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PREFACE

This paper is the twenty=second in a series growing out of studies
of radar cross-sections at the Engineering Research Institute of The

University of Michigan. The primary aims of this program are:

To show that radar cross-sections can be determined analyti-
cally.,
To determine means for computing the radiation patterns from
antennas by approximate techniques which determine the pattern
to the accuracy required in military problems but which do not
require the unique determination of exact solutions.
To determine means for computing the radar cross=sections of
various objects of military interest.
(Since 2A and 2B are inter-related by the reciprocity
theorem it is necessary to solve only one of these
problems)
To demonstrate that these theoretical cross-sections and theo-
retically determined radiation patterns are in agreement with

experimentally determined ones.

Intermediate objectives are:

To compute the exact theoretical cross-sections of various
simple bodies by solution of the approximate boundary=-value

problems arising from electromagnetic theory.
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B. Compute the exact radiation patterns from infinitesimal
solutions on the surface of simple shapes by the solution of
appropriate boundary-value problems arising from electromagnetic
theory.

(Since 1A and 1B are inter-related by the reciprocity
theorem it is necessary to solve only one of these
problems)
24 To examine the various approximations possibtle in this problem
and to determine the limits of their validity and utility.
3 To find means of combining the simple=body solutions in order
to determine the cross-sections of composite bodies.,
b, To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.
5. To collect, summarize, and evaluate existing experimental data.
Titles of the papers already published or presently in process of
publication are listed on the preceding page.
The major portion of the effort in this report was performed for the
Hughes Aircraft Company under purchase order L-265165-F31 under Air Force
Contract AF33(038)-2863L.

K. M. Siegel
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CHAPTER I

INTRODUCTION AND STATEMENT OF PROBLEM

This report concerns methods of readily computing radiation
patterns, to the accuracy required in practical problems, from slot
sources on various perfectly conducting shapes, with par£icular em=
phasis on the semi-infinite cone. The methods used are based on the
equivalence between a slot source (voltage impressed across a slot)
and a magnetic dipole source. The approximations of significance in
the applications with which we are concerned are those used for a
wavelength 1limit which is small in comparison to all dimensions of
the body in question.

The purpose of this study is to determine the behavior of the
elementary slot radiators. Such a study is a necessary prelude to
the development of arrays of such elements, arrays which will serve
as useful flush-mounted antennas.

In Chapter 2 radiation problems are discussed from the point
of view of known solutions of the reciprocal scattering problems.
Chapter 3 then lays the foundation for the calculation of radiation
patterns arising from various excitations of a circumferential slot
on a perfectly conducting semi-infinite cone. A representative set
of patterns, computed on the basis of this chapter, is presented in
Appendix C. In Chapter 4 a particular pattern optimization technique,

with application to a circumferential slot on a cone, is given. The
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material of Chapters 3 and 4 is based on optical techniques; more
precise treatments for wedges and cones are given in Appendices A
and B, respectively.

An alternative approach to electromagnetic boundary value
problems is suggested in Chapter 5 by a discussion of Wiener in-
tegral methods.

Finally, Chapter 6 presents the conclusions we have drawn to

date and offers a prospectus for future endeavor.
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CHAPTER 2

GENERAL DISCUSSION OF RADIATION
AND SCATTERING PROBLEMS

2.1. Reciprocity
In.order to be able to draw on the large body of knowledge of

scattering problems in electromagnetic theory we make use of the
reciprocity properties of the electromagnetic fields For our purpose

we state the Lorentz reciprocity theorem in the form

o Y ‘/‘.s .
Hy* My, dv = [Hye My dv (2.1)
where ﬁi(ﬁ;) is the field due to the magnetization'ﬁi(ﬁé) and the in-
e A 8‘. -~
tegration is over all space. If Mj , are of the formm, , (r-rl,z),

i.e., point sources, then we find

A

s o A
Hl(rz). m2 - H2(rl).m1 . (202)

Consider now a magnetic dipole on the surface of a perfect con-
ductor S having a position vector Fé and a magnetic dipole of the same
strength located at some position ¥ in space (see the following figure).
Under these conditions it follows that by varying the orientation of

ﬁl, the field induced at ?2 on the surface of S by the source at T.

1
determines the field at ?i due to the source on the surface S at ?;.
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If we letlfi,increase without limit, we see that the field induced en S
at ?é due to the incoming plane waves determines the radiation pattern
due to a source at Fé in the direction of the incoming plane wave.

The exact solution of the scattering problem is no simpler to ob-
tain than the exact solution of the reciprocal radiation problem. In
contrast, we have readily available a large number of approximate
solutions of various scattering problems. We now propose to consider
a number of these approximate solutions, most of which are based on some
assumption about the field induced on the scatterer, i.e., the radiation

field of the reciprocal problem.

2.2. Geometric Optics

All of the approximations we will examine are for short wavelengths.
We start with the simplest, gometric optics, the exact limit of vanishingly
small wavelength. For a finite wavelength the geometric optics approxi-
mation is equivalent to replacing the body S on which the source is
located at Fé by an infinite perfectly conducting plane tangent to S at
?5 with the source at the point of tangency. It is apparent that the per-

)

tinent parameters are the radii of curvature at r2 in wavelengths,
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With these assumptions, the electric field E produced by a radiating

slot on a body with voltage V, across the slot takes the form

E = 2_::. curl / = d1 (2.3)
visible
portion
of slot

where R is the distance between field point and integration point along
the slot and Ei is an infinitesimal of length in the direction of the
magnetic dipole, In particular, when the body containing the slot
becomes an infinite perfectly conducting plane, the expression (2.3)
becomes the exact solution for the boundary value prdblem of a radiating
slot on such a body.

