coefficients as simpler
functions of £, n, and c -- and the possibility of such a representation is
still an open question. The methods used to obtain the existence of the
recurrence relations and to evaluate their coefficients are sketched
below.

The spheroidal functions are factors of the spheroidal wave func-
tions. The wave functions may conveniently be separated into a set
even in ¢ and a set odd in ¢, and here only the former set

A (xry.2) = o) (1,6, ) = sEL (M RE) (8) cos mo (1-17)

will be needed. Since the scalar wave operator V2 + k2 commutes with
all differentiations, the functions 0y,,,/02z and 0Y,,,/0x are likewise
solutions of the scalar wave equation (I-4), and they are regular solu-
tions which are even functions of ¢, as is easily verified by means of
formulas (II-2) and the series representations given in Reference 16.
Consequently the theorem related in the preceding section ensures that
they may be expanded in double series (I-6) of the wave functions lllmzl,
convergent in any closed, bounded subregion of space. Since both the

(1)

function sets cos m ¢, form = 0,1, 2, ..., and Sppy ("), for fixed m and
forn=0,1,2, ..., are orthogonal as in (I-8) over the ranges of their
respective arguments, the coefficients in the expansions may be iso-
lated by double integration. The method of Whittaker consists in com-

paring the series representations of allll(,nn/az and 31Pm /0x with the
expressions obtained from the differentiation formulas (II-2):

cos m¢ [ﬁES(l) ( ) + NT S( ) 511211:'
FA |
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(1) 0 0
W - 2 X 8pq Wéci(”’ £ ¢)

0x p=0 q=0

_cos¢cosm¢21AT1/z[ ns) ), ¢s(t) R0)]

- FA mn

m sin$ sinm ¢ _(1) _(1)
—sifioii — Smn Reon (I-18)

cos(m- 1/211/2 m
(2F1)¢{z A [ nshRGL * g gjx] STA7% StohRink

cos(m+1)¢{>:1/2<r1/2 SR s Rl]m ) g i
mn mn mn T 2 mn “—"mnf(’

the primes denoting differentiation with respect to the appropriate vari-
able. The orthogonality of the wave functions implies that only coeffi-
cients fgm with p = m and coefficients ggan withp=m-lorp=m+l

are different from zero, and that these coefficients are equal to integrals
over the right hand members. These integrals, moreover, are zero

whenever the integrand is an odd function of 7. Since S( ) n(m)isan
even or an odd function of Naccording as n is even or odd, it follows
further that only coefficients fg:.ln with n and q of opposite parity, and
coefficients ggan with n and q of equal parity, are different from zero.

A differential formula for raising the index n, a forrmula for lower-
ing the index n, a form_ula for raising m, and one for lowering m are
sufficient, since all other recurrence relations may be derived from

(1)’

them. Consequently relations among Rmn, R( ) and Rx('n)n 1, among

(1)’ (t) (t) (1)

1
Rm,n-1 Rmn-1, and Rmn, among Rm)n; RSn)n» and R -] n, and among
1 1 1
R1(rn) 1,n RSn) 1,n, and Rl('n)n are taken as the standard forms. Multiplying
both sides of (II-18) by S( ) (T]) cos p ¢ with a suitable choice of the in-
dices p and q, and 1ntegratmg both sides with respect to 7 and ¢, one
obtains the formulas
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mn 1)! (1) ()
Ffnn-1 Nmn-1 R1(rn)n-1 =T RSn)nf A Sm,n-1 47
-1

(11-19)
b R A / A0 s, an
-1
(11-20)

! L)
mn1€f mnlsmndn'

and

mn 1)! 21/2 (1) 1
2FgmlnNm 1nR Sn)- Tl/zRSn)nef A Smn S’n)lndn

(11-21)

$1/2 1/2 m
'Rg)n | &)l,n[n AT (1) X% R%: S(l)]dn,

2Fgm-l,nN (1) _ V2 R (x) nS/ 21: r(:::ln g)n

(11-22)

1 1 si/2l/2 (1 . 1 1

- Rl(rn)- nf SSn)n[D'_A— 1(’n) 1,n er/l'zl 1/2 Sn) 1 n]dn’
-1

where

N__ = -[1[(1) (n)]2 (11-23)
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The constants in the left hand members of (II-19)--(II-22) may be
evaluated by an examination of the asymptotic forms of these relations.
If (II-7) and (II-10), with suitable choices of m and n, are substituted
into the formulas, one finds from the dominant terms that

1
mn m,n-1 1 1
Fimn-1Nmpn-1 = -Ffmn Nmn = Cf nSxSm)n SSn),n-l dn (II-24)
-1

and

1
mn m-1,n (1) (1)
2F 8§m-1,n Nm-l,n =-2Fgmn  Npn = c/ T Smn Sm-l,n an.
-1

(11-25)
The recurrence relations are now seen to have the form

T amn (6) RO + gm0 R, < rE) |, (11-26)

T apmp (6) Rg'l),’n-l * ¥mn (£) Rg),n_l = - Rg’n. (11-27)

and !
T Tn (6) REN + oo (8 RE) = RE) | (11-28)

rr ORY vo @r% - kB

Integral representations of the coefficients in (II-26)--(II-29) are given
in formulas (II-19)--(II-22), with constants as in (II-23)--(II-25).

For a further study of the coefficients it is adequate to concentrate
on the recurrence relations (II-26) and (II-27) which change the index n.
Differentiation under the integral sign in the coefficient q,,, ,» easily
proved to be valid, leads to a verification that the equation

Tdamn/d6 + Bmn + Ymp = O (II-30)

connects the three coefficients. Eliminating B, and '}’ﬁm from
(I1-26) and (II-27) by means of (II-30), one obtains the identity
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d/d§ o mn/Rt('n)n m n-11 * -1{[Rm n-1177 - [Rgx)n -’}' (11-31)

With (II-31) and the Wronskian identity (II-13) it is possible to prove
(2) (2)

that the radial functions of the second kind Ry, and Ry, 5] satisfy
recurrence relations of the form (II-26) and (II-27) with the same co-
efficients Qs Bmn: and Y mn -

Consider the functions

Fn (§) = [T ®mn R Sn)n * Bmn RS:I)n - m - l]/R(l),n-l'
Gmn (&) = [Tamn R( ),n 1+t7Ymn RSn),n- n]/R(l)
)

In view of (II-13), R, may be eliminated from F  ,, and the function
rewritten as

R g

‘[R /Rm)nRt('n)n ][Tamn () +an mn " mn-l

@) @ gl 0 @) )

+amn/ mn mn- mnl m,n-1°

(I1-26) shows that the quantity in brackets is zero. Differentiation of
the rewritten form of Fp,, and substitution of (II-31), and of (I1I-13) for
both the values n and n - 1 of the second subscript, gives the result
Ftlnn = 0. Similarly G;nn is seen to be zero. It follows that there are
constants a, b such that

Omn R Sn)n + Bmn R (2) Sn)n-l =a Rgm)n-l’
Omn R 1('n)‘n 1t Ymn R () 1+Rt(n)n-bR£n)n

Examination of the asymptotic form of these relations, in the light of
(11-7) and (1I-9)--(I1I-11), shows finally that a and b are both zero.
Equations (II-26) and (II-27) remain valid if functions of the second kind
are substituted for those of the first kind. A similar proof may be
carried out for formulas (II-28) and (II-29).
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In Reference 19 it is proved that recurrence relations having the
property just established--validity for two linearly independent pairs of
functions--have uniquely determined coefficients, which in the present
case assume the form

Omn = C[Rr(xl1),n-l Rg:m)n - Rl(rrll) !(':l)n 1l (1I-32)
an =cT [Rt(rl‘.t),n-l Rl(:l)r: frlx)n 1(121),n 1]
/ | (1I1-33)
= [R(l),n 1 R(z) - Srll)n 1(:1),n 1]/[Rmn l(rri)n - Sn)n Srz:)n]
Ymn =-cT [RSrll)n l(rrzl)'n 1~ (1),'11 1 R(z)]
, (1-34)
[Rg)n S;)n 1- R(l),n 1 R ]/[R(l),n 1 Rt(n)n 1 - (),n 1 R(z),n-ll'

The coefficients ., pypn» and 0, in (II-28) and (II-29) have repre-
sentations identical with (II-32), (II-33), and (II-34), respectively, ex-
cept that the subscript pair m, n - 1 is replaced by the pairm -1, n
wherever it appears. To obtain formulas similar to (II-26)--(1I-29) for

(1)

the angular functions Sp,,, (") and S( ) n (1), one needs to make only the
modifications evident from an examination of equations (II-13), (I1I-14),
and (II-16): besides replacing, in (II-32)--(1I-34), T (£) by Z (7]) and
each radial function R () by the angular function S (7)) having the same
subscripts and superscripts, one must change the constant ¢ to

2
h=- c/Km)n Kfn)n Equations (II-15) may also be used, together with
previous results, to put into integral form the coefficients in the re-

currence relations for the angular functions.

