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L. INTRODUCTION

A problem of contimuing practical concern is that of assessing the effect
of a radome onthe performamoce of a radar antenna placed within it. If the antenna
is required oaly to radiate a signal and then to detect the time of arrival of an
echo from seme distant object, the electrical constraints placed upon the radome
are very light indeed. Unfortunately, however, such a simple situation is the
exoeption rather than the rule, and more generally the task is to design a radome
which will maximize the transmitted power at some frequency (or over a range
of frequencies), or will minimize the phase distortions over a range of look angles,
and which also satisfies those constraints which are imposed by aerodynamic
considerations or by the environment.

An approximate but versatile tool which has been in general use in
radome design for many years is geometrical optics, or ray tracing. Taking,
for example, the reception problem in which a wave (usually a plane wave) is
incident on the outer surface, the incident wave is sampled by means of rays
drawn normal to the wave front. Each is traced to the outer surface, and fol-
lowed as it undergoes refraction at that surface and transmission at the inner
one. From a knowledge of the transmission coefficients, which depend on re-
fractive index, polarization and angles of incidence relative to the local normals,
and a computation of the electrical distance, an approximate sampling of the
field within the radome is obtained. Depending upon the design requirement,
the shape and (perhaps) the refractive index of the radome are now adjusted,
and to increase the flexibility, multi-layer (sandwith) radomes can be con-
sidered.

This is the essence of the theoretical techniques in common use, and though
they have proved adequate for many purposes, it should be emphasized that the
sampling of the interior field is approximate not only by virtue of the approxi-
mations inherent in ray tracing (namely, the assumption that the surfaces all
have radii ""large’ compared with the wavelength), but because the rays re-
flected at each surface are neglected. On the other hand, to include any reflected
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rays, many of which would ultimately produce additional ray contributions to
the field within the radome, greatly increases the magnitude and complexity of
the computation, and was not feasible until the advent of the present generation
of high speed, large capacity computers.

The particular problem of interest to us here is one in which the greatest
possible accuracy of estimation of the field within the radome is necessary, and
in which the inclusion of all possible ray contributions is mandatory. The pro-
blem is conoerned with the operation of a monopulse radar mounted inside the
nose radome of a high speed missile. The radome is either conical or ogival
in shape and of single layer construction; its material {fiberglass) is effec-
tively lossless at the C-band frequencies of operation, and for purposes of -
analysis can be treated as a pure dielectric. The relevant feature of the
monopulse system is a gimballed plane containing slots mounted within the
radome at a given distance back from the apex. From a comparison of the
signals induced in the slots, the monopulse plane is made to take up a posi-
tion parallel to the effective phase front of the field impinging upon them.

Waere this field indeed a plane wave, the precise interconnections of the slots
through which the comparison is made would be of little relevance inasmuch
as any "reasonable’ design of monopulse would produce the required alignment.
Because of the perturbing effect of the radome, however, the field is not a
homogeneous plane wave inside the radome even when the field outside is.

The method of comparison of the slot signals will then influence the position
taken up by the monopulse plane, and it becomes desirable to record the sig-
nals induced in the individual slots. In addition, however, it is convenient

to conceive of a simple mode of operation, which is essentially a phase com-
parison scheme, and which permits a straightforward calculation of the mono-
pulse orientation, and this we shall do.

Since the field inside the radome is a perturbed version of the plane
wave incident on its outer surface, the monopulse plane will not in general
align itself parallel to the external wavefront. The angle between these two
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planes is the pointing error of the system, and its determination is one ob-
jective of this study. Inasmuch as the system is desired to have, and is pre-
sumably designed to have, a pointing error not exceeding 2 milliradians for all
polarizations of the incident field, and for all angles from 0° to 55° from

axial incidence, the reason why we must include all possible ray contributions,
in order to achieve the greatest possible accuracy in the estimation of the field
distribution over the monopulse plane, is now apparent. Indeed, it is not
without question whether ray tracing can prowide this sort of accuracy, but it
certainly cannot without taking account of reflections from the inner surfaces
of the radome walls, as well as from within the radome layer itself.

Unfortunately, there is a further complication. Because of the speed and
altitude at which the missile is required to operate, a plasma layer will be
formed just outside the radome wall. In penetrating this layer, the field will
suffer a perturbation additional tothat produced by the radome itself, and this
will in turn produce a change in the pointing error of the monopulse system.
Such a change will depend on the nature of the plasma and, hence, upon the
altitude, and could negate any attempt (by, for example, shaving or blocking
portions of the radome) to minimize the operational pointing error. In con-
sequence, any change in error produced by the plasma is even more serious
than the error associated with the bare radome, and the determination of this
change is our prime objective.

On setting out to develop and assemble the formulae for three-dimensional
ray tracing with even the bare radome, it was at once apparent that the com-
putation of the interior field was an intricate task involving large amounts of
time even for a high speed computer. To find, for example, the pointing error
for one monopulse system within a specific radome for a wave with a single
angle of incidence and polarization, it seemed possible that a running time of
as much as one hour on a high speed (IBM 360 ) computer would be necessary.
Subsequent events have shown that this estimate is not unrealistic. It therefore

seemed essential to start out with something more simple than the general case,
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and the two-dimensional analogue of the actual problem was a natural one to
choose.

In the two-dimensional problem a conical radome appears as a wedge and
an ogive (whose surfaces are arcs of circles) is replaced by one having sur-
faces which are arcs of circular cylinders. The field is assumed incident
in s plane perpendicular to the generators of the surfaceé (i.e. in the xy plane),
and it is sufficient to consider only the two principal polarization cases in
which the eléctric vector is entirely in the z direction (E-polarization, or TE)
or the magnetic vector is so aligned (H-polarization, or TM). Since the entire
problem is now two-dimensional and can be expressed in terms of either E,
or H,, the visualization and details of the analysis are greatly simplified.

The present Memorandum is concerned entirely with this two~-dimensional
problem. The conception and development of the analyses are descoribed, and
the limitations which are imposed by the use of ray tracing are discussed, as
are the steps necessary to derive an expression for the monopulse pointing
error either with or without a plasma sheath about the radome. Full details of
a computer program (in FORTRAN IV) including flow diagram, input data
and program listing, are given in the Appendix. Specific results for the pointing
error with and without the plasma are presented and discussed. The analogous
procedures for the more general three-dimensional problem are described in
a companion Memorandum.

Although the two=dimensional radome is, of course, a mathematical
idealization, it should be emphasized that we do not consider the case treated
here as one having academic interest only. The practical purpose for our
study is to see whether it is realistic to expect a maximum pointing error of
2 milliradians for a wide range of aspect angles, with or without a (weak)
plasma sheath. The pointing error arises because of the field distortion pro-
duced by radome reflections. A three-dimensional geometry will produce more
reflections than does the two dimensional, and perturb the wave front in three
directions rather than two. It is therefore only natural to expect that the
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results for the two-dimensional geometry will constitute a lower bound on the
pointing errors that will occur in the three-dimensional case. As will be
shown, the errors found using the two-dimensional geometry in general
exceed the 2 milliradian requirement.
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II. RAY OPTICS FOR A DEELECTRIC SLAB

R is a straightforward but instructive problem to examine the transmission
of a plane electromagastic wave through a homogeneous aad isotropic dielectric
slab. AMhough this topic is treated in many electromagnetic theory texts and
in almost all books devoted to optics, the results and their interpretation
play swoh a vital role in the treatment of the radome problem that a brief
discussion is desirable.

Consider a plane dielectric slab of thickness d aad infinite extent occupying
a<y<a+d, where (x,y,s) are rectangular Cartesian doordinates. I is sufficient
to take the permeability of the dielectric to be the same as that of free space, i.e.
K=y but the permittivity ¢ differs from ¢, and we define the refractive index
n of the dielectric relative to free space to be n '[‘/_‘-o-‘ . The regions above and
below the slab are occupied by free space.

A plane electromagnetic wave is incident on the lower face of the slab. We
treat first the case in which the wave is H-polarized, i.e. TM, and write the in-
cident field as

Hl . °1k(xlin a+ycosa)

Ei *-Z, (fooua-?ulna) e

(1)
ik(x sin a+y cos a)

where Z_ = m is the characteristic impedance of free space, and a time
factor ¢ “* has been suppressed. As evidentfrom Fig. 1, @ is the angle
which the propegation vector makes with the normal to the slab.

To find the field transmitted through the slab, we postulate the following
field expressions:

*
Figures are placed at the end of each section.
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yla:

= A {eik(x sin a+y cos a)+Aeik(x sin -y cos a) } ’

E- _ZOB oola{eik(x sin oty cosa)_ Aeik(x sin a-y cos a)} @

2 sina{eik(x sina+ycos o), {k(xsina-ycos a)} :] :

a<y<add

e {Beink(x sinfty cosB)  , ink(x sin B-y cos B)] ,

E= - 32 % cos B {Beink(xsinﬁ-i-ycosﬁ) _Ceink(uinﬁ-yoocﬂ)} (3)

- n

5 cosp {Bemk(xsmﬁwcosﬁ) +ceink(xa:lnB-ycoaB)}:I :

atd<y:

+
Ij=2Deik(x sina+y cos a)'

(4)
E= -zo & cos a_§sm a) Ddik(x sina+y cosa)

The unknown coefficients, A, B, C and D can be determined from the boundary
conditions at the two faces of the slab, which conditions require that H. £ and
E-X be continuous there. Applying these conditions, we obtain

eika cosa N Ae-ika cosa_

ika cosa
e -

Beinka cosp +Cé-inka cosf ,

Ae-ika cosa_ %’ {Beinka cosf_ Céinka cosf } ,
Deik(a+d)cosa= Beink(a+d)cosB +Csink(l+d)oosB ’

Deik(oﬁd)com= % {Belnk(aﬂl)cosﬁ_ Ce-ink(ﬂd)cosﬂ} ,
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where
with.
_8sina
sin B = - (Snell's law) , (6)
and hence
= % (1- P) Delk(ﬁd)(cos a+ncosfp) ,
% (1+1) Deik(ﬁd)(oos a-n cos ) ,
A= -% (r -% )D sin(nkd cosmeik(h-ld)cosa ’
with
o. 4 I‘ ikd(n cosf-cos a) "
N 2 2inkdcos B '

(r +1) -(I'-1)"e

D represents the transmission coefficient of the slab and is the quantity
of most interest to us. Its exact expression is given in Eq.(7), but for future

purposes an alternative representation is more convenient, viz.