The expression (2.3) for the electric fieldli will depend on the body
under consideration only in the sense that it will depend on the position
and orientation of the slof on that body; that is, the optics method
typified by Equation 2.3 will not yield any information concerning
possible diffraction effects due to the body itself. Thus the form of
Equation 2.3 will be similar for all bodies whose shapes are in a certain
sense similar, indeed, when an approximation of the form (2,3) is applied
to an arbitrary convex body of revolution having a circumferential slot in
a plane normal to the axis of revolution, the problem reduces to that for

a cone, tangent to the body of revolution at the slot, with a slot at the

circle of tangency.
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Schensted (Ref. 1) has shown that the geometric optics answer is the
exact scattering answer for a plane wave incident along the axis of a
paraboloid, Thus, applying the reciproecity theorem, the far field
produced by a magnetic dipole located arbitrarily on the surface of a
paraboloid is given exactly in the direction of the axis of the paraboloid
by the geometric optics field. The expression for the magnetic far field
in the direction of the axis of the paraboloid is just twice the free

eik(z-zo) R

space expression for the magnetic dipole (i.e., Hem i

2-2

for a magnetic dipole oriented in the g - direction, where z is the distance
to field point parallel to the axis of the paraboloid, and z, is the
corresponding distance to the dipole.)

In this same vein, it is worth noting that similar reasoning can be
applied to the cone. We recall that the bistatic radar cross-section is
very closely approximated by the physical optics formulation for illumi=-
nation along the axis of the cone., This suggests that the use of the
physical optics field in the reciprocity theorem will give a higher order
approximation for the field inthe direction of the cone axis due to a
slot excitation of the cone.

In the case of a circumferential slot on either the paraboloid or
the cone wWe note that, of cos nff excitations, only the cos @ excitation
will produce a non-vanishing contribution along the axis of symmetry.

Using the above method for the paraboloid will, as indicated, give the
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exact field along the axis of symmetry for the cosine excited circumfer-
ential slot. Although the reciprocity theorem is not obeyed by the
physical optics field, Felsen (Ref. 6) has demonstrated that for plane
wave illumination along the cone axis the physical optics field agrees
with the first order small cone angle approximation to the exact scattered
field outside the region of specular reflection © <(290 -m). Recently
Felsen (Ref. 2) has indicated that this result can be continued past the
specular reflection region, and hence, to the surface of the cone, where
the agreement with physical optics also obtains, Thus we may use the
physical optics field on the surface of the cone. We expect to have
reciprocity obeyed by physical optics to first order in the small cone
angle approximation and to first order in (ka.)'l where a is the distance
from the slot to the tip and k = 20/A, 1In this way we obtain the field
on the axis of symmetry produced by the slot on the cone to the same order

of approximation,

2.3 Refinements of Geometric Optics.

In looking for refinements of geometric optics we turn to the recip-
rocal scattering proonlems - in particular to the method of Fock based on
an approximate formulation of the scattering problem and to the use of
approximations of the exact solution for separable surfaces.

The first approach, that of Fock (Ref. 3), is based on an approxi-

mation to Maxwell's equations depending upon the physical assumption of a
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sufficiently short wavelength., This formulation we can consider as a
modification of geometric optics based on a local analysis of the field
in the region of the shadow boundary. In particular, Fock defines two
universal scalar functions whose argument is a reduced distance measured
from the shadow boundary. Depending upon the polarization of the incident
radiation with respect to the tangent to the shadow boundary, one of

the Fock functions is approximately proportional to the field induced on
the scatterer.

Following is an account of the general procedure. Let a convex closed
surface S, f(x,y,z) =0, be illuminated by a plane wave incident in the
direction of the x-axis. The geometrical shadow is then given by the two
equations f(x,y,z) = 0, %%% = 0, Let the origin be located at a point
on the shadow boundary with the z-axis the outward directed normal to S
and the y-axis chosen to form a right-handed system. Using the geometric

assumption that the surface can be approximated by a paraboloid at any

point, i.e.

z +1/2 (ax2 + 2bxy + cy2) = 0,

so that %%é = ax + by and the physical assumption that the variation of
this field in the z-direction is much smaller than that in either the x-
or y=direction for sufficiently small A, Fock obtains an approximation to

Maxwell's equations which lead to the solutions:
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Hy o= H 6(%)

" -(%)1/3

iH: elX F(4)

H, =0

on the surface. The incident field is given by
S 0 (e}
H, = (0, Hys H,)
while the functions G and F have the asymptotic behavior

2
Lin |6( % )l-{o

bajo

2
lim [F(%)| = g

-o;cn
0

where  is a reduced distance from the shadow boundary given by

1/3
g(ﬁ) (ax + by),

We have a modification of geometric optics field induced on S which gives
a smooth transition through the shadow boundary. Hence, we have an

approximate solution to the reciprocal radiation problems as noted above,
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By way of illustration, the application of Fock's method to the
radiation pattern from an axial slot in an infinite perfectly conducting
cylinder has been compared with Bailin's evaluation of the exact series
(Ref. L) for this problem. If a is the radius of the cylinder, and
k = 2m/A (A the wavelength), ka = 12, so that § =(E%)1 ’ _g . The com=
parison along with the geometric optics result appears in Fig. 2~1,
Following the method of N. Logan (Ref. 18) the oscillations in the Fock
expression were found by including the contribution going around the rear
of the cylinder. Logan has made the same comparison for ka = 8o

In detail we substitute for x, which is the correct variable near

its shadow boundary, the path length S along the surface of the cylinder.

