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1. INTRODUCTION

For many years the research personnel in the radiation theory field have
seldom mixed technically with the people in the scattering fields At most
meetings, papers on scattering are given in sessions parallel to those in
radiation theory; and even a desire to mix with people in the Mother field®
was met with considerable frustration. The "radiation field™ is ostensibly
a much broader field, since it applies to many peaceful pursuits, such as
listening to a baseball game. The scattering field has had as its recent
primary influence the determination of the scattering properties of targets.

The word targets by its very nature is an unfriendly words The substitution
of Mobjects™ for Miargets™ even sounds ominous to some people. Scatter from
the ionosphere and troposphere has broadened the base of scattering theory
as the techniques of the Mscattering field" are then applied to explaining or
predicting propagation effects.

We now realize that the methods of scattering theory are directly applicable
to radiation theory. The practical importance of the reciprocity principle is
becoming better understood; indeed, any exact scattering answer which determines
the exact current on an object, is by the reciprocity theorem, an exact
solution in radiation theory. The approximation methods of scattering theory,
such as geometric optics, physical optics, and creeping wave type approximations,
are directly applicable.

This paper deals primarily with geometric optics type approximations to
radiation patterns from simple shapes. We, of course, use the older building

blocks of Sommerfeld (Ref. 1), Carslaw (Ref. 2), MacDonald (Ref. 3), Mie (Ref. 4),
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as well as the new constructions of Bailin and Silver (Ref. 5) for the cone;
Bailin (Ref. 6) and Wait (Ref. 7) for the cylinder, Karr (Ref. 8) for the
sphere, and Hatcher and Leitner (Ref. 9) and Myers (Ref. 10) for the prolate
spheroid.

We hope this paper encourages the interrelationship between radiation and

scattering fields and helps meld the research into one larger field.

2, A METHOD FOR CALCULATING APPROXIMATE FAR FIELDS PRODUCED BY SLOT RADIATORS

ON_SIMPLE SHAPES

Where exact solutions exist for any of the problems mentioned above it is
in general true that the nature of the functions and expressions involved in
these exact solutions makes numerical results difficult to find. For these
situations and for situations where exact solutions do not exist it is neces-
sary to have a good approximation technique.

For the last seven years, techniques for determining the approximate
scattering patterns of many simple and complicated shapes have been the sub-
ject of considerable effort at The University of Michigan. These techniques
have, in the main, been based on geometric and physical optics methods of
approximation and can be extended from scattering problems to slot radiation
problems., As they pertain to scattering problems, these methods have produced
results which have been shown to be in good agreement with exact results for
certain bodies (as long as one is on the small wavelength side of the resonance
region of the scatterer - Ref. 11), to be in good agreement with experiments
for the infinite cone (Ref. 12), and to produce even exact results for the

paraboloid in certain situations (Ref. 13).
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The optics methods are employed for the scattering problems under the

assumptions that, in addition to the fact that the body in question is per-
fectly conducting and has no sharp points or edges, the incident energy is in
the form of a plane wave, and the scattering surface dimensions are large in
comparison to a wavelength. In spite of the elimination of bodies with point
discontinuities by these assumptions, the method has been applied to determine
the nose-on backscattering radar cross-section of a semi-infinite cone and has
yielded results which are within experimental accuracies (Ref. 12), and which
are precisely the same as the first order results obtained from the exact
solution for large and small cone angles.

As mentioned above these opuics techniques can be applied, with similar
assumptions, to the problem of calculating approximate fields for radiating
slots on simple shapes. The surface dimensions of the body must still be
large in comparison to a wavelength; and the incident energy in the form of
a plane wave for the scattering problem is replaced by radiated energy from
a magnetic dipole on the surface,for the slot problems The surface is still
assumed to be perfectly conducting but may have sharp edges.

With these assumptions, the electric field E produced by a radiating

slot on a body takes the form (with voltage V, across the slot)

Potean | (223) @)

visible portion
of slot

where R is the distance between field point and integration point along the
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slot and d is an infinitesimal of length in the direction of the magnetic
dipole. In particular when the body containing the slot becomes an infinite
perfectly conducting plane,the expression (1) becomes the exact solution for
the boundary value problem of a radiating slot on such a body.

