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PREFACE

This paper is the fifteenth in a series of reports growing out of
studies of radar cross-sections at the Willow Run Research Center of
the University of Michigan. The primary aims of this program are:

1. To show that radar cross-sections can be determined ana-
lytically.

2. To elaborate means for computing cross-sections of various
objects of military interest.

3. To demonstrate that these theoretical cross-sections are in
agreement with experimentally determined values.

Intermediate objectives are:

1. To compute the exact theoretical cross-sections of various
simple bodies by solution of the appropriate boundary-value
problems arising from the electromagnetic vector wave
equation.

2. To examine the various approximations possible in this
problem, and determine the limits of their validity and
utility.

3. To find means of combining the simple-body solutions in
order to determine the cross-sections of composite bodies.

4, To tabulate various formulas and functions necessary to
enable such computations to be done quickly for arbitrary
objects.

5. To collect, summarize, and evaluate existing experimental
data.

Titles of the papers already published or presently in process of publi-
cation are listed on the back of the title page.

K. M. Siegel

ii



UNIVERSITY OF MICHIGAN

2260-1-T

I
INTRODUCTION

The radar cross-section (¢) of aircraft has always been a difficult
parameter to ascertain with any great precision. Even the first signifi-
cant figure has always been subject to considerable doubt. Such informa-
tion is important enough to warrant a good deal of experimental and
theoretical effort. Kerr (Ref. 1) states: ''Because of the need for some
means of describing complex targets certain desperate artifices have
been evolved to preserve the concept of cross-section for such targets. "

Kerr also points out that:"For longer radar wavelengths, greater than
about 1 meter, a large amount of work has been done to calculate o by
treating sections of the aircraft as cylinders, ellipsoids, or various com-
binations of curved surfaces. Some of these methods have achieved a
moderate degree of success.' This report employs the method referred
to above; the method is used, at wavelengths both smaller and larger
than 1 meter, to compute the cross-sections of B-47 and B-52 aircraft
for many aspects.

This study was carried out during May, June, and part of July 1954
at the Willow Run Research Center. More than thirty members of the
technical staff participated in the work, including members of the Theory
and Analysis Department under K. M. Siegel, members of the Data Re-
duction and Computation Department under D. M. Brown, and members
of the Digital Computation Department under J. W. CarrIIl. The compu-
tations involved use of slide rules, desk calculating machines, IBM com-
puting equipment, and the MIDAC (Michigan Digital Automatic Computer).

The theoretical data obtained for the B-47 aircraft are presented
in Section II. The B-52 data are presented in Section III. The theoreti-
cal data for the B-47 are compared with experimental data in Section IV,
Similar comparisons were not possible for the B-52 because of the lack of
availability of such data.

Appendix A contains the notes, prepared by one of the authors

1
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(C. E. Schensted), which were used as the basis for the computations.
These notes show the method by which the computations were obtained,
and may serve as reference material for other workers in the field.
Appendix B contains drawings of the two aircraft and describes the
breakdowns into simple shapes which were used for computational pur-

poses.

It is hoped that this report will serve three major purposes:

1. That it will provide better values of B-47 and B-52 radar
cross-sections than had been available heretofore.

2. That it will provide sufficient background information for
the computation of the radar cross-sections of complex con-
figurations.

3. That it will serve as a stepping stone for further research
in the computation of the radar cross-section of complex
configurations.

bl
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II

THEORETICAL CROSS-SECTIONS OF
B-47 AIRCRAFT

2.1 METHOD

The theoretically computed radar cross-sections of the B-47 are
summarized in this section in graphical form. The cross-sections were
computed at seven different wavelengths as a function of the two aspect
angles, p and 7 , shown in Figure 2.1-1.

The seven wavelengths are:

A= 0.1ft= 3.05cm = 3cm
A= 0,3ft= 9.14cm =~ 9cm
A= 0.4ft=12.2 cm = 12 cm
A= 0.6ft=18.3 cm =~ 18 cm
A= 1.0ft=30.5 cm = 30 cm
A= 3.0ft=91.4 cm ~91 cm
A=15.0ft=4.57 m =<4.5m

Computations were made for each of these seven wavelengths and each of
eight different values of p (-4°, 0°, 4°, 8%, 12°, 30°, 60°, and 90°) for
many values of ? in the region 0° < 7 < 180°. Computations in 7 were
made at 5° intervals and for each \ and B the peak points in » were
computed as were the one-half (and in some cases the one-tenth) peak

points.

As exact computational methods are not available at present, the
aircraft was broken up into parts which were fitted by relatively simple
shapes whose cross-sections can be computed approximately. Then the
approximate cross-sections of these components were combined appropri-
ately to obtain the cross-section of the aircraft itself!.

! A general discussion of this breakdown procedure is given in Appendix

A, and the specific breakdown used for the B-47 is discussed in Appendix
B. .

3
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Direction to
Radar

FIG. 2.1-1 BASIC COORDINATE SYSTEM USED IN DETERMINING
THE CROSS-SECTIONS
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In performing the breakdown, the judgment of the physicist or mathe-
matician setting up the computations comes into play; his judgment is in-
fluenced not only by familiarity with theoretical material (such as that in
Appendix A), but also by the accuracy required in the results, by the
amount of detail shown on the available drawings of the aircraft, and by
the time and computing facilities which are available. To allow for this
relative arbitrariness in procedure and consequent uncertainty in the re-
sults, the cross-section of the B-47 was computed independently by two
methods.

In Method I, the numerical computations were done by slide-rule.
In Method II, the computations were done primarily on IBM machines
and on MIDAC. The two methods also differed in that the B-47 was broken
down into alarger number of components in Method II than in Method I.
The different breakdowns used in the two methods result in different sized
components. These differences can result in marked discrepancies
arising at aspects at which a particular component, having a different
size in the two methods, dominates the computed cross-section.

Since only small drawings of the B-47 were available, many of the
angles involved had to be measured with a protractor. Some of the ap-
proximation formulas used are very sensitive to changes in the angle
parameters. Thus, a slight difference in the measurement of an angle on
an aircraft drawing can result in marked differences in the computed
value of ¢ for a particular choice of §, », and \.

It should be kept in mind that discrepancies are not physically signifi-
cant if they are too small to be measured in the field. Some compara-
tively large discrepancies which arise from the two methods, and which
are due to differences of opinion as to what the B-47 looks like (in regions
where the results are sensitive to shape) could be resolved, at least
partially, by recomputing the cross-section using more accurate data
concerning the aircraft. However, such a procedure hardly seems worth-
while since later versions of the B-47 might have slightly different shapes.
It is important to observe that the results of the two methods are in gen-
eral agreement ( to within a factor of 2 to 5) for almost all of the wave-
lengths and aspects considered. More precise comparisons between the
results of the two methods are made in the Sections 2.2, 2.3, and 2. 4.

5
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The graphs appearing in this section show the envelopes of the com-
puted data. The cross-section varies rapidly with aspect and the com-
puted values represent averages. In making these graphs, the largest
and smallest computed value of ¢, for a particular set of \ and  values
were plotted as a function of v . (For example, on Figure 2.2-1 all of
the values of cross-section computed for 7 = 200, for g = -40, 0°, and
4° and A = 3.05cm, 9.14 cm, and 12.2 cm were between 1.1 and 2.7
square meters.) The envelopes drawn with solid curves are for hori-
zontal polarization and the envelopes for vertical polarization are shown
with broken lines. In those regions of » for which the envelopes of the
vertical polarization data are not shown, they coincide with the envelopes
for the horizontal polarization data. The method of presentation employed
occasionally results in a large number of peaks due to a shift of the peak
position with a change of B and due to the somewhat different positions
obtained for the peaks in the two methods of computation. These "extra'"
peaks are shown on the graphs.

2.2 X- AND S-BAND CROSS-SECTIONS

All the X-band and S-band cross-section computations for the B-47
are summarized in Figures 2.2-1, 2.2-2, 2.2-3, and 2.2-4, as a func-
tion of 7, with the exception of the values of cross-section correspond-
ing to B = 90° for which 7 is indeterminate. At this aspect, the results
obtained were:

o 1 X 104 square meters (A = 3.05 cm),

U

¢ ~ 5x103 square meters (A = 9.14 cm),
and ¢ =~ 5 X 103 square meters (A = 12.2 cm).
o .0 o : N
The data for B = -4, 0, and 4 are summarized in Figure 2.2-1;
the = 8° and 12° data in Figure 2.2-2; the g = 30° data in Figure 2.2-3;
and the p = 60° data in Figure 2.2-4.

Examination of these graphs shows that the results obtained by the
two methods are in very good agreement with one another (within a factor
of from 2 to 5) for all values of » except, in some cases, in the neigh-
borhood of sharp peaks in ¢ and in the region 100° <7 < 140°,

6
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Larger differences are to be expected at the peaks than elsewhere
due to the differences between the two methods; the differences in the
100° <7< 140° region are due to variations in the interpretation of the
appearance of the B-47 and to slight differences in the manner in which
the angles on the B-47 drawings were measured in the two methods.

2.3 L-BAND CROSS-SECTIONS

The cross-sections of a B-47 computed at the L-band wavelengths of
A=18.3cm and X =30.5cm are summarized in Figures 2. 3-1 through
2.3-4 in the same manner as the X- and S-band data in Section 2.2. The
comments made in Section 2. 2 concerning the differences resulting from
the two methods also apply to the L-band data.

As in Section 2.2, the p = 90° results are not displayed graphically;
the results obtained for g = 90° at these wavelengths are

and

o~ 5 X 103 square meters (\

o~ 6 X 103 square meters (\

18.3 cm)
30.5 cm) .

2.4 CROSS-SECTIONS FOR A =91.4cm and A = 4.57m

The computations of the cross-section of a B-47 for the wavelengths
A =91.4cm and \ = 4. 57 m are summarized in Figures 2. 4-1 through
2.4-8. The data obtained from the two methods are presented in the
same manner as in the two preceding sections except that only one fre-
quency is shown per graph. The data shown on each of the eight figures

are:
Figure 2
Figure 2
Figure 2
Figure 2
Figures2
Figure 2
Figure 2
Figure 2

4-1: p=-42,0° and4®; A =91.4cm
4-2: p=-4°,0° and 4%\ =4.57m
.4-3; p=12% X\ =91.4 cm
4-4; p = 12°% \=4.57m
.4-5: B = 300; A=9l.4cm
.4-6: B = 30%; N=4.57m
.4-7: B = 60°; \=91.4cm
.4-8: B = 60°; N=4.5Tm
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The results obtained for the g = 90o case were

r =~ 2.4 X 103 square meters at A = 91.4 cm,

d
an c ~1.3 X 103 square meters at \ = 4. 57 m.

Examination of the eight figures shows that the results obtained for
the two methods are in good agreement.
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II

THEORETICAL CROSS-SECTIONS OF B-52 AIRCRAFT

3.1 METHOD

The method employed for the theoretical computations of the cross-
sections of the B-52 is the same as that employed for the B-47 except
that three different breakdowns were used for the B-52 rather than two
as in the B-47 computations. The results obtained by the three methods
for the cross-section of a B-52 are presented in the same manner as
for the B-47.

3.2 X-BAND AND S-BAND CROSS-SECTIONS

All of the data obtained for the B-52 at X- and S-band by Methods I
and Il are summarized in Figures 3.2-1 through 3.2-5, except for the
results obtained for B = 90°. The results obtained for B = 90° were

c~8 X 103 square meters for A = 3,05 cm and A\ = 9.14 cm,

c~9 X 103 square meters for A = 12.2 cm.

The agreement between the results obtained is fairly good (to within
a factor of 5 or less) except at the sharp peaks and for the following
regions in B and ? where, in some cases, the results differ by a factor
of 10 or more:

For B = -40. at » ~0° and in the region 100°< 7 < 1800;
o
For 0 <8< 30° in the region 100°< 7<180°; and

For B = 60° in the regions 0057'<200, 400<Y<800; and 1000<7< 1800.