The magnitude of the field is then proportional to

B ~[o(&) * 6(5)]

where . 13 .
5 ‘(7) 2
SO

where S is the path length from one shadow boundary, St that from the other.

A
N

10
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In terms of polar coordinates
S=a(¢-72'.)

S'e ady - )

hence,

[E] ~

0615_3)1/3 & - %))

‘o ((-k-g)m & - ¢>>l

In applying Fock's method to general shaves we must exercise some
caution. First, since the method is in fact a modification of geometric
optics and therefore a short wavelength approximation, all dimensions of
the surface must be large with respect to a wavelength. Second, the

radii of curvature must be continuous. To illustrate this, consider a

moditied spindle shape.

12
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Let a source be located at S. Then, so long as the dimensions a and b
are large with respect to the wavelength, the Fock approach is useful in
determining the radiation pattern in region 1 but must not be used in
region 2 since the radius of curvature is discontinuous at the tip.

The second approach depends upon the decomposition of the exact
solution into the geometric optics contribution plus the remainder which
we will call the diffraction term., This method has been applied in
various separabtle cases for which the exact solution is available. The
use of this method to refine the geometric optics contribution depends
upon a ready approximation of the diffracted term. This has been achieved
by Franz et al. (Ref. 5) for the infinite circular cylinder and the sphere
and by Oberhettinger (Ref. 16) and others for the infinite wedge. The
diffraction term appearing in the exact solution of the infinite right
circular cone, however, is not so easily approximated except in the
limits of a large and small cone angle (Ref. 6).

Because of our particular interest we consider the cone and its two-
dimensional counterpart, the wedge, at length. The details of the decom-
position into the geometrical optics and diffraction terms appear in
Appendices A and B for the wedge and cone, respectively. Except as noted
above we do not have much of a hold on the diffracted term for the cone but
since we can form an estimate of its size we can discover the range of
usefulness of the optics result for sources located at various places on

the cone, We find that if the source is a radial distance a from the

13
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tip of the cone, the diffracted term is of order l/ka as compared with
the optics term as long as the source is in view. As we move the
observer out of view of the source on the cone, the optics solution is
discontinuous, and we must make use of a more sensitive technique, Since
we eventually intend to discuss a cylindrically symmetric distribution of
sources about the cone axis, we make the point that the effect of the
discontinuity in the optics result becomes negligitle for a sufficiently
dense distribution of sources.

In the following chapter a method of using the optics solution in
obtaining the entire radiation pattern from variously excited circum-

ferential slots on a cone will be given,
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CHAPTER 3

CONE RADTATION PATTERNS BY OPTICAL TECHNIQUES

In determining the radiation from slots in a perfectly conducting
semi~-infinite cone by means of the geometric optics approximation we note
that the case of radial slots can be subsumed under the general theory
of linear slots in an infinite plane and hence presents no new difficulty.
Contrariwise,-the case of the circumferential slot introduces a more
difficult problem of characterizing the radiation pattern arising from an
arbitrary excitation. The case of a cone, 8 = 8,, where 6 is the usual
spherical polar variable, with an arbitrarily excited circumferential slot
at a distance "a" from its tip will be illustrated in some detail,

Let (r, 6, #) and (a, 6oyd) designate field and integration points
(spherical coordinate system), respectively. Then Equation 2.3 takes the

form

-V i A

E~ — curl / o kR (3 cosﬂ-?. sin/3) a sin 85 £(4) 43 (3.1)
visible

portion

of slot

N N
where i and j are unit vectors in the x and y directions, respectively,

V, is a voltage across the slot, and

=]
n
[}

r? + 2% - 2ap [jcos 8 cos 8, + sin © sin 6, cos (f -/3)] .

15
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The function f(ﬁ) is an excitation, arbitrary to the extent that it is

representable by a Fourier decomposition

®
£(A) =Z C eind -T<B <,
n==00 '
where
T
G =%;T/f(ﬂ) LY
-

Then for |9|<'rr - 8,, the region where the entire slot can be seen,

and for r>»>a, Equation 3.1 becomes

ikr . @
~ ik V, e -ika cos 6 cos 6g ing
E =~ —— a sin 6, e c e
o r n
n==00

. [sr'l@ + 47 cos @ ﬁ] (3.2)

A
where © and a are unit vectors in the usual spherical coordinate system and

(N | ¢ . o - . . ]
S, ;:f {Jn-l (ka sin @ sin 6;) 41 (ka sin @ sin @)

-

' T ) _ . .
Tn = 10-1 [Jn_l (ka sin 6 sin 85)+ J,,; (ka sin @ sin 85)

. (3.3)

When 6 > - 8,, the integration of (3.1) is accomplished by the method of

stationary phase; the error thus incurred is comparable to the error of the

16
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integral itself. Then for large ka, since there is just one stationary

phase point at B = 0,

- ikr ka sin 6 -ikancos (6y - 9)-("i) A
v o o I -
E~V, = 1/ g © £(0) 8, m=8,< 6 . (3.b)