In an obvious manner, recurrence relations among three functions
with contiguous subscript indices m or n can be derived from the dif-
ferential formulas just established. Certain new identities among the
spheroidal functions are obtained from a comparison of the formulas
(I1-32)--(1I-34) with the integral forms of the coefficients given in
(II-19)--(I1-25). A listing of formulas for the spheroidal functions ob-
tained from the results of this section is given in Appendix A.
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III
EXACT SOLUTION

The application of the theory related in Section I to the problem of
scattering from a prolate spheroid was carried out by F. V, Schultz
(Ref. 21). A plane wave moving in the negative z-direction along the
z-axis is scattered by the prolate spheroid £ = £, The electric vector
E' and the magnetic vector H’ constituting this wave are assumed (with-
out loss of generality) to be parallel to the positive y-axis and the posi-
tive x-axis, respectively, so that

E' =E' ¢z ¢ (111-1)

I _ ¢y _ikz
’H_-H e gx!

y

where H' = VG/p, E'. The expansion of a plane scalar wave of unit ampli-
tude in prolate spheroidal functions was given by P, M. Morse (Ref. 22).
Specialized to the present case, the expansion becomes

ez . 3 apsh) (n)RS‘Q (E), (111-2)
n=0
where
A =2i" s_f)‘rz (1)/N . (111-3)

with Ny, as in (II-23). Substitution of (III-2) and (III-3) in the first of
Maxwell's equations (I-12) gives for E' the expansion

R YR A UL SO PS

As in Section I, the spheroidal scalar wave functions (II-17) are used to
define spheroidal vector wave functions
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*Mmn = V Xey Yo (1, 6:6) = VY Xe . YMmn, ®Mmn  (II-5)

In terms of these functions and of the amplitude factor E’ one obtains
from (III-4) the expression

(III-6)

for the incident wave. Using formulas (II-2)--(II-4), one may write
(III-6) in the extended form

& 2
E =f-:§ Z_: A [gn(l W 8¢ sing

-eé(z)ds /dr}R ) in ¢ (11I-7)

- e4 (-H—- G )dR on/dé +§2—d5£1,2/dn R(OIIZ)cos ¢] .

A ccording to (I-2), the electric vector E of the scattered wave must
satisfy the boundary conditions

iE! 2‘
En (& M @) = - E Z A (—18&) dRon (6,)/dé sin¢  (III-8)

and
B (b 9 iz 3 4, (170 %) () ar) (g /at
n=0 ’ (I11-9)
+ i%— sty (m/an &5, (&o)) cos ¢,
where
€02 - M?, and Ty = &2 - (111-10)

These are identities in ) and ¢.
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The electric vector E of the wave scattered from the spheroid has
an expansion (I-16) in vector wave functions of the fourth kind. It is
clear from the boundary conditions that the coefficients in this expan-
sion are zero for all terms except those whose? and ¢ components
depend on the variable ¢ in the same way as the right members of
(I11-8) and (III-9), respectively. Accordingly one may write

-3 [an e + ﬂnZMfﬁ]. (11-11)
n=0

In extended form, the expansion (III-11) becomes

E= Il: f: gan[(gn( A)*(l) ar") /e e ( )dS )/an &Y ))sin¢

-_e¢(—az—s on dRon/dE + Lds n/dn RorZ)cosd)]

€\ @
B“[(e’? Caf- e( A)ir) s{) YY) sin ¢

(T)i

tey A (nds /dn R ESdem/dE) cos ¢];

(II-12)

The electric vector E in (III-12) together with the magnetic vector H
obtained by the same method gives an exact solution to the problem of
scattering from the prolate spheroid £ = &, if the coefficients ay, B,
are so determined that the following two equations are satisfied:

> [anw* & (m ar® ¢,)/ at - o, 12 F W r “"(éo]
n=0
(I1I-13)

E' i A T% ( )dRon (€ )/dé,

1
k n=0
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> 3an[n'ro s () arl® (&)/ag + £5 ash () /an v (eo]
n=0 _

can(zry? frast o fan 28 (8 - 8 s (n) ans) <e>/de]§
i o " " (111-14)
S5 A [T 82 () 6 () /at

+§ 2 dsf,tz (n)/dn RS,IIZ (50)].

Once a solution of the system (III-13), (III-14) for the coefficients
ap and B, has been obtained, equation (III-11) with these values of the
coefficients substituted gives an exact representation of the electric
vector E of the scattered field. The electric vector E' of the incident
field is given by equation (III-5). To compute the radar cross-section
from formula (I-19), one must examine the asymptotic behavior of E,

and therefore of the vector functions XM( ) ZM (1 ) , as the distance r
from the origin becomes arbitrarily large. S1nce r is asymptotically
equal to F€ = c&/k, the expression (II-8) gives the desired information.
Combining this formula and the differentiation formulas with the defini-
tion (II-17), (III-5) of the spheroidal vector wave functions, one obtains
the asymptotic expressions

(1)
XM(4)~ Son (’7) [

M . FE -gnsin¢ +§¢ Ncos¢] exp|[- 1(c§--1f)]

Q) n ()

r

= [- ey sin ¢ t e T)cos-,;b] exp [-1i(kr -%'ﬂ')],‘

and

M1n~ ﬂ_—[- §¢ (1 - 772)1/2 cos ¢] exp [-i(cé _n-; 1»"})]""“
s(l) (1) ) | L |
=_!.___rn [- € (1 -7]2)12cos¢]eXp [-i(kr - > ),
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which hold for fixed k as cf— wor r—w, provided that (c§)® >> Amn
and (cé)® (2-1)>> m? Using these formulas, one obtains from (III-11)
the asymptotic expression for the scattered wave5

e-ikr =
E~— Zini nans((m)(n)Sin¢
n=0
(I1I-15)
+eg [anTSt (1) -i B (1- 191250, ()] cos 8.

It is no loss of generality to assume that the incident wave has zero

4.
phase, so that E' = (E'*E'*)2 = E}, a positive real constant. The
scattered wave will then in general have non-zero phase.

In order to facilitate the division indicated in (I-19) and to display
the radar cross-section as a function of a significant dimension of the
scattering body, namely the semi-major axis a = FE, of the prolate
spheroid § = §,, one may introduce a new set of expansion coefficients

a! = a,/E'a, B} = B/E'a (111-16)

into the asymptotic expression (III- 15) The complex conjugates of ah
and B, may be denoted by a’* and Bn , respectively, Substitution of i
(III-15) and (III-16) into the formula (I-19) gives for the radar cross-
section of a prolate spheroid the expression

o(Nn,¢) =4ma? ’sin2¢Lz.°: it al (1) (77)]
=0

n=0

I:Z (-i)m a* S )(77)]+ cosz¢[2 ( T]SEHZ(U)

5. Since Ay increases indefinitely with n (cf. Ref. 16), the validity
of this formula is not immediately clear because of the requirement that
(c£)®>>A . For analytical proof that the expression is actually valid,
see Reference 29.
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g - sl m) | [ Y (i (abmsgs) ()
n=0

- (111-17)
ri gh-mtpksy) (n) E

-

The formula (III-17) is an exact formula if the expansion coefficients
are obtained from an exact solution of the system (III-13), (III-14).