No additional information could be gained by including the results
of Method III on these figures and thus only the results from the first
two methods have been graphed. It should be pointed out, however that
the results obtained by Method III were in good agreement with the data
shown on Figures 3.2-1 through 3.2-5.
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3.3 L-BAND CROSS-SECTIONS

The B-52 cross-sections computed by Methods I and II at the L-band
wavelengths of X = 18.3 cm and X\ = 30.5 cm are summarized in Figures
3.3-1 through 3. 3-5'. It is seen that the results obtained by the two
methods are in reasonable agreement. In general, the comments made
in Section 3.2 relative to the X- and S-band results hold also for the L-
band computations.

The results obtained for the p = 90° cases are:
c~1.3%x10% square meters for A = 18.3 cm
c~2 x10% square meters for X = 30,5 cm.

3.4 CROSS-SECTIONS FOR \ =91.4 cm AND X = 4.57m

The cross-sections computed for the B-52 at the long wavelengths of
A=91.4 cmand \ = 4,57 m are summarized in Figures 3.4-1 through
3.4-12. Only the 91.4 cm case was computed by Method I and then only
for p = -49, 12°, and 60°. All eight p values were computed for both
wavelengths by Methods II and III.

Figure 3.4-1 summarizes the -4° < p < + 4° data for \ = 91.4 cm;
Figure 3.4-2 presents the Methods II and III results for p = 8° and
N\ = 91.4 cm; Figure 3.4-3 compares the results obtained by the three
methods for the p = 12°, X\ = 91.4 cm case; Figure 3.4-4 presents the
Methods II and III results for the B = 30° and \ = 91.4 cm case; and Figure
3.4-5 compares the results from the three methods for the p = 60° and
A =91.4 cm case.

The results obtained by Methods II and III for the \ = 4.57 m case are
presented in Figures 3.4-6 through 3.4-12. (B = -4°, 0°, 49, 8°, 12°,
300, and 60°,)

!As in the preceding section the Method III results are not included

on the graphs; the Method III results were compatible with the data shown
on Figures 3. 3-1 through 3. 3-5.
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The results obtained for the B = 90° cases are:
c~1x10% square meters for A = 91.4 cm

o=~ 1 X 105 square meters for X = 4,57 m.
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COMPARISON BETWEEN THEORY AND EXPERIMENT

Since the authors do not know of any experimental data which exist
for the B-52, this section must by necessity deal only with the B-47, Ex-
perimental data on the B-47 have been obtained by Ohio State University,
the Hughes Aircraft Company, and the Aircraft Radiation Laboratory of
the Wright Air Development Center.

The Ohio State experiments were made on 1/123-scale models at 9000
Mc with c-w equipment. This gave an equivalent frequency of 73 Mc for
the full scale B-47. An extensive tabulation of these results appears in
Reference 2;.a comparison between typical Ohio State experimental data
and equivalent theoretical results given in SectionlIl is shown in Figures
4-1 and 4-2!, Recently, unpublished results have been obtained at Ohio
State University for a full scale B-47 at 73 Mc, 195 Mc, and 600 Mec.
These later experiments were made with K-band pulse equipment and X-
band c-w equipment (the X-band equipment is discussed in Reference 3
and the K-band equipment is discussed in Reference 4). The 1/123-scale
model gave the equivalent full scale frequency of 195 Mc when measured
at K-band; a 1/40-scale model was used at K-band to obtain the 600 Mc
results. The 1/40-scale model did not simulate the B-47 properly as it
had the wrong wing and engine structure; some of these effects were re-
duced by the use of "harp' cloth. Since there is a basic difference be-
tween the geometry used in the Ohio State University experiments and the
geometry used in the theoretical computations discussed in Section II, a
graphical description of the geometry used in the Ohio State University
experiments is shown in Figure 4-3. (Comparison of this figure with
Figure 2.1-1 will display the differences in geometry.) A comparison
between these later Ohio State University measurements and the theoreti-
cal results of Section II is presented in Figures 4-4 through 4-12. In
Figures 4-4 through 4-6, the comparison is made for 0° < g < 180° while

'For simplicity in presentation the theoretical results used for com-
parison with experiment in this section are averages of the results obtained
by Methods I and II.
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in Figures 4-7 through 4-12 the comparison is made only in the 0°< <
90° interval because of the differences in the two geometries. The re-
sults of these later Ohio State experiments appear in Reference 5,

The Hughes Aircraft Company has conducted dynamic radar cross-
section tests on the B-47 at 9245 Mc (Ref. 6). For all crossing runs, the
points are averaged over an aspect angle of +5° (10° average). For the
tail and nose aspects the points are averaged over an elevation angle of
+2.5° (5° average). Their results given in the above reference are con-
tained in Figure 4-13. The theoretical results are also shown on the fig-
ure for comparison purposes.

The Aircraft Radiation Laboratory of the Wright Air Development
Center has conducted several dynamic experiments on the B-47. Their
experiments were conducted at X-band. Preliminary X-band results,
published in Reference 7, were: nose-on: 24 square meters, tail-on:
12 square meters, and broadside: 178 square meters.

More extensive results by Wright Field, previously unpublished are
presented in Figures 4-14 and 4-15. These results were furnished by
W. Bahret from the results obtained by G. W. Schivley, H. Trigg, and
himself. Comparisons have been made between theory and experiment
and these comparisons are shown on the above mentioned figures. Figure
4-14 shows a comparison between these dynamic experiments and the theo-
retical results of Section II for p=0° and 0°< 7< 90° and Figure 4-15
shows the comparison for ? = 0° and 0° < g < 12°,

It may be noted that the nose-on experimental results are consistently
higher than the theoretical nose-on results. This may be because we have
assumed that very little of the energy which went into holes would return
in the same direction as it went in. If future experimental results indicate
the presently reported data is in the correct range, then this assumption
should be considered further.

Knowing the great difficulties inherent to dynamic experiments (Ref.
8) and previous disagreements between the experiments made by different
organizations on the same configuration (Ref. 9), the comparisons shown
in the figures of this section are extremely encouraging.

!These figures display the maximum and median values measured by
Ohio State University over ten degree intervals compared with the average
of the computed values.
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APPENDIX A
(UNCLASSIFIED when detached from report. )

RADAR CROSS-SECTION COMPUTATION PROCEDURES

A.1 INTRODUCTION

This appendix contains a set of notes prepared by one of the authors,
C. E. Schensted, for use by the computation personnel. These notes are
presented here verbatim except for changes in numbering to conform with
the rest of this report!. They show the methods by which the computa-
tions were performed and may serve as reference material for other
workers in the field who wish to calculate the approximate radar cross-
sections of complex bodies such as the B-47 and B-52 aircraft. Applica-
tion of the methods to obtain the numerical results summarized in the
body of this report is discussed in Appendix B.

The procedure used requires a knowledge of approximate radar cross-
sections of a wvariety of scatterers of relatively simple shapes, such as
ellipsoids, ogives, rings, corner reflectors, etc., and formulas for these
cross-sections are catalogued in Section A. 3 of this appendix.

A.1.1 Definition of Radar Cross-Section

The radar cross-section, ¢, of an object is determined by the ratio
of the intensities of the scattered and incident electromagnetic fields on
the assumption that the incident energy forms a homogeneous plane wave.
If the amount of energy crossing unit area perpendicular to the direction
of incidence in unit time in the incident field is I and if the amount of
energy crossing unit area in unit time at the receiver due to the scattered
field is Ig, then the radar cross-section is defined as

Is

L

o =1lim 4wR (A.1-1)

R>

! Because these notes are verbatim, the nomenclature for angles used
in this appendix differs from that used in the body of the report.
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where R is the distance from the scattering object to the receiver. Since
Ig varies proportionally to 1/ R? this limit exists.

When the transmitter and receiver are located at the same place we
call ¢ the monostatic cross-section, otherwise we call it the bistatic
cross-section. Only monostatic cross-sections will be considered in the
following. When the receiving antenna is not polarized in the same way
as the scattered field the receiver signal is reduced. Thus for linear
polarization the measured cross-section is reduced by an amount pro-
portional to the square of the cosine of the angle between the two polari-
zations. It is this apparent cross-section with which we are concerned
here.

A.1.2 Procedure

In order to compute cross-sections exactly, it is necessary to solve
Maxwell's electromagnetic field equations, which lead to a single vector
partial differential equation, the vector wave equation, subject to bound-
ary conditions. Except for a few simple shapes this solution has not yet
been found possible. Since exact methods are not at present available,
we must resort to approximation techniques. First, as a result of the
extreme complexity of the shape of aircraft, we assume that various parts
of the aircraft scatter independently. We approximate the parts of the
aircraft by relatively simple shapes, compute the cross-sections of the
individual parts, and then combine the component cross-sections in an
appropriate way. The second approximation which must be made is in
determining the cross-sections of the individual parts since exact answers
are not available. We will first discuss the procedures and the validity
of breaking down the aircraft into component parts and the method of com-
bining cross-sections. We will then discuss methods of obtaining approxi-
mations to the cross-sections of the parts, and we will list a number of
formulas for various shapes.

A.1.3 Replacing Parts of the Aircraft by Simple Shapes

In replacing a part of a complex structure like an aircraft by a sim-
ple shape, the most important consideration is that the wavelength de-
pendence of the cross-section of the simple shape be the same as the
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wavelength dependence of the cross-section of the true configuration.
Thus in Figure A-1 the cross-section of the curved body of revolution is
approximately independent of wavelength whereas the cross-section of the
cylinder is proportional to ;:for incident radiation in the direction A and
is proportional to \ for the direction B. As a result at short wavelengths
the cross-section of the cylinder will be much too large at normal inci-
dence (direction A) and much too small for off-normal incidence to per-
mit the cylinder to be used as an approximation to the other body. In a
similar way a body with a rounded tip should not be replaced by a body
with a pointed tip and a body which is tangential to the direction of incidence
at the shadow curve (the shadow curve is the curve separating the part of
the body illuminated by the incident radiation from the part of the body in
shadow) should not be replaced by a body which has a sharp kink at the
shadow curve.

Ao

FIG. A-1

The second important consideration in replacing the aircraft by
simple shapes is that the formulas for the cross-sections of the simple
shapes be as simple as possible so that the computation presents as little
difficulty as possible. Along this line the simplest approximate formula
for the cross-section of the simple shape should be chosen within the re-
striction that the approximation is reasonable.
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A.1.4 Combination of Component Cross-Sections

Only electromagnetic fields which are time harmonic will be con-
sidered here. The electric and magnetic fields will be taken to be the
= _iwt ™ o - - —_—
real parts of Ee and He where E and H are coEplex w_‘rgctors.
However, we will always consider the complex vectors E and H, and
we will call these the electric and magnetic fields. The definition of
cross-section given in Equation (A. 1-1) is equivalent to

- - 2
. 2 | Es : 2 | Hg
¢ =lim 4xR —ﬁ_— = lim 4%R™ | — (A.1-2)
R>»x i R>» ﬁi

The assumption that various parts of the aircraft scatter independ-
ently is equivalent to saying that we can write ﬁs =L 'En where tn can be
obtained by considering only a part of the aircraft. The approximate
methods which we will use to compute E, will predict (with reasonable
but not perfect accuracy) that ﬁn is linearly polarized (assuming, as
we are, that the incident field is linearly polarized). With this approxi-

v On A ik¢n

mation we can write -ﬁn =———F€ e where o is the cross-section
Ry 4n n
of the nth component, én is a real unit vector, and ¢ , is a phase factor
(the magnitude of the incident field has been taken to be unity). With
these approximations, Equation (A.1-2) reduces to
2

) ik ¢
¢ = Zw—n' @ne n (A.1-3)
n

As noted earlier we are only interested in determining the "effective"
cross-section, which determines what the signal received will be. If

is a unit vector in the direction in which the receiver is polarized then
this effective cross-section becomes (with the approximations which are
being used here)

(A.1-4)