Q0
Z D_ (8)

m=1
where
41"  ikd(ncosB-cosa) /I -1 2(m-1) 2{(m-1)nkd cosp
sz 3¢ (I' +1) °
(I +1) (9)
Each term D_ in (8) can be associated with a partial transmitted field
}_i(m)= A Dmeik(x sinatycosa) |
(10)

(m)_

g =-Z° (xAcosa-§sina)Dmelk(xsmwc°sa) ’
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and to appreciate the origin of this field, consider for the moment the simpler
problem shown in Fig. 2. The dielectric now occupies the entire half-space
y 2 a, and if the incident field is again that given by the Egs. (1), the reflection

and transmission coefficients are, respectively,

-1 e2ika sina

Ry,= =

12

3

|
—

(11)

2r' ika(cosa-ncosp)

3

Ty

-1

+1

as shown in many standard texts. The first suffix refers to the medium in which
the wave is incident ( 1 denotes free space) and the second refers to the medium at
which it is reflected or into which it is transmitted ( 2 denotes the dielectric).
Alternatively, if the dielectric occupies the half-space y < a +d (see Fig.3 ) so
that the interface is illuminated by a wave propagating in the denser medium

and of the form given by the leading terms in the Eqgs. (3), the reflection and

transmission coefficients are

R =- r-1 ezmk (a+d)cosf
21 I+l !
(12)
T = _2 eik(a*d)(n cosp-cos a) ’
21 T +1

where T and S are again as defined by Eqs. (5) and (6) respectively.
With the aid of (11) and (12), the interpretation of the parttal fields H™,

is now obvious. As evident from the moduli and phases of the coefficients

(l)‘ _I'z(l) is the field produced by refraction at the

g(m
Dm, m=1,2,3,... (see Eq.9), H
lower interface of the slab as though the upper interface were not present, followed
by a refraction of this wave at the upper interface as though the lower interface

were not present. Indeed,

D) =TipTy -
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Likewise, g(z), E(Z) arises from a refraction at the lower interface, reflection
at the upper interface, reflection at the lower interface and a refraction at the

upper interface, so that

ID,| = IT)gR Ry Tyl

with the phase of D, being that appropriate to the zig-zag path; and so on. We
can therefore build up the exact field transmitted through the slab by considering
each interface separately, and by superposing the partial fields resulting from all
possible bounces within the layer. Each partial field is such that the boundary
conditions at the isolated interfaces are exactly satisfied, but it is only through
the superposition of all these fields that the boundary conditions at both interfaces
are jointly satisfied regardless of d, and of the absence of losses within the
dielectric.

If, instead of an H-polarized (or TM) wave, the field incident m the slab
is an E-polarized (or TE) plane wave, such that

i_ Qeik(x sinm-ycosa)’

1=

(13)

I_rI_l . Yo (:?cos a_g sina) eﬂ:(x sin oty cos a)

with Y, = 1/Zo , the analysis goes through just as before with the sole difference
that n is now replaced by 1/n . Hence

cosa _ r (14)

r > ncosP '
and the reflection and transmission coefficients (based, of course, on E ) for
single interfaces are as given in Eqs. (11) and (12) with n replaced by l/n and
therefore I replacedby I'' .

Although the above description has been phrased in terms of partial (plane
wave) fields, it is obvious that the picture that has evolved is identical to that

10
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which is provided by geometrical optics, i.e. ray theory. Starting from any
point in the region below the slab, we trace the ray through this point and perpen-
dicular to the incident wave front (i.e. in the direction of the propagation vector
of the incident field) until the ray meets the lower interface of the slab. Here it
undergoes reflection and refraction. The refracted ray now makes an angle S
with the normal to the slab and proceeds with the decreased velocity ¢/n until

it hits the upper interface, where reflection and refraction takes place. The
refracted ray proevides a direct sample of the field above the slab. The reflected
ray is followed back to the lower interface, thence to the upper interface, to
provide another sampling of the field in y > a +d; and so on. This one single
incident ray therefore provides an infinite sequence of discrete samplings of

the field in y > a +d . Moving now to an adjacent point on the same incident
wavefront, we repeat the process to provide yet another sequence of samples, but
because: of the planar nature of the geometry, it is apparent that the second sequence
differs from the first only by a linear shift. It is this fact which permitted a dis-
cussion in terms of partial fields, thereby obviating the need for sampling the
incoming field. For other than a planar geometry the partial fields would not be
plane waves and could not be easily obtained. We then have no alternative but to
resort to ray theory and to sample the incoming wavefront over that portion that
produces a significant contribution to the field beyond the dielectric in the region
of space of interest to us. Clearly, the samples must be sufficiently close (<< ) )
for the rays to be reasonably dense throughout this spatial region, and in par-
ticular, if there are several different categories of rays, we must ensure that
several rays of each category are included.

Nevertheless, it should go without saying that the solution obtained in this
more general case is only approximate no matter how many reflections within the
layer are included, and no matter how closely the incident wavefront is sampled,
but if the lateral dimensions (including radii of curvature) of the interfaces are
large compared with the wavelength, and if all caustic or focussing effects (where
#m infinity of rays come together) can be ignored, the solution should reproduce the
dominant features of the true transmitted field, and be accurate enough for most

practical purposes. These conditions would appear to be fulfilled in the radome

problem to which this technique will be . applied.
11
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I APPLICATION TO A BARE RADOME

Consider a two dimensional radome symmetrical with respect to the
plane y = 0 of a rectangular Cartesian coordinate system (x,y, z) and whose
outer and inner surfaces have generators parallel to the z axis. A plane
electromagnetic wave is assumed incident onthe outer surface of the radome,
and by taking its direction of propagation to be perpendicular to the z-axis,
the entire problem becomes two dimensional. It is then sufficient to confine
attention to the plane z = 0, and each surface of the radome can be defined by
an equation of the formy = f (x) .

Two particular® radome configurations are considered, namely, ogival
and conical. In either instance it is assumed that the outer and inner surfaces
are both ogival or both conical, and whilst this still permits the radome
thickness to be non-uniform, it will be appreciated that the type of thickness
variation that can be considered is quite restricted.

For computational purposes it is convenient to choose the origin of the
coordinates at a small but non-zero distance { to the left of the 'nose' of the
radome (see Fig.4). In the ogival case, the outer surface can then be defined
by the equation

) Pom? (o ? -
Y uter” ()IA +B2- (x-C) A) (15)

with the upper (lower) sign referring to the upper (lower) surface of the radome,
and where A, B and C are positive real numerical constants in terms of which

the maximum diameter of the radome is
2 (JA2+132- )

occurring at x = C, the radius of the curvature is R, where
R=Va2+82

%*
The extension to any radome configuration that can be analytically defined is
entirely trivial.
13
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and £ =C-B.

The overall length of the radome is 2B, but in practice interest is confined
to that portion of the interior extending to at most the position of the maximum
diameter, i.e. to x < C . The inner surface of the radome is defined in a
similar manner.

For the conical case, the definitions of the radome surfaces are more

straightforward, and for the outer surface we have

Youer = - & &-1), x>1) (16)
where the upper (lower) sign again refers to the upper (lower) surface of
the radome. The inner surface is defined in a similar manner, but with a
different value for £ .

Regardless of the configuration, the radome is assumed to be of single
layer construction and formed from a material which can be treated as a
homogeneous, isotropic and lossless dielectric whose permeability is the same
as that of free space. The electromagnetic properties of the material can
therefore be represented by the (real) refractive index n. A typical value
is n = 2,5 appropriate to fiberglass at a frequency in the GHz range.

Before detailing the various steps in the ray tracing procedure, a few
words about the overall objective of the program are desirable. Although
ray tracing could be used to determine the field characteristics anywhere
within the radome, the particular objective is to assess the performance of
a (receiving) monopulse system. The monopulse plane pivots about an axis
parallel to the z axis and located at a point x = D < C, its orientation being
determined from a comparison of the signals induced in a number of slots
located in its plane. If the field inside the radome were indeed a plane wave
propagating in the same direction as the external field incident on the radome,
the monopulse would align its plane parallel to the external wave front. Because
of the existence of the radome, however, the field inside differs from that

14
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outside, and the monopulse can be expected to take up a position which is not
quite parallel to the external wavefront, but differs by some small angle ¢ ,
which is then the pointing error of the system. On the assumption that both
the radome and monopulse systems are well designed, € will be of the order of
a few milliradians or less, and it is then sufficient to assume that the mono-
pulse plane is actually parallel to the external wavefront, and to deduce a
pointing error in the manner described in Section IV. Only in the event that
the error so obtained was measured in several tens of milliradians would it
be necessary to re-align the plane over which the field distribution was being
sought. No such base has been found, and we can therefore state the intent of
the ray tracing as the determination of the field distribution in amplitude and
phase over a plane parallel to the incident wavefront and centered on a line
parallel to the z axis at a distance D -4 back from the front of the radome.
Consider a plane TE or TM wave incident on the radome at an nngle*
B to the plane y = 0, i.e. the x axis, as shown in Fig.5, and take as basis
the zero phase wavefront passing through the origin. Choose a point (x,y,)
on this wavefront (clearly, x,= -y, tan 8 ), and follow the ray through this
point (and normal to the wavefront) until it strikes the radome. Obviously
this will be the outer surface, and we can ensure that it is also the lower
surface by taking y  sufficiently large and negative. Find the point of inter-
section (x;,y)) and" record the distance dbl = {(xl_xo)z_,_(yl_yo)z }1/2 . Com-
pute the direction of the outward normal to the surface at this point and hence
determine o, the angle which the ray makes with the normal. The angle
which the refracted ray makes with the normal can now be found from Snell's
law (Eq. 6) and the amplitude of the ray is Ty, . Follow this ray until it strikes
the inner surface of the radome and compute the point (xz,yz) of intersection.
Record ‘the 'optical' distance nd, = n { (xz-x1)2 + (vz-yl)z}l/ 2 and add to
d01 .
finding the direction which the ray makes with the normal, and allowing the

Compute the direction of the normal to the surface at (x3,y,), thereby

*
This is the angle between the direction of propagation and the x axis.
15
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determination of the direction and strength T of the transmitted ray.