For the case of back-scattering, that is, the scattering in the direc-
tion opposite to the direction of propagation of the incident wave, the
value 7 =1 is substituted into (III-17) and the cross-section becomes

(1)

independent of ¢ as well. Since Sy, (1) = 0 for m> 0, the back-scatter-
ing cross-section is given by the simpler formula

© 2

> imayst) o)

n=0

0 =0(1,9) =4ma? (111-18)

It is this quantity' which was computed in the work reported in later
sections.

The problem of obtaining numerical answers in the “bistatic” case,
where the transmitter is located on the axis of symmetry and the re-
ceiver at an arbitrary point, has also been investigated. The results
are discussed in Appendix C.
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v
SCALAR SCATTERING

For a wave derived from a velocity potential that satisfies the
scalar wave equation (I-4) - such as an acoustic wave - there is an i
analogous scattering problem, which will be briefly described. Again
a plane wave with direction of propagation parallel to the major axis
of a prolate spheroid is incident on the spheroid. The body is assumed
to be smooth and rigid, so that the entire incident energy is scattered.
For each ray from the origin, the cross-section of an isotropic scatterer
yielding, asymptotically, the same mean power density is defined as the
scalar scattering cross-section ¢' of the spheroid.

Because of the difficulty of computing the radar cross-section ¢,
the scalar scattering cross-section ¢! is sometimes used as an approxi-
mation to g. The order of magnitude of error in making such an ap-
proximation can be better understood if one analyzes Figure 3 in Sec-
tion VIII of this report, where the scattering body is a prolate spheroid,
or Figure VI-1 in Reference 23, where the scattering body is a cone.
Similar comparisons are known for the conducting wedge, sphere, and
paraboloid.

All the numerical quantities needed to find the scalar scattering
cross-section are computed in the process of finding the radar cross-
section., Consequently the former has been obtained for the same para-
meter values as the latter, as reported in Sections V, VII, and VIII,

A monochromatic scalar wave is derived from a velocity potential
of the form Y = tpei“’t, where Y is a scalar function of position which
satisfies equation (I-4) for f =Y. For simplicity, the function { alone
will be called the velocity potential. Let wldenote the velocity potential
of the incident wave, let {/ denote the velocity potential of the scattered
wave, and let 1[/” = 1[/ + 3y denote the total velocity potential. On the sur-
face of the scattering body, the gradient of the total velocity potential
must be a tangential vector. In terms of spheroidal coordinates and
other previously introduced notation, this condition may be written
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" (0 608) e 4(n.609) = 0

or

oy (M, £ 9) 06 + 8y’ (0, £,9)/08 = 0. (IV-1)

At infinity, the velocity potential of the scattered wave must behave like
that of a diverging spherical wave, i.e., { must satisfy the scalar radia-
tion condition (I-5). The incident wave has a velocity potential described
by the function

vt =vseke=y' Y A s mrE @), v
n=0

In formula (IV-2), the expansion (III-2) for e1XZ has been employed, with
coefficients Ay as described in (III-3). if zero phase is assumed for the
incident wave, the constant 1[/:) is the maximum amplitude, a positive
real number. The velocity potential of the scattered wave must be in-
dependent of ¢ if (IV-1) is to be satisfied: it may have mathematical
singularities situated inside the scattering body; and it must satisfy the
radiation condition (I-5) at infinity. Consequently, an expansion of the
form

Vb d= Dyl (g =Y v s
n=0

n=0

" & &) av-3)

(*)

is indicated, where Yon are the spheroidal scalar wave functions intro-
duced in Section IIl. The boundary condition (IV-1) implies that

o (1) ©
0, &l o _
P HZ;O A, Son (n)RoT(Eo)+ n§=:0 v, s& m) Ro e,) 0(IV 4)

and the orthogonality of the angular spheroidal functions of the first
kind permits one to obtain the constants ¥, directly from (IV-4). For
any non-negative integer N, multiplication of both members of (IV-4) by
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<)

oN (1) and integration with respect to 7] from -1 to 1 gives

Yo AN ngll\} (§o) /a8 + My ng\% (&,)/d6 = 0. (IV-5)

One may solve (IV-5) for 7N and substitute into (IV-3) to obtain an exact
expression for the velocity potential of the scattered wave:

Y= -y 2 AnHy (&) s&) () Rf,;? (5), (1V-6)
n=0
where the abbreviation H, is defined by

i (8) = arY (&) /a6 [arYY) (&) /081" (1v-7)

Analogously to the radar cross-section, the scalar scattering cross-
sectiong! of a scalar wave is defined by

o =I;ilnw4wr2|wlz/lwo’|”, (IV-8)

and under the assumption of zero phase for the incident wave one may
omit the absolute value bars in the denominator. To compute (IV-8) one
needs an asymptotic expression for (IV-7) as r+w. Besides the asymp-
totic formula (II-8) for the radial spheroidal functions of the fourth kind,
one may conveniently use the fact that 1/c§ = a/c £° r, where a is the
semi-major axis of the spheroid E = €. Substituting into (IV-7) one
obtains®

v~ Czo i A, H, (60) S(():x) exp [—i(kr - n-;l 17)] (1v-9)

n=0

as cf—wor r—w, with Hy as in (IV-7). Finally, equation (IV-9) is sub-
stituted into (IV-8) to give the formula

6. See footnote 5, p. 32.
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:;"222 1 AnHa () 56 (n) i (1" AXHA (€ ) S (m)
on=0 (IV-10)

for the scalar scattering cross-section g of a plane scalar wave
scattered by a prolate spheroid. Here A: denotes the complex conjugate
of Ap. It may be noted that the scalar cross-section is axially sym-
metric, i.e., depends on 7] alone. For the back-scattering case, the
formula (IV-10) is evaluated for 7= 1.
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A%
APPROXIMATIONS

The equations (III-13) and (III-14) represent an exact solution to the
vector scattering problem, in the sense that they define, at least in
theory, the exact values of all the expansion coefficients in the expres-
sion for the scattered field. However, as they stand they are obviously
of no value in computing a finite number of the coefficients. Schultz
(Ref. 21) suggests the possibility of obtaining simpler expressions for
the quantities @, and B by expanding the equations in powers of 7] and
equating the coefficients of like powers, but also points out that the
amount of algebra involved in this process is prohibitive. The method
developed by Schultz, which has been adopted for the computations to be

reported here, is to multiply both members of each equation by Sg\} n)
and integrate with respect to?] from -1 to 1, for each integer N in the
range of the summation index n. The result is an infinite set of linear
equations in the infinite set of unknowns @y and f,, with constant co-
efficients. In the notation of Reference 21, which will be followed with
minor modifications in this section and in the computations, these equa-
tions are

0 o0

Z (anCNn + ,BnDNn) = E'a Z BNn: (V-1)
n=0 n=0

o0 o0

E (anVNn + anNn) =E'a Z UNn (V'Z)
n=0 n=0

(N=0,1,2,...), where

. () 1
_ iAp /2 dRgn (§,)
= L SR s s man. )
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(&2- 11/2“—“'&5’:/1 s&) (m) s () an,

Dy = RUN (€,) / (1 -n2p/2 s{2 () s () am,
1

1A‘Il dRon (eo) T’ S(I) d
Uy eo[(so / Deny s () an

(1)
v R (&) / La-m %ﬁn—)éﬁ(n) dn],
-1

Np = (€3-1 dRm(€°)/ Sons (n)s()(n)dn

1)
¢ £ ) (s)f ) B (1) 50 () am,
dn

(1)
+(€2 11/2 R(4 (ﬁ)/ (1- 772)1/2 dS (77) (l)m)
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(V-4)

(V-5)

(V-6)

(V-7)

(n) dn

(V-8)

The problem of finding the exact solution to the infinite system (V-1),
(V-2) is of course beyond the capacity even of a machine. It is physi-
cally plausible that the exact solution is considerably more than is needed
for practical purposes, and that an adequate approximation is obtained
by truncation of the series. For any n, the quantities a,, and Bn are
measures of the radiated energy contained in the n'th- mode oscillation,
and this is known to die out fairly rapidly with increasing n as long as n
exceeds the characteristic dimension times the wave number.
fore by taking only the first few terms of the series, and the same range

There-
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of values of N, one may derive a finite system of linear equations whose
solution should approximate the exact values. The degree of approxi-
mation will of course depend on the order of the system. A fourth
order system was actually used for the computations, the choice being
dictated primarily by limitations on machine capacity, time, and money.
It was hoped that the degree of approximation obtained in this way would
be at least comparable to that afforded by the other approximations
inherent in the general method. Also of course the problem was sim-
plified in that co.nputations were made only for the case of back-
scattering, so that the coefficients B8, drop out of the picture.