For small wavelengths the value of k¢, depends very critically on
the wavelength and the dimensions of the aircraft so that these quantities
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would have to be determined with extreme precision in order to get
accurate values of k¢ . A more fundamental obstacle to obtaining ac-
curate values of the phase function k¢, is that the approximate methods
which we use can not be expected to give accurate values of k¢, (although
they can be expected to give accurate values of opn). As aresult of these
difficulties we will not know the value of k¢, accurately. But if all values
of k¢, are equally likely then we can use the average value, T, and the

RMS spread, ‘/ (oo -'(Fe)z, where the averages are with respect to the
values of k¢,,. We find that

_ AN, ik¢
v, " Z T (d en)e
n
=) D Vot @) e e (4 = ¢m)
n m
_ AA AN
- D DV ey,
n m
_ AN 2
-Zan (d"e ) (A.1-5)
n
Fez+ (o -Fe)2= Zm(é\'e)lk¢n : -7, :
n
4
i
n

= E E E E' ANAA VA A VAA K@ - dmt dp - 4
o-no-mcpo-q (é en)(a em)(d ep)(é eq)e (¢n m+ %p - ¢q)
n m p q
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N ANAA ANAGN A
=§ E E E ]/_—_ . . d-e }{d-
O'no-mo-pcq (d en)(d em)( epx eq) [%m bpq +6nq omp -"nm Jpq anqémp]

2

A
If we let "n(d'gn) =0 then we use for the cross-section

- + 2. 2 (A.1-6)
Ue Zn;vo-ne ‘/<n2'0-ne> gcne

A.1.5 Approximation of Cross-Sections

We will consider first the cross-section of a perfectly conducting
wire which is many wavelengths long but only a fraction of a wavelength
thick. Perhaps the simplest formula which is in good agreement with
experiment is Chu's formula (Ref. Al):

. (an > 2
sin T cos @

2
L sin O %coso

m\2 A 2
(2) ¥ <1n ywasin0>

where L is the length of the wire, a is the radius of the wire,7=1,78...
® is the angle between the wire and the direction of incidence, and
¢ is the angle between the polarization direction and the plane formed
by the wire and the direction of incidence. No attempt will be made here
to derive this formula. This formula presents an interesting feature
which will recur often in what follows. Except for @ near 90° the two tips
of the wire scatter essentially independently. A slight change in 0 has a
pronounced effect on the relative phase of the two components so that
there is a rapid oscillation, the components sometimes adding and some-
times cancelling. When we approximate a part of the aircraft by a thin

4
o, = 0CoS ¢ = cos ¢ , (A.1-7)

E]
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wire we will not be able to determine the relative phase of the two com-
ponents accurately so that the proper picture is to replace the wire by
two independent scatterers (except for @ near 90°) each having an effec-
tive cross-section given by

2 2 4
\ tan ©cos ¢

0'e ) 7 T X 3
16"[(2)2 ¥ (ln ynasinﬁ)z]

At 0 = 90° Equation (A.1-8) blows up while Equation (A.1-7) does
not. The reason for this is that at this one aspect the wire acts as a
single scatterer. For 0 = 900 then we must use Equation (A.1-7) which
reduces to:

(A.1-8)

2
- mL cos4¢
2 yma

It can be seen that Equations (A.1-8) and (A.1-9) do not have the
same wavelength dependence. Figure (A-2) shows the way that Equation
(A.1-8) goes into Equation (A.1-9) at = 90° for a number of wavelengths.

(A.1-9)

[}
“/ Eq A.1-8
\
Eq. A.1-9
for Various P
e
Wavelengths Plot of ===
22
90° 0 0°
FIG. A-2
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In actual use the single value at 8 = 90° given by Equation (A.1-9)
would be faired into the curve given by Equation (A.1-8) graphically. In
Figure A-2 it has been assumed that the slight dependence of Ue/)‘z on \
(as given by Equation (A.1-8)) due to the logarithmic term is negligible.

The procedure which has been followed here will always be used
when it is found that the cross-section of some component oscillates
wildly when the dimensions, wavelength, or aspect is changed.

Some of the methods of approximation which will be used in the re-
mainder are derived from the following equations (Ref. A2).

N 1 f i N e1kr N e1kr e1kr

A A : A ==
[ J—— k —_— — . B —
ES i _1 nxH ” + (MXE)X v - +(n-E)y " ds

S

(A.1-10)
N L ( B _‘eikr N eikr N eikr
H =— | |-ik AxE — + (@xH)xy — +{0-H) v —| ds
S 411'“ B r r r
S

where li= ZnQ\, r is the distance from the integration point to the field
point, E and H are the total fields on s (sum of incident plus scattered
fields) and s is an arbitrary surface surrounding the scatterer. General-
ly it is simplest to take the arbitrary surface to be the scattering sur-
face itself. Then if the scatterer is a perfect conductor we will have

ﬁ\x 'ﬁ = 'ﬁ'ﬁ = 0 so that Equation (A.1-10) becomes:

N 1 _\eikr N eikr
E =—f ikﬁxH"—+(ﬁ'E)V_ ds
47 r T

S
S
o Lk (A.1-11)
H =-—j(ﬁ><H)xv——- ds
s 4r T
S

A.1.6 Physical Optics and Geometric Optics

Both Equations (A.1-10) and (A.1-11) are exact if the correct values

!Gaussian units are employed in this appendix.
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of E and H are used in the integrals. Since the correct values are not
known we must use approximate values and in this way we get ap;_)}r:oxi-
mate answers. In addition to using approximate values of E and H in the
integrals we may use an approximate method (such as stationary phase)
to evaluate the integrals approximately for short wavelengths. Whell
geometric optics is used to determine approximate values of E and H in
the integrands the approximation obtaingd is c_aJled physical optics. We
will consider other approximations for E and H in calculating the cross-
sections of certain configurations later on but for now we will consider
only physical optics.

For the monostatic cross-section, physical optics (based on Equation
(A.1-11) ) gives:

) __41‘ \7-
O'-G'e-)\z g

2ik p dA (A.1-12)
g=1e dp

(Ref. A3), where p is distance measured in the direction of incidence
and A is the area of the projection of the part of the scatterer to one side
of a plane of constant p (the side indicated by arrows in Figure A-3), the

L «— Plane of Constant p

Direction
—_— — Shadow
of Incidence A Region
%
/

Illuminated Region

Shadow Curve

FIG. A-3
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projection being made onto the plane of constant p. From Equation (A.1-12)
we see that physical optics predicts no dependence of monostatic cross-
section on polarization (at least the form of physical optics which we are
using here). Equation (A.1-12) may be interpreted as saying that each
element of area makes a contribution to g, but with a phase factor eZlkp

so that two contributions may either add or cancel depending on their
relative phases.

We will now give a brief introduction to the evaluation of Equation
(A.1-12). We will then give a table of cross-section formulas.

As an introduction to physical optics we will consider the cross-
section of a sphere. For the sphere in Figure A-4 the area function is

0 (p< -23)
A= n(a?-p?) (-a<p<0) (A.1-13)
ma? (o< p)
—»

Direction of Q

- > N

Incidence

FIG. A4

From Equation (A.1-13) we find:

o (p£-a)
gé = {-2mp (-a< p<o) (A.1-14)
p
0 (o< p)
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The variation of A and dA/dp with p is shown in Figure A-5.

A gA
) a0
—
a2 27Ta
»p » p
-a -a
FIG. A-5
2ikp

For short wavelengths k is large and e oscillates very rapidly (that
is its real and imaginary parts oscillate very rapidly). As a result,
whenever dA/dp varies slowly the contributions for values of p differing
by \/4 will nearly cancel. Only the regions where dA/dp changes rapidly
will contribute appreciably to the integral. From Figure A-5 it is clear
that the main contribution comes from p=-a. For this particular prob-
lem the integral can be evaluated exactly; so, let us see whether the
above ideas jibe with the exact evaluation. We have

(0]

2ik ia -2ika 7 [ -2ik
je HP (2 qp)dp = TR o0k, T (~2ika (A.1-15)
4 k 2k

. -2ik . .

The terms having an e a factor can be interpreted as the contri-
bution from p=a, while the term not having such a phase factor can be
interpreted as the contribution from p=o0. With this interpretation we

see that the contributions from the intermediate region have cancelled

-2
each other out. For large k the term, —w—llj—e ika dominates the others.

This term is due to the jump in dA/dp at p=-a. The other two terms

are due to the discontinuity in at p=-a and at p=0. According tothe
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interpretation used here we should find that another area function for
which dA/dp has a jump of 2ra at p = -a but is otherwise continuous (vary-
ing but little in a distance of a wavelength) should give the same result
(for large k). For example suppose that (Fig. A-6)

° o (p<-a)
d - -
A= Zna[ -p(p+a] and A 0 5 0 7Plpta) (0> -a), (A-1-16)
— |- : dp
B
0A dA
| Ry
27a dp

ﬂ/- T 2n

FIG. A-6

We can again evaluate g exactly with the result

o0
2ik - i -2ik
= | e“P2rae p(p+a)dp=-—ﬂi%-. e 13 (A.1-17)
k+2
22 2

For large k Equations (A.1-15) and (A.1-17) are in agreement so that the
interpretation which we have been using seems to be accurate.

There is another way of looking at the physical optics integral

which can be very illuminating. If, for the sphere problem, we let
p

f(p) = J. eZikz (-272z) dz,then g = £(0).

Now f(p) is-% complex number and as p varies from -a to o, f(p)
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traces out a curve in the complex plane. This curve is called a vibration
curve. The vibration curve is the limiting form of a vibration polygon
obtained by replacing the integral in Equation (A.1-12) by an approximating
2ikz, (dA

——) Az . The individual terms in this series can be
n

sum < e
n dz

looked on as little vectors in the complex plane which add up as shown in

dA
Figure A-7. The magnitude of each vector is (—5) Az, , and the vector
n
points in a direction making an angle 2kz, with the real axis. If we take a
constant value of Az, then the angle which the resultant vectors make with

d
the real axis will increase steadily. If ?ipA is constant then the vectors

. . . 1 |dA dA .
will go around a circle of radius K |dz ‘ If 3, varies slowly then the
vibration curve will spiral about a relatively fixed point with a slowly
changing radius. However each time -:—;2 has a discontinuity the point about
which the vibration curve is spiraling will jump proportionately. For the
sphere, the vibration curve will appear roughly as in Figure A-8. It can
be seen that the spiral ends up at approximately the original center of cur-
mia -2ika

€ .

dA
let us take an area function for which E has two jump discontinuities as

vature which is As a second example of a vibration curve,

2ikZ,, [ dA
Le (;;Z)n az, /

e'2|an.d_A_) Az,
dZ /n.

FIG. A-7
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shown in Figure A-9. In this case the vibration curve will take the form
shown in Figure A-10. This can be analyzed as follows: at p =0 the cen-
ter of the vibration spiral is shifted out to the point A (Fig. A-11) and the
spiral follows the large circle.

f (o) =
N p oA
\ dp
AN
\}
e-2ika
N >
f (-a)
FIG. A-8 FIG. A-9
@ B “A
FIG. A-10 FIG. A-11
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The radius of the circle slowly decreases till the spiral is following the
small circle. At the second discontinuity the center is again shifted,

this time to the point B. The center of the spiral ends up at the same
place as the spiral itself. Thus by tracing the motion of the center of the
spiral we can find the value of the integral. In more complicated cases
this can be quite a useful aid to our thinking.

d
If Eé behaves in the same manner for two bodies then the physical
p

optics cross-section for the two bodies will be nearly equal. We have
seen that bodies like the sphere which have finite radii of curvature will

have a gﬁ which has a jump where the incident field first hits the body
P

and then goes smoothly to zero. At the point at which the incident wave
first hits such a smooth body we can approximate the body by a paraboloid
having the same principle radii of curvature. Once we have found the
cross-section for such a paraboloid we will have an approximate cross-
section for all such smooth bodies. We take the equation of the paraboloid
(Fig. A-12) to be

XZ yZ
p = ‘2?‘ + zﬁ—‘ (A 1-18)
1 2
X
-y p
FIG. A-12
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where R} and R are the principle radii of curvature at the point (0, 0, 0)
where the incident wave first hits the paraboloid. The area function is

d
A =2mpVYR;R2 (p2>0). Thus % =2n YRR, (p 20). This does not go
to zero for large p but we can modify the body very slightly so that
da _ 2rVR; R e—ﬁp (p 20) where B is very small. We then have

dp 2
. i YR R
2ik - m 2
g - jve B o VR R, e depﬁ—_:) ——-—-1-3—- (A.1-19)
(0]

Substitution of Equation (A.1-19) into Equation (A.1-12) shows that the
approximate cross-section of a smooth body is

o= le R (A.1-20)

2
where R1 and R, are the principle radii of curvature at the specular
reflection point. This formula was obtained by assuming k large so that
the return was essentially from the specular reflection point. Hence the
same result could be obtained alternatively by using geometric-optics.
As a result this formula for ¢ is often called the geometric-optics formu-
la for .