12T21
Follow this ray until it (i) strikes the monopulse plate at a point (xp, y p)’
in which case the distance d2p={(xp-x2)2+(yp-yp)2} 1/2 is computed and added
to do 1+nd2 1’ and the result recorded along with the strength leT21 of the
ray and the direction which it makes with the horizontal; or (ii) passes beyond
the monopulse plate between the extremities of this plate and the inner radome
surface, in which case the ray contribution is ignored, and attention reverts
to the previous intercept of the ray with an inner radome surface; or (iii) the
ray strikes an inner (upper) radome surface. In this event the point of inter-
cept (x3,y3) and the normal direction are computed, along with the accumulated
(optical) ray distance to this point. The direction and amplitude T12T21R12
of the reflected ray are found, and the ray followed until it strikes the monopulse
plate (and is recorded), or passes beyond the plate (and is ignored), or strikes
the radome again. If it does strike the radome, the process is continued,
but ultimately the amplitude of such a ray will fall below a pre-set level, and
can then be ignored on this account.

Having followed a 'dominant' ray to a conclusion, attention is transferred
to the previous intercept of this ray with a radome surface, and the reflected
or refracted ray that was omitted is now considered, and this also followed
to a conclusion. But in the course of its path, this ray may also have spawned
further rays by reflection and refraction, and these too must be picked up and
traced through to a conclusion; and so on, arriving ultimately at the stage at
which all significant contributions generated by the original ray through the
point (xo, yo) have been considered. We now return to the incident wave front
and step a distance Aalong it, where Ais some pre-set value << A . The

above process is then repeated with the ray originating at the point

(—(yo+ Acosf) tan B, Y, + A cos B)

and so on until, with further stepping, no rays can be found to intercept the

monopulse plate.

16
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The procedure should now be apparent. Each individual computation
is rather simple, .requiring only the calculation of an intercept point, a normal,
a distance and an angle, and from these, T (or I' ') and transmission and
reflection coefficients; but because of the considerable number of such com-
putations entailed in following one ray through the radome and on to the mono-
pulse plate (one ray may produce many tens of significant contributions to the
monopulse field), the process would be extremely tedious to carry out by
hand. Nevertheless, it is well suited to a digital computer, and the only com-
plicated aspect of the programming is the ordering of the sequence in which the
ray contributions are computed to ensure that no significant rays are omitted.

For each polarization (TM or TE) there is just one form of reflection
coefficient that must be computed, but two forms of transmission coefficient.

Thus, for a TM wave, we have*

r-1

B2 Ry "1 (1
_2ar
Ti2™Fi 18
_ 2
Tor°Fs1 - (19)
where
. Roo8a (20)
cos
with 8in 8 = 8in @ , and the notation is as shown in Figs. 2 and 3. Since

n> 1 (typically, 2.5), any (real) @ gives rise to a real value of 8, and I' is
a monotonically decreasing function of @, ranging from a maximum of n

for a = 0, through unity for a = tan~! n (Brewster angle), to zero for a = 7y .
As a consequence of this, R 18 also a monotonically decreasing function
for 0<a< tan"! n, and s quite small for most angles of interest to us, but
for increasing o> tan~1n, -Rj9 increases rapidly to unity. The situation

*
The phase factors appearing in Eqs. (11) and (12) are here omitted since they
are picked up in the computation of the (normalized) distances along rays.

17
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is, however, somewhat different as a function of B*, i.e. if the ray starts within
the denser medium. A real S gives rise to a real a only if | sinBl < 1 , and
as a function B, T varies from n for 8 = 0 down to zero for 8 = sin~! ;- For
larger S, I'is pure imaginary and total internal reflection occurs.
For an incident TE wave,
r'-1

Rio* By 7771 (21)

2 ]
T2 ” -I"L':l ’ (22)

2
T " a1’ (23)
where

, . coB@

SosE (24)

Since I'' = I‘/nz , I'' is a monotonically decreasing function of « varying from
a maximum of l/n for @ =0to 0 for @ = 73 . Since it i8 always less than unity,
Ry isa monotonically increasing function, and for most angles of interest to
us, the reflection coefficient for TE waves is substantially greater than for
TM waves. This implies a larger number of significant ray contributions in
the former case.

There are two final comments that should be made, one pertaining to
both radomes and the other to the ogival one only. We have noted that the deter-
mination of a ray path requires the calculation (or knowledge) of the direction
of the local normals to the radome surfaces. With both radomes, the normal is
undefined at the very apices of the inner and outer surfaces, and to avoid dif-
ficulty in this regard, any ray which hits these points is automatically terminated.
This is equivalent to assuming the radome to have infinitesimal opaque 'plugs’
here. The second comment applies only to the ogival radome whose surfaces

&
B and a are here the angles used in Section II.
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in the xy plane are curved. Because of this curvature and, in consequence,

the slight difference in the directions of the normals at different distances

from the apex, it is possible that a ray striking the outer surface at an angle
very close to grazing may, on reaching the inner surface, find itself within the
critical angle and be entirely reflected. The reflection coefficient is then
complex and would require a modification to the program. It is fortunate,
however, that for convex surfaces ( as we are dealing with ) such a ray can
never provide a non-attenuated ray contribution within the radome: no

matter how many more reflections it undergoes within the layer, it will continue
to be critically reflected at the inner radome surface. Any ray that is critically
reflected can therefore be abandoned.
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[t

Fig. 4 : Coordinate System.

—

Fig. 5 : Ray Tracing .
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IV MONOPULSE RESPONSE

The end result of the ray tracing procedure described in the previous
section and implemented in Section VI is a sampling of the field distribution
over a monopulse plane aligned parallel to the external wave front and centered
at a distance D - £ back from the front of the radome. Each sample is an
individual ray eomtribution and consists of an amplitude (which may be positive
or negative), accumulated (optical) ray distance (in inches) and a direction of arrival
measured with respect to the x axis. The distance can be converted to a phase
by multiplying by k = 2r/), where X is the wavelength (in inehes) , and we can
express the direction of arrival as an angle § measured from the normal to the

monopulse plane by subtracting 8 . Each sample now takes the form
A 3 d/ n» p

n n

implying a contribution
iwn
An © ’ Z.¢ n’
where Ajisa real (positive or negative) amplitude and wn is a phase.
If the radome were not present, each sampling of the incident wavefront

would provide a single sample in the monopulse plane. The spatial distri-
butions of the two samplings would then be the same and we should have

An= 1, wn = constant, ¢n =0,

appropriate to a plane wave incident on the monopulse plane. In this case, the
signal in the difference channel of the monopulse would be zero for its plane
oriented as shosen: the chosen plane would therefore be the actual monopulse
plane, and the pointing error would be zero.

Because of the radome, however, the field inside will not be identical
to that outside and will not, in fact, be a plane wave. Each ray drawn from
the incident wavefront will generate an infinity of rays within the radome, a
finite number of which will intercept the monopulse plate in a spatially non-
uniform pattern. The composite of all such rays obtained by sampling the

21



THE UNIVERSITY OF MICHIGAN

wavefront at a uniformly-spaced set of points constitutes our sampling of the
field distribution over the monopulse plane from which we have to deduce the
monopulse response. It is to be expected ‘that the difference channel of the
monopulse system will contain a non-zero signal which would produce a
re-alignment of the monopulse plane through a small angle ¢ which is then
the (angular) pointing error. The determination of € is our objective.

Since the monopulse is required to operate only on reception, it is suf-
ficient to regard it merely as a 'split beam' system in which the fields induced
in identical slots symmetrically placed on the two halves of the monopulse
plane are compared, and from the difference signal, the effective direction of
the excitation field is deduced. In the simplest version of this system, we have
just two slots, one on either side of the center of the monopulse plane, as
shown in Fig. 6. With § & running variable on the surface of the monopulse
plate in the xy plane, let § =X £, be the coordinates of the centers of the two
slots, and let 2d be the width of each slot. The upper slot therefore extends
from § = §1-d to §;+d and the lower from § = -§y+d to -£;-d , and only if a
ray strikes the monopulse plate' inside one of these apertures can it contribute
to the signal induced in that slot.

The corollary to this last statement is that a ray which strikes the mono-
pulse plane outside a slot does not contribute, and this is certainly reasonable
as regards any immediate contribution. But if the monopulse plate: outside the
slots is metallic; or, more generally, if it is not absorbing to an extent which
is complete for all practical purposes, a ray striking this portion of the plagg
will be reflected and will thereby generate a whole series of new ray families,
some of whose members may return to the monopulse plate and strike it within
the slots. The directions of these further rays will bear no direct relation to
the direction of the wave normal (or rays) of the incident field outside the
radome, and will serve, in general, to increase the pointing error of the
system. Since we are concerned to keep the pointing error as small as

possible, it is desirable to suppress these rays, and this we can do by the mere
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process of placing a layer of appropriate absorbing material on the monopulse
plate outside the slots. At the frequency of interest the absorber could be quite
thin, and would not appear to have any deleterious effect on the performance of
the system: indeed, it could be advantageous in decreasing the far side lobe
levels of the individual slots. For these reasons, we shall neglect any con-
tributions from rays which do not strike a slot, and will presume that the mono-
pulse plate is so treated as to suppress any reflections if these would otherwise
produce more unwanted ray contributions of significant magnitude within the slots.
We note that such suppression would probably occur naturally if the monopulse
consisted of two (or more) horn antennas rather than slots in a base plate.
Although all rays that strike a slot contribute to the signal induced, it
would be unreasonable to assume that the magnitudes are the same regardless
of the directions at which the rays impinge. In order to take this effect into
account, a polar diagram is associated with each slot, and for convenience
this is taken to be

_ sin(2kdsinf)
P(p) = ﬁm% ’ (25)

where @ is measured from the normal to the plane of the slot (see Fig.6).
Although such a factor is generally used for plane wave incidence, it will be
assumed that this same factor obtains for the non-planar, inhomogeneous
field that is actually present, implying a reduction in the magnitude of each ray
contribution with increasing angle from the normal; and though the actual factor
appropriate to a particular practical system may differ somewhat from (25),
the differences are unlikely to be significant for our purposes. Were it neces-
sary to do so, any function capable of analytic representation could be used
in place of (25) in the digital program.

Combining Eq. (25) with the form of each ray contribution previously
arrived at, the signal induced in the slot centered on § = El can be written as
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i, iy
Ve o= Z A_P( Je o (26)
n

where the summation extends over those rays which strike the aperture. It

will be observed that the angle of arrival of each ray affects the output of the
slot only through the polar diagram factor P(§). Likewise, for the slot centered
on§ = -El , the output is

iy iy
Ve = ZAnP(¢n)e ., (27)
n

and from a comparison of these outputs the pointing error of the monopulse
must be deduced.