An estimate of the exact degree of error resulting from the trun-
cation of the infinite determinants, such as might be carried out by an
extension of the method of Wintner (Ref. 24), was not made. It was
originally planned to program the computation for both third-order and
fourth-order determinants, and for the three fineness ratios (ratios of
major to minor axis) 10:1, 5:1, and (1 + ¢):1. At that time it was felt
that an adequate criterion of accuracy would be furnished by compari-
son of the results for third-order and fourth-order determinants for
all three fineness ratios, particularly since it was believed that an
exact analysis could be carried out for the (1 + €):1 ratio. Unfortunately
economic limitations made it impossible to obtain the desired values
at the 5:1 ratio, and when theoretical results for the ratio (1 + €):1 were
obtained and showed no unexpected behavior, further study of this case
was likewise abandoned. Improved accuracy might have been obtained
with less effort if, prior to programming, the minimization procedure
used by E. Schmidt (Ref. 27) to determine the solution in Hilbert space
of an infinite number of linear equations in an infinite number of un-
knowns had been adapted to the case of n equations in m unknowns for
m>n.

Among the approximations made in the computations, the principal
one concerns the representations of the spheroidal functions Sppn(7) and
Rmn(£). Because of the lack of knowledge of the theory of these func-
tions, and because of the limited range of existing tables, it was neces-
sary to represent the functions S,,,, and Ry, by series of associated
Legendre functions and of spherical Bessel functions, respectively. The
particular spheroidal functions required here are represented as follows:
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(1) a (M) = Z Mo 9 Ppm (M), (v-9)
E Mg i ks2m) 1§ (c€)/k!
rRENE) = (¢ -l)m/z - (V-10)
3 E By e e (c+2m) 1/k |
R (6) < K(e, min) 3 b &% QT (8), (v-11)
R @ -r ) -2 (@), (v-12)

where Plr::,m (n) and er:-ll-m (§) are associated Legendre functions,
Jk+m(cE) are spherical Bessel functions of the first kind, and the con-

stants dk are the spheroidal coefficients, essentially defined by equa-

tion (V-9) and discussed in detail in References 15 and 16. The symbol
Hijas used here and throughout the rest of this report is defined as

N § itjq. . ~_ {0 if i+jis odd
Hi,j = 2 [1+ (D7) e, Hij = jl if i+jis even’
and K(c, m, n) is defined below:

-1 ~ n+2m+l
2™ ) (V-13)
, (n even),

ane.

K(c,m,n) =
r (“+Z)F(m--) a0 Y by i Ak 2m) 1/

k=0
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-1 ~,nt2m+l
-8 IM(————=) (V-14)
, (n odd).

K(c,m,n) = n+l r 3, mn o mn
( —) 4 (m 'E) dy_.2m 2 Hn k 9k (k+2m)!/k!
k=0

The expansion (V-11), (V-13), (V-14) for R( ) n(6) is preferred over an
expansion in spherical Neumann functions analogous to (V-10) because
of its superior convergence in the regionf =1.

The spheroidal coefficients df’" are tabulated for certain ranges
of the indices in References 15 and 16. However, the ranges covered
are inadequate for the purposes of the present investigation. For this
reason and because of the possibilities of errors in existing tables, it
seemed advisable from the outset to compute all the coefficients used.
The computation is carried out in the manner described in Reference 16.
First the series (V-9) is substituted into the differential equation for
the angular spheroidal functions. By means of the differential equation
and the recurrence formulas for the associated Legendre functions, all
differentiations and all variable coefficients are eliminated. In the
simplified series, each associated Legendre function appears with a
constant coefficient whose value must be zero. The result is a set of
recurrence formulas for the spheroidal coefficients:

mn mn mn

Epyz2dkr2+ Fio Ok +Cc-2dc-2 = 0 (V-15)
where
m (2m+k+2)(2m+k+1)

= V-16
Er+2 (2m +2k +3)(2m + 2k + 5)’ ( )
an_(m+k)(m+k+l)+Amn+2(m+k)(m+k+l)-2m-l (V-17)

k -~ c? (2m+ 2k - 1) (2m + 2k + 3)

m k(k -1)

= . V-18
CGk-2 (2m+ 2k - 3)(2m + 2k - 1) ( )
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The indices n, m, and k range over the following values:

0,1,2,..., m=0,1,2,...,
-24, -23,..., -1,0,1, ..., 15, 16.

n

The condition that the function represented by the series (V-9) be
finite over the whole range -14% £ 1 implies that it is an entire func-
tion, since -1 and 1 are the only finite singular points of the differential
equation satisfied by the spheroidal functions. The ratio test for in-

finite series of functions therefore shows that dlr:_l:_;_/dkmn must approach
zero as k=w. The convergent series (V-9) is truncated to give an ap-
proximate expression for the angular functions; to fix the number of
terms used for the approximation, experience is the only guide avail-
able,

Since Ef<n in (V-15) vanishes for k = -2m, the coefficients dﬁm are
all zero for k < -2m. For this range of values of k, however, the func-

tions Qfam (&) are undefined. A detailed study of the spheroidal equa-
tion is carried out in Reference 15 for all values of the separation con-
stant, not merely those that lead to the functions of the first kind. The

coefficients d{(nn as functions of the index k are defined for non-integral

values of k, and it is found that the products d}r{nn chr-ll-m () for non-
integral k have finite limit values as k approaches an integral value,
even for k< -2m. The products are put into the form

mn mn m m
9-Jk Q-Jk[+m = 5 4-|k| Plk|-m-1 (V-19)

L
p
for |kl>2m, where p is a quantity that tends to zero as k approaches

integral values. The coefficients dﬁ% are then obtained by means of

the same recurrence formulas used for the coefficients dzm when
k>-2m. The expression (V-19) may be substituted into (V-11) to give

(2) -Zm‘l mn ke mn
Rmn(g) =K(c,m,n) kz Bnkdk Pono (Eyp + Z Bnk dk Qn(é) (V-20)
=-00 k=-2m
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The constants dinn/p also form a convergent series, and the first series
in (V-20) is truncated at some finite negative k to give an approxima-
tion,

The quantity A, which appears in the formula (V-11) for kan is
the separation constant of equation (II-12). This separation constant is
a root of the transcendental equation formed by iteration of the recur-

rence formula (V-15) and application of the conditions Etjlzm = 0 and

dpyp/dy =0 as ke, as outlined in Section VIL. The actual values of

A may be approximated by series in positive or negative powers of
c =k F, according as this quantity is small or large; these series are
given in Reference 16. In practice it is usually necessary to refine the
approximation by an iteration scheme such as the one described in
Section VII.