Using the excitation f (4 ) = 1, Bailin and Silver (Ref. 7) have calcu-

lated from an exact series the expression

. ’ i elkr -1

for four points, when 8, = 165° and ka = 50w, A comparison between their

results and the results from Equation 3,4 is given in Table 3.1,

TABLE 3.1
8, = 1659, ka = 50

8 60° 750 900 105°

BE9 from Ref,7 | .182 + ,087i | -,102 - ,110i | ,088 + ,141i | ,108 + ,171i

BEg from Eq.3.5| 1L + (0981 | =.117 - 1174 | .092 + ,13Li | 117 + 1174

Figure 3.1 gives a graphical picture, 'BEe[ versus 8, of Table 3.1,

We felt that it would be valuable to present additional patterns for
various excitations and several different cones with circumferential slots
at various locations on the cone, In particular, patterns have been com-
puted for cosB (Fig. 3-2) and cos 28 (Fig. 3-3) excitations with the
values of 8, and ka used above., These are presented on the succeedirng

pages,
17
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~————— Approximate Calculation
xXX Bailin and Silver Calculation

FIG 3.1 NORMALIZED FIELD INTENSITY, IBE¢| s VS 6 FOR A
UNIFORMLY EXCITED CIRCUMFERENTIAL SLOT

ON A 30° CONE WITH ka = 507

18
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In addition, patterns have been computed for all combinations of
these parameters: cone angle 6o = 160°, 165°, 170°; ka = 50m, 75m; and
excitations eing , n=1, 2, 3, These patterns are presented in Appendix C.
In the following chapter we present a beam optimumization technique

using the above results,

21
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CHAPTER 4

AN OPTIMIZATION TECHNIQUE

One method of designing an array of radiators to produce a narrow
beam is to fix the power radiated in some particular direction and then
to minimize the total power radiated in all other directions. As an
example, the case of a single circumferential slot, which is especially
simple due to the orthogonality of einﬁ, is studied below,

Here the excitation coefficients are obtained directly in terms of
the Lagrange multipliers (Equations 4.18). In the case of M circumfer-
ential slots we would have to solve M simultaneous equations for the magni-
tudes of the einf excitation in the I slots.

we will concern ourselves here only with the forward directions con=-
tained in the extension of the cone. In this case, the field produced by
a circumferential slot with an e+in¢ excitation has, to a good approximation,

the following simple form (see Equations 3.2, 3.3):

ikV, gikr -ika cos 8 cos 6, e+in¢ [§|

A ' A
a sin 6, e n 8 +iT  cos Cl)

(L.1)

T [ﬁn_l(ka sin @ sin 8y) + Jp4p(ka sin 8 sin 9;%

T;lszgr_—l [Jn_l(ka sin © sin ©p) + Jn+l(ka sin @ sin 00)] .
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Here the symbols have the same meaning they have had in Chapter 3. What

we want to do is to find an excitation

N .
-1
n eln¢

D, (g +iB) i

n=-N

which will give a pencil beam in the direction 8 =¥, # = 0. We proceed

by first specifying the field in the direction & =%, @ = 0, to be

-~ ikV, eikr -ika cos®cos 8, A 3

E(2,0)a a sin 6, e (8 +1 (Le2)

2mM r
This done, we minimize the energy radiated in the forward cone. In order
to minimize the radiated energy while simultaneously keeping the field
fixed in the specified direction, it is necessary to have a narrow beam
pointed in the specified direction.
We now proceed to evaluate the excitation coefficients Ay, and B, in
.n=l 1 in-l

accord with the above program. We let Sq = S; i and Tn = Tp cos 8

so as to be able to deal with real quantities. Now (L4.2) gives us the

following requirements

N
> (A + iBy) sp(#) =1,
n==N
N
2. (A, + iBy) Tn(®) =1 . (Le3)
n==N
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The minimum radiated energy requirement means that we minimize

w-g 21 N . 2
] °f sin 8| (Ay * iBy) Sp (8) em¢l
Zea\
0 0 ne=
N ing 2
¥ Z (&, + iBp) T () e af 48 , (Lob)
n=-N
subject, of course, to (L.3). If we let
-2 2 2
c2= / sin 8 [sn (8) + 1, (e)] de (L.5)
0

and use Lagrange multipliers to take account of the constraints (L.3), we

find that we must minimize

N , N N
SO 022+ B2) 22 5 gy sp(®) -2K > Ay 1(¥) (L.6)

n==y n==N n=-N
N N
-2 Z B, Sp(¥) =2¥ Z: By In(T) .
n==N n=-N

'ne minimum is obtained by taking

ASn (%) +u Tp ()

A =

! ca (LeT)
oSy (#) + Ty (7)

B, =

c§
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The Lagrange multipliers A, M, p ,v are determined by substituting (LaT)

into (Le3)s We find @ =0 = 0 and

N sg2(») N sy (8) Ty (8)
=1
2, c2 "4, 02
n==N n Nn==N n
(48)
N Sn(b“)Tn(J‘)+ﬂN Tﬁ(b‘)zl
A cg c*l
n==N n ==Y ]
or Sn (X" T, (¥)
0 T S —
Y Ch
oSS ()
. « Z S (¥) T, (&)
? 2
c C
k==1 k k==m K
, 2
i 5, (3 T, () N T )
1 2 5
C
k=-N k k=-1 k
(Le9)
A =
’ 2 N Yyt )
N S
>t S
C (;2
k==N k k==N
. \ 2
N5 () ) LAY
Z e i 2
k=1 Ck k==} %
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The derivation given above was for the case where circular polarization
is desired in the beam direction (see Equation L.2). A similar derivation
could be just as readily carried out for any other polarization.