Since the field within the radome is at least approximately a plane wave,
V, and V_ will be very close in magnitude, and the most natural method of
comparison is based on phase, i.e. ;b',, and _, alone. We also note that this
pseudo plane wave is incident in a direction which is almost normal to the plane
of the slots, and in expectation that the average direction of propagation makes
only a small angle € with the normal to the monopulse plater, which angle is
the pointing error of the system, we can now proceed as follows.

If a plane wave travelling in a direction § - € (see Fig.7) with respect
to the positive x axis were incident on the monopulse, the phase of the signal
in the upper slot with respect to the pivot point would take the form

ei-iikssine

and for sufficiently small ¢, the dominant effect of this aperture distribution

on the radiation polar diagram is to displace the effective phase center a
distance £ sine€ behind the slot. For the lower slot the phase center is brought
a distance § g sine forward, and from a comparison of Egs. (26) and (27) it now
follows that
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2kEqsine = Q_’_-f_ , (28)

implying a pointing error

_-1 o
€ = sin {Z-E-I-(L-g_)} . (29)

The above description has been phrased in terms of two slots, but a
monopulse system will in general have more. The extension to any (even)
number 2M of slots is quite straightforward, and the computer program (see
Appendix) has been written to permit up to 6 equal-width slots symmetrically
placed with respect to the middle of the monopulse plane. The resulting ex-
pression for the pointing error now depends on the manner in which the outputs
from the various slots are combined. If the centers of the slots are located
atf = i'El, 152, f§3, ..., and the corresponding outputs are
e ei“’f) o
+

M 2)
19+ UP(
V‘Be -, V.(,.z) e :

one approach is to combine all the outputs from the slots on the upper half of
the plane to give

= (m)
RY iy
V+e * = Z Wm V(f)e ¥ ,
m

and similarly combine the outputs from the lower slots, giving

- (m)
- 1g ig.
V_ e = z Wm me) e ’
m

where the Wm are the appropriate (amplitude) weighting factors of the slots.
The pointing error € can then be obtained from the expression
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€ = sin! {-74%?-(;0.,.-@_)} , (30)
where £ is a 'mean' position of the combined slots, given by
 E Vb

2
m

Although the above procedure is the one that was actually adopted, it
should be noted that it is by no means the only way of finding an expression for
the pointing error. We could, for example, compare the outputs of corres-
ponding slots, and then average the individual pointing errors to produce a

value for €, viz.

M

1 -1 A, .(m) _(m)

6--1‘—4 Zsm {GE_-(&"'-@‘ )},
m=1 m

which is approximately

M

ol )L A om)_(m)

examl{L O e - (32)
=1

on the assumption that each individual error is small. In this form, € is
independent of any amplitude weighting applied to the slots.

When the original approach was programmed, it was found that a slight
displacement of the initial (and, hence, all subsequent) point(s) at which the
incident phase front was sampled led to a small but detectable change in € .
Such a displacement produces, in turn,a shift in the position at which the rays
hit the monopulse plate, and when this causes a dominant ray to strike just
outside (instead of just inside) the slot, a discontinuity in the induced signal
results. With the sampling frequency that was used, the maximum
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discontinuity observed was no more than (abbut) 10 percent, and was not
therefore a severe problem. Névertheless, it seemed desirable to seek a
reduction in the discontinuity , particularly because of our ultimate aim of
comparing pointing errors with and without a plasma present.

An obvious way of reducing the effect is to decrease significantly the
distance between successive sampling points, thereby decreasing the rela-
tive weight attached to any one ray contribution. This would, however,
markedly increase the length of an already-long computation, and since the
main objective was to provide a smooth transition as any one ray traverses
the boundary of a slot, it is sufficient to assign an amplitude taper to each slot.
Each ray contribution is then weighted according to the position at which the
ray strikes the slot, the weighting varying from unity at the center of the slot
to zero at the boundary. The same taper was applied to each slot, and the
particular taper assumed was

_ 2|
T(£) = cos {ﬁ(ﬁ-ﬁm)} , (33)

where £ is the position at which the ray impinges and Em is the coordinate of the
midpoint of the (m th) slot. Each term in the summands in Eqs. (26) and (27)
was modified by multiplication by this additional taper factor T(&),

and though it may be claimed that the expression for T (£) is not entirely

in accordance with the assumed polar diagram factor (25), the discrepancy

is not regarded as significant.
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\' EFFECT OF A SURROUNDING (WEAK) PLASMA

Under some conditions of operation the radome may be surrounded by
a weak plasma that can be treated as lossless, and this modification to the ex-
ternal environment can affect the pointing error of the system. Any change
of this type will be a function of the plasma characteristics and, hence, of the
height and velocity of the vehicle, and may constitute a more severe problem
than the pointing error for the bare radome. It is feasible (and, indeed,
common practice) to attempt to compensate for the latter error by either
electronic or physical means (for example, by shaving or blocking-off
portions of the surface in a manner determined by experiment), but this would
be ineffective for an error which was a variable function of position along a
trajectory of the vehicle. Moreover, were the plasma-induced effect to
serve to decrease the pointing error when the radome were bare, complete
compensation for the latter error could be undesirable. It is therefore ap-
propriate to examine the change in pointing error produced by a plasma
sheath or layer.

We first seek an expression for the equivalent refractive index of a
plasma . In terms of the polarization vector P , the displacement vector D
is

Egeo-E-+—P- *

The movement of an electromagnetic wave through a plasma leads to a dis-
placement of the electrons, and to the cregtion of effective dipoles. If there are
N electrons per unit volume and if all move through the same distance r

(parallel to E) , the equivalent dipole moment per unit volume is

P=Ner

where e is the charge on an electron.
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The equation of motion of an individual electron in the absence of an
imposed magnetic field, but taking account of collisions, is

where v is the average frequency of collisions between electrons and heavy
particles. Hence, with a time dependence ot ,

eE
L77 oo W)
giving
P-- Ne® E
=7 mub+y) =
so that

D= € - Ne2 E
= o muwlw+iy)) =°

The equivalent permittivity is therefore

€€ (1=~ Nez
) m cow(w +iv)
and taking u = My o the equivalent refractive index is
1

Ne? /2
= <1 - meow(w+iv)) ' (34)

If, as we shall assume, any losses in the plasma can be neglected, v =0 .

It is then convenient to define a radian plasma frequency w p such that

2
w2 = -Ii?-' ) (35)
p me,
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in terms of which
2
w

N Y
- (-3)

(36)

It will be observed that for > wp the refractive index is real (as expected) and
0<n<1. Some idea of its magnitude can be obtained by inserting the magnitudes

of 6, m and € into (35). With

e ==1.6021 x 10~19 coulombs ,
m = 9.108 x 10~2! kgm.,

-9
10
€& 6 farads/m .,

we have
wp = 5.64 x 104 {N' radians ,

where N 1is here the number of electrons per cc.

cycles/sec ( wp = 27 fp) ,
o 2\
n-= <1-;§>

with
£ =8.98x 103/N' Hz,

and hence, at C-band ( f = 5 GHz),

n = (1- 3.22x 10-12 N)l/z :

Some typical values of 1-n are as follows:
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N = 10° l-n = 1.61x 10~%
5x 10° 8.05x 10~
9 -3

10 1.61x 10
9 -3

5x 10 8.08 x 10
1010 1.62x 102
5x 100 8.40 x 102
10!! 1.77 x 0™}

We note that for N<5.9x 1010, n> 0.9 and that for N< 2 x 1010, n can

be approximated by the expression

12N

n~1-1.61x10 (40)

with at least three digit accuracy. The largest value of N in the electron den-
sity profiles which have been furnished us is 1010, and accordingly, from the
above Table, n> 0. 984,

The presence of the plasma outside the radome will modify the rays
which would have impinged on the radome in the absence of the plasma, and in
order to extend the bare-radome treatment to this case, we must now examine
the perturbation of the rays on passing through the plasma. Since the electron
density and, hence, refractive index is a function of distance normal t the radome
surface throughout the sheath, the only practical method of ray tracing is to
assume that the plasma is locally stratified parallel to the surface and to ignore
the reflection from the stratification layers. This is the usual technique for
ray tracing through a region of variable refractive index (e.g. the atmosphere),
and because of the relatively small maximum variation in n, it might be thought
that the procedure is unquestionably valid . In the present problem, however,
the variation in n takes place within a layer whose thickness is no more than

)/6 and can be as small as 1/60 . The criterion for neglecting subsidiary
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reflections, i.e. for assuming each ray to proceed undiminished, is

cosa On
- 5 <1, (41)

where y is measured normal to the steatification and o is the angle which the
incident ray makes with respect to the normal. For the data furnished to us,
the maximum values of dn/dy occurs near to the nose of the radome where
the electron density is largest and the layer is thinnest. We have

max n & (3x lOlox 1.61x 10'12)/(m£n. layer thickness)

dy

and hence

In view of the fact that over most of the sheath, 8n/dy is a great deal less than
its maximum value, and that under most circumstances a wave will strike the
region of the maximum at a rather oblique angle, it is legitimate to conclude
that the criterion (41) is fulfilled, albeit to a somewhat less degree than might
have been expected from a consideration of the change in refractive index alone.
More to the point, perhaps, is the fact that to proceed on any other basis would
produce a problem of forbiddable eomplexity.