The expressions for the angular spheroidal functions and for the
derivatives of the radial spheroidal functions which are needed to ob-
tain an approximate solution of the system (V-1), (V-2), serve at the
same time to compute the scalar scattering cross-section 0 ' from the
formula (IV-10). The results of this computation are compared to the
results for the radar cross-section 0, for corresponding values of the
parameters, in Section VIII,

Even after the infinite system (V-1), (V-2) for the radar cross-
section coefficients is replaced by a finite approximation, the computa -
tions needed to solve the system are far beyond the practical capacity
of manual computing machines. The principal difficulty is that a large
number of previously untabulated functional values must be obtained
and stored. At this point, therefore, the services of an electronic digital
computer are indispensable. The next section is devoted to a descrip-
tion of the machine that was used.
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VI
MARK III COMPUTER

The machine employed for the present computations was the Mark III
electronic digital computer. This computing machine was constructed
for the Bureau of Ordnance, U.S. Navy, by the Harvard Computation
Laboratory, and is now located at the Naval Proving Ground at Dahlgren,
Virginia. The Mark III utilizes magnetic drum storage units, and at the
time of its selection for this work had the largest capacity of any digital
machine available. Previously, one value of a radar cross-section had
been obtained at the cost of several man months of manual computation.
To compute radar cross-sections with the necessary accuracy for the
desired number of values of the parameters, it was necessary to use a
machine with large storage capacity and large word length; this was the
principal consideration leading to the choice of the Mark III. The dif-
ference in operating costs between this machine and faster machines
with lower capacities was outweighed by the reduction in computing
time made possible by the storage facilities of the Mark III.

These facilities include channels capable of storing 4350 sixteen
decimal digit numbers, of which 150 are permanently stored constants.
In addition, the machine has a capacity of 4000 three-address instruc-
tions, and carries permanently stored routines for elementary opera-
tions and computational procedures. In this problem floating arithmetic
sub-routines were employed using fifteen decimal digit coefficients, four
digit exponents and signs. The machine operates with a coded decimal
system, in which each decimal digit is represented by four binary digits.
Input is supplied on magnetic tapes, and results are printed in decimal
numbers by five electric typewriters. Because of the use of moving
drums and tapes and of mechanical relays, the Mark IIl does not operate
as rapidly as machines of some other types.

Even with the storage capacity available, the various components of
the problem could not be coded for simultaneous computation. It was
found necessary to split the problem into five individually coded runs,
described in some detail in the following section.
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VII
MACHINE COMPUTATIONS

The wavelength A of the radiation is considered to be in the
“resonance region” if it is nearly equal to the “characteristic dimension”
of the spheroid. In Section VIII it will be indicated why the quantity 27a
should be considered the characteristic dimension, a being the semi-
major axis of the spheroid. The range of the parameter 27a/A from
which the computed values were selected was determined by a numerical
analysis likewise described in Section VIII. The objective was to in-
vestigate how the radar cross-section changes from the region 2#a/A< 1
but not too far from 1, where the values of the cross-section are close
to those predicted by the Rayleigh approximation, to the resonance re-
gion where 2Ta/A nearly equals 1 (and actually somewhat exceeds 1).

In the latter region, it was first required to make a “guess” as to the
location of the first maximum and the width of the arc containing it. In
the range indicated by the guess, it was necessary to obtain enough
values to determine the location and height of the first maximum and
the width of the arc on which it occurs, and outside this range it was
necessary to obtain enough values to permit rectification of a slightly
incorrect initial guess. If the guess had been wrong in the direction of
smaller wavelength by as much as a factor of five, a completely new
computation would have been needed. Fortunately the original guess
was adequate, and the choice of parameter values listed below permitted
determination of the desired quantities.

Once it was clear that the peak region had been correctly guessed,
the values for which computations were to be made could be selected
with a certain amount of freedom. This fact was exploited to side-step
values for which it was felt that certain difficulties inherent in the
method of computation might arise (e.g. the divergence of two quantities
whose quotient is finite).

The values of 2Ta/A for which the radar cross-section was com-
puted are listed on the following page:
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.094, .105, .157, .236, .262, .314, .377, .524, .754, .785, .942,
1.26 ,1.57 ,1.89 ,2.10 ,2.51 ,3.14 ,3.77 , 4.71 ,5.89 , 6.28 , 10.5.
In the computations a system of four equations in four unknowns re-
placed the infinite system (V-1), (V-2). For purposes of comparison,
the system of three equations in three unknowns was computed for the

2Ta
value — = 1.89,

A

Figure 2 gives a schematic diagram of the subdivision of the prob-
lem, indicating the interdependence of the various intermediate steps.
The distribution of these steps among the five runs of the calculator is
shown by listing in a separate column the quantities computed in each
run, The process runs from left to right, with the first column showing
known information. The order in which items appear in their column
is not significant.

A table of Bessel and associated Legendre functions and their
derivatives was first computed, since existing tables were inadequate
in the ranges required for this work. The values of the Bessel func-
tions were obtained from an expansion of Jn+1/2(c€) in powers of
(c§)™2, and further values and values of the derivatives were obtained
from the usual recurrence formulas. The associated Legendre func-
tions of the first kind and their derivatives were expanded in powers
of §72 and those of the second kind obtained from the functions of the
first kind. The actual formulas used are listed in Appendix B.

The approximate values of the separation constants A, were first
obtained from the infinite series given in Reference 16, which after
truncation may be written

. 4

Amn = 2, gp" X (c<H), (VII-1)
k=0

A =§ R K (c>5), (VII-2)
=)
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FIG. 2 LOGICAL AND SEQUENTIAL STRUCTURE OF COMPUTATIONS
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with coefficients g}r:ln and hkmn given explicitly in Appendix B. In the
course of manual computations it was discovered that for most values
of c used, and particularly for those near c = 5, the number of coeffi-
cients given in (VII-1) and (VII-2) was not enough to determine the
separation constants to the required degree of approximation, while
the formulas for additional coefficients were prohibitively complicated.
A small error in the value of Ay, led to errors in the recurrence

formulas for the spheroidal coefficients dkmn of the order of magnitude
of the quantities computed. For this reason an iterative procedure was
devised that served to refine the values of A sufficiently in all cases
computed. The procedure is outlined as applied for even values of k;
for odd k there are minor modifications:

1) The quantities EI::_Z, F}r:xn’ and Glr:l_z are computed as in (V-16),
1
(V-17), and (V-18), with the value A, = ASn)n determined by the
series (VIII-1) or (VII-2).

2) The value of Ky = dpyp/dp " is found for k =14 from the

n

formula Ky, = - Gy /Fa", obtained from (V-15) with k = 16 if

d;u:n d:;m is replaced by its limit zero.

3) The values of Kkmn for k = 12,10, ..., 0 are found successively
from the recurrence formula (V-15), used in the form

mn mn m mn m
1/ Kz = - (Fic +Egsz Kx )/ Groa-

4) The quantity Fg = + E, Ky = = - Gog /KO3 is computed. As

follows from (V-18), Gr?z = 0 is the exact value that should be

obtained, and so ‘ Gt_r; / Kir;n I is a measure of the error in the
first approximation As:l)n to the separation constant. If the error
is not considered excessive, the values Klr:m obtained in step 3)
may be used to compute the spheroidal coefficients dkmn.
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5) If the error exceeds the bounds of required accuracy, a second

(2)

approximation A, = Ay to the separation constant is derived
from the formula (V-15) for k = 0, which may be written

Ko™ = - [c=2 (m? + m + Amy) + 1/(2m + 3)] / ;s
the value K(r)nn used is the one computed in 4). An average of the

(1) (2)

two approximations Ap,, and Ay, is then used to begin the
process again at step 1).

If the procedure is stable, the error in 4) will decrease to within the de-
sired range of accuracy after a sufficient number of iterations. If the
error does not decrease, the method is inapplicable; in the present com-
putations, this difficulty did not arise.

The procedure described above is similar to a method developed by
C. J. Bouwkamp (Ref. 26). The method of Bouwkamp is theoretically
superior in improving the approximations to A, converging more
rapidly and for a wider range of parameter values. However, it is also
much more difficult to program for a digital machine like the Mark III,
and this fact led to its rejection in favor of the procedure outlined above.