Equation (A.1-20) is one of the most useful cross-section formulas
due to its extreme simplicity. It is convenient for applications to have
a few formulas giving R and R,.

If the equation of the surface is given in the form z = f (x, y) then

2 22
(1+fx+fy)
RR, =77 -2 (A.1-21)
XX yy Xy

If the equation of the surface is given in the form F(x, y, z) =0, then

84




UNIVERSITY OF MICHIGAN

2260-1-T

R R, = (A.1-22)

If the equation of the surface is given parametrically as x=x(u, v),
y=ylu, v), z=2z(u, v) then ,
2
-F
R R -\EG-F)

(A.1-23)
12 pN-m2

2 2 2 2 2 2
E=x +y +2z F=xx +yy +z z G=x +y +z
u ‘u u uv “u'v uv v v v

uu u v uv u v vv u v
L= M= N =
yuu yu yV yuv yu yV yVV yu yV
Z Z Z Z Z A Z Z Z
uu u v uv u v vv u v

For a body of revolution given by the equation p = p(z) (Fig. A-13) we
have

= P
RR, = |5
P Sln“a

172 (A.1-24)

where a is the angle between the direction of incidence and the axis of the
body. p and p'" must, of course, be evaluated at the specular reflection
point.
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Direction of Incidence 4 p= Vx2+ y2

o

L2)

FIG. A-13

A.1.7 Widths of Peaks

In many of the formulas given in the list of cross-section formulas
(Section A. 3) there is one expression for 'normal' incidence and a
second expression for "non-normal" incidence. This situation was il-
lustrated in Equation (A.1-5). In these cases the cross-section for short
wavelengths is much larger at normal incidence than at non-normal inci-
dence. When the cross-section can be neglected, except at nearly nor-
mal incidence, we might use, instead of the non-normal incidence for-
mula, a formula giving the width of the peak.

As an example, consider the elliptic cylinder, Equations (A.3-9 and
A.3-10). If we require that the sum of the two non-normal components
be half as large as the normal incidence cross-section, then we find that
0 must satisfy the equation

2.2 2 2.2
2\a b sin® _ _ 2nrL ab ,
2 2 2 .2 2 2 2 2 . 2 2
81rc0520[a cos ¢ +b sin ¢]3/ 2\ [a cos ¢+b sin ¢:|3/
(A.1-25)
We use 0, to indicate a solution to Equation (A.1-25). For small \ we

z
have (for the elliptic cylinder):
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N
— .1-26
t 2nLL (4.1 )

ol
N

Equation (A.1-26) also holds for the tapered wedge aside from the
fact that a different coordinate system was used there (see Fig. A-35).
In terms of the tapered wedge coordinate system

A
§in@, = ————— (A.1-27)

1 2nLsin¢

By the same technique the half-power angles for the elliptic and
circular cones are found to be

3XVL1+L2 n

- -1
g, " tan t 3/2 3
% <tanaVsin2‘¢ +nZCOSZq> Mn(L ! -Ll/awyzﬂanza(sinzqs-i-nzcosz¢)

2
(A.1-28)
3\YL,+L_ cosa
and 0, =2+aq t L2
L2 2 2
2 42 w(L;/ - Lf/)
respectively. For the torus the half-power angle is found to be
A
%7 (A.1-29)
2 27°Db

A.1.8 Shadowing

When one body is in the shadow of another body it might be supposed
that it would scatter as if it had a hole cut out with the shape of the
shadow. This is not so. If the sphere of radius b in Figure A-14 were
to scatter as if it had a hole the shape of the shadow cast on it by the
sphere of radius a then we could use the truncated ogive formulas,
Equations (A.3-25 and A.3-28) to calculate its contribution. The angle

. . . . 2
a in Equation (A. 3-25) would be given by o =%— sin ! %so that tan q =
2 2
_b_z-_a___. The contribution which the second sphere (of radius b) would
a
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77
2

FIG. A-14

make according to this approach is naztanza + rra2 N nbz. Actually the
true contribution will be very much smaller. The reason for the dis-
crepancy is that the shadow which has been drawn as very sharp in Fig-
ure A-14, is quite diffuse. The lack of sharpness in the shadow curve
prevents a sudden jump in the radius of the vibration curve (see Fig. A-7
and A-8) of the type which is obtained for a truncated ogive viewed nose-
on. The result is that the contribution of the sphere of radius b in Figure
A-14 can be neglected. On the other hand if the incident radiation could
hit the sphere of radius b at normal incidence as in Figure A-15, then
the sphere of radius b would give a contribution of mb2 to the cross-sec-
tion. The final conclusion is that the cross-section of a partially shad-
owed component is unchanged unless the part of the body which contri-
butes to the cross-section, that is the part of the body which the incident
radiation hits at normal incidence, is shadowed. However, if the specu-
larly reflecting part of the body is shadowed then the body no longer con-
tributes within the accuracy of the present theory.
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Another result of the lack of distinctness of the shadow boundary is
that the contribution to the physical optics integral coming from the
shadow curve can almost always be neglected. This is important in ob-
taining the cross-section of an ogive for aspects near nose-on (Ref. A4,
pp. 28, 72, 73, 74).

A.1.9 Change of Coordinate System

A.1.9.1 General Transformation

The various coordinates used in describing the bodies in the list of
cross-section formulas will seldom coincide with the coordinate system
used to describe the over-all aircraft. The unit radius vector to the
transmitter receiver in the aircraft coordinate system will be taken in
the remainder of this appendix to be T = cos ¢ sin ¢ t 4+ sin¢sin OJ +cos @ ﬁ
In the coordinate system used to describe the particular component in
questlon the unit radius vector Wlll be taken to be £'=cos¢sin 04" +sin ¢
sin Oj ‘Y cos0k. The polar angles 6*and ¢'in the aircraft system can be
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expressed in terms of the polar angles @ and ¢ in the component system
as follows:

#*
cos0=a3lsinOcos¢+a sin@sin¢ + a__cos @

32 33
(A.1-30)
« aZIS1nGcos¢ + azzsmO sin¢ + a23coso
tan ¢ =a sin@cos¢ +a__.sin@sin¢ + a. _cos O
11 12 13°98
A A
where a, = i-i', a5 =/j\-§\', 3, ‘-'/].\/J\l etc. ﬁ\, /J\, and k are unit vec-

tors along the x, y, and z axes in the aircraft system, and /i\,' /j\,' and ﬁ'
are the unit vectors for the component coordinate system. Equation
(A.1-30) may simplify considerably for some cases of interest. Some
special cases will now be tabulated.

zZ z
A z
— B 4
zI
> Y.Y’ 4y
x’ X B
xl
X v
YI
FIG. A-16 FIG. A-17

* 2 2 2 . 2 2
sin@ = ‘/cos Bsin @ -%sinz Bsin20 cos¢ + sin B(1-sin Ocos ¢)

cos &= cos BcosO + sinpsin@cosé
(A.1-31)

sin ¢

e
sin ¢ = 2z 2 ) 2 2
cos Bcos ¢ +sin ¢ - sin2PB cot® cos ¢ +sin Bcot O
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* cospBcos¢ -sinpfcotO

cos ¢ = 2. 2 2 2. .2
%os Bcos ¢ +sin ¢ -sin2PB cotO cosé+sin Bcot 6

# *
The formulas giving sin and cos of @ and ¢ in terms of @ and ¢ are
the same as Equation (A.1-31) except that B is replaced by -p.

2 2
sin&“= Vl -sin Osin ¢

* . .
cos® =-sin@siné¢

% cospPcosO+sinpsin®cosé
ing = B > P 5
VI -sin 0s8in ¢

*_cos BsinOcos¢ -sinBcosO
cos¢ =
Vl - sin @'8in¢

(A.1-32)

cos @ = sin 0%in(¢* )
2
sin @ = ‘/1 - sin O*sinz(d’*— B)
*
0
sing = - Czof >
Vl - sin @'sin” (¢’ B)
cos¢ =

- *
sm2 gos(2¢ ) (A.1-33)
1 - sin“&%in (¢*— B)

A.1.9.2 Coordinate Transformation as Used in the Application of the
Truncated Elliptic Cone to Wing and Elevator Surfaces

When the formula for the truncated elliptic cone is applied to wing
surfaces there is a complicated coordinate transformation required to go
from the coordinate system used to describe the over-all aircraft to the
coordinate system used to describe the cone. The purpose of this sec-
tion is to get the formulas in a simple form in the aircraft coordinate
system.

In the aircraft coordinate system Ehe dirfction to the transmitter-
receiver is given by the polar angles 0 and ¢ (Fig. A-18). Since the ra-
dar will usually be beneath the aircraft, ¢ will usually be greater than 90°,
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™ o
Direction of

o Radar

v _) LY

FIG. A-18

The orientation of the cone to be used in simulating the wing of the
aircraft can be determined from the three views of the aircraft. The
angles:; the sweepback angle, y , the angle of droop, s , and the angle of
attack, x ;are shown in Figure A-19. These angles determine the orien-
tation of the cone. The sweepback angle, ¥, is taken to be the angle be-

FIG. A-19
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tween the projection of the axis of the cone on a horizontal plane (x-y
plane in Figure A-18) and the axis of the aircraft. The angle of droop,

8, is taken to be the angle between the projection of the axis of the cone
on y-z plane (Fig. A-18) and the y-axis. The angle of attack, x, is taken
to be the angle between the projection of the leading edge of the cone on
the x-z plane and the x-axis (Fig. A-18). The leading edge of the cone
is the intersection of the cone with the plane containing the axis of the
cone and the major axis of one of the elliptical cross-sections of the cone.

It will be assumed throughout that 4, x, and a (the half-cone angle,
defined in Section A.3.2.1) are all small angles. We will obtain approxi-
mate expressions for the transformations between the two coordinate
systems first.

The coordinates in the aircraft system will be called x, y, z, with
unit vectors /i\, ﬁ\, % and polar angles 0'and ¢* The coordinates in the
cone system will be called x; y; z'with unit vectors /1\,' /j\,' %'and polar
angles 0 and ¢. The transformation between coordinates is

P'=a T+a, f+a k
111732137285
N A A ’l\{
ji=a,ita, jta,, (A.1-34)
Ay A A A
fr A A
a131+a23]+a33k

Under the assumption that 6, x, and a are all small quantities of the
first order we can write Equation (A.1-34) in the form (see Eq. A.1-33):

N A . A A
i -(cosw+n11)1+(sml/l+ﬂ21)3+e3lk
A A 7AY AN

=€ i+ 1+ k
Jome it epitlen,,) (A.1-35)
Ay . A A A
k = - ]

(s1nw+n13)1+( cosw+n23);|+e33k

where the e's are small quantities of the first order, and the n's are
small quantities of the second order.
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From the definition of ¢ we have
A
ik’ %

BT A

23 33

cos ¢

(A.1-36)

cosy - n23

) coszdf—Zn cos¢+n2 +€2
L 23 23 33

2
1 €33
1-2

2
cos ¥

where the next term is of order four.
The value of €33 is found from Equation (A.1-36) to be

e33=6cosw 4o (A.1-37)

to (not including) terms of third order.