As a result of traversing a slowly varying medium of this type, a ray
will reach the surface of the radome with its amplitude undiminished, but
with its phase, impact point and (possibly) direction changed from what they
would have been had the plasma not been present. To compute these modifi-
cations, we postulate a planar stratification of the region traversed by any
given ray, as shown in Fig. 8. Let y be the coordinate normal to the strati-
fication (and to the local radome surface), and n = n(y) be the refractive index
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throughout the plasma layer of thickness t. For the moment we assume that
the region y < 0, as well as y > t, is free space with refractive index unity,
and choose origin of coordinates at that point on the surface y = 0 which a ray
incident an the omter ‘surface of the layer at an angle o to the normal would have
reached in the absence of the layer. The coordinates of the point (xl,yl) at

which the ray strikes the lower surface of the layer are therefore

x1=-ttana, y1=t ) (42)

From Snell's law

n(y) sin 8 =sin o, (43)

where f8 is the local inclination to the vertical of the ray path within the layer.
If ds is an element of distance along the ray path, the horizontal distance of
travel within the layer is

y=0 0 t

dssinB=-| dytanB = slng . gy,
J;=t j: _I;Ylnz-sin &

and the x-coordinate of the point at which the ray strikes the plane y = 0 is now

t
X = sma _—1———
° 0 ﬁi-am%

The ( optical ) distance traversed by the ray within the layer is likewise

y=0 0 t
2
f nds= - ::—g%ﬁ- = f an-sinzaw Sin @ dy ,
t 0 V-nz-sinia

y=t
t
s(x,-x1)sina + Yn2-sin?e dy ,
0

-seca ldy . (44)
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and thus the excess of optical distance over that of the ray in the absence of
the plasma is
t

64 = xosinar + ‘[ n-sin?a -~cos a} dy . (45)

If the quantities x, and 61 were computed as functions of o, t and nfy),
the most obvious procedure for extending the bare radome procedure to the case
in which the plasma was present would be to follow any individual ray from the
wavefront to the outer surface of the radome ignoring the plasma, and then
displace the ray laterally by the (small) amount x, and increase its phase by
k&1 . Since the plasma is actually in contact with the surface of the radome,
there is also a slight change in direction of the impinging ray from o to o' ,
where o' = sm'l(sinar/n(O)). and an associated change in the reflection and
transmission coefficients. For convenience, and because the electron den-
8ity in general decreases in the immediate vicinity of the radome surface, these
effects will be ignored: this is tantamount to conceiving of a small air gap be-
tween the inner plasma surface and the radome, and allows us to make full use
of the original computation procedures for a bare radome, providing the quan-
tities x and 6{ can be determined.

In their 'exact' forms given in Eqs. (44) and (45), the evaluation of the
expressions for X, and 61 requires a knowledge of the variation of the refractive
index n as a function of y, leading to numerical integrations, but if « is not too
close to /2, the two formulae can be simpliftst.to a considerable extent. Since

n2-sina = cosla - (1-n2)

we have
(xxz-sinzar)"l/2 & gec a{1+% (l-nz)secza}

providing
coaza >> 1-»n2 ,
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and hence t t
wl 2 2y = -12 2
xo_itanasec af (1-n“)dy = 1.61x107"“ tana seca | N dy,
0

0 6)

which involves only the integrated electron density through the layer. The fact
that x, is positive is consistent with a deviation of the wave away from the nor-
mal ( n being less than unity). Similarly,

t

LY :’.xosina-%secaf (l-nz)dy= -1.61x 10'12uca(l—tan2a)f Ndy
0 0

(47)

and thus
61 2 - cos 2a cosec a X, . (48)
Since x, > 0, 6/ is pegiitive or pesitive according as o 1is smaller or greater
than 7/4, respectively.
To make use of the formulae (46) and (47), we now turn to the data for
plasma layer thickness and electron density that ’have been furni{shed us.
The boundary layer thickness t measured normal to the outer surface of the

radome at an axial distance Xy from the nose is represented by

0.01227xy" > +0.0012 0<x,<10
t = { 0.012x, - 0.08 , 10<x, <15 (49)
0.0224x3-% - 0.0958 15 <x, < 48

where all dimensions are in inches. In terms of the coordinate system of
Fig.4,

x1=x-l .
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Note that
t(10)=0.04, t(15) = 0.10, t(48)=0.40 .

The electron density varies as a function of distance y normal to the
radome surface throughout 0 <y <t , but does so in a manner that depends
onx, . Data curves” for N=N(y) (electrons/cc) as functions of y = y/t are
shown in Fig. 9.

From Eq. (46) it is observed that the approximate expression for the
lateral displacement X, of the intercept point with the radome surface is

proportional to
t
f N(y) dy = t1I (50)
0
where 1
I=f NG )dy . (51)
0

Since N(¥) depends on the particular range of x; (see Fig.9), I likewise
differs in the four ranges, but its value for each can be obtained by numerical
integration of the corresponding curve in Fig.9. But fitting log N to a poly#
nomial form and then integrating numerically, it is found that

I = 2.039x10‘9 for 0<x; <5
2.223x 108 for 5<x, < 10
1.147x 108 for 10<x, < 20
6.9%62x 108 for 20 <x; <48 .

Knowing I and t (see Eq.49) for the various ranges of x,, the integrated
electron density is obtained from Eq. (50) and the lateral displacement x,
for any given o then follows from Eq. (46). The change in optical dis~
tance is trivially related to x, through Eq. (48).

%
Private communication with Dr.I. Pollin, 13 November 1968.
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To assess the accuracy of the approximate formulae (46) and (48), we
considered the actual electron density profile in Fig. 9 for the range 0 < x < 5,
and evaluated numerically the precise integral expressions for X, and 6! in
Egs. (44) and (45) for a series of incidence angles @ . The results are shown in
the following Table along with the approximate values obtained from Eqgs. (46)
and (48).

TABLE
a(®) Exact x_/t Approx. x /t Exact 64/t ° Approx. 64/t
10 6.08x10~3  5.967x10-3 -3. 248x10~2 -3.220x10~2
20 1.381x1072  1,353x10~2 -3.045x10~2 -3.030x10~2
30 2.590x10"2  2.527x10~2 -2, 526x10~2 -2.527x10~2
40 4.845x1072  4.693x10~2 -1.216x10-2 -1.268x10-2
50 9.911x10~2 9, 467x10~2 2.408x10-2 2. 146x10-2
80 2.458x10"1  2.274x10"1 1.456x10~1 1.313x10-1
70 9.257x10-1  7.709x10~1 7.682x10~1 6.284x10" !

Certainly for a < 60° the agreement is rather good, and bearing in mind that
we have here considered the case in which N achieves its maximum possible
value 1010 (electrons/cc) and for which the discrepancies between the exact
and approximate expressions are greatest, the results provide réasonable
confidence in using (46) and (48). Only the integrated electron density is then
relevant.

For a = 70°, the approximate expressions underestimate both x, and
61, and the discrepancies become more apparent as a increases. This is
due to the considerable bending which a ray now undergoes . From Eq. (43)
it 1s seen that the local inclination to the vertical will reach 90° at a depth
within the sheath such that n(y) = sin o ; and having become parallel to the

radome surface, the ray will now emerge from the sheath without ever
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intercepting the radome. In the case considered above where the maximum
value of N is 1010 (corresponding to n=0, 9838), failure to intercept will occur
for all @>79.7°. Thus, for example, for a sheathed conical radome of half-
angle 9.5% illuminated at an angle within 0.8° from axial incidence, no rays
can penetrate the forward part where 0 < Xq < 5, but rays which strike further
back where the peak electron density is less will be able to get through.

Although the accuracy of the approximate formulae (46) and (48) is not en-
tirely adequate for o> 65° (say), the time that would be involved in performing
the numerical integrations demanded by (44) and (45) for each and every ray makes
the use of the simplified expressions most desirable, if not mandatory. Having
said this, it should be noted that for any given (large) angle a, the 'error'implied

by (46) and (48) decreases with the peak electron density and could in any case be
| removed by employing an integrated electron density (or layer thickness) some-
what greater than is implied by the curves in Fig. 9. Since it is presumed that such
an 'adjustment' is small compared with the inherent uncertainty associated with
the data in Fig. 9, Egs. (46) and (48) will be employed without any modification.

It is now a rather straightforward matter to take into account the presence
of the plasma. Any given ray is first traced to an intercept with the radome as
though the plasma were not there. Knowing the value of x (and hence x;)
appropriate to this intercept, x o and 6! are computed. The intercept point is
then displaced by a distance X, along the surface of the radome and the op-
tical distance increased by 6£ , and the ray is traced through the radome in
the same manner as before. It should be emphasized that x,is a displacement
along the surface, rather than in the x direction as such. This is trivial to
execute for a conical radome; for the ogival one, x, is treated as an arc length,
and the intercept is formed by constructing a circle of radius x, about the point
at which the ray strikes the radome in the absence of the plasma. Of the two
possible intercepts of this circle with the radome, that for which x is larger
is selected.

39



THE UNIVERSITY OF MICHIGAN

y=0

/ n=n(y)

y=t
A
' n=1
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VI NUMERICAL PROCEDURES AND RESULTS

Before going on to present the specific numerical results that have so far
been obtained with our numerical program, there are a few points woncerning
the manner in which the incident wave front is sampled that should be enlarged
upon.

In Section IV we discussed the need to 'smooth' the change in the induced
signal in a slot when a primary ray just hits a slot as opposed to when it just
misses, and we noted that a reasonably effective (and realistic) procedure is
to incorporate an amplitude taper in each slot response function. This has the
effect of enabling us to sample the incident wave front at a lower rate than would
otherwise be the case, but still leaves us with the task of determining what is
an 'optimum' sampling rate; by 'optimum' we here mean one that will minimize
the computation time ({.e use a minimum number of sampling points) and still
yield values for the pointing error of sufficient accuracy.

In order to obtain data from which to estimate the optimum rate, we
chose to consider a bare ogival radome for an H-polarized (or TM) wave in-
cident at 30° from nose-on. To judge from a variety of data sets then
available, this case appeared satisfactory for test purposes. Pointing errors were
now computed for various stepping distances, A (in inches) along the wave front
as a function of the position of the starting point for the first (lowest™ ray. Thus,
for a given Aand a given starting point, ¢ was computed. The starting point was
then displaced a distance A /10 upwards, and the process repeated; and so on until,
after 10 such displacements, the starting point in the 10th case coincided with
that of the second ray in the first case. It was found that the pointing error was a
smooth oscillatory function of the displacement,‘ with one complete cycle corres-
ponding- to 10 displacements. For A= 0.05 (inches), for example, € varied from

RN
In the program, sampling starts at the lowest point and works up the wavefront.
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9.82 to 9. 99 milliradians, whereas for A= 0.2, the variation was from 9. 85 to

10. 14 milliradians. It was felt that an uncertainty of * 0. 15 milliradians was

an acceptable accuracy, and since such factors as the weighting applied to the

slots had no real effect on the variation of €, we therefore settled on a rate

of sampling of the incident wave front corresponding to a stepping distance of 0.2
inches along it. This same value of Ahas been employed in the 3-dimensional
program, and whereas in the present case the increase in Afrom 0.05 to 0. 2 inches
reduces the number of rays (and hence the running time of the program) by a

factor 4 — an improvement which is certainly not negligible, the improvement

in the 3-dimensional program is by a factor 16 and is considerable.