In the second and fourth runs of the machine, the quantities IIII(n were
computed. These are integrals involving the associated Legendre func-
tions, and arise from the integration of equations (III-13) and (III-14) to

N
derive the system (V-1) and (V-2). The integrals Ikn have been reduced
by Schultz to series in the spheroidal coefficients dkmn’ as shown in the
appendix. If enough values of the dlr:m are known, computation of the in-

tegrals offers no difficulties.

The computation of the remaining quantities listed in the table pre-
sented no special problems. The specific formulas used are given in
Appendix B. The scalar cross-sections were computed manually from
the tables listing the results of the first three machine runs.
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An examination of the formulas in Appendix B, particularly of those
referring to runs 4 and 5 of the calculator, gives some indication of the
increased labor that would have to be expended to compute the next ap-
proximation by means of a system of five equations in five unknowns.
Besides the additional values of the Bessel and associated Legendre

N
functions, of the quantities A, dll;nn, and Ikn, and of the elements

BNn' CNn’ PNn’» UNn+ VNn- 2nd Wy, of the determinants @, 1t would
be necessary to compute an additional determinant with complex ele-
ments, and all determinants computed would be of the fifth instead of
the fourth order. Conside -ation of the estimated costs, using the com-
puting facilities and techniques at present available, ruled out any effort
to improve the results by such an extension.

In Appendix C it is demonstrated that the quantities already com-
puted for the back-scattering cross-section can also be used to compute
the bistatic cross-section ¢ ( §, ¢), where the transmitter is on the major
axis of the spheroid and the receiver is on the ray with spherical co-
ordinates @, ¢.
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VIII
RESULTS

The problem at hand was to determine the nose-on radar cross-
section at the Rayleigh side of the resonance region, and to determine
the magnitude of the cross-section at the first maximum, for a prolate
spheroid with fineness ratio of 10:1. Since it was known a priori that
the computations would be limited by economic considerations to only a
few points, it became necessary to predict the location of the resonance
region and to see that most of the points chosen for computation were in
the Rayleigh region near the first maximum. It was decided, however,
that as a safety measure a few points should be computed at fairly wide
intervals in the region of larger characteristic-dimension-to-wavelength
ratio, to be used if the predicted location of the resonance region was
inaccurate. The margin of safety was cut sharply after the second run
of the machine computations, when it became necessary to reduce the
number of points being computed.

The reasoning behind the prediction of location of the resonance
region is outlined here for the benefit of anyone who may have to make
similar predictions in the future.

It was expected that, for wavelengths small compared to 2%a, the
vector cross-section would oscillate about the approximate solution given
by geometrical optics,

."b4
0G.0. L2

It was expected also that, for wavelengths large compared to 2%a, the
Rayleigh approximation would yield an asymptote to the graph of the
vector cross-section. The Rayleigh solution for the vector case is

_ 64w T2 K¢
ORay. = N2 (47 - N)2
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where
2m 4
=— = —Tab?,
k o T 3‘lra |
4 N o2re {1 b? o a+Va2-b2}
an Ta?-¥ 2a Ya? -b? ga-Vaﬁ-bz'

For %= 10, this yields

2T a\4
IRay. = 7.117(—X—a).
0G.0.

It was also believed that an upper bound on the abscissa of the first
maximum could be obtained from the approximate solution given by
physical optics,

Tht sin ka (sin ka\?
0pO. —a—z{l-Zcoska( a ) + a ) },

and that a lower bound on the abscissas of most of the succeeding maxi-
ma could be deduced from the thin-wire theory discussed in Reference
25, which gives the following formulas for the locations of the maxima:

2
cot __;:a for the odd maxima
-1

Ul 2T
——{2 log—>‘——+Llog -—)\—a- 1.87} =

4 ™ 2

27
-tan Ta for the even maxima.

For the spheroid considered, with a/b = 10, the left hand side of this
expression reduces to

m 3 2ra )1
—d4.12 - 2109 272 |
4{412 2 %8 X }

All the relationships listed seem clearly to point to the choice of 2%a
as the characteristic dimension of the spheroid.
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Use of this theory in predicting the locations of the maxima is
vindicated by the results of the computations. The predictions seem to
be very accurate indeed.

In the interest of completeness the scalar solutions have been plotted
for comparison with the vector solutions. The Rayleigh solution for the
scalar case is

,__4113T2(2-L>2
C =3¢ \1-./ °

where _ —:—ra b2,

-
[

L= v |2y Ba-yarop !

For a/b = 10, this yields

! 27a \*
oo -1.815( X )

and b2 ’ a a + YaZ -p? z

Some particular values of the scalar cross-sections of prolate
spheroids were previously published by Spence and Granger (Ref. 26).
Those values which correspond to the present problem are compared
with the Mark III results.

Figure 3 is a graph of all the results mentioned above. The ordinate

in each case is the nose-on cross-section 0 divided by the geometrical-
Th4 . . . :
optics result PO while the abscissa is 27T times the ratio of semi-

major axis a to wavelengthA . The exact vector and scalar curves were
extended to the points where the question of reliability made further
plotting undesirable (partly because of the limited number of points ob -
tained and partly because of the convergence question). The abscissas
of the maxima as predicted by the thin-wire theory of Reference 25 are
shown at the top of the graph. These serve to emphasize further that
the number of points obtained was inadequate to define the curves in the
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range beyond the first two maxima. However, this range was not of
particular interest in the problem under consideration. Several results
based on third-order systems have been included for purposes of com-
parison and to give some indication of the convergence situation.

Numerical results for the nose-on radar cross-sections of prolate
spheroids with fineness ratios other than 10:1 can be obtained in exactly
the same way as those presented here. The algebraic results have been
generalized in Appendix C to cover the case of transmitter on the axis
of symmetry and receiver at an arbitrary point. The additional compu-
tations needed for this case are also noted in Appendix C. The algebraic
expressions for the oblate spheroid problem are similar to those for
the prolate spheroid (see Reference 28).

The tabulated results obtained in the present investigation may be
of use in solving the above-mentioned problems. In Appendix D the
printed results available from the Mark III computations are listed.
Possibilities are being investigated for the publication of these tables
elsewhere; in any case, numerical values of any quantity tabulated will
be furnished upon request.
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APPENDIX A

RECURRENCE RELATIONS AND OTHER FORMULAS FOR
PROLATE SPHEROIDAL FUNCTIONS AND WAVE FUNCTIONS

Differential recurrence relations for radial prolate spheroidal
functions (j = 1 or 2): :

(6 -1) apnn(®) 4R, /a4 8, &) RY) <UD
G

(62~ 1) amn(®) arY) ) /2t +y @) RY - L RG)

(62 1) mn(e) dR(J) /d€ + Pmn($) R(J) (3)

mn‘Rm 1,n’

(§2- )7 (6) de,{).l n/dé+ o () R(j) = Rff,)n

f 577 Stan() Stan-1(7) dT/: / rsihm sl () ar
1
O RO IROR .