The expression (1) for the electric field 'E' will depend on the body
under consideration only in the sense that it will depend on the position
and orientation of the slot on that body; that is, the optics method typified
by Equation (1) will not yield any information concerning possible diffraction
effects due to the body itself. Thus the form of Equation (1) will be similar
for all bodies to be considered herej indeed, when an approximation of the
form (1) is applied to an arbitrary convex body of revolution having a cir-
cunferential slot in a plane normal to the axis of revolution, the problem
reduces to that for a cone, tangent to the body of revolution at the slot,
with a slot at the circle of tangency. For this reason, only the problem of
the cone will receive detailed attention.

In the remaining sections the bodies enumerated at the beginning of the
paper will be discussed, and calculations from the optics approximation will
be compared to calculations obtained from exact methods for certain special

situations by some of the authors mentioned in the Introduction.

3. WEDGE
The infinite wedge will be discussed first because solutions from the

literature for this problem are most familiar to the reader, and thus it is

most instructive to use the wedge to exhibit techniques, even though it is

handled in a manner somewhat different from that indicated above. Oberhettinger

(Refss 14, 15) has given expressions for the Green's function due to a line
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source parallel to the edge of a wedge; if the line source is moved onto the
wedge, the resulting Green's function becomes the Green's function due to a
uniformly excited slot parallel to the edge of the wedge. The far field
which may be obtained from a suitable approximation of the integral represen-
tation of Green's function will consist of an optics term (exactly the term
that would result by using the method discussed in the previous section) and
a diffraction term due to the edge of the wedge (Ref. 16).

In the case when the wedge opens into a plane the exact values of the
angular component of the far electric field can easily be found. These
exact values are plotted, along with the result of the approximate method
(using both optics and diffraction terms), in Figure 1 for several values of
ka, where k = 27/) (A meaning wavelength) and a = distance from edge of
wedge to slot. It is interesting to note that the optics term alone would
give just the constant value 1 towards which both exact and approximate results

spiral for large ka.

Le CONE
Phe case of a cone, O = Oo, where © is the usual spherical polar
varisble, with a uniformly excited circumferential slot at distance a from
its tip will be illustrated in some detail. Let (r, 0, #) and (a, Oo,(3 )
designate field and integration points (spherical coordinate system), respectively.

Then Equation (1) takes the form

Ew Vo / eikR ('\ A ]
Py curl - J cos3 -1 sin@) a sin @, d(3 , (2)

VIS/BLE
PORTION
OF Sro7

A A
where 1 and j are unit vectors in the x and y directions, respectively, V, is
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E
| B Exact far field value of B

— — —  Asymptotic (optics and diffraction terms) far field value of E¢

Q Asymptotic (optics terms only)
far field value of E¢

slot /R ~— 7

(wedge angle)

/

v~ Direction of

o [} Field Point
o

Jo51

Figure 1

Normalized Field Component, E¢ vs ka for Two Uniformly Excited Slots

Parallel to the Edge of an Infinite Wedge

for the Case When the Wedge Closes into a Plane (¢o = , g ='-'-21 )

(The numbers on the curves indicate ka values)
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a voltage across the slot, and
RR = r2pa’-2ar E:os © cos O + sin © sin 8 cos(¢-ﬂ)] .
Then for ‘0 ‘(77’-00 , the region where the entire slot can be seen, and

for r>>a, Equation (2) becomes

-~ ikr ~ika cos © cos @,
E~ ka V, 9—;—- sin @, e J,(ka sin @ sin 6;)
. [cos¢?x3-sin¢?x?.] (3)

) ~ika cos 6 cos 8, A
sin @, e Jy(ka sin © sin 8,) O,

= —ka Voeﬁ;r
plems,

where 6 is a unit vector in the positive © direction. When 6 >W-6,, the
integration of (2) is accomplished by the method of stationary phase; the

error thus incurred is comparable to the error of the integral itself. Then

for large ka

. . i
- ikr ka sin © ~ika COS(OO- g)— E— A
E~V_ & Qe Me 9 o
° r \iZ‘rr’ sin @ © 0 >7-8, (4)

Bailin and Silver (Ref. 5) have calculated from an exact series

~1
ikr
(ika vo‘.z-% 27-) E = BE, (5)

for four points when @, = 165° and ka = 50™ ., A comparison between their

!

results and the results from Equation (4) is given in Table 1.
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TABLE 1

o, = 165°, ka = 50

4 60° 75° 90° 105°

BEg from Refe 4 | «182+.0871 | =102 -.110i | ,088 +,1411 | 108 +.171i

BEy from Eqne 4 | o144 +.0981 | =o117 =~01171 | o092 +.1341 | J117+,117i

Figure 2 gives a graphical picture,

EEOI versus 8, of Table 1.
For other than uniform excitation it is necessary only to supply the
specified excitation in the integrand of (2). Figures 3 and 4 give contour

plots of field intensities for excitations cos @ and cos 2¢, respectively.