The definition of ¥ gives

a.23 cos ¥ -n23

cosy = - > > = +
i -2
‘/a13'+a23 V1+2n13 sin y n23cosw

or (A.1-38)

n = -1 3 oo
13cosn/: 23smlli +

Th diti 2+2+2—1 ive
e condition a ,+a,,+a,, gives

2
ing - 21 ¢ cee =0 -
Zn13sm¢ 23cosul: + 33 + (A.1-39)
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Combination of Equations (A.1-37), (A.1-38), and (A.1-39) gives

A
R = siny cos (4 cos np)/i\-cos vcos (s cos¢)ﬁ\+sin(a cosy) k

A.1-40
up to terms of order three. ( )
The definition of x gives
a1 1COS¢1+a13smu
cosXx = T >
l/(a11005a+a13sma) + (a31cosa+a33sma)
n
l+atany + —— -——
cosy 2
= + .
n € %1
2 2 2
1+2qtany +2 11 -a +a tan ¥ + ,
cosy 2
cos ¥
2
1 ¢ 31
=1___—.___+... (A.l"41)
2 2
cos ¥

up to terms of order four. Thus, up to terms of order three, we have

631 = xcosS ¥ +--. (A.1-42)

. aThe values of ",1 and "y, can be obtained by using the conditions
i-k =0andi-1i =1 with the result

- [cos wcos (Xcosy) - sinysin (s cos ¥) sin(Xcosw)]'i\

(A.1-43)
+ [sin Ycos(xcosy)+cosysin(écosy)sin(xcos w)] 3'\+sin (xcosy)

up to terms of order three.

A A
The relation j '= k'x 1 'yields
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3\'= [-cosw sin(xcos ¥) - sin wsin(acosw)] /1\ (A.1-44)
+ [coswsin(d cosy ) -sinysin(xcos w)]/j\+cos (X cosy ) cos (6 cos ¥) ﬁ

up to terms of order three.

From the transformation Equations (A.1-40), (A.1-43), and (A.1-44)
we find

cos® = a__sinOcos ¢*+a. _sin@siné*ra__cos0”
13 23 33
(A.1-45)

= sin 0’sin (¥ - ') + § cos 6'cos ¥

up to terms of order two and

. g"' * o g* N * x
alzsm cos ¢ +a2281n sin ¢ +a32cosﬂ

. g.y, * . O«r . * *
a“sm CcOS ¢ +a21s1n sin ¢ +a31cos0

tan¢

cos 0%

" §in0%cos (v - ¢) (A.1-46)

or
2 2 2
2 cos 0¥ 2 sin“@cos” (¥ - 4)
sin ¢ = ; COS ¢ = 5~
1 -sin Osin (¥ - :ﬂ

1- sinz Q*sin‘2 (v - ¢')

up to terms of order one.
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A.2 DERIVATION OF RADAR CROSS-SECTIONS FOR SIMPLE SHAPES

A.2.1 Ellipsoid

2
The equation of an ellipsoid can be taken to be F(x,y,z) = 1/2[(x/a)
+(y/b) +(z/c) - 1} = 0. The cross-section is then given by Equations
(A.1-20) and(A.1-22) as

2 2 2\2
X ¥ 42
"(ff_z 4)
a b c
o = :
A

(A.2-1)

1 X
__20 0_2
a a
1 y
0 0
=

A = — [

2

0 0 1 = azbzc
2 2
c c
X y_z__0
a2 p2 c2

The x, y, z in Equation (A.2-1) are the coordinates of the specular
reflection point. In order to make the formula convenient to use we
must express x, y, and z in terms of the polar angles, 6 and ¢ (Fig. A-26),
which specify the direction of incidence. At the specular reflection point,
the normal to the surface points toward the transmitter-receiver so that
we have

A A A
izi+y—2j+z—2k
A a b c , AN A A
n = > > > = sin Bcos ¢ i +sinBsing j + cosOk (A.2-2)
X ¥ .z
4 T4 T4
a b c
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From these two expressions for 2 plus the equation of the ellipsoid
we can solve for x, y, and z in terms of 6 and ¢ . It can be verified
that the result is

2 . 2 2
X sin Ocos ¢
4 "2 2 2 2 .2 2 2
a a sin 6cos ¢ +b sin 6sin2¢ +c cos ©
2 2 2
y _ sin 6sin ¢
4 2 .2 2 2 2 2 2
b a sin 6cos ¢ +b2sin Osin ¢ +c cos O
2
zz_ cos 6
3 2 .2 2 2 . 2. .2 2 2
c a sin 6cos ¢ +b sin Osing +c cos © (A.2-3)

Substitution of Equation (A. 2-3) into Equation (A.2-1) gives us
finally

2.2 2
-= - ma b c
2 2 2 2 2 2 2
(a sin 6cos ¢ +b sin Osin ¢ + c2 cosze)
(A.2-4)
A2.2 Truncated Elliptic Cone
The equation of the cone is taken to be (Fig. A-27)
2 2 2 2, 2
X +n y =2 tan a
_a
"y (A.2-5)
Equation (A.2-5) can be written in the parametric form
X = ztana cos ¢1
1 .
y=;’—ztana sing, (A.2-6)

z =2
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A small displacement on the surface can be written as

— A A A A N A
dr=dxi+dyj+dzk=(tano.cos¢1i+—n'tanasm¢13+k)dz

A A
+ (-sine}_i +Lcos¢1j)ztanad¢ (A.2-7)

n 1
The surface area element is (from Equation A.2-7)
: A 1 A A 1 A N
ds =[(-sin¢ii +—,,—cos¢1j)ztan ad‘])([(tanacosd}i tytanasingj + k)dz]

tan aN
- k)dﬁdz (A.2-8)

coseN . A
= ztana(+J1+s1n¢i]-
n

The projection of this on the direction of incidence is

A A
ta:Im'k) - (sin®cos ¢1i + sin® sin¢/j\

A A
dA = ztanad¢idz(2n—s-31 + sing, j -
+ cos 0k)

1 1
=ztan uddid z (—n—sin 0cos¢ cosdi+ sin O sin¢ sinﬁ- ';cosetan a)
(A.2-9)

where the polar angles 0 and ¢ are shown in Figure A-26. The phase
factor on the surface is

. A A A AN A
o2ikp - e-Zik(smecos¢i + sin®sing j + cos 0k) - (xi+yj+ zk)

. . 1 . . .
e-Zlkz(Sln 0cos¢ tanacos ¢l+ ;sm 0sin¢ tanasin ¢, cos 0)

(A.2-10)

The physical optics integral is g = erik" dA. There is a stationary
phase point at (the other stationary phase point is not on the illuminated
side of the cone)

9 . 1 . . .
— (sinBcos ¢ tanacos¢1 +;sm 0singtana sin ¢1+ cos 0)
/|

. . 1 .
= sin Otan a(-cos ¢ sin ¢i+-—s1n¢ cos ¢1) =0
sin ¢ N COS @

sing =y/. 2 2 2 =/. 2
Y Vsm¢ +n cos ¢ cosdé ‘ém ¢+nzcosz¢

or
(A.2-11)
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Evaluation of the integration with respect to ¢1 by the method of
stationary phase gives

L
2 .
f Tnztang Sin® lcos Otan
g= 5 - — a
L1 k sin © Vsin“¢ + nz cosz¢ V§n2¢ + nZ cos2¢ "
S S . 2 i
-2ikz(—sin6tan aVsTnZ ®+ 1 cos2¢ + cos 9) - L
e n 4 dz

(A.2-12)

Unless the factor—nl-sin ftana \éinz ¢+ nzcoszqs + cos 0 is nearly
zero (normal incidence) we may integrate this by parts and neglect the
new integral compared with the constant terms (this is a way of evaluating
the two contributions which come from the points z = L) and z = LZ) to
obtain

in@ 1
gzl[ nnztan; > 2'/ 2s1n — -—cosetancb
. Tksin®6 ‘gin ¢ +1 cos¢\}s/in ¢ +M cos¢ "

1 .
e-Zikz(;sin 8 tan G‘FSinqu + n cos?¢ + cos @) - “Zl L,
1 2 2 2
—Zik(';sin etana‘gn ¢ +n cos ¢ +cos®) L,
(A.2-13)

Evaluation at the two limits gives the two contributions to the cross-
section shown in Equation (A. 3-6). At normal incidence the phase factor
is a constant and Equation (A.2-12) integrates to give:

3/2. / / .
Z(Lg/2 - Ll/ ) mntana sin @
Vewmo Vs + Fecss i
3 ksin® \gin ¢ + 172 cosz¢ in ¢ + nz cosz¢
Lcos ot
- 5 cos ftana

(A.2-14)
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From (A.2-14) the cross-section at normal incidence is found to
be Equation (A. 3-4).

A.2.3 Torus

For off normal incidence the cross-section is obtained through the
use of Equations (A.1-20) and (A.1-24). The equation of the torus (Fig.
A-28) for use in Equation (A. 1-24) is

2
(p - b) t2 = a’ (A.2-15)
2
From Equation (A.2-15) we find p'" = - (o ? b)3 - Substitution in
Equation (A. 1-24) now yields
3
i} mp(p - b)
a2 sin4 0 (A.2-16)

Now there are two contributions to the cross-section. One when the
incident field hits the outside of the torus , and one when the
incident field hits the inside of the torus, 7) . In the two cases
we have p =b +asin® and p = b - asin® respectively. Substitution in
Equation (A.2-16) gives the two contributions listed in Equation (A. 3-22).
The second contribution exists only if the inside of the torus is not
shielded by the outside, or equivalently only when a/(2b) < ’cos 9'< 1.

A.2.4 Truncated Ogive

For incidence along the z-axis it is clear that the contribution to the
cross-section comes from the truncated end of this ogive. If we let

Z = z0 =\/(b -a)(b+a+ Z[bcos a—a] lWL—COS—Q)

)

sin2 g
be the value of z at the truncation then near the truncation the equation

of the ogive is approximately ¢ =a+(zg-z)tana. The physical optics
integral is then approximately

_OOZk
e ik(zg-2)

g = 2n[a+(zo—z)tana] tana dz

Z0
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ma tana
ik (A.2-17)

Substitution of Equation (A.2-17) into Equation (A. 1-12) gives
Equation (A. 3-25).

Let 2o -z =z'(Fig. A-20). For 0< 6<m/2 - a the major contribution
to the cross-section will come from the neighborhood of z' =0, As men-
tioned above near z'=0 the equation of the ogive is approximately
t=a+z'tana. Due to the cylindrical symmetry we may assume without
loss of generality that the transmitter-receiver moves only in the x -z
plane. The phase factor is

. . ) .
e21k; 3 e21k(z cos 0 Ecosdisme)
_ Zik(z‘cos9—[a+z'tana]cos¢1sin6)
© (A.2-18)
X
I 3
o
0 P
a
b - | - .z
y
FIG. A-20

where ¢, is the azimuthal angle determining the integration point. The
unit normal to the surface is A= t cosat+k sina so that the surface area

element is
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—— dzl A A .
ds =[ ]Ea+z'tana)d¢1](ecosa+ks1na)
cosa (A.2-19)

A
A The direction to the receiver }\s given by the unit vector +isin6+

k cos 0 ( ¢ is taken to be zero) or (¢ cosdi-ré\lsin/\ )sin 6 +Rcos 6. Thus

the projection of the surface area element'in the direction of incidence is

dA = cos®(a+tz'tana)(tana+tanBcos ¢ )dz'd ¢ (A.2-20)

' 2ik
When the integral g = Je "a A s integrated with respect to ¢ by
stationary phase the result is

- 2ikz'cos @ . [ A
g~ cos eje (a+z'tana) 2(a+z'tana)sin @

-2iksin®6(a+z'tan o.)+_"4.i_

% {(tana+tan 0) e

+ (tana-tan®) e 4 U(a-0

2iksin®(a+z'tana)- Tl
)>dz!
(A.2-21)

where U(x) is the Heaviside unit function which is equal to one when x is
positive and zero when x is negative. Since the only contribution comes
from the region of small z' we can set z' =0 except in the phase factor.
Then, as long as 0 < 6 <m/2 - a, the value of the integral is

_ acos 0(tan a +tan6) A EZikasin6+£—1
€~ 21ik(cos 0-sin6tana) "Zasine

+a.cose(tano.-.tane) ‘/ X' eZikasine-%lU(a_e)
2ik(cos@+sinftana) Y2asin®

(A.2-22)

Substitution of Equation (A.2-22) into Equation (A. 1-12) gives
Equation (A. 3-26). When 0 = m/2 - a the phase factor in (A.2-18) must
be determined more accurately taking into account the curvature of the
ogive. The parameters p and h introduced in Equation (A. 3-23) are
shown in Figure A-21.
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FIG. A-21 FIG. A-22

It can be seen that the curvature in which we are interested is de-
termined by p. We get an extra phase factor e21kd where ¢ is the dis-
tance shown in Figure A-22. For small z',§ is approximately equal to
(z')% /(2 pcos? a). When the extra phase factor is introduced into Equation
(A.2-22) and 0 is set equal to m/2 - a, the result is (for small z')

oo
1 ‘} Aa —szﬁ—— 2ikacosa+TL
= e 4 !
g cos372a > fe p cOS<q, dz
0

) )J‘ae e-Zikacosa (A.2-23)
4Vcosa

which gives the cross-section quoted in Equation (A. 3-30).

