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FOREWORD

This report, 1492-1-F, "Duct Studies, " was prepared by The University
of Michigan Radiation Laboratory, Department of Electrical Engineering,
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and was written under Purchase Order 504-855029 to the Northrop Corporation, |
Norair Division.

This report, the Final Report, covers the period 22 January 1968 through
1 May 1969,
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ABSTRACT

Problems in the high frequency regime of electromagnetic scattering
by ducts and open waveguides whose walls obey an impedance boundary
condition are investigated. In general, the impedance boundary condition
means that the walls are absorbing electromagnetic energy. Three structures
of particular interest are treated: the semi-infinite parallel plane waveguide,
the semi-infinite circular cylinder, and the rectangular duct of finite length.
When the surfaces are perfectly conducting, exact solutions for the first two
structures are available, and these solutions are expanded asymptotically
to yield term-by-term comparisons with the corresponding results of ray
diffraction theory. When the surfaces are absorbing, exact solutions are
not available, but the ray treatment is applied to advantage. In the case of
the rectangular duct, the main problem is to determine the interior waveguide
modes. This modal problem is non-separable due to the assumed impedance
boundary conditions; nevertheless, information can be obtained by means of
an asymptotic analysis applied to the transcendental eigenvalue equation of

infinite order.

ii



-

H

< 42 H

1492-1-F

TABLE OF CONTENTS

INTRODUCTION

THE HALF PLANE
THE SEMI-INFINITE PARALLEL PLANE WAVEGUIDE
THE SEMI-INFINITE CIRCULAR CYLINDER

THE RECTANGULAR DUCT

APPENDIX
REFERENCES

DD FORM 1473

iii

28

43

69

73

7



1492-1-F

I
INTRODUCTION

Problems of radiation and scattering by open waveguides with ideal
boundary conditions have been studied extensively in the literature, and
indeed, for some semi-infinite guides, exact solutions have been made
available. In sharp distinction, however, comparatively few investigators
have directed attention to such proplems when the boundaries are not ideal -~
for example, when the boundaries are nonconducting or absorbing in the
electromagnetic case, or nonrigid in the acoustic case. Nevertheless, many
practical applications arise for nonideal boundaries, and it would seem
desirable to investigate the effects of these boundaries on the radiation and
scattering properties of the structures involved. In this report, therefore,
we shall investigate problems of electromagnetic scattering by ducts and open
waveguides whose walls may be characterized by an impedance boundary
condition, which in general means that the walls are absorbing electromagnetic
energy. The wavelength of the incident field is assumed to be small com-
pared to the obstacle dimensions, so that high frequency techniques may be
utilized to advantage; however, in many cases the results remain useful
even for wavelengths as large as the relevant dimensions of the scatterer.

Since we are assuming the validity of the high-frequency regime, it is
natural to adopt ray-optical techniques to calculate the effects of diffraction
due to the edges forming the mouth of an open waveguide or duct, In this
case, the ray treatment is intimately dependent on known solutions for plane
wave diffraction by a half plane, and in particular, we desire solutions for
a half plane with arbitrary face impedances. For incidence normal to the
edge of the half plane, the desired solutions are available from Maliuzhinets

(1958, 1960); however, for oblique incidence on the edge, the solution is
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available only if the impedances on both sides of the half plane are identical
(sce, e.g., Bowman and Weston, 1968b). This means that when oblique
incidence is involved in the ray treatment, both the interior and exterior
surfaces of the open waveguide or duct must display closely similar electrical
properties. The half plane solutions are summarized in Chapter II.

In the succeeding chapters, three structures of particular interest are
treated: the semi-infinite parallel plane waveguide, the semi-infinite circular
cylinder, and finally, the rectangular duct of finite length. When the surfaces
are perfectly conducting, exact solutions for the first two structures are
available. These configurations therefore represent important prototypes
for testing the utility of the ray procedure, and also provide insight into the
various diffraction mechanisms occurring at the mouth. For both of these
canonical bodies we shall provide some new asymptotic representations of
the scattered field which yield term-by-term comparisons with the corres-
ponding ray-optical results. It is found that the ray method yields complete
agreement for the primary diffraction, along with the first and second inter-
action contributions, but that for each successive interaction after the second,
the ray optical result underestimates the asymptotic result obtained from the
exact solution. The higher order interaction contributions are, however,
small in magnitude, and the ray treatment is therefore expected to yield quite
accurate results. When the surfaces are absorbing, exact solutions are not
available, but the ray treatment is straightforward in view of the perfectly
conducting results.

For the rectangular duct of finite length, the ray method is applied to
obtain the primary diffraction fields generated at the mouth of the duct, al-
though the simple ray expressions must be suitably modified to account
for the finite lengths of the diffracting edges. From this information, the
energy launched into the waveguide modes within the duct is to be determined.

The modal problem, however, is nonseparable due to the assumed impedance
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boundary conditions; nevertheless, the modes may be determined by
means of an asymptotic analysis applied to the transcendental eigenvalue
equation of infinite order. These modes obey a general orthogonality
condition that leads to the determination of the conversion coefficients
which couple the induced aperture fields to the waveguide modes in the
duct, The scattered field due to modes reflected from the closed termi-
nation of the duct are obtained by means of a Kirchhoff approximation over

the aperture formed by the mouth,
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| THE HALF PLANE

2.1 Normal Incidence

Before we consider problems of diffraction by ducts and open-ended
waveguides we must first examine the pertinent half plane results, To fix
our notation, we shall employ natural units with free-space constants
60, My set eqhal to unity and suppress the harmonic time dependence exp(-iwt)
throughout. A plane electromagnetic wave of unit amplitude is assumed
incident at an angle 00 to the semi-infinite screen as shown in Fig. 2-1.

The screen is assumed to be comprised of material of such a kind as to
make the total tengential field components satisfy the following impedance
boundary condition on the surface (fi is the unit outward normal to the sur-

face)

E-(R.E)i=ni H , (2.1)
where n = nl on the upper surface and n = n2 on the lower surface. The face
impedances nl and nz are complex constants whose real parts, because of

energy considerations, must be non-negative. Further, the surface impedances
are assumed to account for the presence of thin layers of highly refractive
absorbing materials applied as a coating on a perfectly conducting half

plane. Although the validity of the impedance boundary condition near an

edge of the diffracting structure is then open to question (Weston, 1963),

one nevertheless expects some general features of the scattering process

to emergewhen the overall effect of an absorber coating is treated in terms

of a constant surface impedance (see, e.g., Bowman, 1967). It may be

noted that if the surface is to be considered as perfectly conducting, then

the corresponding impedance must be set identically equal to zero. In par-

ticular, a special case of interest would be that of a perfectly conducting
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FIG. 2-1: PLANE WAVE INCIDENCE ON ABSORBING HALF PLANE
WITH TWO FACE IMPEDANCES.
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half plane coated on one side with radar absorbing material,

The exact solution for plane-wave scattering by an absorbing half
plane with two face impedances is available from Maliuzhinets (1958, 1960),
who treated the more general problem of diffraction by a wedge with arbi-
trary face impedances. For the application of ray-optics techniques, we
shall require the asymptotic far-field form of the solution. This result,
obtained by means of a steepest descent approximation to the exact contour

integral solution, may be written in the form

. ikp
ud'vzli e in/4 —e—m U (s, 60) (2.2)
(27kp)

representing a cylindrical wave emanating from the edge of the semi-infinite
screen and produced by a plane wave incident at an angle 90 to the screen
(see Fig. 2-1, where the geometrical configuration is different from that
used by Maliuzhinets). The total exact solution, u, which is a function of

two complex quantities @, and 02' is derived by imposing boundary conditions

1
of the third kind,
1 du _ _
e 50 + ucos a1,2 =0 6=0,2m , (2.3)

on the face:e;'j of the semi-infinite screen. The quantities a and @, are
constants whose real parts lie in the closed interval [0, 7r/ 2] . For obser-
vation angleé 6 bounded away from the geometric optics boundaries (i. e.

for 64 7+ 60), the amplitude factor U(O,Bo) appearing in (2. 2) is given by

sinl6y/2 y(-6) 4 —U(21-6)
Um0 ) | sin(6/2)+ cos(6_/2) * sin(6/2)- cos(60/2)

u(e, 60).=

(2.4)
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where the auxiliary function y{f) is expressed in terms of a special mero-

morphic function xj/ﬂ(B) by the product

UB =y, (Brnra)y (B+n-a)y (B-1-a)y (B-7+a)  (2.5)

and W,,(B) has the representation

T .
&1/,”(3) - exp _éf Tsiny ifyﬂ sin(v/2) + 2y wh . (2.6
0

Maliuzhinets (1960) mentions that the special function w;r(B), along with its
generalization for the wedge problem, has been tabulated by M. P. Sacharowa,
although no reference to the literature is given. The important analytical
properties of the functions ¢/,”(»3) and y{B) are given in Appendix A.

An examination of the boundary conditions (2. 1) and (2. 3) indicates
that the scalar function u may be employed to represent the half-plane
solution for either of the two fundamental electromagnetic polarizations.
Thus, in the case of H polarization, the function u represents the z com-
ponent of the magnetic field Hz, provided we make the identifications

_ H _ H
nl = cosa'1 , n, = cosar2 s (2.7)

while in the case of E polarization, it represents Ez under the identifications

n, = l/cosozE (2.8)

1’ 2

n, = 1/cos oF
This property is a result of the natural duality of Maxwell's equations and
the impedance boundary condition (2. 1) under the transformation E ~ H,
H =+ -E, n—=1/n. The affix E or H is attached according as the boundary
conditions describe E- or H- polarization states, and in the sequel, all
functions will be written with such an affix whenever this polarization distinction

is necessary.
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An alternative representation for U(G,OO) may be obtained by suc-
cessive use of the identity given in (A. 10); in particular, after some trig-
onometric reduction we obtain the following expression, valid so long as

0 # A

P(0) P(6 ) a [ .
- — o PR § 2
u(e‘eo) - cosG+cos00 (2 €08 75 cos 7 >+

0 02 al 6 6o
+ cos > (cos o " 08" + cosE cos = (2.9)

+
8
“o
S
D

D

with

_ sin(0/2) 4
P(6) = A1) 8 (7/2) . (2.10)

The quantity d/ﬂ(?f/ 2) is given in (A.9). The expression in (2.9) is manifestly
symmetrical in the two variables 0, 90, thereby confirming the principle

of reciprocity: U(G,Oo) = U(Go, 6). For @ =a,= (7/2), corresponding to

a perfect conductor with H polarization, we have upon employing (A. 10)

and (A. 15)

4
1 T . b
o =3 [o, 3] an

and therefore (2. 9) reduces to

4cos(6/2) cos(90/2)

U(9'60) - cos9+cosG0 ’ (2.1

On the other hand, for afl = a2 - +1i 0, corresponding to a perfect conductor

with E polarization, one finds asymptotically

4 |a|/2
1 T 1
v(x-6)~ & [wﬂ(g)] e T,
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so that (2. 9) now reduces to
4 sin(6/2) sin (90/ 2)

cosf+cos 90

u6,6,) = - (2.12)
These limiting expressions are in accord with known results for a perfectly
conduoting half plane.