-1 Rmn- RmnRm n-l]'
_—k
gy RY R . f:l)n RG]

= [Rfrlx),n-l (2) - R(l m ,n-1 ] /[R (2)' - Rs:l)l"l Rt(';)n

T Tas) (ry/ars) l(T)dT%/ sl st (r)ar

e [T
ymn - 6'[1 62 7'2Smn(T mn I(T/de7// T (T) Smn I(T) dT
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oy RO RE g 0

mn mnl mn- mn

- mORE R ) /[Rmn_ O IO

2\1/2
ﬁrj L i) Sty 1) 47
-1 -
m = ]

c / (1 -rye s st ar
L1

=c [RSI)-l,n rE) - ROLRE) 1

mn - m,ne-

1
[—m (1) (1)
Pmn ‘[(62 -1)72 /:1 (1 -,--5)17§ Smn(T) Sm-1 n (1) 47

- (82- 11/2/ I%Tﬂ;/ids()(r/dv-s() n(T)dT]

1 1
[c/ -r2 st sl | mar ]
-1

() & 0 L0)

m-1 ann‘Rmn m- ,n

=c(£2-1) [R
-[Rsr? 1 nRSrzl)x; - (1) 1(:1- n]/[Rmn S‘:l)l"l = R() Sn)n ’

= [%—:—)11/—; ‘(—1—_—,::5)-175'5( )n('r) S() n(-r)dT
-1

7-2

- (£2-1)V2 / M (1) ) (7) dSSn) . n(T)/d‘Td‘T]
-1

1 -1
[c/ (@ -rv2 s (7 s8) n('r)d‘r]
-1
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R R O )

mln'Rm-

_[R(l) (2)l _R( )' ]/[R(l) S;)'_ln &)‘ln ¢) 1 al-

Differential recurrence relations for angular prolate spheroidal func-
tions (j =1 or 2):

(1 -1 amg(m) asgh/an + ba(my s, = sl
(1 = Tl ) n(n) dS(J) 1/d77 + Cmn(n) SSIJl)n- = 1('31)11’

(1 1% byl asDfon 4 x(ms) =58

(1-1%) () 4S9 1 /an + sppn(m) s9); = - s0)

amn({) = -0mn(£), dbmn() = - Ban($)s cmn(d) = - Ymn(d);
pmn(C) = - qnn(;)t rmn(t) = ‘pmn(z)! Smn(t) = 'omn(C)'

Recurrence relations for three contiguous functions:

®m,n+l Rm,n-l +(ym,n+l %mn 'anam,nﬂ ) Rant®mp Rm,n+1 = 0;
ﬂm,n+l Rm-l,n + (o'm+1,n Tnn “Pmn ”m+1,n) Rmn * Tmn Rm+l,n = 0;

and similarly for angular functions,
Series for derivatives of spheroidal scalar wave functions:

Xg)n(x,y,Z) = ()(77 §,9) = Sn)n(n) Rp, (5 elM? ; the symbol tn,j is

defined on p. 41;

3x( ) /az = Z'I(I'H. g 5 5:1)3’ axgl)n/ax +1i aXl(_:l)n/ay

(1) 1 mn (1
D“'n,_j SJ m+1J; aX /ax-J.aX()/ay Z’J‘nJ J Snl_]'
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" =k sing(j-n)7 /77 S (T)SmJ('r)dT// [S ('r)lsz.

g = -k cos}(j-n)7 / (1-T2¢ s(l) ) st J('r)d“r// [Sm+l S em

hj =k cos—(_] n)ﬂ/ (11 )zS( ) n(T S 1 J(T) d// [Sm 1 J(‘T‘)]sz.

Series for components of spheroidal vector wave functions:

()

(1) (1)
*Mmn = VX(I) X e YMmn = VXS:I) X ey “Mm i VX(I) Xe ;
) (1) (1) () (1)
_antIan i a)a(rznn (ex+1e )_(axr:ntia_%%m_e),

-ie)
Y

. W axW®) axt)
Mmn =37 < =t i mn> (Ex

ox oy

) )
- mn _j (ex + i ey)|; substitute series from
0x ay =y

preceding set of formulas.
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APPENDIX B
FORMULAS USED IN COMPUTATIONS

The essential formulas used in the computations and not given else-
where in this report are listed here:
1) Legendre and Bessel Functions: these were computed from the

following polynomials and recurrence relations. The symbol [x] denotes
the largest integer not exceeding x:

Tas c6) =\ 327

[-;-%1)1 K
(-1)%(n+2k+1)! -2k-
+ cos(c§-3n7) & (2k+ 1)1 (n-2k-1)! (2¢4)~2K 1] :

in] K
(-1)%(n + 2k)! 2k
[sm(c o) Z G0 T - 2k)1 2 )

(n=2,3,...,17).

[-30+1)] |, x -n-2k-1
_ .n+l (-1)*(-2n-2k - 2)! £ ,
P-n-l(e) =2 Z:O k!i(-n-k-1)!(-n-2k-1)!

(n=-1,-2,..., -16).

[-%H)] k -n-2k-3
1 o2z e (-1)%(-2n - 2k - 4)!1
P,z (6) = 2427 -1/ & k!(-n-k-Z)!(-n'-GZk-3)! ’

(n=-3,-4,...,-16),

n [- %(El)] -2k
d _ 2 _n k(-2n-2k-2)1¢
E P18 =) @7 [2 KI(-n-k-1)1{-n-2k-1)!

(3] (-1)k(-2n-2k)!§°2k
) &y x!(-n-K)1(-n-2K)! J

(n=-1,-2,..., -16).
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Sl @ =0

d§

)> k!(-n-k-1)!(-n-2k-2)!

X [_l(n+2) ["%(n+2)] (-l)k(-Zn -2k - 2) !E -2k
2
k=0

[-4(n+3)] k -2k
2 (-1)(-2n-2k -4)!1§
t(@m+1) ¥ k!(-n-k-Z)!(-n-Zk-3)!]

k=0

(n=-3, -4,..., -16).
[4(n-1)] n - 4k -
Qn(§) =—; P_(§) 1083% - 2k-0 (lz-I-Zk;HZn _lk) P 1.2k (6)
(n=1,2,...,15),
1 £+1

Qo(s) = E 1oge_E__-T‘
Qi1 (6) =3 Phon (8) loge £ - (£-17 Pry (8

1
[£n] 2n - 4k + 1

- . Pl . (£),
kEO QI +25) (m-k+1) n-2k

(n=0,1,...,15),

Ql (&) = -(g2-1, Q) (6) = -8(82- )

2 0,(0) < 2 (Pan (9 - §Pa ()] g £

3n] [3(n-1)]
. (2n -4k +1) 2 n -

ké:o T+2K) (n k1) Tn-2k (6) EO (1(i 2k)4l(<n+-112) Pn-2k-1 (€)!,
n=1,2,..., 15),
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35 () = - (§21)73/2

Edg_ er1+1(€) = (£2-1) 3(11 + 1)[%Pn+2(€) loge zfi - (52'11)177 Pn+2(€)

1
[_Z(EI)J (2n - 4k + 3)

=0 (112k) (n -k +2) Pl 2k+l (5)]

-(n+2) él:%Prlﬁl (&) 108e‘§f_‘:— - (6 ‘l_l) Pn+l(€)

[ 2n]
(2n - 4k + 1)
) kg%) (1+ 2k) (n - k + 1) P;-zk (f)]g,

(n=0,1,..., 15),

Qé<e>=e(ez-1)'3/*.gd€— Ql (&) = (£2-1) 972,

2) Separation Constants: The separation constant A,,, was obtained
from a) or b) below, depending on the value of c:

d§

4
a)  e250: Ay~ Y net ok
k= -1

]

where

hrﬁnz -(2n +1), homn=(2nz+2n+3 - 4m?) - 22,

hy " =(2n+1)n®+n+3-8md) 24,
mn _ 4 3 2 2 (5.2 -8
hy  =[5(n*+2n%+ 8n%+ 7n + 3) - 48m (2n®* + 2n +1)] - 2 8,

hy " = [66n° + 165n% + 962n° + 1278n? + 1321n + 453
- m®(2368n° + 3552n + 4448n + 1632) + m* (256n + 128)] . 2710
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hy " =[252n° + 756n® + 5885n* + 10510n° + 18478n® + 13349n + 4425
- m2(14720n4 + 29440m8 + 64000n2 + 49280n + 17280)
+ m*(6144 n? + 6144n + 3072)] - 2 12,

4
b) ¢ <5: Arn = Y glr(nn c2k

k=0
where
mn _ tm+1), g " =1/2 (Zm - 1)(2m + 1) 1
g, = -(n+m)(n+m )oS1 =1 (2n+2m -1)(2n+2m+3) |’

oQ
»
]

mn 1/2 (n+1)(n+2)(n+ 2m+1)(n+2m+2)
(2n+ 2m+1)(2n+2m +3)3 (2n+2m +5)