We have presented above a method for determining the excitation of
a circumferential slot so as to obtain a narrow beam. The presentation
of the method was based on a particular approximate formula for the field
which holds only in the forward regions. In the remainder of the chapter we
show that the method holds in general and give general formulas which can
use more exact representations of the field (either theoretical or experi-
mental).,

First of all we need to observe that if the slot has an ei™¥
excitation then the only @ dependence of the © and @ components of the

electric field will be a factor einﬂ. We can prove this as follows:

Suppose the excitation einf gives the following field for @ = O:
in¢ - A A eikr
P L (6, 0) = [fn(e) R ign(e)] 6 + [hn(e) R i,]n(e)] Fre— . ()

Then the excitation ein(¢ - ) will give the same field for @ =X since the

problems are identical:

. - A kr
e1n(¢ -“)*En(e’“)z fn(g) + igy(e)| 6 + hp(8) + ijn(8) a E.J;.... . (Loll)
r

The field for the excitation ein¢ can be obtained from that for the
excitation ein(¢ - o) simply by multiplying by e, Then replacingec

by @ we get the desired relation
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. - A A s ¢ ikr
eln¢..>En(e, ¢)z{[fn(e) + ign(e):] 9 + [hn(e) + ijn(e)] ¢} e1n Er__ .
(Le12)

Now let us suppose that we require that the field in the direction

(&, 0) be

B (s, 0B i) (1.13)
where the excitation is

Z%‘ (A *+ iBp) A

n==N

We now require that the quantity

% L\ g

. - 2
%{ Jé‘ sin 8 lE(O, ﬂ)l dg de

be minimized. This gives us the condition that

6, 2m N . 2
/ / sin @ (A + iBp) [fn(e) + ign(e)] o7 g de
n==N
o o (Lo1k)
% 290 N . 2
+ j f sin 8| 5 (Ay + iBy) [hn(o) + ijn(O)] P 4 e
o "o n==N

be minimized subject to the constraints

27



THE UNIVERSITY OF MICHIGAN

2L72-13=-T

M=

(An + 1Bn) [fnm ; ignm] -1,

n==N

(L.1y)
N
) (ay +iB) [hn(a*) + ijn(v)} =i,
n==N
Now we let
eO
04 = f sin 8 [fi(e) + g2(8) + hﬁ(e) + jﬁ(e)] de (L.16)

)
Using Lagrange multipliers A, s /o , U we minimize

Nfo, 2, .2
Z {Cn (An + Bn) =2A [Anfn( ») -Bn gn( 5‘)]'2,“ [An gn( r) + ann( 6‘)]

n==N

(LoL7)
-z,o[An h,(#) -B, jnmJ - 2u[A,, 5p( #) + By by m]} :
The result is
NE(8) +4 ga(#) +p hy(8) + V()
A = >
n (4.18)
ufn(#) =Aen( ) + wby(#) -P3n( %)
B =

n

3
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or
(A + 34)[2(8) = 1(3)]* (0 10 )[bn(B) = 135( 3]
A+ iB, =
3
It is convenient to deal with the following complex numbers
Dy = Ay + By
P = p+iv
F (8)=1f (8) + ig (8)
Hy(8)=hy(8) + ijn(8) .
Then (4.19) becomes
LF. . 8) + PEY( )
Dp = —o > L (L.21)
Ch
while (4.15) takes the form
2 3%
N Lfr ()] + BE(8) Ha() .
2
n==N °a
N LR () Hy(#) + P‘Hn(b‘)l 2
2o 5 =1 . (L.22)
n==N Cn
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Solving (4e21) and (L.22) for D, we find

d an( o) i

1) 7

), T

Hi(#)
-

n

N Fo(#) Hn(a)

n==l n==N n
A 2
N FA(8) Ha(#) I ERES
i — ez
n==N n n=-=N n
Dy =
2
N fen(8) N Ea(2) Ei(P)
c2 Z: c2
n==N n n=- n
) l 2
RS H( 1) 1 (3
ce 2
n==N n n==N Cn

(L4.23)

This gives the required excitation when circular polarization is

desired in the beam direction.,

direction (¥, O) have the form

If it is desired that the field in the

T (8,028 140 =

where & and ﬁ are arbitrary complex numbers, then the only change in

(4L.23) is to replace the column

30
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1 by | «
i 3

in the upper determinant,

One of the interesting conclusions is that for a beam in the forward
direction (2= 0) it is not possible to reduce the total radiated power
to an arbitrarily small value (while keeping the radiated power in the
forward direction fixed) when using a single circumferential slot, since

for ¥= 0 we have Dnp =0 unless n =711,
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CHAPTER 5

WIENER DITEGRAL METHODS

Because standard techniques of solving scattering and radiation
problems have proved inadequate for some problems of interest, there has
been a certain amount of interest in developing new approaches. One such
new method, the Wiener integral method, is discussed here. It is not yet
clear whether or not this method will prove practicable; but the possi-
bility that it might, may justify this discussion.

The Wiener integral method actually is a method of attack for boundary
value problems involving the diffusion equation. Since our interest
centers in the wave equation rather than the diffusion equation, we will
start the discussion by pointing out a connection between the two problems,
Such a connection is mentioned, among other places, in Reference 8,

Let H (x,¥,2,t) be the solution of the equation

v%-u%%»uuﬂﬂ>mw (5.1)

‘which is zero for $+< 0 and which satisfies a linear, time-independent

boundary condition on some surface. Here 8 (t) is the Dirac delta function.