The next topic to be discussed is the choice of the initial or starting point
at which the incident wave front is sampled. The ray tracing program is designed
to start with the lowest ray which can produce an intercept with the monopulse
plate, and then to step up along the wave front through a chosen distance A a
specified number of times. The starting point is taken to be the projection of the
lowest point of the monopulse plate on to the incident wave front (see Fig. 10):
consideration of the refractive effect of a convex radome shows that no lower ray
could conceivably provide an intercept. We can similarly specify an uppermost
sampling point by projecting the top of the monopulse plate and by finding that
point from which a ray is tangent to the upper surface of the radome (in the case
of a conical radome, the latter point is replaced by the projection of the radome tip).
The upper of these two points consitutes the final sampling point, and the number,
N, of increments is then obtained by dividing the wavefront distance (in inches) by
A.

Another matter of some importance i8s the cut-off or tolerance criterion that
is adopted. As each ray undergoes successive reflections and transmissions, its
amplitude decreases and ultimately falls to a level at which its contribution can
be neglected without significant error. Although one would prefer to set this
level as low as possible, to do so could increase the computation time without

any marked improvement in accuracy. A rather wide variety of test cases were
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run in which the tolerance was set at anything between 0.001 and 0.05, i.e. in
which rays were abandoned when their amplitude had decreased to less than
0.1 percent and 5 percent, respectively, of their initial value (unity). It was
found that decreasing the tolerance from 0.01 to 0.001 affected the pointing error
by no more than 0.2 or 0.3 milliradians, and though the tolerance criterion was
preserved as one of the input parameters, it was set at 0.01 in all subsequent
runs. It may be noted here that this wanre level has been adopted in the 3-dimensional
program.

In the description of the monopulse system given in Section IV, we allowed
for the possibility of differential weighting factors applied to the various slots.
The weighting factors that are appropriate depend, of course, on the manner in
which the slots are connected, but to get a general feeling for the extent to which
they can affect the pointing error, a series of tests was run using four symmetrical
slots with either equal weighting or with the outer slots weighted by a factor 1/2
relative to the inner ones. It was found that such a decrease in the sensitivity
of the outer slots increased the pointing error, the change being of order 10 per-
oent.

The final form taken by the 2-dimensional computer program is rather general,
and permits the computation of the pointing error for either a TE or TM plane
wave at any angle of incidence on a radome whose surfaces are specified by either
linear or quadratic equations, with or without a surrounding (weak) plasma, and
for a variety of monopulse plate configurations. A complete list of the input
variables and their format is given in the Appendix { Even though this list may
seem quite lengthy, only 4 cards are needed for each set of data, and for a
typical modification of input parameters such as a change in the fncfdence angle of
the wave, only one of these cards has to be altered.

Numerical Results
In order to test out the program: and, at the same time, to obtain explicit

values for the pointing errors in cases of some practical interest, complete runs
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were carried out for two particular radome and slot configurations with and
without a plasma present.

The incident field was (as always) assumed to be a plane wave having either
its electric or magnetic vector in the z-direction (TE or TM polarized waves,
respectively) and incident at an angle S to the radome axis varying from 0°
(axial incidence) to 55°. The (free space) wavelength was taken as 2.4 inches,
corresponding to a frequency 4.918 GHz. The radome material was treated as a
homogeneous isotropic dielectric with permeability u = My - Thus,

nzy[? =25,

€
which is typical of the refractive index of fiberglass in the microwave range.

The monopulse plate was assumed to consist of 4 symmetrical slots centered
at 2.4 inches and t 4.8 inches from its mid-line, and having widths 2d=1.2 inches.
The slots were weighted equally and had a cosine amplitude taper associated with
each. For simplicity, the individual slot voltages were not printed out, and the
output therefore consisted of only a single pointing error € (in radians) arrived
at in the manner described in Section IV.

The plasma (when present) was taken to have the characteristics provided by
Dr. I. Pollin (personal communication) and listed in Section V.

The two particular radomes that were considered are the two-dimensional
analogues of those described by Dr. Pollin (loc. cit.). The first is a two-
dimensional conical (or wedge) radome (see Fig. 11a ) whose outer and inner

surfaces are given in terms of the coordinates of Fig.4 by the equations

o x-4.191),

(=21 § o

1
Y’fg(x-l). y

respectively, where all dimensions are in inches and the upper (lower) sign refers
to the upper (lower) surface. The half-angle of the cone is approximately 9.5°,
and thus, in Eq. (16),

a=é, L =1 (outer)
= 4,191 (inner) .
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The mid point of the monopulse plate is at x = 43.

The second radome considered is a two~-dimensional ogive each of whose
surfaces is formed by the rotation of a cylindrical arc about a chord (Fig. 11b) .
Each surface is defined by an equation of the form (15) with

A =140, B =48, C =49

for the suter surface, and
A = 140, B=45.832, C=49

for the inner surface. The half angle of the (outer surface of the) radome at its
tip is approximately 18.4°, and the monopulse plate is situated at x = 39, It
should be noted that for neither radome have we postulated any tip rounding.

The program was run first for the bare conical radome for each of the
two polarizations, and with the angle of incidence S varying from 0° to 55° in
50 steps. When it was found that the pointing error, € , varied rather rapidly
in certain ranges of 8, computations were carried out for additional values of B
in order to pinpoint the oscillations more precisely, and we ultimately ran the
program at increments of 1° in B for portions of the entire range . Analogous
computations were then performed with the plasma present. A complete listing
of the pointing errors (in milliradians) for the conical radome, with and without
the plasma sheath, are given in Table 1, and the results for the bare conical
radome are plotted as functions of 8 in Fig. 12. Attention was then turned to
the ogival radome, and the pointing errors computed without the plasma present.
Because rapid variations in € now existed throughout the entire range of 8
(the source of these variations will be discussed in a moment), it was felt
desirable to compute ¢ for ne more than 1° increments in B over most of the
range, and even smaller increments were employed over a limited region. The
results for the bare radome with TM polarization are plotted in Fig. 13, and
a partial listing of these data and of the analogous results in the presence of
the plasma, is given in Table 2. Due to lack of time and money, no comparable

runs were carried out for the ogival radome with TE polarization.
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Table 1: Conical Radome Pointing Errors (Milliradians)

Bare With Plasma Plasma-Bare

Bideg.) TE ™ TE ™ TE T™
0 0.00 0.00 0.00 0.00 0.00 0.00
1 2.13 2.42 -0.13 0.02 -2.26  -2.40
2 4.47 4.80 -1.63 -0.80 -6.10  -5.60
3 6.20 7.08 -10.93 -8.21 -17.13  -15.29
4 4.36 5.16 -18.97 -16.96 -23.33 -22.12
5 5.28 6.01 -15.05 -0.80 -20.33  -6.81
6 6.25 7.25 0.35 11.52 -5.90 4,21
7 -2.70  -4.96 10. 85 18.31 13.55  23.27
8 0.39 0.00 -0.51 0.95 -0.90 0.95
10 0.36 0.00 -0.19 -0.56 -0.55  -0.56
11 0.42

12 3.77

13 10.72  -0.07

14 10.57 10. 34 -0.23

15 -11.62  -0.86 -11.54 -0.75 0.08 0.11
16 -14.67

17 -10.22

18 -7.18

19 -4.46

20 -2.53 0.23 -2.13 0.23 0.40 0.00

25 -0.24 0.11 -0.25 0.11 -0.01 0.00

30 -1.42 0.00 -1.42 0.00 0.00 0.00

35 -0.48  -0.15 -0.48 -0, 14 0.00 0.01

40 -3.40 0.43 -3.42 0.41 -0.02  -0.02

45 0.12 0.07 0.11 0.07 -0.01 0.00

50 0.9 0.17 0.95 0.17 -0.01 0.00

55 -0.13 0.05 -0.05 0.11 0.08 0.06
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Table 2: Ogival Radome Pointing Errors (Milliradians)

Bldeg.) TM Bare TM Plasma Plasma-Bare
0 0.00 0.00 0.00
) 1.20 0.44 -0.76

10 -10.21 -9.15 1.06

15 4.98 5.64 0.66

20 5.90 5.65 -0.25

25 5.17 5,27 0.10

30 -9,99 -9.97 0.02

35 5.03 5.08 0.05

45 4.43 4.66 0.23
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Discussion of Results

Inspection of the results that have been obtained shows that in all instances
the pointing error is a rather rapidly varying function of the incidence angle 3
and except for the conical radome with 8> 20° the peak excursions are much
larger than the 2 milliradian limit that was hoped for. This is true indepen-
dently of the presence (or otherwise) of the plasma sheath. It is our belief that
these features are real and that the results are not a reflection of the approxi-

mation inherent in using ray tracing.