(n+2m)(n-1)n(n+2m-1)
" (2n+2m-3)2n+2m-1)3(2n+2m+1) |’

mn _ (n-1)n(n+2m-1)(n+2m)
8 ~ (4m® - 1) [(2n+2m-5)(2n+2m-3)(2n+2m-1)5(2n+2m+1)(2n+2m+3)
(n+1)(n+2)(n+2m+1)(n+2m+2)
) (2n+2m-1)(2n+2m+1)(2n+2m+3)5(zn+2m+5)(2n+2m+7)] ’
mn_2(4m2_1)2[ (n+1)(n+2)(n+2m+1)(n+2m+2)
By ° (2n+2m-1)%*(2n+2m+1)(2n+2m+3)7(2n+2m+5)(2n+2m+7)2
(n-1)n(n+2m-1)(n+2m)
) (2n+2m-5)2(2n+2m-3)(2n+2m-1)7(2n+2m+1)(2n+2m+3)2:|
.¢|(n11)(n+2)(n+3)(n+4)(n+2m+1)(n+2m+2)(n+2m+3)(n+2m+4)
¥ (2n+2m+1)(2n+2m+3)*(2n+2m+5)® (2n+2m+7)%(2n+2m+9)

(n-3)(n-2)(n-1) n (n+2m-3)(n+2m-2)(n+2m=1)(n+2m)
" (2n+2m-7)(2n+2m+5)%(2n+2m-3)3(2n+2m-1)%(2n+2m+1)

-3 (n-1)>n%(n+2m-1)3*(n+2m)? (n+1)3(n+2)?(n+2m+1)*(n+2m+2)? ]
te [(Zn+2m-3)2(2n+2m-1)7(2n+2m+1)2 ) (2n+2m+1)2(2n+2m+3)”(2n+2m+5)’J

[ (n-1)n (n+1)(n+2)(n+2m-1)(n+2m)(n+2m+1)(n+2m+2)
- 1/2 (2n+2m-3)(2n+2m-1)%(2n+2m+1)?(2n+2m+3)*(2n+2m+5)| °

,
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3) Integrals: the integrals involving the angular spheroidal func-
tions, which arise in the process of determining the expansion coeffi-
cients for the scattered wave, have been r2duced in Reference 21 to
expressions equivalent to the following formulas. Here, Gj,k is the
Kronecker symbol, which is equal to 0 if j # k and equal to 1 if j = k.
The symbol i is defined on p. 41.

1 [~ <]
foe [ s sman- 2oy, T A e @,
-1 k=0

1
"= [ ey sty st an

n
1

0 -] o0
- k+1 1n  oN oN .in
= - 2N n+l E Hnk 575 9k dk+1 * E Z ENkHn,jdk 45 [
2k +3 .
k=0 k=0 j=k+1

(2k+1 )(2k+3)(

1 o
Nn_ (1) (1) 2k + 2 en oN  on oN
I, = f MSn (M Syn(m dn = py 1y kfs e k Qe T 9 )-

1

L= /.1 (112 S (1) 500 () am

(> ]
_ k+1 on oN on oN
= 2K N n+1 kzo (2k+1)(2k+2) (k+1) diyy dp - kdy dpyy

1
= / (-2 vz st () s ) an
(1

(> <}
k +1 n oN in oN
=2 -
UN n kZ—O BT TIEETS) l:k dies) dieg; - (k+2) " o ]
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/ 7tV s ) o 8,5 () am
1
= 2y n{z (2ki1<1+(12)k+3 \:(k+2) am @M k) d‘l’fjl]

o0
Unk oN [k(k-1) .n  (k+1)? 1n]
) g 2+ 1 Ok [Zk-l d-2* 2ka3 dk tkd

o0 o0
oN .in
-E Zunk“‘n,J dk dJ}

k=0 j=0

4) Elements of Determinants: these are given in terms of the above
integrals as follows, with A, as defined in (III-3):

d

B A 02 e rile)

- 1
Nn = céo

= 1 —_—
Cn = O €2-117 d€ Ron(go)x

Dya = - RO (E)

UNn = 2F. 4 [(Sﬁ-l)d—%-R&)(Eo) + & R (6 }
Vi = (620) o R () 57 4 G R €)1
Wy = - b 620 R (6) 4 (30 RY € "
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5) Cross-Section Coefficients: The coefficients in the expansion
for the back-scattered wave (7= 1) are quotients of the following de-
terminants,whose elements are described in 4):

67

Bgo 0 D01 D03

(oL Bae 22 21 Do
ao G

Uso Ujo Vi Wy, Wis

U30 U32 Vsz wal Wss

By 0 Dy Dy,

o 1 Bss Cas Dy Dq,
oy = H

Uoy Uos Vos Woo Woz

U21 U23 V23 Wzo sz

COO Boo Do1 Do3

y _ 1 0 Baa D,, D,y
az = —6

Vlo UlO U12 Wu w13

Vso U30 Usz W31 W33

C 11 B 11 D10 D12

0
al = L B Dy, D,,
H A"
01 Vo Uos Woo Woe
Vzl U21 Uz; Wzo w22




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-126
where
Coo O Doy Dos Cn O Dy Dy
0 Cz Dy Dy 0 Css Dy Dy
¢ Ve Vie Wy, Wy and H Vor voa Voo Voo
Vao Va2 Wy Wy Voo Vas Wy Wy

6) Radar Back-Scattering Cross-Section: This is computed from
the formula

0 2

0 =47a’ i i ay ), A

n=0 k=0
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APPENDIX C
COMPUTATION OF BISTATIC CROSS-SECTION

Formula (III-18) indicates that of the two sets of expansion coeffi-
cients @p and B, only the @, are used in computing the back-scattering
cross-section. On the other hand, to obtain the bistatic cross-section
0(60,¢)--where the transmitter is on the major axis of the spheroid and
the receiver is on the ray with angles 8, ¢--one requires both the oy,
and the B, as follows from formula (III-17). The only additional quanti-
ties required which are not used in obtaining the back-scattering cross-

(1)

mn (cos 0). These are given by the

section are the angular functions S
expression

Sg;)n (cos 6) = 120 bnk dk . Ptk (cos 0)

where the an+k(cos f) are associated Legendre functions. The spheroidal

coefficients dkmn have been computed as described, and the associated
Legendre functions are tabulated. It might be observed that in solving
the systems of equations (III-13) and (III-14) for the @, on a large scale
machine, very little additional expense is involved in obtaining the B,
also.

In the case where 8 = /2, i.e.,the receiver is in the plane of the
minor axes, the computation of 0(0,¢) becomes particularly simple,
since cos § = 0 and

() (1PEn)!
SO.Zn (0) Zzn(n!)z
(1) _ (-1)%(2n+1)!
50,2n+1 (0) = T
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APPENDIX D
QUANTITIES TABULATED IN MARK III OUTPUT

A list of the parameter values computed is given on page 47 of the

27
text. For each value of _)Ta_ listed, the following quantities are recorded:

. , m m \
1. Associated Legendre functions P____ _; (&) and Q. 4 (6) and

their derivatives with respect to §,
for m=0,1,
n=-1, -2,... -16.

2. Bessel functions Jn+§(cs)’ forn=1,2,...17.

3. Separation constants A, form =0,1; n=0,1, 2, 3.
. _— mn mn, _ .
4., Spheroidal coefficients dk (or dk /P in range of k < 0, where

dp = 0),
for m=0,1,
n=20,1, 2,3,
k = all necessary values in range -16 to +16
(see Appendix B, Part 3).

5. Radial spheroidal functions Rpyyp, (£) and Rpyp, (€) and derivatives
of these with respect to §,

for £ =1.005
m=20,1,
n=0,1, 2, 3.

6. Boundary integrals Ign
for k=1,2,3,4,5,6,
all combinations of N and n in range
N=0,1,2,3,
n=0,1,2,3.
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7. Determinantal elements BNn' CNn' DNns UNn» VNn' WNn’

for all combinations of N and n in range
N=0,1, 2,3,
n=0,1, 2, 3.

8. Radar cross-section g.

With the exception of ¢, all quantities are given to 15 significant
figures. The values of 0 are rounded off to 5 significant figures.
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