Now consider the function

© 52
M&%mm=J[e4 Hxyzt) at (5.2)

=00

32



THE UNIVERSITY OF MICHIGAN
2L72-13=T

If we differentiate under the integral sign we find that
2 2~ _
V G - p G "‘uf(X,y’Z) (] (5'3)

and that G satisfies the same boundary condition asfy. The equation for

which we would actually like a solution is
o + i =
G + kG = -Lf(x,7,2) . (5ek)

If we assume that G(x,y,z,p) is an analytic function of p, then we can
replace p by ik or =ik to get solutions of (5.3). In order to proceed in
this way it will be very desirable to obtain G as a function of p rather
than obtaining G numerically for various values of p. The reason that we
do not take p = I ik directly in (5.2) is that then the integral would not,
in general, converge.

Although we have mentioned only a scalar problem, it is evident that
the above reasoning applies equally well to vector problems,

Having made the connection, we will now restrict our attention to
diffusion problems. In order to see the relationship between Wiener
integrals and diffusion problems it is simplest to start with the free=-
space problem, In this case it is well-known (and easily verified) that

the solution of (5.1) is

Y (x,5,2,%) =m2 ///e t f(x-%,y=-Y,2~%) dg dydg .

(5.5)
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We can write this concisely in terms of Wiener integrals by using the

following relationship

2

/wﬂx(t)] dx = 7 5;_ §x) ax . (546)

This equation, as well as a brief discussion of what a Wiener integral is,
will be found in Reference 9. The result of using (5.6) in (5.5) is that

we can write

WWW

Y (x,y,2,t) = fj[ f [x"g(th y=" (t), z—f(t)] dwg dw), dwg .

cce

(507)

In order to see how to proceed in the case when a scattering surface
is present it is convenient to give a physical interpretation to (547)
The interpretation we use is the following., At time t = O we release
particles with a density f(x,y,z). A typical particle follows a path
which at time s has coordinates x- §(t-s), y=% (t-s), z- €(t-s), The
probability of this particular path is d_g d y d;5. Then ¥ (x,y,2,t) is
the density of particles at time +t.

Using this type of interpretation, we can conceive problems whose
solutions in terms of Wiener integrals are obvious, but which are at the

same time solutions of (5.1) subject to certain boundary conditions. For
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example, suppose we want Y (x,¥,2,%) to vanish on some given surface, We
can accomplish this in the following way. We again let # be a density of
particles, We again start the particles out at a density f(x,y,z) and let
them follow paths x = (t-s), «es .« However, now whenever a particle

hits the giveh surface we assume that it is absorbed. The density of
particles will satisfy (5.1). On the surface the density of particles will
be zero since all particles on the surface are absorbed. Thus the particle
density is a solution of the desired problem., But, from the description
of what happens to the particles, we see that the density of particles can

be written as

WWW

Y (x,¥,2,t) ’/[/ X ( g,)’,’;) f[x-!,(t), y-?](t), Z-Q(t}d.”gdw)(dwg
cce (5.8)

where X is zero if the path x-g(tms), «ee touches the given surface and
is one otherwise. This is a well known way of satisfying this problem and
is mentioned, for example, in Reference 8.

The above model is not the only one which will enable us to solve
this problem in terms of Wiener integrals., The following is another of
the possible models. We have two kinds of particles which we call positive
particles and negative particles., We start with positive particles having
a density f(x,y,z). Now whenever a particle hits the given surface it is
reflected off specularly and simultaneously is changed into a particle of

the other kind. If we look at the particles near the surface we find that

35



THE UNIVERSITY OF MICHIGAN
2472=13-T

half of the particles have just hit the surface and thus changed sign so
that the numbers of positive and negative particles are equal, If we
takegy to be the difference in t he density of the positive and negative
particles we see that §f is the solution to the desired problem. In terms

| of Wiener integrals the solution to this problem can be written immediately

in the form
WWW

y(x’Y:zst) = f]/ (-)nf(x*ay*,z*) d.wf, a7 dw‘; . (5.9)
cce

Here the path x=% (t=s), ... is modified by reflection as indicated above
(see Figure 5-1), n is the number of reflections the path undergoes and

x*, y* , 2% are the points from which the modified path startss We see

NESHOBRE SORZ 40
)

(
\ Xy¥s2
/, X352
7
J/F )
ro <~
* Scattering
x*, 7%, 2% Surface
Unmodified Path Modified Path

FIG 5-1 PATH OF A PARTICLE IN FREE SPACE (UNMODIFIED PATH) AND
IN THE PRESENCE OF A BODY (MODIFIED PATH)
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that (5.8) and (5.9) give us two quite different expressions for the
same thing. We could also construct other models which would give us
still more expressions. For example we could think of a surface which
absorbs some particles while reflecting and changing the sign of others.
Also the reflection would not have to be specular. Other models might
involve the creation of a number of particles whenever a particle hits
the surface. All of these different models give us many Wiener inte-
grals all having the same value. Now only in very rare cases will we
be able to evaluate the integrals in a simple closed form. Generally
we will have to resort to a series expansion or something similar,.

Thus the many different models give us some freedom in trying to choose
a model for which the expansion will be rapidly convergent. Also it is
possible to use the results for a second model as a check on the results

of the first model.