In support of this belief, we examined in some detail the pointing errors
that were obtained for the bare conical radome (see Fig.12). Since the geometry
is rather straightforward in this case, it was possible to trace manually the
paths followed by the primary rays (which are the source of the dominant portion
of the monopulse exoitation) over various portions of the angular range. As
expected from symmetry considerations, the pointing error is zero for nose-on
incidence. As S increases from zero, the difference in path length between
rays which have passed through the upper and lower radome walls also increases,
and this inturn leads to an increasing phase difference between the excitations
which the upper and lower slots receive. The pointing error therefore increases,
and does 80 in a manner almost independent of polarization. With increasing
B, however, even the upper slots begin to receive the bulk of their excitation
from rays that have passed through the lower radome wall, and € now de-
creases” from a peak value of 6~7 milliradians to (effectively) zero for 8 = 9~10°
when the rays are at glancing incidence on the upper wall. As B increases still
further, we start receiving reflections off the upper (interior) radome surface,

*The 'overshoot' occurring in the 7 to 8° range is attributable to internal reflections
within the lower radome wall. Geometrical considerations show that the reflected
waves will affect the slots differentially, leading to a rather localized pointing
error which is polarization dependent (as observed).
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and since the reflection coefficients for the TE polarization greatly exceed
those for TM, significant differences between the two polarizations now occur.
Indeed, for B> 9°, the pointing error for the TM case remains less than
1 milliradian and, as such, is not much greater than the expected accuracy
attainable from the computational procedure. In contrast, however, the strong
wall reflections in the TE case produce a pointing error which rapidly increases
for B> 11° and reaches a maximum of about 11 milliradians for 8 = 13° . To
begin with, only the upper slot(s) receive this perturbation signal, and because
of the relatively small path difference between the direct and reflected 'waves',
the pointing error is positive (see Fig.7). But with increasing 8 the path dif-
ference becomes significant and the pointing error changes rapidly to a negative
value. It is the phase (or path) difference which is primarily responsible for
this, and the effect is analogous to a 'hunting' action on the part of the monopulse.
The peak (negative) € is mearly -15 milliradians, and occurs for 8 = 16°. As
B increases still further, the pointing error decreases, partly due to the in-
creasingly uniform illumination of the monopulse plane by the reflected wave,
but more importantly because of the decreasing effect of the perturbation arising
from the progressive reduction in the reflection coefficients and the suppresive
action of the polar diagram associated with the slot response. Although €
continues to oscillate even for 8> 20°, it now does so with a much reduced ampli-
tude, and it is not possible to pinpoint any single source for each individual peak.
The above interpretation of the dominant features of the curves in Fig. 12
was arrived 'at by a detailed examination of the ray contributions to the monopulse
excitation, and by a few exercises with a ruler, protractor and a slide rule.
The same general picture continues to hold when the plasma is present, and
whilst the plasma can be expected to change some of the details as a result of its
lateral non-uniformity and its modification to the rays that enter the radome, we
should expect to see the same principal features in the pointing error curves.
Inspection of Table 1 shows that this is the case. Note, however, that some of the
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pointing error peaks are reversed in sign ( a phasing effect primarily), and be-
cause all tend to be slightly displaced in angle, the change in pointing error
produced by the radome can be quite large particularly in the critical region
near to nose on where the non-zero values of € are almost completely due

to a phase (or path difference) effect. For 82 150, the plasma produces no
significant change in € .

The understanding resulting from the above 'dissection' of the results for
the conical radome enables us to appreciate why it is that the ogival radome
displays the even more complicated behavior shown in Fig. 13. Since the
half angle of the radome is now almost 19°, we might expect that in this range
the pointing error will oscillate in a similar manner to what it did for a conical
radome when 0<f8< 9.5 To at least some degree, this is indeed the case,
but because of the curved geometry implying variations in reflection and trans-
mission coefficients over different portions of the walls for even a fixed value
of S, the detailed structure of the € pattern is a great deal more complex than
for the conical radome. Were it in isolation, the lower radome could no longer
transmit a uniform plane wave, so that the monopulse plate receives a field of
rather complicated structure even from this part of the radome alone. The
situation is still worse for the upper wall. At any given angle of incidence, a
single slot will see a dominant reflected wave coming from only that small portion
of the wall which is appropriately aligned; and in consequence, both the phase
and the direction of the dominant reflected signals will vary markedly from slot
to slot. Under these circumstances it is not surprising that € shows large and
violent changes as a function of S, with each peak being attributable to the
cumulative effect of many small contributions which themselves change rapidly
from one value of B to the next. Un-physical as the results in Fig. 13 may

appear, we have no reason to doubt them.
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A comparison between the pointing errors with and without the plasma
present is given in Table 2 for 9 isolated values of B . It is interesting to
note that based on this small sample alone one would conclude that the plasma
has less effect on € for an ogival radome than it did for a conical one. There

does not seem any obvious explanation for this.

Conclusions

In this Memorandum we have given a complete description of the numerical
approach that we have adopted in determining the behavior of a monopulse
system mounted within a 'two-dimensional' radome with or without a weak plasma
sheath surrounding it. The theoretical foundations have been presented in some
detail, as have the approximations which are necessary to permit the computations.
Much of this is also appropriate to a treatment of a three dimensional radome,
and we shall rely heavily on the present material when we come to describe the
three~-dimensional work.

The Appendix to this Memorandum contains a complete listing, flow chart
and operating instructions for the two-dimensional numerical program, and we
have given (and discussed) some of the results that have been obtained by applying
it to two particular. radome-monopulse configurations. These raise considerable
doubt whether a 2 milliradian maximum pointing error for incidence angles out
to 55° is an achievable objective regardless of the presence of a plasma sheath.

Although a two-dimensional geometry is, of course, a mathematical
idealization, we believe that the program presented here is a valuable one in its
own right and that the values of the pointing error obtained with it do represent
a lower bound on those that would be found for the corresponding three-dimensional
geometry. Certainly the program givem here permits a much more rapid computation
of € than does the three-dimensional one, and whilst the present program was not
written specifically for economy of operation (rather did we aim to permit the
printing out of all intermediate data that might facilitate the understanding of the
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pointing errors found), the running (CPU) time in any one case (i.e. one angle

of incidence, one polarization and one radome with or without plasma) varied
from about 5 sec. to 20 sec. at most, depending on the particular circumstances.
In contrast, the time for the three-dimensional program is two or more orders
of magnitude greater.

Finally, it should be emphasized again that the entire approach has been
based on ray theory and, in consequence, the results obtained are only approxi-
mate. Though it i8 our belief that the values found for the pointing error are
accurate to within 1 milliradian, prudence would dictate that before complete
reliance i8 placed on these data, some attempt be made to verify the conclusions
experimentally. To do so for just the bare radome would be a valuable test, and
it would not be hard to perform such an experiment using a simulated two-

dimensional structure.
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Fig. 10: Choice of Initial and Final Sampling Points.
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Fig. 1la: Conical Radome Geometry.

- <

Fig. 11b:  Oglival Radome Geometry

55

= X



(sesadep) ¢

0S oy ot 174 o1 0
'] [l 1 1 1 1
..Hnl
' SUOIIBZIIB[Od
(X—X) JL pue (@ - - o) - 01~
WL 103 duwiopey [eOoyuo) axeq
a9y} X0J xoxay Bupmyod :Z1 "31d
e mlv
0
-G
72
[ J
X4 —:
k o
- 01

(suBfpeay[[Iw) > ‘I0a1y Supuiod

56



(seealep) ¢

09 0S ob og 02 01 0
[ 1 1 1 1 1
SI-
‘uojyezZIIR[od WL ‘owopey
[8AL30 aaed oy} J0J xo1ay Bupujod g1 "81d
) - 01~
o ml

b .

(susgpBay[jw) 3 ‘ J01ay Burjujoq

57



THE UNIVERSITY OF MICHIGAN
APPENDIX

FORTRAN COMPUTER PROGRAM

This description of the Fortran computer program consists of the following

six parts:

(1) Usage hints and a complete description of the differences between
the version for a conical surface and the version for a surface
described by a certain quadratic function,

(2) Disgram showing terminology used in planning the program,

(3) List of input variables with their program code names and input
card formats,

(4) List of Fortran source program,

(5) List of all variables used in program with code names and their
meanings and usage, and

(6) Semi-detailed chart of logic flow in the program.

(1) Usage Hints'
The program has been written to process an unlimited number of data sets,

each data set consisting in form of data cards and resulting in a single pointing
error, for a given aspect angle, frequency, polarization, geometry, and so forth.
As a precautionary measure against incorrect data inputs a trap has been incor-
porated in the program to terminate the program when more than three errors
are encountered in the input data.

The program, as it now exists, is by no means in its most efficient state:.
Storage requirements can be reduced by making changes to parts of the program
which were included for flexibility and to aid in the program checkout. The di-
mensioning of variables ANGLE, AMPL, and DIST serves no purpose during
current usage of the program. Also, some of the statements beginning near the
statement numbered 370 may be eliminated by rearranging statements near the
statement number 243 and then looping back sooner. This loop is performed each
time a ray reflects inRegion III.
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Differences Between Quadratic and Conical Versions

Conversion of the computer program from one that handles the quadratic
case where the surfaces are described by F1 and F2, segments of circles, to
one which computes for the conical case where the surfaces are cones des-
cribed by F1 and F2, straight lines, consists of the following steps (for the
most part indicated in the card deck by comments).

1) The function

FX = ISIGN (iAz-(x-B)z-c )

becomes
FX= ISIGN* (X-A)*B .
The function
]
FDERX = ISIGN™ (B-X)
A%-(x-p)2
becomes

FDERX = ISIGN*B .
2) In the format number 171 the word ''quadratic" becomes "conical" .
3) In the plasma calculations the statement XB=XB+DE LX(cos|arctan(DX)| )
becomes XB-XB+DELXI|cos(B)l and the statement XB=FZ(ZB) is eliminated.
4) The subroutine XPT is replaced with one which computes the point of
intersection of straight lines.

Notice also that input variables A, B and C necessarily have different
meanings.
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(2) Diagram Showing Terminology Used in the Program.

F1
5 E—-—-C F2
By
Monopulse

B is any point on F1.
C is point where a ray from : point B: hits F2.

D is a point of reflection on ¥1; it becomes point B: after reflection
calculations are made.

ISIGN = + 1 when intersection with top function is being sought,
= - 1 for bottom part.

IBELO is argument of call to subroutine XPT; indicates which point of intersection
of surface with the circle s to be uséd (quadratic case);

# 2 means point used is upper if ISIGN is + and lower if ISIGN is - ;
= 2: other point is used.

On return IBELO = 0 if intersection with & cirtleis found and if it is left of
center of the circle determined by F.
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(3) Input Variable List for IRORTRAN Program

FORTRAN Neme Columns Description
Card 1 - quadrstic surface
A 1-10 radius of circle described by radome (F1)
B 11-20 X-coordinate *of center of above circle
C 21-30 Z-coordinate of center of above circle
SMA 31-40 difference between radii of F1 and F2

Card 1 - conical surface

A X-coordinate of vertex of F1: outer surface
B slope of top surface of cone
C = 0 indicates case is conical
SMA , A- (X-coordinate of vertex (F2 = outer surface))
Card 2
DELTA 1-10 increment used in stepping up radiating plane
TWON 11-20 refractive index of Region II
XZERO 21-30 X-coordinate of center (on X-axis) of receiving
plane
BETA 31-40 angle (in degrees) of radiating plane to X-axis
BETA2 41-50 angle (degrees) of receiving plane to X-axis
ITEST 51-54 indicator which results in intermediate printing
when set = 1
IPLAS 55-58 indicator = 1 when plasma present, 0 otherwise
NPRINT 59-62 indicator = 0 results in printing output whenever
ray hits a slot; when set = 1 only pointing error
is printed.