In order to explore the effects of multiple interaction, such as the inter-
action existing between the two edges forming the mouth of a semi-infinite
parallel plane waveguide, we shall also require an asymptotic expression
for the half-plane solution along the ray-optics reflection boundary 6 =7- 90.
It may be shown from the Maliuzhinets (1958, 1960) contour integral solution

that for 0= 7r-90 the total field behaves as

1

Tﬁ) (2.13)

provided 0 < 90 <. For incidence from the lower half space 7 < 90 < 2m,

ikr cos 20 cosa. -sinf )
o 1 1 o ikr <
um~e - 5 0]

cos a_ + sinf
1 0

the same expression obtains except that @_ is replaced by @,. The result

in (2.13) is hardly surprising physically arlld shows that far a?ong the reflection
boundary the scattered field is given by the perfectly conducting result multi-
plied by the infinite flat plane reflection coefficient. However, to apply the
ray-optical procedure to the semi-infinite parallel plane waveguide, we

need to know the field generated along the reflection boundary by a line source
located at a finite distance from the semi-infinite screen. Rather than solve
the line source problem for an absorbing half plane, we shall draw upon an

analogy (in view of Eq. 2.13) with the known result for an isotropic line source

over a perfectly conducting half plane. Thus, for an incident field given by

i (1) [ ik |z-r j y
w=H (klg_-igl) mle = (2.14)
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it is physically reasonable to take
T

a1 cosa, -sinf > e1k(r+ro)-14 2,19
~ T cosal+sin00 1rk(r+r°) )

as the scattered field far along the reflection boundary 6 = 7r-90, where
by 012 in (2.195).

0< 60 <m For w< 90 < 27, replace al

2.2 Oblique Incidence

The exact solution for the problem of a plane electromagnetic wave
incident at an oblique angle to the edge of an absorbing half plane was first
presented by Senior (1959), who solved the coupled Wiener-Hopf integral
equations which determine the currents induced on the surface of the sheet.
As pointed out by Senior, the standard technique (Clemmow, 1951) used for
the derivation of three-dimensional solutions from known two-dimensional
solutions in the case of perfectly conducting cylindrical structures fails to
yield correct results when the diffracting structures are imperfectly con-
ducting. This is due to the coupling of TE and TM modes in the presence
of dielectric or absorbing cylindrical bodies (see, e.g., Wait, 1955). On
the basis of Senior's (1959) investigation, however, Williams (1960) subse-
quently developed a generalized technique by which the oblique incidence
solution may be deduced directly from the known scalar solutions for a half
plane with nonzero surface impedance. These treatments of diffraction by
a half plane assume that the screen is characterized by a single constant
surface impedance 7, whereas for the purposes of our investigation it would
be desirablei‘ to consider a semi-infinite sheet with two face impedances,
say n= nl on the upper surface and n = nz on the lower surface. A par-
ticular case of interest would then be that of a perfectly conducting half plane
coated on one side with radar absorbing material. Since the scalar solutions

for plane-wave scattering by a half plane with-arbitrary face impedances are

10
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available from Maliuzhinets (1958, 1960), we attempted (Bowman and
Weston, 1968b) to carry out the Williams (1960) procedure to obtain the
corresponding three~dimensional solutions for oblique incidence. Unfor-
tunately, it came to light that the technique fails except in the case for
which the impedances on both sides. of the half plane are identical. The
Williams technique appears to be intimately dependent upon the inherent
symmetry of the problem with regard to the plane defined by the diffracting
screen. In the following, therefore, it is necessary to assume n1= My= 1
For later application to the rectangular duct, we are interested in
the field diffracted into the far zone by the half plane. The diffraction screen
will be taken to occupy the half plane y=0, x> 0. In cylindrical coordinates
(0, P, 2z), aswell as in spherical coordinates (r, 6, @), the upper and lower
surfaces of the half plane are prescribed by =0 and p= 27, respectively.
The primary excitation will be due to a plane wave of unit intensity propa-

gating from the direction 6= (/2) -6, p= ¢o:

i A . A, . A -ikS
E =(-xcos ¢osm60-ysm¢osm90+zcosGo) e , (2.16)
H = (-Qsinfb +§r\cos¢ ) ¢ TIKS ,
= 0 0
with
S = xcos ¢o cos +y sin ¢0 cosd +zsinf . (2.17)

The incident field is thus taken to be a pure TM mode (no le component);
however, the other polarization case (TE incident mode) presents no difficulty
in its treatment, and may indeed be obtained upon making use of the natural
duality of Maxwell's equations and the impedance boundary conditions. When

0°= 0, the plane wave is incident normally to the edge of the semi-infinite

screen.

11
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Away from the optical boundaries f= 7+ ¢0, the diffracted field inthe

far zone is (Bowman and Weston, 1968b)

T
. mikz sing +i
ig 1kzsm90 1kpcosGo E(f, §)
Ed___ __e e = 0
- 4cosGo (27kpcosf ) /2 cosz¢ cosze +sin26
0 ) 0
ST .
iy ikz s1n90+1kp coseo H(g, § )
Hd= -e e : = 0
- doosd, (27kp cos6 ) /2 cos2¢ cos290+ sin290
(2.18)
where

E(§, ¢o)= X [sin@ocos P G1(¢, ¢0)+ sin G2(¢, ¢0)] +
+5 [sin Gosin[bGl(ﬁ), ¢o) -cosf G2(¢, ¢o):| +3 cosOOG1(¢, ¢o) ,
(2.19)
Al . ;
H(g, ¢o)= X [sm¢ Gl(jb, ¢0)- smeocos¢ G2(¢, ¢0)] -

-9 [cosfb G1(¢, ¢0) +sinf sinf) G2(¢, ¢0)] -2 cosGoGz(]D, ¢o) .
(2. 20)
The functions G, 2'(;6, ¢o) are given by

E E
Qe(¢.¢o)+Qo(¢,¢o)

cosf) +cos ¢o

G1(¢,¢o)= ikcosf cosp [clc;sﬁ +AQE(¢,¢O) +

H H
sind sinf  Q (§,0 }+Q (4,4 )
+ DQf(ib. ¢o)] -ik cosé)0 sineo sinf [ k° o 0 o “e o

cos f + cos¢0 ¥

+ BQ?(¢, ¢o)+CQ§(¢. g ] (2.21)

12
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E E
os § Qe(¢’¢o)+Qo(¢‘¢o)

k cosf +cos ¢0

G2(¢,po)=ikcoseosin905in¢ [c + AQ§(¢,¢0) +

H H
sind sinf  Q (f,#)+Q (4,9 )
+DQf(¢.¢o)] +ikcoseocos¢[ 1? 0 o o e 0

cosf + cos ¢0 ¥
H H
+BQ (A.9) +CQ, (¢,¢0)] , (2.22)
where
Q#.8) = - P P(B) cos [at0)] ,
(2.23)
Q, (@, ¢0) = P(f) P(¢O) 2 cos (§/2) cos (¢,/2)
with
_ sin(f/2) 4
P(¢) w(ﬂ._¢) ‘pﬂ (7[/2) ’ (2. 24)
and where the constants A and B are determined by
E . E .
Qe (12T-+1v, ¢0) taneo ) Qe (% -1v,¢o) tané)o
Qi—l(gﬂv, ¢o) k(-i tan00+cos¢0) Q?(%'iv' $) k(itand + cosﬂo)
. . Ex . Em .
2tan9081n00sm¢0 1| Q (§+1v,¢o) Q. (5 - 1v,¢0)
= += + A
2 i ’
ik(tan260+ cos ¢0) : Qg(%*—iv,ﬁo) Q?(g 'iv,ﬂo)
(2. 25)
Q?(gﬂv,[bo) sin()osiny)o Qg(g -iy, ¢o) sin@osinﬁo

Qf(.72£+il/,¢o) k(-itan00+ COs ¢0) Qf(zzr_ -iv, ¢o) k(l tan9°+ COS¢O)

H7 . Hzm .
-2tan90cos¢0 ) Qo(5+w‘¢o)+ QG -1v,¢0) .
2 2 Ex Ex . '
k(tan 6 +cos ¢o) : Qe(2+w,¢o) Qe(2 -lv,¢o) (2. 26)

13
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In (2.25) and (2. 26) the parameter v is related to the angle of incidence

90 through the relations
sinh v =tan 6 , cosh y = sec 0, (2.27)

Finally, tho constants C and D aro obtained from (2.25) and (2. 26) upon
replacing QI: by Qf and Q? by Qg, in which instance A - D and
B - C. In the above, the affix E or H is attached to indicate where
the equations
1 E H
0 coxa(%?o cos 0_‘ (90), n= co:s@o cos c.r (00) (2.28)
should be used to determine the constants aE(Bo) or aH(Go) from the impedance

n. TFor normal incidence (00.= 0), the equations in (2. 28) are equivalent to those
in (2.7) and (2. 8) with @ =a, = o{0).

As a check, let us consider the perfectly conducting case which corres-
pouds to aH= (7/2) and aE+ +i o, From Appendix A we employ (A. 26)
and (A.27), along with (2.24) to find

p

E . . E

Qe (l-‘a¢°) = '85111% SIn_;. ’ QO 0‘0¢0) =0,
: i (2.29)
Q?(u.ﬁo)=8_cos% cos-§°- , QZIQJ,¢0)=O .

Ouly the con‘stants A and B need be evaluated, and with the help of

!
E, 7
QGtiv, ) +i6 p
_%%_W__o_ =-e 0 tan—:- , (2.30)
Q, (—iiv.¢o)

we obtain from (2.25) and (2. 26), after some trigonometric reduction,

14
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-sinf sin ¢o
420 B \Theesp) (231
With these values of the constants we finally have
5 X -8sin (f#/2) sin (¢o/2)
G1(¢, ¢o) = 1c059°(cos ¢+ sin 6 sin 1) cos § 7 oo8 ¢0 ,
(2.32)

G2(¢. ¢o) =0,

which leads to agreement with the results for a perfectly conducting half
plane.

Equation (2.18) is fundamentally important for the application of ray-
optical techniques to problems involving planar structures that are coated with
radar absorbing material, and in particular, the diffraction coefficient
derived from (2,18) will play an important role in estimating the fields
generated at the mouth of a fully-lined rectangular duct, For this purpose
we specialize to the case of edge-on incidence, as illustrated in Fig, 2-2,
since only principal-plane incidence will be considered in our treatment of

the rectangular duct.

Ei
/

e
-_2[_\:':

N

A\

FIG, 2-2: EDGE-ON OBLIQUE INCIDENCE ON ABSORBING
HALF PLANE.

15
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For edge-on incidence (¢o= 7) the incoming field becomes

. ik(x cos 6 -~z sin 6 )
i_ A . A 0 0
E =(x‘sm90+zcoseo)e

(2.33)
. ik(x cos -z sin 6 )
i A o )
H=-ye .
Now, from (2,24) we see that Q, —>0as ¢o-—-7r, and from (2.25) and (2.26)
it is evident that great care must be taken in deriving the correct expressions
for E(f,7), H(f, 7). Further, since we are ultimately interested only
in the aperture fields for a rectangular duct, we need only consider the
half plane diffraction fields along § = 7/2, 37/2 . There is much algebra

involved, although simplification is achieved by noting the following relation~-

ships
T iy, 2 R R .o
- 4cos(4- 5 )ww(al-1v+2 )wﬂ(alﬂv-z)
P(s+iv) = . .
2 l//4('7'r)(c s+ s=X) (cos 2 + si )
m 2’ (08T e, 2" ST
(2.34)
T . Ty 4 oo 2

P(2+1v)P(2-1v)— P(z)-

+ ?
1+cosf cosa (1+cos 0)1/2

It turns out that the diffraction fields of interest may be written as:

For § = (n/2):

-ikz sinf +ikp cos
d_i-i"f4 e ° ° oz A 7
E =+e [xM(e )-(ysin® +zcos6 ) M (6 )] )
2 1/ 0 o 0 0
(27rkpcos@o)
(2.35)
-ikz sin@ +ikpcos 6
i/ e i i [?«M(e )-(ysind +2cos6 ) M(6 )]
H =3 72 o/ "(ysind +zcosf o -

(27kp cos 60)1

16
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For § = (37 /2):