Another contribution must be added to the above to take account of
the sharp edge. This additional contribution is calculated in Section A. 2. 10,

A.2.5 Rectangular Flat Plate

The physical optics integral is (see Figure A-30)
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b .a o . .
g :f [ e-Zlksme(x cos¢ +ysin¢) cos 0dx dy
b “a

e2ika sinfcos¢_o-2ika sin@cos¢ ,2ikbsinBsiné_,-2ikb sinBsiné

- 21k 5in8cos ¢ 2ik sindsine cos®

(A.2-24)
from which follow Equations (A. 3-31) through (A. 3-34).

A.2.6 Flat Plate

At normal incidence Equation (A. 3-35) is an immediate consequence
of Equation (A.1-12). For non-normal incidence a study of the vibration
curve indicates the validity of the remarks between Equation (A. 3-35)
and Equation (A. 3-36). Equation (A. 3-36) can then be obtained from the
circular disk formula. The circular disk formula is

2 .
_ma 2(4masin®b _
o tanze Jl< N >, (A.Z 25)

where Jj(x) is the Bessel function of the first kind. When the asymptotic
formula for the Bessel function is used it is found that the scattering is
due to two components with the magnitude given in Equation (A. 3-36).
For the elliptical disk the radius of curvature can be obtained from the

formula
[T
R = X J
&%y

dx2 (A.2-26)

and from Equation (A.2-3) with ¢ set equal to zero. The result is as
shown in Equation (A. 3-38).

A.2.7 Ogive

Only the case 8 = m/2 - a need be considered here. The development
goes exactly the same as it did in Section A.2.4 for the truncated ogive
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except that now z'tan a cannot be neglected with respect to a (since a =0).
The result is that Equation (A.2-23) is replaced by

oo _kz_'z_
g =~ cos 6 tana(tana+tan9) eT “lpcosla gy
0
_mi/4 o cos2a

= cos Otana(tana+tan®)e K (A.2-27)

Substitution of Equation (A.2-27) into Equation (A. 1-12) gives
Equation (A. 3-40).

A.2.8 Tapered Wedge

The two-dimensional problem of scattering from a wedge has been
solved exactly (Ref. A.5). When a finite length of wedge (measured
along the tip of the wedge) is used the cross-section can be obtained
approximately by the current distribution method, Equation (A.1-11).
For a long length of wedge (compared to the wavelength) the current
can be assumed to be the same as it is in the two-dimensional problem
(provided that the direction of incidence is perpendicular to the edge of
the wedge). Now, when the current distribution method is applied to
the two-dimensional problem the integral over y (see Figure A-34) will
be

o
. 2 2 .
jelkl'r +y dy ~\ex e1(kr+1r/4).
— 00

For the three-dimensional problem the integral over y will be

L
. 2 2 .
f e1k ré +y dyzLelkr.

0
This is the only difference between the two and three-dimensional prob-

lems so that the three-dimensional fields c/an be obtained from the two-
e"Tri 4
di i 1 fields by multiplying by ——=——=—. Of course the same
imensional fie y plying by VI_‘T

factor would apply to other bodies as well as the wedge.
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The results from Reference A.5 (which are for 6 = 0, see Figure
A-34) are:

_ n[ﬁ
W (m-a) tanz(z_(“lf_—_za)J
w2 N n L2
- (m-a) (m-a) tanz(z—(T—rﬂ_ZT))

(A.2-28)

where o, is the cross-section for polarization perpendicular to the edge
of the wedge, and o is for polarization parallel to the edge of the
wedge. Now for this problem physical optics gives for either polarization

_ L2 tan%a

77 4n (A.2-29)
For small a Equation (A.2-29) agrees with the value of ¢, given by

Equation (A.2-28). For parallel polarization there is an additional

contribution which we will call the ''thin wire" contribution. We will

consider first directions of incidence which lie in the x - z plane. Physical

optics gives the second term in Equation (A. 3-41) and Equation (A. 3-42).

The first term in these equations is the 'thin wire' contribution which

has been added on. When 6 > m/2 - o the tapered wedge looks like a cyl-

inder; so, no special formula will be derived for such aspects.

It can be verified that for =7 =0 and a =0 the "thin wire' contri-
bution can be obtained from Equation (A. 1-9) by taking the radius of the
wire to be about 1/85 of a wavelength. We will assume that this holds
true for other aspects also. For aspects not in the x-z plane, Equation
(A.1-9) gives the thin wire contribution. In the notation of Figure A-34,
Equation (A. 1-9) takes the form

.- A2(1 - sin%0 sin%$ )cos? ? ( r_\%
4mwsine sin2¢{1r2 +[V3 - log,(1 - sin2@sin2¢ )]2} r-al

(A.2-30)
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The remaining terms in Equation (A. 3-43) are the physical optics
terms.

A.2.9 Corner Reflectors

The corner contributions are given in Reference A. 6 so that only the
dihedral contributions will be considered here. The notation is as given
in Section A. 3.10. The dihedral contributions are the result of double
scattering and thus occur only when the direction of incidence is nearly
parallel to one of the faces of the corner reflector and is such that the
radar is looking into the dihedral. Thus £~0 and m>0, n>0. To begin
with we will consider only the case where!{ is exactly zero (normal in-
cidence). As discussed in Reference A. 6, the reflection from the di-
hedral is equivalent to the diffraction through an equivalent aperture.
The equivalent aperture is the projection of the part of the dihedral that
reflects radiation back to the transmitter (projected in the direction of
the transmitter) as shown for a square corner reflector in Figure A-23.
The cross-section of the dihedral is (4wA2)/\2 where A is the area of
the equivalent aperture. For square, circular, and triangular corners
this area is 2 azm, (w/Z)aZm, and aém respectively. The effective cross-
section is, in general, smaller than the cross-section since the scattered
field is not polarized parallel to the incident field. The component of
the electric field perpendicular to the edge of the dihedral (the line of
intersection of the faces of the dihedral) is reversed while the component
parallel to the edge is not (Fig. A-24). The angle between the incident
and scattered polarizations is 27 so that the cross-section must be mul-
tiplied by cos 2 7 to obtain the effectlve Cross- sectlon The hor1zonta1
and vertical polarlzatlon vectors are pH= - 51nq§"1 +cos$3 and p = cosg®
cosé*i+cos ¢ sm¢;| sind'k respectively. There is a dlfference of 90 de-
grees in 7 for these two cases so that the effective cross-section is the
same. If e; is the vector descrlblng the edge of the dihedral we have
cos 7, A /‘;v = e, xc:ose cos ¢+e cos@' sin ¢*- i, sin6® But at normal
1nc1dence we also have the cond1t10n /e\ Q= e sme cos¢ tey sing*sin ¢*
tej, cos@ = 0. Multiplying the first relatlon by sing®, the second by cos o
and subtracting we find cos LR (elz)/sme*. This, together with the
expressions for the cross-section given above, yields the formulas for
o (Eq. (A.3-45), (A.3-49), and (A. 3-50) ).
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Dihedral

Corner
le— Reflector

Equivalent
Aperture

FIG. A-23

A The azimuth at normal incidence is obtained from the expression
e.- v = 0 by using the relation

i
. « A 2 . * -1 B
Asin¢ + Bcos¢ = —VA +Bz sin|¢+tan 3/

|Al
This gives
sin e*ii)’ e2 +el sin (¢ +tan-1 e_ix_)+e. cosg =0
e 1X 1y < e. 12
|“iy} iy (A.2-31)
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FIG. A-24

Equations (A. 3-46), (A. 3-49), and (A. 3-50) for ¢, follow directly from
Equation (A.2-31).

For deviations of £ from zero the cross-section of the dihedral
drops off like that of a flat plate having the shape of the (normal incidence)
equivalent aperture. From the results on flat plates given in Equations
(A. 3-31) through (A. 3-38), it is found that the cross-section is reduced
to a fraction B of its normal incidence value for

£ =+ A__ (square)
Z‘ITVEB a
A .
L =+ nz‘/(i—a (circular)
1 =+ A (triangular)

- 2m/p a (A.2-32)
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When £ is not zero we have

L = sin G_L e2 + efy sin(¢*+tan‘le_i}£) t+e;, cos o

| iy Ciy (A.2-33)

instead of Equation (A.2-31). Using the expansion sin-1 (A+€) = sin"l A
€ /Vl -AZ 4L we obtain Equations (A. 3-47), (A.3-49), and (A. 3-50)
under the assumptions that \/a<< sin@.

A.2.10 Sharp Edges

There is a contribution to the scattering from sharp edges when the
incident polarization is parallel to the edge. This contribution is similar
to the scattering from a thin wire whose radius is about 1/85 of a wave-
length. The scattered field from a small straight piece of the thin wire
is like the field of a dipole so that it has the form

N A (/\ a)
_ rx(rx ikr
Eg=Kdl — = e (A.2-34)

where K is a constant to be determined, df is the length of the piece, T is
the unit vector to the field point, r is the distance to the field point, and

d is a unit vector along the piece of wire. At normal incidence with the
polarization parallel to d the cross-section is

_ E, (dz 3
‘E'f (A. 2-35)
If S is the polarization vector then K is proportional to :;}\ gi\\ For the case
to which Equation (A. 2-35) applies we have p-d = ’ rx(rxd) l 1. Sub-
stitution of Equation (A. 2-34) into Equation (A.2-35) gives
- (p- a1 r2|E;|? (A.2-36)

Substitution back finally gives (taking into account the phase lag in
making the round trip from the radar to the wire and back)
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A A A A
d‘ 'dl rx(rxd) o2ikr
1 r

(A.2-37)

Thus corresponding to the physical optics formula for the cross-
section (Eq. A.1-12) we have, in the case of a thin wire,

AN N A :
E=J(3- d) rx(rxd) e?kt g (A.2-38)
ANA
Due to the relation p- r = 0 we can also write
LA AR 2ike g2
ae-;J(p.é) e2ikt gy

(A.2-39)

The integration in both Equation (A.2-38) and Equation (A.2-39) is
taken along the wire. The edge of a truncated ogive gives a thin wire
contribution where the thin wire is a loop in the x-y plane as shown in
Figure A-25. The thin wire contribution is given in general by Equation
(A.2-39). To evaluate this for a loop consider that on the wire we have
X =acos¢, y =asing, andd! = dx2+dyZ =ad¢ . We will assume that
the direction incidence is in the x-z pla}\le and is given by(} = /i\s}\n9+/1\< c/ese.
The direction of the dipole is d = -sm¢1+cos¢3 We havet = ()5\1+y3\ \' A
= asin® cos ¢. The polarization vector is p = -COS 951n71+cosn+ sin 0 sinTk
where 7 is the angle between the polarization vector and the y-axis. Sub-
stitution into Equation (A.2-39) gives finally

2x
1 ; ; _
Te = ; a J e?‘lka sinBcos¢ (cosze sin2¢ sin? +2 cos@siné cos¢ sin¥ cos?
2
0 +cos®¢ cosy )d ¢

(cosze siny +cos? 7) Jp(2ka sine)ﬁ{(cosze sinZy- cos?y ).