3
All linear measurements are in inches.
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Jnmet Vontohle List for PORTRAN Bpogrom focutisted)

FORERAM: Meme Columns Description

Carxd 3

21 1-10 Z~ooordimate of first point on radiating plane

ZZERO 11-30 maximum distanoe from center of receiving
plane that impacting rays will register
(usvally to tep edge of tep slot)

TOL 21-30 aaytime the amplitude of a ray falls below
this value, path tracing ceases for that ray

NUMINC 31-34 a maximum limit of the number of mcrements
which will be stepped aleng radiating plane

™ 35-38 Set = 1 for magnetic case; 0 otherwise

TE 39-42 set = 1 for electric case; 0 otherwise

Card 4

WIDTH 1-10 hali-width 1f:slohs: en neceiviagplane

WAVEL 11-20 wavelength

APER(1 —'3) 21-30... distance along receiving plane of centers of
slots; bottom is symmetric

WEIGHT (1 —= 3) 51-60... weighting factors for up to 3 pairs of slots
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THE UNIVERSITY OF MICHIGAN

S
(5) Variable List (partial) for FORTRAN Computer Program with Meaning and Use™*

ABM Slope of ray from point A (where ray originates) to point B.
AF2 The A constant for function F2.

ALPHA Angle between ray approaching F1 in Region I and slope of normal
to F1 at intersection point B

ALPHC Angle between ray leaving F2 in Region III and slope of normal to

F2 at point C.
BC Geometric distance between point B (on F1) and point C (on F2).
BCM Slope of ray from point B to point C.

BETAP The angle 3, in degrees for printing purposes.
BETA2P The angle 82, in degrees for printing purposes.

BF2X0 Z~coordinate of the bottom intersection point that the receiving
plane, centered at X, makes with the radome.

BMN Slope of normal to F1 at point B.

CASE Contains the literal '"MAG' when data for magnetic case is being
processed and 'ELEC' for the electrical case; used in print-out.

CMN Slope of normal F2 at poinc C.
COSBE Result of cosine function applied to S .
CZM Slope of ray transmitted at point C into Region III.

CAMP Result of function which damps the amplitude.
DELX Used in plasma calculations; represents the change in distance along

the function F1.
DK (27/ wavelength) *(width of slot).
DPLAS The change in optical distance caused by presence of plasma.
DX Used for results of taking derivatives.

%*
Input variables are included in another section
ok
See diagram in Section (2) for aid in understanding symbols used in the program.
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Variable List (continued)

EMN Slope of normal to F2 at a point E.

EZM Slope of ray reflected at a point E in region towards receiving plane.
FACTK 27 /wavelength

GAMMA  The factor used to compute reflection and transmission coefficients.

GN Contains the index of refraction during calculations for the magnetic
polarization and its inverse for the elect rical polarizations.

IBELO Is argument of call to subroutine XPT. Indicates which point of inter-
section of surface with the circle is to be used (quadratic case).

IERR Usually used in call to subroutine XPT, in which case value 0 means
a satisfactory intersection was found.

HIT Registers 0 during computations for a data set until the first ray hits
the radome.

IHOT Registers 0 during computations for a data set until plasma adjust-
ments are made (if any).

INOP The count of the number of points in sbrage to be processed for re-
flections.

INPER The count of the number of times input data errors have been detected.
IOUTP The count of the number of output points.

IPROC The count of the number of points in reflection storage that have been
processed.

IS The number of increments that have been added to the original
starting : point on incoming plane.

ISIGN + 1 when intersection with top function is being sought; - 1 for bottom
part.

IVERT Is set to 1 for remainder of data set computation when some originating
ray first passes left of vertex of F1.

KHITSL  Indicator to allow printing of more information when the first compon-
ent of a ray hits any slot.
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Variable List (continued)

KLOOP Count of the number of times for a particular ray that the main loop
has been performed.

KLP2 Counts number of times a ray reflects wholly within Region II.

LIMINC Program limit to the number of increments that can be made, i.e.
the number of points used on incoming plane.

LVERT Contains the number of vertices for which rays have passed to the
left within a given data set (e.g. 0, 1,2).

M Contains number of points for which reflections storage is capable
of holding information.

MXO Slope of receiving plane, which is centered at (Xo, 0).

MXSLOT The maximum number of pairs of slots program can process.

PHII1 Angle in Region IT between ray and normal to F1, outer surface.

PHI2 Angle in Region IT between ray and normal to F2, inner surface.

PHI3 Angle in Region Il between a reflected ray and the normal to F1,

outer surface.

POLR, POLTH Contains polar radius and angle for impact angle, amplitude and
electrical distance of a ray impacting on receiving plane.

PSIL, PSIV Difference is pointing error.

RECTX, RECTY Information converted from polar information (POLR, POLTH)
before summation.

RTEMP  Temporary storage for amplitude of ray segment just split from
primary ray being followed; segment is RegionII' reflection on bottom
half of wedge and transmission segment to Region II on radome section
in first quadrant.

SUMX(6), SUMY(6) Sum for each slot of angle, amplitude and distance information
for » individual rays.

T2 Latest amplitude factor of primary ray being followed.
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Variable List (continued)

UF2X0

VERTF1
VERTF2

Value of function representing the upper helf (1st quadrant) of the
inner surface (F2) at the point where the receiving plane (centered
at (Xo, 0)) intersects.

X-coordinate of vertex of outer surface i.e. F1; Z-coordinate is zero.
X-coordinate of vertex of inner surface i.e. F2; Z-coordinate is zero.

XB, XC, XE X-coordinates of points B, C, and E respectively; see diagrams.

XEM
XM
XL, XV

XUP

YL, YU

X-coordinate of point where ray originates on emanating plane front.
X-coordinate of point where ray impacts on receiving plane.

Used for combining factors from rectangular sums: L for information
from lower slots, (4th quadrant), U for information from upper slots
(1st quadrant).

X-coordinate of point of intersection between receiving plane and lower
part of F2 (4th quadrant).

X-coordinate of point of intersection between receiving plane and upper
part of F2 (18t quadrant).

Used in test of whether ray has crossed receiving plane (within Region Ii1);
contains XLO when ray is directed towards bettom and XUP when ray
is directed towards top of radome.

See XL, XV

ZB, ZC, ZE Z~eoordinates of points B, C, and E respectively; see diagrams.

ZEM

Z-coordinate of point where ray originates, which is on emanating
plane front.

Intermediate storage, which are variables, with no particular meaning are:

X, Y, S, U, LIM, CONST, dad IT .

87



THE UNIVERSITY OF MICHIGAN

(6) Flow Chart - A Broad Outline of Logic Flow of FORTRAN Program

Dimension Statements
Funection definitions:

Description of iaput with formatss

START

l

Initialize constants

101

Read and print teput

data

100

Set indices to zero:
IS, IERR, IOUTP,
IVERT, LVERT, also
SUMX, SUMY

l

Ne— TWON
AR lZ I
0 (o]
AF2 = A-a

Check inputs for
yalidity

Cdloulate coordinates of poimts of
tntarsection of monopuled plane
with rademe -

Convert sts into
‘proper units

Write heading

!

Zero some virisblés .

Calctlate sums and pridt

200

Add increment to obtain new
point of origin for rayew
| N N D

- v

I'fitst ray did not'pasks:
beldw lowest lot; (printi.:
werning ,

A're speviffed mimbef
of.tmerements adeid

'

149
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149

Find intersection of ray with
+ F1 (point B)

it exists

Calculate normal to F1 at B; Angles
of tay to hormal: a, 61 ; Distance
and amplitude

\
Make adjustments for plasma, if wanted

226 [ Set indices IOUTP, IW, KLOOP = 0|
begin main lpop (1)

230 Find slope of line from B to C

Has loop (1)

0 Print message that
"ray hit vertex 2"
g0 to next increment

Ray's X intercept -
X coord. of F2

Veriak

>0

233
ISIGN= - ISIGK. n

) print message

"ray passed left of
vertex of F2"
234

IBELO = 2 [e

235

Find interesction point C
" with F2, (XC, ZC)

!

236
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236

Is intersection
left of

receiving plane

Add to total distance:
distance BC *N

240 |

Find normal to F2
at C (CMN)

\

Calculate angles of ray
with Wormal: 6, and

2

a {if exists
c

Calculate slope of ray
from C thruRegion III

Perform .amplitude
‘galculations

246

Print message ''ray was not
transmitted to third medium"




246

Has amplitude become
smaller than ""tolerance"

243

Caloulate where ray hits receiving
plane (extended)

Begin loop for ray bounding back
and forth inRegion I

Store Information so ray passing into
Reegion II may be followed later

330 |

ISIGN = sign of slope of
ray from C

l

Find intersection of ray
with F2 (XE, ZE)

Print message ''gads no
intersection see state-
ment 359"

section exist

Calculate normal to F2 from intersection
E, angles, amplitude, distance

370



370

Find slope of ray frem E
n

Fiand where ray hits re-
ceiving plane

Move information from
variables Mo C variables

Caloulate angle sl amplitude
of ray at monopulse plane

Convert ugle to degrees
compute damping factor
for amplitude

'
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421

Add certain functions of angle
and amplitude, dist. to
accumulating sum

421
Print
indicator

Print line with impact coordinates,
amplitude, distance, angle

ol

Has ray been
reflected more
than 29 times

480

Transfer information from previous
reflection points to pt. C variables
for processing

500 ,

ISIGN=+1 *
(sign of Z coord.)

L
Fine slope of ray CD

1
Find where ray (CD)
intersects F1, i.e.
Point D

intersection
point

504

Print message: neg.
discrim. in subroutine
XPT with arguments




504

Was intersection
left of receiving
plane

520

Calculate normal at D,
la of alwith CDy

ang %3? (J}

Is 93 Yes

549

negative or
zero

w
N
1)
v

Print message
"9 is neg (eek) "

580

545

Calculate ray angle with normal
in Region III

Amplitude = amplitude T.
*RTEMP *R23 ()

Distanc{q_;_dﬁ};_n\ce +2. %
atan(n n“ sin® 0 - 1)

v
amplitude = amplitude *

550
Calculate distance

Move information from D
variables to B variables

RTEMP




Then ray passes above +F2 or below -F2

800

802

Find intersection of ray with F1

Does
intersection
exist

Yes

Move information from B variables
into C variables RTEMP =1

&)

990

Write "All Data Has Been Processed'"

END
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