-ikz sin@ +ikp cos6
d_ i -i"/4 e ° O oz o A
E =5e 172 EcM(eo)-i-(ysineo-zcosGO)M(GO):] )
(27 kpcos@o)
(2.36)
ilz Sinf +i
;o ..1”/4 e1kzs1n0o 1kpcos(9° . , i .
H ==¢ [xM(O )-(ysinf -zcos6 ) M(6 )] )
- 2 o] o 0 o

(27 ko cos 90)1/2
where the M functions are

coszeo wi(w/2) PE(W)

M(Go) = P 90 ,
Yo | 12 )
(14n)(cos 0+ n) e K(Go) +e K(-Oo)
(2.37)
8 , 90
E o) "y
o iP (w)[e K(GO)-e K(-OO)J
M(eo) - 0 9 !
1 -i— i—
/2 [ 2 2 0 }
[_ncoseo(ncoseoﬂ)] e K(90)+e K( 00)
with
o2 (aeiv+ Ty g2 (@ +iv-T) y2 (E+iy+T) V2 -iy-T)
K(6 ) = T 2T 2 "x 2°"w 2
0 H ) H . E . E .
cosg—+cosH cosa/—-l~sin-12 cosg—+cos-1—y cosg— -sin'l"z
L2 2 2 2 2 2 2 2
| (2.38)

|

For a perfect conductor n-» 0, in which case

17
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%

-]

K(Go)—v% ‘{n_' wi (7]2) cosG0 e 2 ,

PE(GO)-o 2 (21 cos 90)1/2

?

and M(GO) =2 1-2_: M (90) = 0. This checks with known results, On the

other hand, for a perfect magnetic conductor, M(eo) L] 1?/1’(90) & 0; henaoe,
there is no scattered field in the case of edge-on incidence, as expected.
Finally, for normal incidence (90=0) we have M(0) = uF (3% /2, =),
M(0) =0, in agreement with Maliuzhinets' (1958, 1960) solution.

18
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I

THE SEMI-INFINITE PARALLEL PLANE WAVEGUIDE

3.1 Perfectly Conducting Case

The problem of diffraction by two parallel half planes constitutes a
valuable prototype for testing the utility of the ray optical method. On the
one hand, exact solutions based on the Wiener-Hopf technique are widely
known in the literature, while on the other hand, the ray method can be
applied systematically and without difficulty. Ray-optical techniques and
their relation to canonical problems with parallel plane geometries involving
perfect conductors have been discussed extensively by Felsen and his colla-
borators (Yee and Felsen, 1967a,b; Felsen and Yee, 1968a, b; Yee, Felsen
and Keller, 1968; Yee and Felsen, 1969). Their work has been centered on
the study of reflection and radiation of waveguide modes incident on the open
end of a waveguide, and they have reported that the ray method yields remark-
ably accurate results even at small ka values. In this section we shall discuss
the plane-wave scattering case. Some new asymptotic developments of the
exact solution are presented which yield a term-by-term comparison with
the corresponding ray-optical results.

We consider an E-polarized plane wave incident from direction 00 on
a pair of perfectly conducting parallel half planes with geometry as illustrated
in Fig. 3-1. By combining the results of Vajnshtejn (1954) and Clemmow (1951)

1]

we can write the far field as obtained from the exact solution in the following

manner:
T
itke-T) 2sin(0/2)si o
ES,.,__l_. o el( T 4) sin(6/ )s1n(60/2) . 9ika sind a 21ka,sm60 V4V,
47i Ykr cos9+co.s90 © © © +

. . 2ika sinf \ U+U -ika(sin6+sind )
2
+ Q_e ika smG) <l-e o)e o) o 0 ) (3.1)
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(r, 6)

FIG. 3-1: PLANE WAVE INCIDENT ON A SEMI-INFINITE PARALLEL
PLANE WAVEGUIDE WITH TWO SURFACE IMPEDANCES.
IN THE PERFECTLY CONDUCTING CASE n = n,= 0.
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where we have assumed cos 6 <0, cos 90 <0, and where

Lo
2
1 2ikacosT costdT
= — + —_—
v 27 log (1+e sintT-cosf '’
lr--ioo
2 (3.2)
T .
-5 +im
1 2ikacos T costdrT
U= 2m log (1-e ) sinT-cosd
z-ioo
2

The quantitiés Vo’ Uo are obtained from (3. 2) upon replacing 6 by 60. Now

for ka >> 1} a steepest descent approximation yields (Vajnshtejn, 1954);
| 2
@ 2ika - = g
1 2 dt
ity log(l+e ) 4 .
-0 t-42ka e cos 6

(3.3)

We expand the logarithm under the assumption that k has a vanishingly small
positive imaginary part,

2 2
2ika - & mt

[00)
log (1+ e 2 L;— e 2
m=1
and integrate term by term to obtain

0 m ) .
Ve - L sgn(cost) z L mka g omy) , (3.4)
m:
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where w =‘Vka/2 Icos@l and

2 o0 2
2 - -
6o =2 128 e M dp. (3.5)

(1-i)g

For values of ka and 6 such that‘f ka/2 lcos@l> > 1, we have

i L
o 4
G(W)“,T-z——;"; , (3.6)
and consequently
iZ 09} m
e () 2imka 1
e ~1 «fl?r?a‘cos@ 32 e +O(ka) . (3.7)
m
m=1
Similarly,
T
'y ®
U e 1 2imka 1
e 1- mk—a\cose Z 3/2 e +O(ka.) . (3.8)
m
m=1

When (3.7) and (3. 8) are employed in (3. 1), we obtain

ikr+i =
s [ 2 4 2sin(6/2) sin(6,/2) o
Ew T © cos9+cos90 cos [ka(s1n9+sm90)] +
iE
4 0 2m+1)2ka
'{m cosG cosG z cos [ka(sm@-sm@ )]
o 2m+1)
i Z’_
® e1(2m)2ka
‘{m(cose coseo)i " ) cos[ka(sm9+sm6 )J+O(—— s

m=1

(3.9)
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which is the desired expansion of the scattered field. In order to interpret
(3.9) physically, we now direct attention to the ray-optical calculation.

The primary diffraction due to the open-ended parallel plane waveguide
is obtained in the ray method by neglecting the mutual interaction process that
takes place between the two straight edges forming the waveguide mouth. In
this first approximation, then, the two edges behave as independent semi-infi-
nite screens, each in the absence of the other and each excited by the incident

ficld alone. Noting that the distances r., r, are approximately r I asinf

1’ 72

as r - o0, and taking into account the phase of the incident plane wave at the
two edges, we may at once write the scattered field from the parallel plane
waveguide as a superposition of the two primary edge waves:

T

ikr+i% 2sin(6/2) sin(6 /2)
S, 2 4 0 . .
E ~‘§’ T © cos [ka(sme + sin 60)] (3.10)

cosO+cos 90

provided (7/2) < (6,90) <.

This approximation is valid so long as ka >> 1, so that the interaction
between the édges is weak. However, for more closely spaced waveguides,
it becomes nécessary to include mutual interaction effects in order to improve
the accuracy of the ray optical procedure. To calculate the secondary diffraction
contribution, for example, each edge is considered to undergo an excitation due
to a cylindrical wave emanating from the other edge in addition to the excitation
provided by the incident plane-wave field. The cylindrical wave from the
edge is assum;ad to emanate from an equivalent isotropic line source whose
strength is chosen to provide the correct diffraction field in the direction
toward the other edge. Knowing how the field of such a line source is dif-
fracted by the half plane representing the other edge, one may write down the
first interaction contribution to the far scattered field.

The physical situation becomes somewhat more complicated for the

successive interactions past the first. This is due essentially to the fact that
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cach cdge lies precisely along the ray optical reflection boundary of the half
plance corresponding to the other edge. Consider, for example, an isotropic
line source of unit strength located at the position of edge @ in the presence
of the half plane @ . The field scattered back toward the line source -- along
the reflection boundary of plate @ -~ i{s then given by

. . T
EBS~ 1 5 e1k(r2+2a) iy 610
2 1rk(r2+ 2a) ’ ‘

and this cylindrical wave appears to emanate from an image line source located
at a distance 2a behind the half plane @ . From this example, it may be

| scen that each successive interaction between the edges of the waveguide gives

rise to a new image source and that an infinite number of image sources is

required to account for the mulitple interactions. By adding the contributions

due to the image sources, retaining in the process only terms through O(1/ ‘fla),

we obtain the following ray-optical result:

kr+i L 2 sm(e/z)sin(eo/z)f

ESv _Z_e 4

akr ' cosG+cost9o t

08 [_ka(sin 6+ sin 60)] +

.z
4

‘ i(2m+
. i 1 o) e1(2m 1)2ka

+‘Fl K ( * ) —————CO0S§ [ka(sinG-sinO )] -
wka " cosf cosO om o
° 120 2 12m+1
i X
4 o i(2m)2ka
e 1 1 e ' ' 1
’{m (cose * cosb ) 2m-~1 cos [ka(sm6+sm90)]+0(ka) ,

(3.12)

which is to be compai'ed with (3. 9).
The two results in_(3. 9) and (3. 12) differ because of the numerical factors

in the denominators of the summands, It is seen, however, that the primary

24



1492-1-1

diffraction, along with the first and second interaction contributions, are

in complete agreement. For each successive interaction after the sccond,
the ray-optical result (3. 12) underestimates the asymptotic result (3.9). In
order to obtain a more accurate result from the ray method, which is based
on diffraction of isotropic line sources, modifications are required in order
to take into account the fact that the equivalent line sources are not isotropic.
This is not necessary, however, because the exact edge interaction functions
tell us immediately how to modify the ray-optical interaction functions, at

least in the case of perfectly conducting surfaces.

3.2 Absorbing Case

Armed with the results of Section 3.1, we can now deal with the problem
of scattering by an absorbing parallel plane waveguide, for which, unfortu-
nately, an exact solution is not available., The geometry of the problem is
illustrated in Fig., 3-1 where, as shown, the interior surfaces of the waveguide
are governed by a constant surface impedance n2, while on the exterior surfaces
an impedance nl is prescribed. A plane wave is assumed incident upon the
structure from the direction 6 , where (x/2) < 6, <.

We shall employ the ray-optical procedure to calculate the field scattered
into the far zone by the edges forming the mouth of the waveguide. We make

use of (2. 2) to calculate the primary diffraction, which takes the form

s 1 o i(kr--zl-r-) -ika( sin9+sin90) ika(sin6+sin90)
u~ i Ve © e U(e,6 )+e U(27-9, 270 )
7 kr 0 o)

(3.13)

where (z/2) < (9,60) < 7. It may be noted that the function U(2%-9, 27-60)
properly accounts for the fact that the lower plate @ is illuminated on the My
side rather than on the nl side as is the case for the upper plate @ . The
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edge interaction contributions are calculated just as in Section 3.1 exce pt

that in place of (3.11) the following equation (in view of Eq. 2.15) is employed:

. T
BS_ 1 cosa,-1 5 e1k(r2+2a) iy 5.1
u 2 cos02+1 7rk(r2+2a) ) !