5. CYLINDER

The approximation method (1) has been employed to obtain the far field
components Eg and E¢ for both axial and circumferential half-wavelength slots
on an infinite circular cylinder., Bailin (Ref. 6) has made calculations for
these fields using a method (adapted from expressions due to Silver and
Saunders (Ref. 17)) more accurate than the method of this paper. Bailin's
results are compared with the results obtained from (1) both magnitude-wise
and phase-wise in Tables 2 through 7.

Wait (Ref. 7) has obtained results for the same type of slots on an
elliptic cylinder. Figure 5 gives a comparison of his and our results for
a short (compared to a waveléngth) circumferential slot on an elliptic

cylinder for the limiting case when the cylinder becomes a ribbon.
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TABLE 2

e° 90° 69,6 550,6 399,64 30°
¢° Calc [Bailin| Cale [Bailin | Calc [Bailin| Calc PBailin|Calc ilin
0° | 1.0 1.0 1.0 1.0 1.0
15° || .951] 4952 0953 o954 | 4958 4959 | 960 4967 | 4961 975
300 || ,816) .822 o823 .828| .832 .8L1 | L8464 .860 | .854 .876
4,5° 628 643 638 653 | 653 675 680 .705 687 731
60° | W419| o454 428 JL6T | Whlhl J493 | 466 4530

Normalized Field Component, I (O’¢)’ » for a

|E(£:0) |
Half-Wavelength Circumferential Slot on an Infinite
Cylinder with ka = 12
TABLE 3

o9 90° 699,6 550,6 399,6 30°
g° ¢ | B c B c | B c B c B
®© | oo 43°.1 | 40°,2 [ 120° |126%,3 |250° [247°.2 |344° |345°.3
15° | 239,49 23°%.4 | 65°.24 62°,2 | 1399,6 |145°.5 | 262°.1]262°.4 |3560.1|357°.3
30° | 959.7 920.2|130°1 127°.2 [197°.1]202° |304°.4(307°.1 |390°.3392°.3
45° ]2020,4 220,3(233%,5 231° | 2879.,3292%.4 [379° [378°.8
60° PBLT%6[B34TO.L 375903 B67°.6 | 406°.9 [411°,7 | 470°.2]473°.6

Phase of EO(O,¢) Relative to Eg (g; 0) for a

Half-Wavelength Circumferential Slot on an Infinite

Cylinder with ka = 12

12
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TABLE 4
0, 80°.9 69°.6 559 .6 39°.6 30°
go | ¢ B C B C B C B| C B
50 1,0138 | 4015 | 40303 | «029 | 0492 | 049 | .0670 | 056 |.0753 | 072
15° |.0403 | 4045 | 0891 | .08, |.145 JAuh | 4199 J91  [.223 | .2L4
300 [LO747 |.083 | 166 | 155 |.271 269 | 4376 0358 |W427 | 403
450 [,0996 | 4109 | 4222 | 203 {4369 ¢355 | 4520 479 6595 | o541
600 115 |4120 | +258 | o224 | .43L4 396 17 | 4629
Normalized Field Component, l (©, ¢)l sy for a
mw
‘EO(E ’ O)l
Half-Wavelength Circumferential Slot on an Infinite
Cylinder with ka = 12
TABLE 5
o° 80°.9 69°.6 55%.6 399.6 30°
° c B | C B c B c B |C B
50 185°.8 | 188°,7 | 221°.7 | 220°.4 | 301%.5 | 304°.5 | 427°.4 | 423°%.2522°.9 | 521°.4
150 p10° 2120 [2430 [ 239° | 3179.7 |3219.7 |440°.7 | 436°.7(53L°.8 | 531°,1
30° R77°.8 | 278°.6 | 3079.7 | 303%4 | 374°.9 | 377°.1 |482°.7 | 480°.7(569° | 563°.9
4,5° B85°,8 | 384,046 | 410°.5 | 405° | 46L°.7 |L465°.4 | 557° | 5499.6|6250.2 | 6189 .6
60° [5260,2 | 5239,2 | 5510,3 | 5370.6 | 583° | 580°.4 | 647°.2 | 640°.7(695%.4 | 689°