Equations 5.8 and 5.9 have been applied to scattering by an in-
finite plane. A sequence of approximate evaluations of the Wiener
integrals was used. (Cf. Equation 5.13). The approximate evaluations
of (5.9) could all be carried out in closed form and all agree with
the exact answers The first two approximations to (5.8) were obtained,
Figure 5-2 illustrates the relation between the approximations and the
exact answer as a function of distance from the plane at a particular

instant of time.
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\ 22 Approximation to Eq. 5.8

0uLi- 5. 59
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I T ]
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Distance From Plane

FIG 5-2 COMPARISON OF EXACT AND APPROXIMATE INFINITE PLANE SOLUTIONS

The above discussion has been for a scalar problem. We will now
mention a model which may be used for electromagnetic problems where the
bodies are perfect conductors. As a preliminary let us reconsider the
model discussed above which involved two kinds of particles, positive
and negative. A slightly different language to describe the situation is
found to be convenient. We now assume that we have only one kind of part-
icle, but that the particle carries along a label which can be either
positive or negative. Whenever the particle hits a scatterer it is spec-
ularly reflected and its label changes sign. Now to computeifax a point

we take a small volume, v, about the point and let

1
,&._.;ZLH , (5.10)
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where I is the label ( +1 or =1) of the n'! particle in the volume.

In the vector case we proceed similarly, except that now the label
is a unit vector. If we are trying to compute the electric field, we
require that on reflection of a particle the tangential component of its
label change sign while the normal component remains unchanged. The
formula for )2-; is now

5 - an . (5.11)

<l

We could equivalently use a model involving six kinds of particles corres=-
ponding to positive and negative components in three directions.

The above considerations allow us to write down (Wiener) integral
representations for the solutions to scattering and radiation problems
involving arbitrarily shaped bodies. However, in order for these repre-
sentations to be useful we must have practical methods for evaluating the
Wiener integrals involved. This is the problem which still awaits a com=
pletely satisfactory solution., We will discuss below an approach which
can be used but which is quite laborious,

When one is faced with a Riemann integral which he cannot evaluate in
a simple closed form, one frequently resorts to numerical integration,

Certain general formulas have been developed for this purpose such as the
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trapezoidal rule and Simpson's rule. For Wiener integrals Cameron
(Ref. 10) has given some analogous approximation formulae. The simplest

formula he gives is

y N n
1 T R
C

N

™
-

(5.12)

Thus the Wiener integral is approximated by an n~fold Riemann integral.

Cameron has shown under certain conditions that the right side of (5.12)
approaches the left side of (5.12) when n—»m® .

Let us take a look at the application of (5.12) to (5.8). In
order to use (5.12) we find that we must evaluate the functional for a
path which is given by a trigonometric series with arbitrary coefficients
(we integrate with respect to the coefficients from = oo to ®).
This means that, for (5.8), we must take a path whose X, y, and z com-
ponents are trigonometric series in time with arbitrary coefficients,
and find out if the path hits the body or not. We then integrate the
coefficients over the region in which the path does not hit the body.
Determining whether the path hits the body involves the solution of
a complicated transcendental equation. The situation would be much
simpler if the paths we had to consider were of some simpler form such

as broken line segments. We can readily obtain a modification of (5.12)
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in which the paths considered are broken line segments.,

formula without proof:

2472=13=T

WERCANA LRI N T

We quote the

n
(5.13)
/F x(+)]d ~'"/F,:-l— o« () ——7g-e df, e d
e [ ] wx-w—m JH‘ j:l {j j Trn Zl fn
n
where E Zj] O(j(t) is the function shown in Figure 5-3.
j=1
gn-n__ _ P
E (n pr—_— — —— — el —X
¥ | -
bl —/——
"
1 ) l_[_ []
0 1/n 2/n 1- = 1
t

FIG 5-3 TYPICAL PATH

When we use (5.13) in conjunction with the model for the vector

problem discussed in connection with (5.11), we find that for n = 1

we get just geometric optics.

For larger n we get corrections to

geometric optics including contributions from the shadow regions.
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The sequence of approximations obtained is not an asympototic sequence
although the greatest accuracy is probably obtained (for a given n)
for short wavelengths.,

If n is taken sutficiently large, we can get as accurate an answer
as desired, but thg amount of labor involved in evaluating the multiple
integrals is very large. Thus it would be desirable to get improved

integration formulas,
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CHAPTER 6

CONCLUSIONS AND PROSPECTUS

In conclusion we find, on the basis of the above analysis
(see Chapters 2,3,&),that radiation patterns of single circum-
ferential or radial slots with arbitrary excitation can be given by
optics techniques with sufficient accuracy that we may now turn to
the problem of using such elements to produce a useful antenna. The
solution of this problem requires that we determine for a given sur-
face the distribution and excitation of such elements necessary to
produce a radiation pattern of given beamwidth, side-lobe level,
gain, and scan capabilities.

Hence, during the coming year, The University of Michigan plans
to investigate the following problems:

(1) the problem of determining pattern features, corresponding
to scan angles 0° - 80°, resulting from (a) a linear array along a
cone generator, and (b) a system of such linear arrays spaced at
certain azimuthal intervals and excited with a constant, or cosine,
azimuthal distribution. In connection with this problem an attempt
will be made to ascertain the degree to which the control of beam

shape can be specified in terms of phase distributions (possibly

non-linear) along an array.
(2) the problem similar to 1 and for (a) an annular array,

and (b) a set of such arrays.
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Problems 1 and 2 will undoubtedly necessitate refinement and
extension of the approximation methods of this report so as to obtain
beam scan information to within prescribed limits of beam deterioration
and cross-polarization effects,

A study will be made of

(3) the problem of determining what alterations in pattern
features and scanning capabilities of a dipole-activated prolate
spheroid result from alterations of the surface of the spheroids Sur=
face alteration would be defined to mean placement of dipoles on the
surface in various wa&s in possible conjunction with bumps and inden-
tations of the surface itself,

The Polytechnic Institute of Brooklyn and The University of
I1linois are engaged in efforts complementary to those of The University
of Michigan. These efforts are described below.