The final ray-optical expression for the far scattered field is

s 1 Alom i(kr-%) -ika(sin6+sin90) ika(sin9+sin60)
uvT=N e e ‘ U(0,60)+e U(21r-0,27r-00) -
i.’.’.
z 2m 1(2m+1)2ka [—1ka(sm0 -sinf ) ( 27r-60) .
‘iZﬂEa 2m+1m
ika(sing-sind )
+e ° uer-o, §I)U(i’l,e):l+
2 [0}
X
. 4 o R2m-lei(2m)2ka. —ika(sin9+sin90) 3
+Wz — e U(O,-z—)U L6+
2 ‘V 2m
m=1
ika(sin6+sind )U(Z _0’37r) (3 28 ) +O(—) (3. 15)
+e 2 2
where
cosaz-l
R= c—o§2_+.l_ . (3.16)

It may be noted that each successive interaction is reduced in magnitude not
only by the numerical factors appearing in the denominators of the summands,

but also by the reflection coefficient R which for good absorbers is very close
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to zero. The higher interaction terms are thus negligible in the absorbing

case, although in the perfectly conducting case they may play a more important

role.
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v
THE SEMI-INFINITE CIRCULAR CYLINDER

4,1 Perfectly Conducting Case

The Wiener-Hopf technique has also been applied to yield exact
solutions to tha important problemes of sauttering and radiation from a
hollow semi-infinite circular cylinder. This configuration therefore
constitutes another important prototype for testing the application of the
ray method. Levine and Schwinger (1948) (see also Jones, 1952, 1964;
Morse and Feshbach, 1953; Nobie, 1958) investigated the radiation and
reflection of sound waves in an open-ended cylindrical tube, while Vajnshtejn
(1954) treated the problem in more detail for both acoustic and electro-
magnetic radiation. The reflection and transmission properties of electro-
magnetic waves (H11 mode) in an open-ended circular pipe has also been
studied intensively by Iijima (1952) although his report does not seem to
be readily available. The problem of scattering of electromagnetic plane
waves by a semi-infinite circular tube was treated by Pearson (1953)
for axial incidence and by Bowman (1963) for general incidence; these
results may be found in the exhaustive review of Einarsson et al (1966).
Ray-optical analyses of modal reflection in an open-ended circular wave-
guide have been carried out for sound waves by Felsen and Yee (1968¢c) and
for electromagnetic waves by Yee and Felsen (1969). These authors have
also provided numerical comparisons of the ray-optical results with data
computed from the exact solutions. Again, the ray method is shown to be
capable of high accuracy even at the lower frequencies including the dominant
mode regime. We shall direct attention here to the plane-wave scattering
problem and present some new asymptotic developments. As in Section 3.1,
these results provide a term-by-term comparison with the ray-optical expressions.

The physical configuration is illustrated in Fig. 4-1 where, in terms

of cylindrical coordinates (p, @, z), the semi-infinite tube is located at p=a,
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\(P. ¢: z) =(r, 0, ¢)

FIG. 4-1: PLANE WAVE INCIDENCE ON SEMI-INFINITE

CIRCULAR CYLINDER,

z > 0. The incoming plane wave is propagating along the z axis with

spatial variétion prescribed by
! . A s
?.1 -4 e1kz

(4.1)

Part of this wave will propagate along the axis as a set of modes within

the tube and part will be scattered into the space surrounding the tube, In

terms of spherical coordinates (r, 9, @), the field scattered into the far

zone can be written in the form (Bowman, 1963)

ikr

- - €
EO-H¢- " £(0,9) )

S S eikr
E¢=-H9=—r—- g(9,¢) ,
where the angular distribution functions are given by

cos § J,(kasin6) L (ka)

£(6,9) = 5

2k cos (6/2) M? (ka) L (-ka cos8) (1- A%)
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asin @ Iy (ka sin@) M (ka)

g(ei ¢) = 2 2 ] (4.4)
sin(6/2) M" (ka) M (-kacos ) (1- A°)
with
. 1 Lka)
2% %@ Mka) (4.5)

The functions L(w), M(w) are factorization functions analytic and non zero

in the upper complex w plane, and are defined by

(1)
1

Lw) L (~w) ﬂJl(X)H n

(4,6)
(1)

OV

M(w) M(-w) = 7 AJ'I(A) H

where

A= V(ka)z-o.)2 , ImA >0 for Imk> 0, (4.7)

The imaginary part of k is assumed to vanish in the final formulae,
Explicit expressions for the factorization functions have been given by
Vajnshtejn (1954), who also derived their asymptotic approximations. In

particular, for ka >> 1 and cos 8 < 0, we have

L(-kacos®) = eU s (4.8)

where U is given asymptotically by (Vajnshtejn, 1954)

© 2iq L
! -
U~ o log <1 -e 2 dti,,/4 (4.9)
-® t+ |2ka e cosf
with
- T, 3
q=ka 2 + 8ka . (4.10)
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The Method of Section 3.1 may now be employed to obtain the following

alternative asymptotic representation:

eiW/4 N m -3f2 2imka 1
L(-kacos@)~1 + ———— z(-i) m ' e +0(—) (4.11)

‘q47r ka cosf6 m=1 ka

provided dka/ 2 lcos 6| >> 1, In similar fashion we obtain

il a
;o m—3/2 limka o 1

e
‘\l47rka cosf m=l ka

The assumption cosf < 0 means that we are confining our attention to

M(-kacosf) ~1 + ) o (4.12)

observation points in the backward half-space z < 0,
When the immediately preceding results are employed in (4.2) through
(4.4), the field scattered into the backward half-space is found to take the

form
. . T,
Es~e1kr Jl(kasme)cos¢ , R JA z m - f e2imka X
6 2kr  cos(6/2) W el
(4.13)
A [1 - (=)™ sech 0082(9/2)] )
. \ : . 7 ®
o KT J)(kasin6) sin @ R /4

2
sin“(6/2) Z m -32 2imka
E¢~ r sin(6/2) I-W cos 6 m=11 mooe ’

(4.14)

For kasinf >> 1 the scattered field is thus
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A ikr 2 cos (ka sin0 - =) sin ¢ i"/4
ESN¢ e ( 2a 4 1 - e X
= r \wksinf sin(6/2) .
(4.15)
9 ®
X sin"(6/2) z R m—3/2 e2imka
cos 6 !
m=1
whereas, for backscattering (9=7)
T ® ,
ikr i/ .
EBSN -x % 1+ = 2 i m_s/2 e21mka . (4.16)
‘Vﬂka m=1

It is interesting to note that the high-frequency backscattering cross section
is
o 7ra2 + O( L) . (4.17)
fka’
which is just the area of the mouth. The result obtained by Ross (1967)
for backscattering along the axis is apparently in error.

It is a relatively straightforward task to provide a ray-optics description
of the scattering process for axial incidence. For observation at (6, #) bounded
away from the backscattering direction, the points of diffraction (or scattering
centers) on the rim of the open tube are located at § and §+ 7. This means
that we can begin with the parallel plane result in (3.12) specialized to the

case 6 =7 ,
0

ES,V.. 2 eikr+17r/4 elkasine + e—ikasinG 1
7kr 2 sin (6/2) )
(4.18)
7 © ) [0 ,
) R /4 sin2(6/2)[ 2 e1(2m) 2ka e1(2m+1)2ka ]
9 - = ’
1[1_—'@ cos s 22m 1(2m)1/2 o) 22m (2m+1)1/2
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and suitably modify this result to account for the axial caustic of the circular
tube and for the divergence of rays due to the curvature of the rim, Each
time a ray txfaverses the axial caustic, its phase must be retarded by the
amount 7r/ 2: ; therefore, the summand in the first summation in (4,18)
requires a factor (-i)zm , While that in the second summation takes a

N . .
factor (-i)zm 1. Furthermore, the term elka sm¢

which is due to the

diffraction point at @ + 7 must be multiplied by (-i) since rays diffracted

at @ + 7 pass through the caustic to arrive at (6, §). The curvature of the

rim is taken into account by incorporating an overall divergence factor

(a/r sin 9)1/2 , wWhich is the same for both diffraction points under consider-

ation (see e.g. Felsen and Yee, 1968c). Finally, the incident polarization is
X = -asin¢+ﬁcos¢

A
and only the $§ component contributes since it is the component tangential

to the edge at § and @ + 7 . (The field scattered by the normal component
is identically zero for edge-on incidence.) When these modifications are
applied to (4.18), the ray-optical result for the semi-infinite circular

cylinder becomes (for ka sin6 >> 1)

¥
e’ /4 sin2(9/2) .X

A ikr 1/2 cos(ka sinf - =) sin
ES~¢ e ( 2a 4 1 -
= r \7ksinf sin (6/2) cos 0
4\]7rka

(4.19)

X .m 2imka
(3, L
m=1

2m—l ﬁ
in agreement with (4.15) up to and including the m=2 term. Complete
agreement would have been obtained if we had started with (3.9) rather than
(3.12).
In the backscattering case (6=7) a slightly modified ray method is
required because all points on the rim contribute to the backscattered field.

It is simplest to integrate the contributions around the rim i la Siegel (1959).
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The final ray-optical result is then

T, ©
ikr i'/a m 2imka

ORI LAY § RN z ~_C (4.20)

- 2r wka

m=1 2m—1 'JE

in agreement with (4.16) up to and including the m=2 term. Again,
complete agreement would have been obtained by starting with the exact
parallel plane result.

In the case of off-axis plane wave excitation of the semi-infinite
hollow cylinder, both the exact solution and the ray-optics description

are considerably more complicated, Let the incident plane wave be

ik(xsinB - z cos B)

I_«J_l = (ﬁcosacosB+§sina + QcosasinB) e , (4,21)

so that the incident wave is propagating parallel to the (x, z) plane from the
direction 6 =, § = 7. The angle o determines the state of polarization
of the wave., If the observation angle is outside the domain of reflected

cylindrical waves, that is
6>rn-3,

then the far-zone scattered field is comprised solely of the diffraction

contribution and is given by (4.2) with (Bowman, 1963)

; o mp, . |
a cos « e Jn(ka sin6) Jn(ka sinf)

£(6, 9) = '
cos(0/2) cos(B/2) - Ln(-kacose)Ln(-kacosB)
2 2 A2
x| 2.cos (6/2) cos (B/2) . n
- (4.22)
cosf + cosf 1-A2
n
2 sine Q, nf J (asing)!(kasinf) A
" cos(6/2) sin(B/2) = Ln(-kacose)Mn(-kacosB) 1o R ’

n
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o
6.0) - 2 sin o z e Jn(kasmO)Jn(kasmB)
g0,/ " sin(6/2) sin (8/2) n= Mn(-kacose)Mn(-kacosB)
2 2 A2
x | 2sin (6/2) sin”(B/2) ) n + (4.23)
cosf + cosf 1-3 )
n
o inf_ : :
ia.cos @ 2 e Jn(kasmG)Jn(kasmB) An
sin(6/2)cos (8/2) “~ Mn(-kacose)Ln(-kacosB) a2
‘ n
where
n Ln(ka)
A (4.24)

n 2ka M _(ka)

The factorization functions Ln(w), Mn(w) are analytic in the upper complex
W plane and are defined by

(1)

Ln(w) Ln(—w) =TA Jn(k) Hn

\ ,
(4.25)

=y 1 o)
M (@) M (0) =7 X3 ()H

A,

with A as in (4.7)

For simplification, we shall first restrict our consideration to
observation points in the plane of symmetry — the (x, z) plane ~ and
further, we shall consider only source and observation angles such that
cos <0 and cos@ <0. Inthis case the factorization functions approach
unity as ka —» o, and the leading terms for the angular distribution
functions are

Q

n
£e,7) 2cos(8/2)cos (B/2) z (-1)

£(6, 0) ~acosa cos6 + cos B 1

J (kasin6)J (kasinp),
n n

n=-0
(4.26)
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g6, ) . .
A 2 Bing 2 sin(6/2)sin (B/2)

g(0,0) cosf + cosf

(00] (_l)n
z 1 Jl'l(ka sinG)JI’l(ka sinf) .
n=-0
(4.27)

The summations immediately above can be carried out explicitly by means

of the addition theorems for Bessel functions. We obtain

£(0, )

) 2c0s (6/2) cos (8/2) . .
£(0,0)[V#%%%% TCos6 + cos B I [ka(smeismﬁ)] , (4.28)
g(6, 7) n+ g sing 2510(0/2)sin(B/2) [ka( 10+ s B)] (4.29)
g0,0[ —*%% Tcos6 + cos B 1 sintsinp) . (4.