Phase of E¢(O, #) Relative

to Eg(g, O) for a

Half-Wavelength Circumferential Slot on an Infinite

Cylinder with ka = 12

13
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TABLE 6
o° 90° 69°,6 559,6 39%,6 30°
g° c B | C B C B B c B
0° [|1.0 [ 1.0 [.9112 [ 918 |o765h | 4753 | 4553 | o55h | 418 | 414
150 «999 e ATA «753 «553 o411
300 «991 +907 oThiy o546 405
L&5° 0969 [ 889 0726 . 532 0391&
600 0920 o8’+5 0690 0498 0367
Normalized Field Component, ' (°’¢)I s for an
[Eg(5:0)|
Axial Half-Wavelength Slot on an Infinite Cylinder
with ka = 12. (The calculated value of |E¢i§fgﬂ is
’
independent of @ for large values of r.)
TABLE 7
o° 900 69°.6 550,6 399,6 300
go c B c B c B c B c B
o || o° 0° 4391 | 39°9.9(120° |[125°.5 [250° | 245%.2(344° | 341°.8
150 || 230.4 | 230.3 | 650.1 | 619.9[1399.5(144%.5 | 262° | 260°,1|356° | 353%.2
300 [ 95° | 919.4 [129°.5 [1250.9|196°.5|200° | 304° | 303°.4|390° | 387°.2
450 [[2010  [1999.6 [232° |227°.7(286° |288° | 378° | 3720.8|446° | 440%.5
600 |[344° 3400,7 |372° 360°.6 (4040  [4030.3 | 468° | 462°.8|516° | 511%.3

Phase of g Relative to E¢ ( .12!, o) for an Axial

Half-Wavelength Slot on an Infinite Cylinder

with ka = 12,
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—__/

— — — Wait's (Ref. 7) Radiation Pattern of a Short Transverse Slot in the
Equatorial Plane of a Ribbon of Width 2d for kd = 2

Radiation Pattern (Eqn. 1) of a Short Transverse Slot in the
Equatorial Plane for an Elliptic Cylinder in Limit as Cylinder
Flattens into a Plane (because of the optics approximation this
corresponds to a pattern of a slot in an infinite plane)

(plot is proportional to rzlng)
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6. PROLATE SPHEROID AND PARABOLOID

Hatcher and Leitner (Ref. 9) have considered the radiation problem of a
prolate spheroidal conductor excited by an electric dipole at its tip. They
have considered spheroids of varying thicknesses, with wavelengths approxi-
mately 7, /2, and 7'/3 times their major axes, and have obtained patterns
giving the interesting results that most of the radiation is directed back
of the equatorial plane (i.e., between @ = 90° and 180°) for the ka con=
sidered by them (a being one-~half the interfocal length of the spheroid).
Geometric optics methods of course would not apply to this case}

Myers (Ref. 10) has obtained patterns for slots on prolate spheroids of
approximate length to width ratios of 10/1, 22/1, and 316/1 for ka ® 1,2,3,
where a is as shown above. Here the limitations of the approximate method
are quite evident for the following reasons: For the slot excitation chosen
by Myers the far field intensity, in the region where the slot is completely
visible, is nearly zero; thus, although this is the region in which our
method produces the most reliable result, no decent comparisons can be made.
In the region where only part of the slot is visible, it is necessary to
assume ka 3 1 to accomplish the integration of (1); thus again no comparisons
can be made because of the small magnitude of Myers' ka.

It is, however, possible to obtain patterns for a spheroid with circume
ferential slot for sufficiently large ka by the simple device, as indicated
in Section 2, of investigating the equivalent cone problem. To fix ideas,

consider the spheroid

2
_zE+x2+2 =1, P>q (7)
P q

16



THE UNIVERSITY OF MICHIGAN

with circumferential slot in the plane, z & z,, 0<z,< p, perpendicular to
the focal axis. Then to obtain the cone which would, by our method, produce

the same pattern as the ellipsoid (7), it is only necessary to choose for

the cone parameters °o and a (see Section 4) the values

0o ®= arctan —_ %o
p\p222

s 8 == /p?=22)(Phmc2z2) , 2= pP-q? .