Js (2ka sine)]'
(A.2-40a)

1 The ¢ here corresponds to the p of Equation (A. 1-12).
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—- N

FIG. A-25

For 6 = 0, Equation (A.2-40a) gives Te = wra¢. For 0 enough greater
than zero that 2ka sin8>>1 we can use the asymptotic expansions for the
Bessel functjons:

JO (Z)""/'T—rz; [COS (z-rr/4)+81—zsin(z-1r/4)-lngzz cos(z--n-/4)+ .o .]

‘/z 15 . 105 ]

J2 (z)~ — [— cos (z - 1r/4)+-g sin(z - 1r/4)+mz cos (z - w/4)+ -
(A.2-40Db)

Using Equation (A.2-40b) and the average values of siné (2 ka sin® - 1r/4 ),

sin (2 ka sin® - n/4) cos (2 ka sin® - v/4), and cos2 (2 ka sin@ - w/4) (which
are 1/2, 0, and 1/2 respectively) in Equation (A. 2. 40a) we obtain

Average o _~

4  8cos%0siny -8cos20sin2y cos2y - cos47}
: cos®y +
€ mwsin®d

32 (ka sin )2
(A.2-40c)
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Except when cos ¥ is nearly zero the first term in braces is sufficient
and the cross-section becomes 8 ra for
Acosty
n2af

~

For cos? = 0 the cross-section becomes [31ra2 when

\
o~ (2 1r)4/3aﬁ1/3 :

The sum of these two expressions is what was used in Section A. 3.

114




UNIVERSITY OF MICHIGAN

2260-1-T

A.3 LIST OF CROSS-SECTION FORMULAS

In this section we will list some cross-section formulas. The deriva-

tion of these formulas will be found either in Section A. 2 or in the refer-
ences.

A.3.1 Ellipsoid Direction to
— Transmitter
4 and Receiver

FIG. A-26

Let the equation of the ellipsoid be (x/a)? +(y/b)2' +(z/c)2 = 1. Then,

if @ and ¢ are the polar angles for the direction of incidence (Fig. A-26),
the cross-section is given by

21.2.2
a“b
o= . ”2 CZ —— (A.3-1)
(azsinzgcosz¢+b sin“@sin” ¢ +c”cos 0)
For a = b, Equation (A. 3-1) reduces to
7rb4c2
o= (A.3-2)

2
(bzsinZO +czcosZO)
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and for a = b = ¢ the expression becomes simply
-2 -
o =7cC (A.3-3)

A.3.2 Truncated Elliptic Cone

FIG. A-27

The cone is assumed to be truncated by the planes z = L) and z = L
(L2>Lj). The half-angle of the cone in the xz-plane is taken to be a, that
is tana = a/L;. The ratio of a to b is taken to be a/b = n. The direction
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to the transmitter-receiver is specified by the polar angles 0 and ¢ (Fig.
A-26). The formulas are meant to apply only for sin@>sina. At normal
incidence the cross-section is

2 2 \2
8mn (Lg/ - L3/ ) tana

in@ 1
g = ! s - — cos@tana

9)\sin9~/ sinZ¢+ n2cosl ¢ '\/ sin2¢+ n2cos2é

3/2\2 4
87 (L:/Z - Ll/ ) tan a

= (A.3-4)
2 3
9\n |cos O,
where normal incidence is defined to be the direction given by
n
tan® = - (A.3-5)

2 2 2
tanu«/;in ¢+n cos ¢

For non-normal incidence there are two independent scatterers (the
ends of the cone). If one of the ends of the cone is smoothly rounded then
at non-normal incidence its contribution would have to be computed by

means of a formula for the rounded end (for example the ellipsoid formula).
The two contributions are given by

sin@ 1 2
-5 cos O0tana

3
- = \z"n tana '\/sin2¢ + nzcosz¢ (A. 3-6)
87rsin9~/sin2¢ + nzcos2¢ ithana'\/sinZ«# + nzcosz«# + ncos®

where z has the value L; or L) depending on whether the contribution is
from the small end or the large end of the cone.

For the truncated circular cone n= 1, Equations (A.3-4) and (A. 3-6)
reduce to

8r (. 3/2 _3/2\ 2
¢ =—- (L/ -Ll/ )tana(-:ana> sin@

9\ 2 an@
_8r (.3/2 _3/2\2 sina
) (LZ L1 ) cos4a (A.3-7)
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_ \ztana

2
= greig 20 (0 -a) - (A.3-8)

The formulas for an elliptic cylinder can also be obtained from
Equations (A. 3-5) and (A. 3-6) as a limiting case. To accomplish this
let tana = a/Lp, L} = Ly - L, L23». The results are for normal inci-
dence

2 2.2
- 2rL a b
2 2 2 2
X(a cos ¢ +b sin ¢)3/2

and for non-normal incidence we have two components each equal to

(A.3-9)

o

2.2
\a b sin®

(A.3-10)

0' -
2 2 2 2 2
8mcos © (a cos ¢ +b sin ¢)3/2
For a circular cylinder of radius a, Equations (A.3-9) and (A. 3-10)
reduce to

2
27L
0 = ﬂx 2 (A.3-11)
\asin®
T (A.3-12)
8rcos 0O

respectively.

A.3.2.1 Application of the Truncated Elliptic Cone to Wing
and Elevator Surfaces

To express the results of the previous section in terms of the aircraft
coordinates when the cones are used to replace the wing and elevator sur-
faces use the transformation formulas developed in Section A1.9. 2.

The cross-section of the elliptic cone is small except near normal
incidence which is given by

n

tan@ = - (A.3-13)

2 2 2
tanu«gin ¢ + 1M cos ¢
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Since a is a small angle 8 will be slightly greater than 7/2, say
® =7/2 +€. Thus cos® = cos(1r/2 + €)~-¢. Using this value of cos® in
Equation (A. 1-45) we find that ¢~¥so that sin(¥ - ¢ ) ~Vy-9" Finally we
find from Equation (A.1-45) that

+*
¥ €+ 6cos BcosV
¢ = v+ : o
sin6

(A. 3-14)
up to terms of order two.
Since o= up to order one we can replace Equation (A. 3-13) by
sin2¢ = cosZO*; cosz¢ = sinZO* (A. 3-15)

up to order one. Furthermore on substituting 6 = 7/2 + ¢ into Equation
(A. 3-13) we find on using Equation (A. 3-15) that

1 2 2
€=tana|/n—écos 0" + sin” 6 (A.3-16)
up to terms of order two. On using Equations (A. 3-4), (A.3-13), and

(A.3-15) we can calculate o up to terms of order two with the final result
that at normal incidence

3/2 _3/2\2
81rq (LZ - L1 ) tana
9\ (cosZG*+ nzsinzﬁf)wz

* / 1 2 % *
¢, = ¢ + tanan 1 +n—2C0t 0 + écotBcosV . (A.3-17)

By using the methods given in Section A. 1.7 we find that for non-
normal incidence

=

o = Bo,

. ANYL] + L,

¢=oF +

Y3 ( 32 f/2> sing®

(A. 3-18)
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Generally the shape of the peak can be obtained by calculating o, df
and ¢, ¢"for B = 1/2 and B = 1/10.

For the case a = 0, L - Lj = L, Equations (A.3-17) and (A. 3-18)
reduce to

_ 2 ﬂLZaZbZ
o )\(azsinz6"*+bzcos-?-é‘*)3/2

»
¢, =¥+ 6cot0€osd)

¢ =fog,
o%= o+ ——1‘/2— e .
~ - 47)BLsing (A.3-19)

A.3.3 Torus

N\ r 4
\ zi_» /s
| x M -
/ \\

L

Two Views of the Torus

FIG. A-28
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In Figure A-28, at normal incidence (6= 0), the cross-section is

_ 8 Tr3ab2
d X (A. 3-21)

Away from normal incidence and for directions of incidence in the
range a/(Z b) < l cos 6‘ <1, there are two components which have the

cross-sections
ab
w( " + a‘?‘)
sin 6

ab _ 2) .
"\sino 2 (A. 3-22)

In the range 0<|cos 9|< a/(2b) the second of the two contributions
in Equation (A. 3-22) is no longer present.

q
n

and

A.3.4 Truncated Ogive

In Figure A-29, one fourth of the figure is cut away to aid in dimen-
sioning. "a' is the radius of the ogive at the point at which it is truncated.
b is the radius of the ogive at its thickest part. a is the angle between
the z-axis and the ogive tangent plane where the ogive is truncated. The
parameters in terms of which the ogive is described in Reference A.4 are

_ l+cosa _ l+cosa
Prtboa) ey and holbeoseta) Sr (4. 3-23)

In terms of these parameters the equation of the ogive is

where ¢ =Vx2 +y2 |

For incidence along the z-axis the cross-section as given by physical
optics is

¢ = wmaltana - (A. 3-25)
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FIG. A-29

For 0<6<a and 8<w/2 - a there are two contributions to the cross-
section with the magnitudes

_\a 2
7= gwsine 2n (8+a) (A.3-26)
__\a 2
and o = —81rsin9 tan® (0 - a)

For a<0<w/2 -a (a range which exists only when a <45°) the second
of these two contributions is absent.
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For 7/2-a< 8 g7r/2 the cross-section is

2 h
= - A. -
7 TP < p sin 9) (A.3-27)

where p and h are given by Equation (A.3-23). For 6>7/2 the symmetry
of the body may be used.

The expressions given above for the cross-section of a truncated
ogive are those given by physical optics. An additional thin wire loop
contribution must be added. This contribution is large only for incidence
along (or nearly along) the z-axis. For incidence exactly along the z-
axis the additional contribution is

¢ =ral. (A.3-28)

L

The cross-section is reduced by a factor B for a deviation from the
z-axis by an angle 8 where

4
N cos'» N
0= + (A.3-29)
7r2a B (27r)4/3 a 81/3

where 7 is an angle specifying the polarization and given as follows:
» is the angle between the polarization vector and the normal to the
plane formed by the z-axis and the direction of incidence.

It should be observed that at 6 = 7r/2 - a the cross-section is

L (A.3-30)

4cos «a

A.3.5 Rectangular Flat Plate

In Figure A-30, at normal incidence (8 = 0) the cross-section is

_ 64 7ra‘2b2

o
XZ

(A.3-31)

In the y-z plane ( %= 7/2 or 37/2) there are two components each con-
tributing:
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=

FIG. A-30

a2

msin 0 (A.3-32)
In the x-z plane (¢ = 0 or =) there are two components each contribut-
ing
|
" rsin 0 (A.3-33)

For other aspects there are four components each contributing

) A& cos™ o
T 643 sin4 0sin ¢cosé¢ . (A. 3-34)

o

A. 3.6 Flat Plate

The plate is taken to be in the x-y plane (Fig. A-31) and to have an
arbitrary shape except that there are no corners. At normal incidence
(6=0) the cross-section is

. _4wA2
+ A2 (A. 3-35)

where A is the area of the plate. For non-normal incidence there is one
component for each time the projection of the direction of incidence into
the plane of the plate is perpendicular to the curve bounding the plate.