In the case of backscattering (6 = B, § = 7) the outgoing field is

BS ael’

~
= rcosf

[§sina sinz (B/2) J] (2ka sin p) -

- (x cosf + 2 sin p) cosacosz(B/2) Jo(2ka sin B)] . (4.30)

For axial incidence (8 = 7) agreement with the leading term in (4.16) is
obtained (now the incident field is polarized in the S‘r direction), Moreover,

for kasinf3 >> 1

ikr
e

EBSN
= rcosf

1
s \? . ,
<7rksinB cos (2kasinf - ) [y sina sin“(8/2) -
(4.31)
- (Rcos B+ Zsinf) cosacosz(ﬁ/z)] )

which is in agreement with the ray-optical calculation (see e.g. Ross, 1967).
Further insight is gained by examining the ray structure for general
observation locations. If cosB<0, cosf<0 then at least two diffracted
rays pass through each observation point in the far zone. These rays
correspond to the existence of at least two points of diffraction (or scattering

centers) on the rim forming the mouth of the open waveguide. Let us consider
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the set of diffracted rays arising from an induced source element at
¢= ¢s on the curved rim, which may be regarded as locally straight
because of the large waveguide assumption ka>> 1, In general the
incident ray strikes the locally straight edge at an oblique angle so that
the family of rays emanating from the point of diffraction ¢s forms a

right circular cone. Now, the equation

rsinf sin(f-9 )
s =+ cos Y, o<¢/<§ (4.32)

1
[rz +a’- 2rasind cos (¢- ¢s)] /2

describes a right circular semi-cone of central angle 2y with apex on the
rim at ¢S and with interior axis in the as or -85 direction depending,
respectively, on whether the upper or lower sign is chosen, The angle

¥ is determined by ray-optics considerations; in particular, ¥ is the

angle formed by the incident ray and the tangent to the edge at ¢s . Since

A A A A A A
k =x sin B - z sin 3, ¢S=-xsin¢s+ycos¢s , (4.33)

and since we want 0< y < (7/2), we can take

A A
cosy = k-¢s

= IsinBsin ¢s' . (4.34)

From our geometry it is seen that the diffracted rays must lie on semi-
cones with axes in the directions + ¢s for sin¢s % 0 . Inboth cases, the
""ray cone" emanating from the point of diffraction at ¢s is described by the

equation

rsing sin(f-§ )

T— = - sin B sin g . (4.35)
2. 2 . /2 °
r +a -2rasinf cos(¢-¢s)]

In the far zone (r-» @ ) the cone equation (4.35) becomes

sin 6 sin(¢-¢s) =-sinBsin¢s . (4.36)
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For a fixed observation location (9, ), Eq.(4.36) can be solved for ¢s )
and since both ¢s and 7 +¢S will appear as solutions, it is clear that two
diametrically opposite points of diffraction will yield a diffracted ray
passing through the point (6, ). Thus, without loss of generality, we may
assume that 0 < ¢s < 7 provided the two rays from ¢s and 7 +¢s are
taken into account. It may be noted that (4.36) is identically satisfied for
all ¢S if0=B=7 orif 6 =5, § =0. The former case corresponds
to backscattering with axial incidence; the latter case is described by
(4.28) and (4.29) in which the angular functions £(3,0), g(B,0) are
governed by Bessel functions whose arguments vanish., In both cases all
points on the rim contribute to the diffracted field.

Provided the two cases cited immediately above are excluded, the

field scattered into the far zone is of the form

. . Aoa oA 7
ESN .(ikj_ D asinZ%___ elka [(k-r) ) p(¢S)J + 1 /4
- r - (r-k) - 6(¢S)

(4.37)

asin ¥
TR - plr+p)

V 2 ' ika [(1:-;‘)-3(7r+¢s)]+iw/4
+
(

where D is an appropriate vector diffraction coefficient (with a factor

i A
e1 ”/ 4 excluded) obtained from the half plane solutions and where k is

given in (4. 33) while

A A A A :
r=xsinf cos  +y sin 6 sin § + z cos 6,

N ) | (4.38)
p(ﬂs) = X cos ¢s+ y s1_n ¢s . \‘

Combining (4.33), (4.36) and (4.38) we obtain
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(3K - 3(¢S) = sin0 cos (- ¢S) - sinfcos ¢s

(4.39)
1
= _5.1_’1_9_51@_ = sgn(sin¢)(sin26+sin23-2sin9 sinBcos ¢)/2 ;
sm¢S
thus the scattered field (4.37) behaves as
s eikr 2a sin2¢/ 1/2 T
E°~v D cos (2kaQ--—) (4.40)
- r = Q 4
where
2 2 l/z
2Q2 = (sin"0+sin"B-2sinfsinfcosP) ' , 0<Q<1, (4.41)

It may be noted that  vanishes only if 0 = =7 orif 6 =8, § =0,
which are the cases we have excluded above. In the case of backscattering
(0 =B, § =) the field in (4.40) will reduce to that in (4.31),

4,2 Absorbing Case

In view of the results of Sections 3.2 and 4.1, the problem of axial
incidence upon an absorbing semi-infinite cylinder may now be treated
without diffi%:ulty. The geometry of the configuration remains the same
as in Fig. 4-1, except that the interior surface of the cylinder is assumed
to be governed by a surface impedance N » while the exterior surface is
governed by an impedance nl .

As pointed out in Section 4.1, the parallel plane result may be
suitably modified by ray-optical considerations to yield the circular
cylinder result, and indeed, in the case of perfectly conducting surfaces
the exact parallel plane result can be used to yield the exact cylinder result,
When the surfaces are absorbing, we begin with the parallel plane result
in (3.15) with 90= 7, and then incorporate the appropriate ray-optical
modifications that are necessary to account for the axial caustic of the
circular tube and for the curvature of the rim forming the mouth of the tube.
For axial incidence given by (4.1) and for kasin@ >> 1, the far field
scattered by the absorbing semi-infinite cylinder is found to take the form
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A n A
§s~-¢un sinf +0 ol cos ¢, (4.42)
where
ikr 1/2 T
-c' 22 ~ika sin§+i'4
un - e U, )+
4r 7ksin®

+U(6,37/2) U(3x /2, )

T 0 :
R /4 z M-l 2imka :' .
i’ mel 2™ g

. : '7r i
+ e1kas1nt9-1 [4 l-U(zﬂ_e‘ T) + U(27-6, 37 /2) X

iw/4 X R

Rm—l e2imka
x U(3r/2,7) < . (4.43)

Vnka m=1 2m+1 ’\[F

In (4.42) the affix H or E is attached to indicate where (2.7) or (2.8)

should be used to determine the constants ajld 9 arll3 9

in the functions above. For a perfect conductor,

that are implicit

H - S 2
u(e,7)=0, UM©,7) = s/

8sin(6/2)

E
U6, 37/2) UE (37 /2, 7) = - v

and agreement with (4,19) is obtained.
To obtain the backscattered field, we begin with (3.15) specialized
to the case 60= 6 =7, and incorporate only the ray-optical caustic corrections.
The outgoing electric field from a diffraction point on the rim at § then
has the form

i(kr+ 7/4) i .
SI— (gl s - r_:isH) , (4.44)
orkr Al
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where E:“and Q_ll_ are the components of the incident field parallel and perpen-

dicular, respectively, to the rim at the point ¢:

g;f X sin®f) -y sin fcosf, (4. 45)

Ei= X cos? ¢+951n¢cos¢ .

The quantity S is given by

s
2, 3 z i
25=U(r, 7)+U (w, Eﬂ-) ° : Rmﬂ ° . (4. 46)
vrka' m=] 20 S ym

To convert the field (4. 44) to a three dimensional field, we multiply (4. 44) by
-7 1

Siegel's (1959) factor e / 4(k/ 27r) 2 ady and to add up the contributions from

all points on the rim, we integrate over ¢ from 0 to 7 (rather than 27 since

we began with the parallel plane result). The backscattered field is then

BS A aelkr
E ~ =X
= 2r

(SE-SH) . (4. 47

E
For a perfect conductor SH=O, and S becomes

i/4 N .m 2imka
ie

J

Vika m=1 2™ vm

so that agreement with (4. 20) is established. On the other hand, for a perfect
absorber (nl=n2=l ) we have SE=SH in agreement with Weston's (1963) general
absorber theorem. Weston's theorem states that any body whose shape is in-
variant under a rotation of 90° about an axis will yield a vanishing backscattered
field if a plane wave is incident along the symmetry axis and if the surface im-
pedance of the body is unity. The circular cylinder under consideration here is
a special case governed by Weston's theorem.
In the case of off-axis incidence with the incoming field given by (4.21),

the backscattered field (for which §= B, ¢=r) may be derived in the form,
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provided kasinf3 >> 1 and cosf<0 ,

_E_BS =y Esina+ (R cosB+y sinB)uHcos a (4. 48)
where T
" oikasing+i T
uN_.emr( . 1/2 2ikasing 14 VEB +
4r wksmB ’
2ika sinf-i Z
+e u@@r-B,27-B) { . (4. 49)

Equation (4. 48) represents the appropriate generalization of (4.31), and indeed,

if the surfaces are perfectly conducting, then

2
UE(B,B)= 2sin (B ’ UH(B 8= 2cos (6(2)

cosf cosf

)

which yields agreement with the result in (4. 31).
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\'
THE RECTANGULAR DUCT

We now direct attention to the problem of scattering by a rectangular
duct of uniform cross section and finite length. The walls of the duct are
assumed to be absorbing and such that an impedance boundary condition may
be applied. Rather than determine the field scattered directly by the edges
forming the mouth of the duct -- a task which is easily accomplished in view
of the preceding sections -- we are interested in determining the contribution
to the radar cross section due toenergy launched into waveguide modes which
may be reflected by the closed termination of the duct and reradiated back
toward the transmitter. The first step is to calculate, by means of ray optics,
the diffraction fields generated at the mouth of the duct by the incident plane
wave. This Einformation must then be used to calculate the conversion coeffi-
cients whichkcouple the induced aperture fields to the waveguide modes in the
duct. In the process, the modal structure for a rectangular waveguide whose
four walls obey an impedance boundary condition must be examined. Because
of the boundary conditions, the modal problem is not separable; however, the
modes may be determined approximately by means of an asymptotic analysis
applied to the transcendental eigenvalue equation of infinite order. Orthogonality
relations for the modes may be derived by using the Lorentz reciprocity theorem
in conjunction with the boundary conditions and symmetry conditions. Finally, |
the scattered field due to modes reflected from the duct termination are obtained

by means of a Kirchhoff approximation over the aperture formed by the mouth.

5.1 Aperture Fields

The geometrical configuration for the rectangular duct is displayed in
Fig. 5-1, where the origin of the Cartesian coordinates is taken at the center

of the guide cross section and in the plane of the open mouth. The duct is assumed
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to be terminated at a-distance L from the mouth by a perfectly conducting
plate transverse to the z axis; the waveguide is thus short circuited at the
termination and the modes suffer no decrease in amplitude at the point of
reflection. The incident plane wave is taken as

. -ik(y sinf +zcosf )

i A A o 0
E = (ycosOo-z smeo) e

(5.1)
-ik(y sin 60+ ZCOS 00)

and is therefore propagating in a principal plane of the waveguide structure.
Finally, an impedance boundary condition of the type (2.1) will be imposed

on the walls of the duct. For simplicity, it will be assumed that both the
interior and exterior surfaces of the duct are governed by a single constant
impedance n. This assumption is made because the plane wave in (5. 1) is
incident obliquely to edges @ and @(see Fig. 5-1), and as pointed out in
Section 2.2, the diffraction coefficient for oblique incidence on an absorbing
half plane is available only if the impedances on both sides of the half plane are
identical.