PZq

(8)

The same remarks hold for the paraboloid of revolution

x2+y2=-Apz
with circumferential slot in the plane z = z, 25< O. Here it will be
necessary to choose

0. = arctan L

o 229

as «hpzo\/l-422

in order to obtain the same pattern that would be obtained for the cone
0= 00 with a as specified.

In this way Figures 2, 3, and 4 can also be interpreted as patterns
for certain spheroids and paraboloids with suitably located eircumferential
slots.

The paraboloid serves also to illustrate nicely the statement made in

the Introduction that Many exact scattering answer which determines the exact
current on an object is, by the reciprocity theorem, an exact solution in

radiation theory.,® It has already been pointed out (Section 2) that

17



THE UNIVERSITY OF MICHIGAN

Schensted (Ref. 13) has shown the geometric optics answer to be the exact
scattering answer for a plane wave incident along the axis of a paraboloid.
Thus, the expectation is that the far field produced by a magnetic dipole
located arbitrarily on the surface of a paraboloid would be given exactly

in the direction of the axis of the paraboloid; and this expectation has been
confirmed. The expression for the magnetic far field in the direction of the
axis of the paraboloid due to a magnetic dipole on the surface of the para=
boloid is just twice the free space expression for the magnetic dipole.

N 2eik(z-z°)

N
(iseey H=- a for a magnetic dipole oriented in the @~direction,

ZeZ
where z is distance tz field point parallel to the axis of the paraboloid,

Z is corresponding distance to the dipole.) Even so, this result might sur-
prise some, because optics approximations are expected, from their derivations,
to give poor results for the field of a dipole located in a region of high
curvature.,

In this same vein it is worth noting that similar reasoning can be
applied to the cone. We recall that the bistatic radar cross-section is very
closely approximated by the physical optics formulation for illumination along
the axis of the cone. This suggests that the use of the physical optics field
in the reciprocity theorem will give a higher order approximation for the
field in the direction of the cone axis due to a slot excitation of the cone.

In the case of a circumferential slot on either the paraboloid or the
cone we note that only the cosine excitation will produce a non-vanishing
contribution along the axis of symmetry. Using the above method for the
paraboloid will, as indicated, give the exact field along the axis of symmetry

for the cosine excited circumferential slot. Although the reciprocity

18
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theorem is not obeyed by the physical optics field we note that Felsen (Ref, 18)
has demonstrated that for plane wave illumination along the cone axis the
physical optics field agrees with the first order small cone angle approxie
mation to the exact scattered field outside the region of specular reflection
0<(20,-7). Recently Felsen (Ref. 19) has indicated that his results can
be continued past the specular reflection region and, hence, to the surface
of the cone, where the agreement with physical optics also obtains. Thus

we may use the physical optics field on the surface of the cone. We expect
to have reciprocity obeyed to first order in the small cone angle approxi=
mation and to first order in (ka)'l. In this way we obtain the field on the
axis of symmetry produced by the slot on the cone to the same order of

approximation.

7. SPHERE
Far field radiation patterns have been obtained by Karr (Ref. 8) for
ka =1, 1.5, 2, and 3, where a is the sphere radius, for various positions of
a circumferential slot on the sphere. In Figures 6, 7, and 8 comparisons
are made, for the slot located at © = 450, between Karr'!s and our results
for ka = 1.5, 2, and 3, respectively. The comparisons are made only in
the region where the slot is completely visible from the field point since
ka is too small to reasonably apply our methods outside that region.
In order to evaluate our method outside this region of complete visibility
we have employed Karr's results to compute several points for ka = 15,

Figure 9 gives a comparison of these points with the curve calculated from

19
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our approximation method for the region where only part of the slot is
visible from the field point.

It is of course to be noted from what has been pointed out in Section 6
that our patterns for the slot-on-sphere case given above are exactly those

that would be obtained for a cone with 9, = 135°,

8. CONCLUSIONS

This paper purports to exhibit the ease with which optics approximations
to radiation problems are obtained. With experience one can build up the
know-how of when these type approximations are good enough for the design
problem at hand. When these approximations yield poor results there are
other approximation techniques available in scattering theory which yield
better results. We believe that the techniques used in scattering theory
calculations should be examined, analyzed, and categorized for use in

radiation theory problems.
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