If R is the radius of curvature of the bounding curve at the point where the
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projected direction of incidence is perpendicular to the curve then the
contribution to the cross-section is

_ R\
7 8 msinftanl@ (A. 3-36)

FIG. A-31

FIG. A-32
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Applying the above results to an elliptical disk (Fig. A-32) we find,
at normal incidence

4 n3a2 b2
C =5
A2 (A.3-37)
For non-normal incidence the disk answer consists of two components
each equal to

.= Aa2 b2 .
8 wrsin@tanZ (a cos?é +b2 sin ¢ )3/2 (A. 3-38)

A.3.7 Ogive

AN

FIG. A-33
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The parameters and equation of the ogive (Fig. A-33) are given in
Section A.3.4. Inthis case a = 0 and a is the half angle at the nose of
the ogive. For m/2 -a <0< w/2 the cross-section is still given by Equa-
tion (A.3-27). For 0£6<m/2 - a a comparison of the vibration curves shows
that the cross-section of the ogive is the same as that of a cone of half-
angle a, which is shown in Reference A. 4 to be equal to

_ )\Ztan4a .
77 16 1r<:os66(l—tan'2 atan G)T (A.3-39)

For 6 = w/2 - a the cross-section is

2 gin2 b2
s - posin®a

4w  4ntana/z (A. 3-40)

For 6> m/2 the results can be obtained by symmetry.

A.3.8 Tapered Wedge

It is assumed that a <45°. In the x-z plane when 0<0<aq the cross-
section is

L2 costy + 12sin2a
2 4ncos2(a-6)cosz(a+e)

" (n-a)

e (A.3-41)
where v (Fig. A-34) is the angle between the polarization vector and the
plane determined by the direction of incidence and the edge of the wedge.
For incidence in the x-z plane and a <6< /2 - a the cross-section is

L 4, L2
U——[('rr-a) cos*Yy +41r tan“ (a+6) . (A. 3-42)

For incidence not in the x-z plane and 0<tan@cos¢ < tana , there
are two components each contributing

- - Xz(l-sinzesin2¢)cos47 N
4 wsin®@ siné {wz +[]/371r - loge(l—sinze sin2¢)]2}<1r- a)
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N A2 sinacos 8 +cos asin 6 cos¢
64 13 sin®0 sin2¢ | cos acos 0 - sinasinOcos ¢

+ sinacos 8 -cos asinfcos¢ 2
cos acos O+ sinasinfcos¢ (A. 3-43)

y

Y

FIG. A-34

For tana<tan@cos¢ < 1/tana,the second term inside the large
square brackets of Equation (A. 3-43) is missing. The sum of the two
terms inside the square brackets may also be written in the form

sin2 a(l - sin®@sin¢ )
cos?acos20 - sin®@ sin?g sinZa
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For (1/tand)<tan 6 cos¢ the tapered wedge looks like a cylinder.

A.3.9 Application of the Tapered Wedge to Wing and Elevator Surfaces

The formulas for the wedge can be obtained by analogy from the
formulas for a cylinder. In the present case, however, the contribution
to the cross-section comes from the wing on the far side of the fuselage
(as viewed from the radar) and the azimuth angle for normal incidence
is approximately w-¢¥ rather than ¥. The results are

w L2 L2 2
T, =m costy +? [tan(a+e)+tan(a- 9)]

m *
0 =2—+ Xcosy - 6

*
¢, =m-¥ + §cos gcosy

o =0,
¢*-¢#+ ¥z .
~ '+ % 4q)B Lsine" (A. 3-44)

' 5> a tan(a - 0)
. _ th
Equation (A. 3-44) holds for |8]<a For{e< -a} © term{tan (a+t)

is omitted. For |0|>(7/2) - a these formulas should not be used (the
surface then looks like a cylinder).

A.3.10 Square Corner Reflector

A square corner reflector is made up of three mutually orthogonal
squares as shown in Flgure A 35. The orientation of the corner is de-
termined by the vectors el, ez , and e3 Let the vector to the trans-

A #/\ ﬁ
mitter-receiver be denoted by T = sm ’cos $1 +sin 6’sin ¢jtcosé Let
A A A
£, m, n stand for & ey r, ez r, and e3 r but rearranged so that
II [_<_ lmlgln,. There are three types of contributions which the corner
reflector makes to the cross-section: flat-plate contributions, dihedral
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FIG. A-35

contributions,. and corner contributions. The flat-plate contributions
occur for the direction of incidence nearly normal to one of the faces of
the corner ( £ and m nearly zero), and are given by Equations (A. 3-31)
through (A. 3-34).

The dihedral contributions come when the direction of incidence is
nearly parallel to one of the faces and is pointed into the dihedral formed

by the other two faces (that is, m>0, n>0, £ ~ 0). For normal incidence
(£ = 0) the cross-section of the dihedral is

2
16w €. 2
= — 2 4 2 _..__l_g_ -1
T, N2 mra <sin7~9* > (A. 3-45)

where é\i is the vector perpendicular to f\when £ =0. The azimuth at
which the cross-section is given by Equation (A. 3-45) is
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*

e: - €3 eiz
¢, = -tan~l ZIX in~1 1y

—1X_ - gin AR
ejy |eiyj }f-efz tane (A.3-46)

The azimuths at which the cross-section has been reduced to a fraction
B of what it is at normal incidence are given by

X * A
6 = — —— -
bt may2 B Vsin2 o*- et (A. 3-47)

The corner contributions occur only when looking into the corner
(£, m, n all positive). The corner contribution is

(64r 12m2at
sz n;za (m<n/2)
o =<
4 n \2
—'12<4——> ad . m2>n/2
% m (m2n/2) (A.3-48)

A.3.11 Equilateral Triangular Corner Reflector

Q

FIG. A-36
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In Figure A-36 the notation used is the same as that for the square
corner reflector. "Equations (A. 3-45) through (A. 3-48) become

4 eZ 2
. .
sin”¢"
" . e.
¢, = -tan” 13):_ - sin~! "ty iz %
2
Y1 -e4 tané
Ciy iz

X A
R A ma}B Vsine* - eziz

f
647 42méat (£ +m<n)
A2 (£+m+n) =
o' -
j 4 {£+m+n 2 234
LT[ m £+m+n (£ +m>n)
(A. 3-49)

A.3.12 Circular Corner Reflector

FIG. A-37
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For the circular corner reflector (Fig. A-37), the notation is the
same as that for the square corner reflector. Equations (A. 3-45) through
(A. 3-47) become

3 2 2
m €
0, =——m2a2 =1&,- |

A2 sin2e®
: iy Ciz
¢_: = -tan~! .eg‘_ - sin~1{— ‘fy ) *
eiy ‘elyl -ey, tané
6" - o + A ‘
IR TrZa\/EVsinZe*-eiZ: (A. 3-50)

The formula corresponding to Equation (A. 3-48) is not known except
in the special case £ =m=n= 1/)3 where it is

4 - IS
¢ = ].6'"’;. ;3ia“‘i R .
3\ L - (A. 3-51)
In lieu of the correct formula for other £, m, n, one can either
scale up the last line of Equation (A. 3-49) by a factor of 4 or scale down
Equation (A. 3-48) by a factor of 4/9.

A.3.13 Rectangular Corner Reflector

For the rectangular corner reflector (Fig. A-38), only the corner
(triple reflection) contributions will be considered here. Let £, m, n
stand for /e\1~ /r\, é\z . ?, @3~ f\, and let a, b, c stand for a, a, aj with
the ordering

2

a

n

C

m

<
—|b

<

The corner contribution is zero unlessf >0, m >0, and n>0. When £,
m, and n are all positive the corner contribution is
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2.2
r41r1b n 2 m _n
N
¢ = j ' (A.3-52)
2 2 4
6474 m c E(n_
2 2 b — 2c
. Xn

9q

a2

FIG. A-38

A.3.14 General Triangular Corner Reflector

For triple reflections with the notation as in Section A. 3.13,

the cross-section is
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FIG. A-39

A.3.15 Maximum Reflections From Corner Reflectors

The maximum triple reflection contribution for general
rectangular (Fig. A-38), elliptical, and triangular (Fig. A-39) corner re-
1

V% 4 b% 4 2

flectors occurs for é= b£= —Crl= The value of the cross-

section at the maximum is
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2.2 2
4

mab c (triangular)

Gl (PR

(A.3-54)
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APPENDIX B
REPLACEMENT OF B-47 AND B-52 PARTS BY SIMPLE SHAPES

B.1 INTRODUCTION

When the procedures of Appendix A are applied to specific problems,
such as computations of the radar cross-sections of an aircraft, there is
considerable arbitrariness in the breakdown of the aircraft into parts and
in the choice of simple shapes whose radar cross-sections may be com-
puted approximately to replace these parts.

To allow for this arbitrariness in procedure and consequent uncer-
tainty in the results, the task of computing the cross-section of each air-
craft was worked on independently by a few people. Each made his own
breakdown of the aircraft into parts and his own choice of simple shapes.
For each aircraft, the numerical computations for one breakdown were
done by slide-rule and hand computation (Method I). For the alternate
breakdown the computations were done primarily on IBM machines and
the Michigan Digital Automatic Computer (MIDAC) (Methods II and III).

Sections B.2 and B. 3 give the breakdown of the B-47 and the B-52
aircraft into parts and indicate the simple shapes chosen. The appropri-
ate formulas given in Appendix A were applied with allowance for shadow -
ing effects. These effects were computed approximately or only estimated
depending on the computational difficulty and the sensitivity of the results
to shadowing.

B.2 THE B-47 AIRCRAFT

Three views of the aircraft are shown in Figure B-1, its structural
breakdown is shown in Figure B-2, and an example of the breakdown used
in Method II is shown in Figure B-3. A summary of the geometry employed
is shown in Table B-1.

B.3 THE B-52 AIRCRAFT

The three views of this aircraft are shown in Figure B-4 and an ex-
ample of the breakdown used in Method II is shown in Figure B-5. A
summary of the geometry employed in the three approaches to the compu-
tations appears in Table B-2.
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TABLE B-1
B-47 GEOMETRICAL BREAKDOWN

SECTION OF PLANE METHOD I METHOD II
Fuselage

nose prolate spheroid prolate spheroid

forward ellipsoid circular cylinder

aft portion circular cone circular cone

rear view prolate spheroid prolate spheroid
Wings

leading edges elliptic cones elliptic cones

trailing edges tapered wedge tapered wedge

tips | .- -=--- prolate spheroid
Engines

nacelles-front ogive + wire loop ogive + wire loop

representing edge of
front aperture

nacelles-center | = - ----- circular cylinder
nacelles-rear ogive ogive
nose | = ==-=-- circular cones
mounts | - - - - - flat plate

Wing Tanks
front prolate spheroids prolate spheroids
side circular cylinders circular cylinders
rear ogives ogives

Tail Section

vertical fin elliptic cone elliptic cone

rudder tapered wedge tapered wedge

stabilizer elliptic cones elliptic cones

elevators tapered wedge tapered wedge
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TABLE B-2

B-52 GEOMETRICAL BREAKDOWN

MICHIGAN

SECTION OF PLANE METHOD I METHOD II METHOD III
Fuselage
nose ellipsoid ellipsoid ellipsoid
center elliptic cylinder elliptic cylinder elliptic cylinder
aft elliptic cone | - ----- elliptic cone
aft-upper and
lower | - ----- half circular cones | - -----
aft-middle @ | ------ flat plates | - --=---

rear gun turrets

ellipsoids

prolate spheroids

ellipsoids

Wings

leading edges

elliptic cones

elliptic cones

elliptic cones

trailing edges tapered wedges tapered wedges thin wires
tips | -==-=--- prolate spheroids ellipsoid
Engines
nacelles ogives (+ wire loops)| ogives (+ wire loops) ogives
mounts | ------ flat plates flat plates
Wing Tanks
forward ellipsoids ellipsoids ellipsoids
center - - --- - ---- elliptic cylinder
aft elliptic cones ogives ellipsoids

Tail Section
vertical fin

rudder

stabilizer
elevator

elliptic cone
tapered wedge

elliptic cone
tapered wedge

elliptic cone
tapered wedge

elliptic cone
tapered wedge

elliptic cone

elliptic cone (with
thin wire from rear)

elliptic cone

elliptic cone (with
thin wire from rear)

The various configurations were all appropriately truncated and shadowed.
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