The primary diffraction fields generated at the mouth of the duct by
the field (5.1) will be determined from ray diffraction theory with suitable
modifications to account for the finite lengths of the diffracting edges. We
begin with the fields due to edges @ , @ , and employ the half plane results
(2.35) and (2.36). When the change in coordinate systems is accounted for,

the half plane diffraction fields take the following form. For edge @ :

-iky sin00+ikp 3c0590
A ~
d_i -ir/4 = [(Qsine -ycosd ) M(6 )-2M(6 )] ,
E'==e¢ 1/2 0 0 0 0
= 2 (27rkp300590)
(5.2)
-iky sinf o+ikp300590
d_i -ir/4 e [A A ~ A -']
H'=3e 7z (xs1n9o ycos@o) M(60)+ zM(Go) .

1
(27rkp300590)
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N\

FIG. 5-1: PLANE WAVE INCIDENCE ON RECTANGULAR DUCT.
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For edge @ :

-iky sinf o+ikp 4c0560

d_i -im/4 e A A AN
E =—c¢e -(X sinf +ycosd )M(6 )-zM(6 )| ,
= 2 (21kp cos0 ) 1/2 0 o o 0

4 0 .
(5.3)

. _in/4 e—1ky sm60+1kp 4cos60 ) 3 )

H = 7 e [(’}\csm60+ycoseo) M(Go) -zM(eo)] ,

1/2
(27rkp4coseo)

where pg= (a-x), p M (at+x), and the M functions are given in (2.37). In these
functions the quantities aE(eo), aH(BO) appear implicitly and are determined
by (2. 28). '

To account for the finite lengths of the edges, we consider the integral

® T2 n211/2
_l_j o Iky'sindo elk[p ) ] dy"
2mi 2 211/2
" [o2ty-y 3

kv sing +i
iky smeo ikp cosG0

-1ky sind -iﬂ'/4 e

1 o_(1)
=< e H' ' (kpcosh )~ e
2 o 0 (27kp cosh )1/2
° (5. 4)

In view of (5.4), better results for the aperture fields are expected if the

quantity

-iky sm@o-xkp cos@0

1 e“iﬂ/4 (27kp cosé)o)_l/2 e (5.5)

appearing in (5.2) and (5. 3) is replaced by the finite integral

1 b -iky-'sineo eik[p2+(y—y')2] 1/2
dy' . (5.6)
.{ b [p2+(y-y‘)2]1/ 2
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The integral (5.6) physically corresponds to a finite line source with traveling

wave current. Let us denote this integral by Ib(p, y,eo), then the aperture

ficlds due to edges @ and @ may be taken as

A, A A
E= Ib(a-x, y; 60) [(x smeo-ycosf)o) M(GO)-ZM(GO)] -

A A A
- Ib(a+x, y; 90) [(x sm00+ ycoseo) M(Go) +2 M(Go)] , (5.7)

A A ~ A
= Ib(a- X,V; 00) [(x smOo— ycoseo) M(OO) +Z M(Oo)] +
A A ~ A
# L arx,y; 0,) [(Rsing +Feoss ) (o )-43u00 )] (5.8)

The quantity M(GO) is due to an electric line source, while the quantity M(Bo)
is due to a magnetic line source.

In the case of the remaining two edges, @ and @ , the half plane diffraction
fields are determined from (2.2) with due account given to the phase of the

incident field at the points of diffraction. For edge @ :

-ikb sind +ikp,

Ed _ Q:-;- e-iﬂ’/‘l e ?/2 UH(§2£, -0)
(27kp % 6.9
o -ikb sin60+ikpl
AT
(27kp )
For edge @
ikb sin90+ikp2
I_«:d=-/z\§i- e—i7r/4 e 7 UH(32—7T, 7r+90),
(27rk02) 510
. ikb sin90+ikp 9 .
Ed - _Qzl e-iar/4 e 7 UH(§2£, o)
(27kp ) :
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where p= (b-y) and py= (b+y). Here the impedances on the two sides need
not be equal; however, we shall still adhere to our assumption that the impedances
are identical. We also note that multiple interaction between edges @ and @
can be taken into account by incorporating the results of Section 3. 2. Finally,

since

o) k[p+ (x-x") ]1/2 _
1 e (]()kp)~ -iwf4 _e ' o

27 J_ [p2+(x_x,)2]1/2 ka)l/z

L]

(5.11)

it is clear that better results for the aperture fields can be obtained upon

replacing

o 1T/4 (010 712 1Ko (5.12)

by the finite integral

a ik[p2+ (x-x')z] 1/2
— ¢ dx', (5.13)

27i . [p2+ (x_x,)2]1/2

The total aperture fields are obtained by combining the above results for
all the edges @ s eeey @ . We define

) f -iky'sind eik[p2+(y-y')2_-_| 1/2
(o,y;6 )=—=§ e dy' , (5.14)
=N (2 -y 2 ]2
1 a ik[p2+ (x-x')z] 1/2

\
(X = o dx' (5. 15)
a ‘ [p - (xex ,)2]1/2

then the aperture fields may be written in the form
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= —x e : AN Ay -
E=1,(a-x,y; 0 ) [Rsin0_ §eos0 ) M0 )- 250 )]

. A A N
-1 (at+x,y; 00) [(x sm90+ycos(90) M(Oo) + AM(OO)]+

b
R 1 -ikb sinGo R H ikb sinOo
+7 Ia(b-y, x) U (00) e -zIa(b+y, x)U (-90) e ,

(5. 16)
_ _ . A . _A ~ A
H= Ib(a X,¥; 00) [(x sm@o ycoseo) M(eo) +7 M(Oo)]+

A A ~ A
+ Ib(a+ X,V; 00) [(x sm00+ y cos@o) M(Oo) -7 M(Go)] -
-ikb sinf ikb sinb
A H 0 A H 0
-xIa(b-y, X)U (oo) e -xIa(b+Y.X) U (-90) e ,
(5.17)
where the M functions are given by (2.37) with (2, 28) and (2. 38), and where

l//;};(ﬂ'/Z) cos(60/2)

o (r0)= [0 17 sinto /2] (5.19

(1+n) 1/2 (IJH(Go)coseo

with n= cosaH. For 90= 0: M(0) = UE(O), M(O) =0,

5.2 Boundary Conditions in Rectangular Waveguide

The problem of determining the modal structure in a rectangular wave-
guide whose four walls are absorbing is greatly complicated by the fact that
the boundary conditions are inseparable. Investigations of alternative tech-
niques for obtaining the fields inside the duct have revealed that the boundary
conditions are most convenient when expressed in terms of the electric fields
tangential to the normal cross sectiow. of the duct. In this section we shall
display a modified form of the standard impedance boundary conditions.

The geometry for the rectangular waveguide is as illustrated in Fig. 5-1,
although now we are considering a waveguide of infinite length. An impedance

boundary condition (2. 1) will be imposed on the four interior walls of the waveguide,

49



1492-1-F

with the walls characterized by a single constant impedance 7. In terms

of the field components the boundary conditions are as follows:

On y =+ b: EX=+nHz,
(5.19

E =+nH |,

7z =

On x =+ a: E =thz,
v T (5.20)

= 4 .

Ez nHy

We select the transverse components Ex‘ Ey as the two fundamental field
quantities. In terms of these components, Maxwell's equations allow us to

rewrite the boundary conditions in the form

- 4 —Y_ .. —x_. ik Y
On y =+ b: 5y -i_-1knEy ' By + n Ex+ o (5.21)
aEx B_Ey ik aEx
=+a: —_—= ] =+ — + - . .
Onx=+a ™ _1knEX, % Ly Ey 3y (5.22)

Two of these boundary conditions are uncoupled, whereas the remaining
coupled boundary conditions appear to have the simplest form -- indeed,
other choices of basic field quantities, aside from Hx and Hy’ lead to much
more complicated expressions involving second derivatives. In terms of the

transverse magnetic field, the boundary conditions may be expressed as

=+ Db =4 -— —_— =4 R
Ony=+b 5y Ll Hy’ 3y _1anx+ P (5.23)
aHx ik fi_y aHx
=+ a: — e — = i — .
Onx=+a m - L T) H_, o ﬂ_-_1any+ 5y (5.29)

50



1492-1-F

and are, of course, derivable from (5.21), (5.22) by invoking the natural

duality of Maxwell's equations and the impedance boundary condition.

5.3 Scalar Eigenfunctions

The boundary conditions in (5.21) and (5. 22) strongly suggest that we
examine first the eigenfunctions satisfying the uncoupled relations. Such
eigenfunctions would be appropriate for a rectangular acoustic waveguide
with non-rigid walls. The electromagnetic eigenfunctions will be represented
as expansions with respect to the acoustic eigenfunctions.

The scalar functions of interest are determined by the differential equations
" Bz 0 1" 2 0
+ = ' =
0 (x) m @m(x) , X, (y) + A xn(y) (5. 25)

and the boundary conditions

7@ =ikng_(a) , X, () = ikmx_(0) . (5. 26)

For convenience, let us consider explicitly only the set of functions{@m(x)};
all relationships for the set {xn(y)} follow by simple notational changes. The

functions Qim(x) will be defined as follows:

g/m(x) cos Bmx

= for m=0,2,4
7 2 Gy Ry
ym(a) cosBma

(5.27)
@m(x) sin Bmx
J_(a) ~ sinB a for m=1,3,5,...
m : m
where the boundary conditions are met by adjusting Bm so that
B tanB a=-ikn (m even)
(5.28)

Bm cotha = ikn (m odd)
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and where um(a) is given by
2
B

m
2 2 .
(B2 -K*n) a-ikn

i}m (a) = (5.29)

With these definitions, {@m(x)} forms a normal orthogonal set of eigen-

functions such that

a
‘5‘ 7,0 § () dx = 60 (5. 30)

a

where 6; =0 (m # p) and 6112 = 1. The set of derivatives{@in (x)} forms

a set of functions with the interesting property

P
m ?

a
f o (m@;)(x)dx-zikn@m(a)@p(a)= Biﬂa (5.31)

a

provided m,p are cither both even or both odd. This follows easily from

integration by parts:
a a a
j g, @;)(x)dx= [;D;n(x) @p(X):l -a- f oy (¥ _zZ/'p(x) dx
-q -a

a
= 2ik n@m(a) @p(a)+ B?n f gDm(X)LT/ p(x) dx

-a

= 2ik ny}m(a) LZ}p(a) +BI?;1 6;

Because of the orthogonality properties (5. 30) and (5. 31), expansions

of a function f(x) with respect to the systems {Qm(x)} and {@;n(x)]- take the

form
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a
f(x) = z 7_(x) j‘ 9 ) () dx |, (5.32)
m -a
7' (x) a
f(X)=Z r; ! ) g7 (%) dx - -fa) g (a)+ K- (-a)p (-a)
B
woomo (5.33)

For our later application, some particular expansions will be most useful;

for example,

o, 7 (@7 (9

cosu X _ z
singa+ikncosua 2 2
M SInU necosu u“- B

m m

(5.34)
(@7 ()

siny x I
- ; = -2 E _,
ucosua=-ikn sinya 2_ BZ
m H m

where the affix e or o indicates whether the sum is over even m or odd m.
The summations in (5. 34) are unformly convergent in | X i <a; however, the
differentiated (term-by-term) series are uniformly convergent only in the
interval l X IS a- €, 0<e<a. For this reason, it may be important to have
expansions whose derivatives are also uniformly convergent at the boundary

X=a; in par.icular, the series

cosy X L, @m(a)@;n(x)
u (u cosu a-ikn siny a) 32 (u2_32)

(5. 35)
siny x (a)_u_'?' (x)

e
=-2
sinua+ikncosua
u(u siny neosu zm (“ B )

and their derivatives are uniformly convergent inl X lg_ a.
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Equations (5. 34) and (5. 35) lead to the following relations:

B () o, § () ()

2d © B
‘2(3
D) EB

(m even)

7_(x) o, U (a)P' (x)

m_ _ -2 (Bz -k2 7’)2 z (m even)
g (a) m 2 2
m . Bp Bm Bp)

e a)gD' (x)

= -2(3 K z (m odd)

p

all valid for l X I <a. We also obtain

1 psinpa cosu'a-u'sinu'acosua _

#2_“'2 (usinpa+ikn cospa) (u'sinu'a+ikncosu'a)

(a)
2 2
) (u Bp)

7
wi-8)

S DN

?

e
2
ixs

P

TN

1 pcosuasinu'a-u'cosu'a sinua

p2_“,2 (u cospa-iknsinua) (u'cosu'a-iknsiny'a) -

(a)
) (! -B)

o DN

Y
R

[
1
o
'OMO
o

]
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Other scts of scalar cigenfunclions are obtained upon replacing 1 by

1/n. These will be denoted as 'fj';m(x) and A)En(y), where

g () + Efn ;j’lm(x) =0, X o) +3”2~ (y) =0

(5.39)
with boundary conditions
~ ik ~ ik ~
pr@="-7 (a , X L) =25 % (b) (5.40)
The sct{fzm(x)} is reluted to{ _«[/m(x)} through the expansions, valid for
x| <a,
f;' (x) QD (a)[ (x)
T @ - 2ik(n —) z (m cven)
(5.41)
o 7 (a)f (x)
- Zik(n—%) X L2~ (modd
o Puf
Also, we have for 'xl <a,
Q?' (x) o T (a)f (x)
g = 2(52 LB (m even)
y?m( BZ ] Bz
p m p
(5.42)
n U (a)f (x)
=23 -i) LB (modd) .
m "B'Z _B2
p m p

Finally we note
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c Q} :
‘) @ (a) = &% (m, m*' both even) ,
| z (B -B )(B B ) ®
(5.43)
2
9 9 [ (a) !
4k <n-—) 7 (@) ‘z ey =5m (m,m' both odd) .
Py PPy

Many other expansions can be derived. The eigenfunctions 'J/'m(x), 'in(y) are
particularly appropriate for representations of the magnetic field [compare

the boundary conditions (5.40) with those in (5.23), (5. 24)] .

5.4 Approximate Eigenvalues for Scalar Functions

In general the tangent-cotangent equations (see, for example, egs. 5.28)
that determine the (complex) eigenvalues Bm’ Bm’ 'Yn' ;n must be solved by
numerical or graphical techniques. In some cases, however, they may be solved

apprc .mately. Let us consider the equations (5. 28)

Bmtan Bma = -K (m even)

(5. 44)
Bmcotha =K (m odd)

where K = ikn. For IKal >>1(or for mr<< IKa| ) an approximate solution

is given by

B awZI (mt1)Ka . (5. 45)

m 2 Ka-1

On the other hand, for IKaI << 1 (or for mr> >| Kal ) we have

mm 4Ka
P2~ 5 [1' 2 2] (m £ 0)
maa
(5. 46)
Bma." -Ka  (m=0)
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from which it is clear that the cigenvalues and cigenfunctions of high order

(m large) approach those of ordinary Fourier analysis. This very important
property is characteristic of Sturm-Liouville problems, and strongly suggests
that an asymptotic approach may be applied in the investigation of the electro-

magnetic modes in absorbing rectangular waveguides.

5.5 Modes in Reciaudiar Waveguides with Absorbing Walls

We are now in a position to investigate the clectromagnetic modes, which
will be obtained by representing the transverse clectric ficld as IFPourier
series with respect to the systems {wm(x)} and {xn(y)} . The first

step is to decompose the solutions into four independent parts

ee
E =E +EC+EC+EY |
y y y y y
00, _0e K _eo _ee (5.47)
E =E +E +E +E |,
X X X X X
where the superscripts o, e refer to odd and even parity, and the first refers

to this property with respect to the variable x, and the second with regard

to the variable y. The independent solutions are formed by the pairs

(E°, %), (%, E%°), (£°°, E°®), (E®°, E®9) . (5. 48)

Considering the first pair, for example, we can write the fields as

e o X (P x (v)cosu x

Eee _ e-1hz A ‘ '
y o sin a+$ CoSu a
’“‘n “n n un

‘ n

(5. 49)
a)(D (x) siny oY

0O .
: oo —1hz
= B ,
m ik
v cosv b---smv b
m n

57



1492-1-F

2 .2 2 2_ 2 2 2 2 2
where h"=k™-a”, Imh<0, Moo= a - 'yn , and v, = a Bm. The uncoupled
boundary conditions in (5.21), (5.22) are thereby automatically satisfied. An

alternative representation is

Al X (MY (] ()

i e 0 ‘
_ 1zg g anmX :b) .

(5.50)
o_ -1hz g = memn-(p (X (b)xn(y)
m n 'Yn Ijm(a)
where
r21(b)“ (u cosp a~ikn sinp a)
a = ,
nm 2 . ik
(un- Bm) (un51n;,¢na+ - cosuna)
(5.51)
2/2 (a)v (v siny b+ikncosy b)
0 - . —m m
2 ik
e (v Voo ) (v_cosy b-—n- siny b)
Yet another representation is
pee _ o -ihz e 0 (b)x (y){ (a)g? (x)
= A s
2 2 7
n m ” m
(5.52)

@7_(0X % ()

. 0 [ @
Eoo___ —%e ihz < Bo m
X m 2 a2
V.=
m n

The eigenvalues h are determined by applying the coupled boundary con-

ditions in (5.21), (5.22). To this end, we employ the first two rc resentations.

On y = b the relation
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EYo
o0 _ ik N o
<ay - ) E = — (5.52)
becomes
0 o -0 e e e
D B U@ = > PR AT G (5.54)
m m n
so that
(¢]
B® = er 2’  (modd . (5. 55)
m n nm
n

Similarly, the coupled boundary condition on x = a yields

0
A% = 2 Bo b0 (n even) . (5.56)
n m mn

m

We thus obtain two sets of homogeneous equations:

e "o
2 Ae z {ae bO -6n} =0 (n even)
S sm mn S
S m
0 o 0o e m
ZB z {b a® -6 } =0 (modd) .
s A sn nm s
S n

The eigenvalues h (or o) are determined by the requirement that the Go.crminant

(5.57)

vanishes, that is

o
N G.e B’ - 6n) =0 (n, s even) . (5.58)
Ssm mn s

m

Thus the eigenvalues are specified by zeros of a transcendental determinant

of infinite order.
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Approximate expressions for the high order modes can be derived by
recognizing that only a few terms contribute significantly to the determinant.

To illustrate, we assume M,N to be large integers and set

a = 32 + 72 + 62 (M odd, N even) (5.59)
M N
where

le l>>[52i , ]yzl >>l62| .
m N

Then the only significant contribution to the determinant arises for s =n=N,

(5.60)

m = M, and the eigenvalue equation (5.58) reduces to

e (0]

LN bMN =1, (5.61)

Now, to a first approximation in 62 we have, upon expanding (5.51),

2
Xir(b) [1+ 4—;—2— 2a@12v[(a)+ 1}]

o ¥ - .
M 2 2 ’
gl (-4 )£ it ]
Pu/ Py
(5.62)
2
72 (@) [1+—5—2- {szi (b)+1}]
Y = Y .
NM 2\ 2 ;
xi(b)l: 1- £ e {1+ikb (n-l)};l
/2 n
N

2
thus, in view of (5.61) and (5.62) we see that 6" is specified approximately by
a simplec algebraic equation. For

2| 2 Izl 2
BM >> ko, 'yN >>k"” and ka> 1,

kb > 1 which implies !'83/1] >> (k/a), 'Ylil >> (k/b) we have
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-41\2 ’Yz + ,B )

52~ > > — . (5.63)
(7 +BM) -2i (n- ;7-)(ka7N + kb )

When n =1 note that 62~ -4k2. Also, when ka = kb =1

2
gl —H , (5.64)

1
1-2' -

and one may expect the technique to be valid for the low order modes in the
case of resonance frequencies ka ~ O(1) , kb~ O(1). Increased accuracy
can be achieved by allowing more terms in the determinant to enter.

The remaining pairs of modes are treated similarly:

X, ()X () cos x o A x (N (7! (x

. ) 0
eo  -ihz e “n n n -ihz m “m
By e zAn ik me z E 2 '
o W Sinp at T coska = &a Bmxn(b)

(a)g (x)cosy "/

oe___ 'lhziBe m — -1hz§2 b @ (k)xn b)xn
- mv smv b+-7-7- cosv b 'y 117 (a)

m
(5.65)
£%8- e-ihziAo Xn(b)x (Y)Smp. X _ -1hz§§ 2 n(yw (a)@' (x)
4 n " 2 COSH a-%smu a s B X (b)
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- , 00 .
00 -ihzews .0 Xrx(b)xn(y)Sm”mx ~ihz g € Ananmxn(y)i;m(a)“ (x)
E =e A : =e ,
y 2 n cos a-ﬁsin a EE 52)( (b)
n HaoBHp2= 7 Hy n m m™n
e. e
ce -ihz‘% e f/m(a)sz?m(x)cosymy iz e me mn@m(x)xn(b)xn(y)
E =e B - =-e
X L M, siny b+ cosy b zz 'Y2 (a)
m S Ym m n n‘*pm
(5.67)
where a° s bo are as defined in (5.51) and
nm’ “mn
2 . .
. 2 X, (b)un(unsmuna+ ik ncosuna)
am~ 2 .2 ik ’
(un- Bm) (uncosuna- " smpna)
(5.68)
2 . .
o 2y_(a) vm(ymcos v, b-iknsin ymb)
mn

2 2 ik
- 3 +..._
(v Yn) (v siny b m cosv_ b)

The uncoupled boundary concitions are again automatically satisfied, whereas

the coupled relations demand

B = - z NN (m odd)
m n nm

n
(5.69)
e > e e
A= - z B® b (n odd)
n m mn
m
o qf?-; o o
Bm= - é An anm (m even)
" (5.70)

e
A0= - 2 Bo b° (n even)
a m mn
m
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0
B® = z 223° (m even)
m n nm
a (5.71)
o = _e e
A= Z B b (n odd)
n m mn
m
so the eigenvalue equations become
< e e n
z<a b -6>=0 (n, s odd)
Ssm mn s
In
= n
z (a -6 ) =0 (n,s even) (5.72)
Ssm mn s
m
- n
Z(a -6 ) =0 (n,s odd)
Ssm mn s
m
L ) ) 0 e ) e .
In the asymptotic approximation a__~ a_ , b~ b, so that the approximate
nm nm’ mn mn

2
expressions for ¢ have identical forms for all mode pairs.
The result of the above analysis is that for each high order mode char-
acterized by a pair of large integers M, N, the unknown eigenvalue h can

MN
be determined approximately and is ;iven by

2 2 2 2 2
k™ - - - 0
™ KBy 8, Imby< (5.73)
2

where 6 appears in (5.63). In the case of resonance frequencies such that
ka~O(1), kb ~0(1), the asymptotic expressions are expected to yield good
results even for the low order modes. For other frequencies, increased
accuracy can be achieved by retaining higher orders in §2 and by including

more terms in the determinant close to s =n =N, m = M. The technique

is basically a truncation procedure used in conjunction with asymptotic analysis.
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As such, iteration methods can be used to advantage in order to gain more
accurate evaluations of the eigenvalues. Once the eigenvalues are known,
then the field expressions for the modes are determined to within an arbitrary

multiplicative constant.

5.6 Orthogonality of Vector Modes

In order to determine the fields excited in the duct by the incident plane
wave, we need to know the orthogonalivy properties of the electromagnetic
modes sustained by the waveguide structure. We begin with the reciprocity
statement

V o (EAL' - E'AT]) = (5.74)

(EAH' -E'AH) =0 (5.75)

V=V-%2(v) .

. -
Now assume (E, H), (E', I') have z-dependences elhz, elh Z, respectively,
then

V,- (EAH' -E'AH) +i(h+h") 2-(EAH' -E'A H) =0 . (5.76)

Integrate over the guide cross section and use the two-dimensional divergence

theorem

fvtoéds=f(2/\é)o(ﬁ/\%) dc=-.[ fn-Ade, (5.77)
u c C

£

to find
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f Vt‘(EA H' -E'AH) dS =j. [%A(EAE'-_E'A g)].(a/\g) de
A C

(5.78)
=f [(%.g')g-(%-g) _Ig'+(’z‘-§')g-(fz.]_z)g']-(ﬁ/&) de .
C
However, the boundary conditions on C are
(z-E) = -n H-(0A%)
A A (5.79)
E-(mA2) =0 (z. 1) ,
and thus
@) [B-da2] =@ [E. @]
(5. 80)
G-en[m@ad)] = G-p . Gah)
Theretore
-g’vtv(l_a/\g' -EAH dS=0 , (5.81)
—
and when (5. 81) is used in conjunction with (5.76), we find
j’z‘-(gng' -E'AH)dS=0 if -h#h . (5.82)

ih!

H! H'z ) e1h 2 there is also a mode

Associated with the mode (I_E% , E'Z s H

-1h!
(Eé, -E'Z ; -Eé, H'Z)e ih Z; therefore, we have
<D
j .’z‘.(g@+g'/\§) dS=0 ifh# h' (5.83)
A

Adding the two orthogonality relations (5. 82), (5. 83) gives

65



1492-1-F

f&‘-(gm_v) dS=0 ith® #n? | (5. 84)

A

This relation can be used to determine the modes generated in the duct. Note
also that the orghogonality discussed here is valid for uniform waveguides of
arbitrary cross sectional shape. For other treatments of orthogonality see
Marcuvitz (1954), Kino (1955), Bresler and Marcuvitz (1956, 1957), and Bresler,
Joshi and Marcuvitz (1958).

5.7 Determination of the Scattered Field

To obtain the scattered field due to modes reflected from the termination

of the duct, we shall employ a Kirchhoff approximation. We begin with

E(x) ='§ [BADAV' G +(-E) v' G+ik(Bam) G) as',

(5. 85)
H(x) = jﬂ nAH)AV'G+(n HV'G- 1k(n/\E) G] das' ,
S
A
where the normal vector n points into the region of interest and
ikR
1) — = - 1
G(x, x" 47rR , R=lx -x'| . (5. 86)

Take S=A+ S1 where A is the aperture formed by the mouth and S1 is the
outside surface of the duct. We now assume that the currents on S1 due to
modes reflected from the rear of the duct are zero to a first approximation.
The surface integrals thereby reduce to integrals over the aperture A. In

the far zone we then »ave

1 1
E° @~ - k kAf[(mHAMk(nAE)] kx' 4o
A (5.87)
ikr ey
B~ = kA [RADAK-k(EAD)] ¢ EE g1

A
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where k = k(sin6 cosf), sin6 sinf, cos6) is the wave vector of the radiated
wave and § = Z. T6 complete the Kirchhoff approximation, we take the field
on A to be comprised of the modes reflected from the termination of the duct.

Physically, the incident ficld excites modes within the duct which progress
toward the termination of the duct. These modes are then reflected from the
closed end, return to be reflected from the open end, are again reflected from
the closed end, and so on. As a result,oscillations are set up inside the duct,
although for each reflection at the open cnd, energy is radiated into the sur-
rounding medium. In general the modes are damped exponentially as they
progress along the axis of the duct, and since we are considering the length
L to be large, it will be sufficient as a first approximation to take into account
only the first reflection from the termination. The amount of energy launched
into each mode can be obtained by matching the normal mode expansion at the
mouth to the aperture fields derived in Section 5.1. To accomplish this we
use the orthogonality conditions derived in Section 5. 6.

For simplilication of notation, we shall attach a subscript ¢ to denote
a normal mode, where in general ¢ may be a multiple index that accounts for
the parity of the mode in the x,y variations and also tabulates the doubly
infinite set of integers M, N which order the eigenvalues h. In addition, the
z dependence is separated out by representing the transverse electric and
magnetic fields for a mode as

-ih z

E =E_(x,) e
S g (5. 88)

H=H () e

where I_{G (x,y) may be obtained from Eo (x,y) through Maxwell's equations:

-1 82 2 82Ex
HX = Ek_ E—);E' -h Ey+ Bx0y s
2 (5.89)

R OE,
Ho= 9% -a;?-h Exdl_axay
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Alternative representations for I_EG (x,y) may be obtained from Section 5. 5.

It may be noted from (5. 87) where ?1 = ,z‘ that the z components of the
electromagnetic fields in the integrals are of no consequence in calculating
the scattered fields. The transverse fields (%AE) and (ZA H) are eval-
uated at the aperturc formed by the open end of the duct and are represented
by normal mode expansions:

-2h L )
e % (ZAE) jz.(E AH) dS
=g A =A"" =¢

-3 ,

o ﬁ'z‘(n AL ) ds
A =0 -0

N>

(5. 90)

-2ihGL A A
e 7 @an) f 2@ AH) s

A
-3

A
o ﬁz-(g AH ) dS
A (0} (o}

where E A’ H A are the aperture fields (5.16), (5.17) generated by the incident
plane wave. The factor exp(—2ihGL) in (5.90) accounts for the fact that the
modes have traversed the length of the duct and returned to the mouth. Since
Imhc <0, this factor means that the summations in (5. 90) may be effectively
truncated, for exc aple, at some ¢ for which Re hcr = 0. The minus sign in

the expression for (2A E) accounts for the fact that the electric field is reflected
by the termirating plate with reflection coefficient (-1). The scattered field

due to the reflected interior modes is obtained upon employing (5. 90) for the

integrands in (5. 87).
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APPENDIX A

PROPERTIES OF THE FUNCTIONS WW(B) AND ¥(B)

The meromorphic function g[/”( B) is defi:-2d as

b_ :
Ve (B) = cxp{——l—f msiny = 24/2 xsin (/2) + zvdv}

SrJo cosv !

(A.1)

from which it will be observed that ¢, (B) is an even function of B whose logarith-
mic derivative is given by

wB) _ _1sinB  A/2sin(8/2) 1 _8 (A.2)
v.(8) ScosB 4 cosp 4rcos B’

By means of the elementary integrals

8 .
J MYy = —In (cos B),

0 COSV

Vi J inw/2) [\/Zcos 8/2) 1 \/‘+1]
oocosv V2cos(8/2) +1 V2 -1

we obtain the following alternative representations for v (B):

V/2 cos(8/2) + 1} 1 vdy -
ve(6) = l: V2 +1 (cos 'B)rexp{ 41r«£cosv } 4.3
g .
(3) = [‘/5352_(‘1/ 2.1) + 1] exp{si” J. %0—_22 dv}_ (A.4)

When | 81 < (7/2), the integral in (A. 3) can be expanded as

’ ﬂ' 2 4 ) —\* 2n42
r’ fﬂ=%+%%+iﬂ_+ﬁlﬁ+ L E £
0

\
cos v 246 " 720 8 @n)! 2n 42 \ . (A.D)

where E2n are the Euler numbers.
1949)

When S8 = i, we have (Grobner and Hofreiter

1 (wde _ _ 1 ("xde _ _ 2 (=1 _ _ N
rfocosv T o coshx wnz_o(2n+1)'z_ by (A.6)
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|
|
I

|

where b = (2/7)K with K = 0. 9159656. . . (Catalan's constant). On the other hand,
"when B = (r/2), we employ (A. 4) with a change of|integration variable v=(7 /2)-u
to f{ind
N f1 cos tt — 1 1 (" du) A
W.(w/2)=[\/§+ :]cxplbf ———du + — —.——f. (A.1

sinu 4rJy sinu

The first intogral is elementary and the second integral is (Grb'bner and Hofreiter

1949) _l_f u (lu E

T Jy Slnlt T ne0

(—2—,,:1—)7 =b (A.8)

We obtain then

9l } :
SN 1 ; A9
W.(r/?) [\/)_*_1 ”]' X ( )
It is easy to verify the following fundamental identity (Maliuzhinets 1958)

Ve(B + §m)Vu(8 = 47) = [Vu(r/2)]* cos(B/4), (A. 10)

and by successive application of (A. 10) one obtains

b8+ (8 = 1) = S feos(9/2) + conta/a), (A.11)
00+ 2)0.(5 - %) = dtvuterr B2 (A.12)

From this last equation we observe that the zeros of ¢7, (B) which are closest to the
point § = 0 and the corresponding poles are the points B = £ (57 /2) and B = £ (77 /2),
respectively. From Eq. (A. 10) one also derives

. ¥e(B47) cos(iB 4 im) '
Ve(B— )  cos(tB —im)’ (4.13)
YelB 20 cor(th + 4. | (a.19

The function ¥(B) is expresseu in terms of the function Vo (B) by the product :

w(ﬁ) W-(ﬁ + L + al/#l(ﬂ + T = al)wr(ﬁ - - aﬂ)wr(ﬁ bl 7l' + aa) / (A. 15)

from which, by means o. (A. 14), wc derive
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Yot d/ (B+a +27r)w (B-a +27)
w(r=p) w (ﬁ+a +21r)¢/ (B—a -2m)

, . co8 al-ai'nﬁ
oot (3B+ 3oy grlooif oyt Sosa,7alp (418
and simflarly
Yer=B) | cos az-sinB D

U=mh) " cos a2+smB

Another {dentity of interest may be derived through the application of (A, 13); in
partioular,

Y(r-B) cos(@.,.l’ )-cos (‘ﬂ)] [.°os (é-:'-r')+cos (-02-)]
(=m+H) E’“(B ™) +cos 1)] ['008(,8_*__)_008(_2')] ,

(Ao 18)

from which it follows that

UrB) | pen-p)  SPPe00y elndcosa,
W(-ﬂ'*ﬁ) Yr+f) sinB-oos a; * sinf+cos a, (A.19)

in arreement with the results in (A. 16) and (A, 17).

I @, =a, (in which case the two surface impedances are equal), Eq. (A.18)

roduces to

W(W‘B) = M-ﬁﬁ) . (A- 20)

In this instance yYAB) is related to the "split" functions K,k cos f) and L, (k cos f)
of Senior 1952) as'follows:

"4 \
K beosf)= 2902 [y (I veemy  wi cosag=i . (A.2D)
L, (kcos f)= 02(_);;(3) 2) Epw(g):]‘l,/ws_al‘ withoosalln ,

where the constant n represents the complex impedance of the hdlf-plane . Senior's
functions may be dcl. .2d by the equations
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sinf

K +(k cos f)K +(-k cos f)= m ,

(A.23)

L+(kcos /3)L+(-kcoe B)= ?nn% , (A.24)

whereas () with @, =a, satisfies the relation Employ (A.10) and (A.IZSJ
|
l

l
v (g-ﬁ) J{(g-f-ﬁ) = % Ebﬂ(g):la(coa B+cos @ ). (A.25)

It is easily verified that (A.25) 18 consistent with (A.21) through (A, 24),
For 01'02'(17/ 2), corresponding to a perfect conductor with H polarization, we

have .
ww)-é [&/ﬂ(g)] cos (8/2) ; : (A.26)

on the other hand, for @ a, => * 10, corresponding to a perfect conductor with
E polarization, one finds asymptotically

Jal f2
o3 [v 6] e o (A.21)

These limiting expressions are valuable when checking the results of calculations
against known perfectly conducting results.
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