The Electrophysics group of the Microwave Research Institute,
Polytechnic Institute of Brooklyn will continue to investigate the
problems of scattering by and radiation from infinite and finite cones.
In particular they will continue their study of the vector field problem
of radiation from circumferential and infinitesimal slots on a cone
via Creen's function and modal techniques; in this consideration they
will give particular attention to alternative representations which
would permit casting the results into a rapidly convergent form appli-

cable to the numerical description of fields in illuminated, shadow,
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and transition regions surrounding various conical geometries. This
group will investigate fields set up on coupled radiating slots and
slot arrays on cones via integral equation and variational techniques;
from this information they hope to apply the Green's function results
alluded to above and thereby obtain radiation patterns from slot arrays
of arbitrary elements. In connection with arrays of slots, they will
investigate the "surface'" and "leaky™ waves whose propagation along
the surface of a cone, in consequence of slot arrays thereon, and
whose reflections by the cone boundaries,can modify the radiation pat-
tern. The Electrophysics group will attempt to apply the above results
to numerical calculation of radiation patterns for specific array
geometries.

The University of Illinois will analyze a method of replacing
an antenna system which can be enclosed by a given surface in space, by
an array of slots in a conductor which coincides with the surface.
In particular, they will attempt to determine the minimum density of
slots on the surface of a sphere (and ultimately on a finite cone)
necessary to reproduce the pattern arising from a continuous tangential
field distribution (or a dish in free space) according to variously

prescribed criteria.
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APPENDIX A
WEDGE

The radiation from two slots parallel to and equidistant from the
edge of an infinite perfectly conducting wedge is treated below: the
exact boundary value problem is solved, and then, since the solution
is not amenable to rapid computation, an asymptotic approximation as
well as the geometrical optics solution is developed, and the results
ottained from the exact and approximate methods are compared.

A more general solution for the radiation from a wedge, involving
slots with various orientations relative to the edge, has been studied
by Felsen and is given in Reference 1l.

A-]1 Electromagnetic Field for an Infinite Perfectly Conducting Wedge
with Uniformly Excited Slots Parallel to its Edge

Let V, = voltage across the slots
a = distance of slots from the edge

e o time dependence of fields .

The electric field for the slotted wedge of Figure A-l is given

by TM modes, with the electric field perpendicular to the edge of

the wedge.
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FIG A-1

A-1,1 Exact Solution

The exact solution is ottained from the boundary problem

(V4 KV =0 (A.1)
where
> 1o fy=_1[13V a_ a3y }
E=-q vxk¥ = ik[r9¢r ara (A.2)
with boundary conditions
1 10V -
"ﬁ;—ﬂ -VOS(I‘-a) (4.3)
-+
-7 %o

since the tangential fields must vanish on the wedge, except at the

slots. Solutions of Equation A.l are:
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Y= Jv(kr)[Avcosz/ ¢+Bysinv¢] (A.4)
for r small, so that the fields remain bounded near the edge, and

Y= Pg)')(kr)[Apcosv¢+Bpsin IJ¢J (A.5)
for r large; this corresponds to an outgoing wave.

From Equation A.3

=—=0at@g=%g andv=%ér_ » B= 0 for n even.
o

A= O for all n since the ¢ component of the electric fields as the

edge is approached from above the @ = 0 axis must be the negative of

the ¢ component as the edge is approached from below the }5 = 0 axis.

Then o
V= —2_ Byl H(Z];Ll (kr) sin i—%’%)lg for r large, (A.6)
n=1 us o
2 ao
and o
Y- B! J (kr) sin (2n-1)mg for r small . (A.7)
%—i n-1 gn—-l,” 2 ¢o

0
The coefficients may be found by use of the Lorentz Reciprocity

theorem in the form (Ref. 7):

48




THE UNIVERSITY OF MICHIGAN
2l;72-12-T

=
where E, ﬁrare the fields obtained from or given by Equation (A.6),
I Y

and EM’ HM’ are the modal solutions corresponding to a given index n.

S is the sum of SO’ Sl’ S, and Seo 35 shown in Figure A-2,

\

/
£ \
(0] SCD
S1
So
"
slots
3
&
/
\\ y,

FIG A-2 REGIONS OF INTEGRATION FOR THE WEDGE

Integration over the surface yields:

2@ B

o'm

U/r =0 = + 2 VO(-l)n J (ka) m = 2n-1 (4.8)
Tk miy

S ZEO

Using By, from Equation A.8 in Equation A.6 and applying Equation 4.2 :

(09)

. (1) . 2n=1 e
22:: (-1) J2n—1 (ka) H2n-1 (kr) sin §%;~ g (A.9)

n=1 -m“ v T
o Eﬁo

)
-
|
-
O
(Y]
w'°

L9
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for r large. For r small the Bessel and Hankel functions are reversed.

A-1.2 Asymptotic Solutions and Estimate of Error of Asymptotic

Solutions

Approximate expressions for E¢ for r>a and ka»1 are obtained
through three approaches. The first approximation may be obtained by
considering a related scattering problem. The second method consists
in expressing Equation A.9 in terms of integrals obtained by
Oberhettinger (Ref. 12) and by ottaining asymptotic expansions of
these integrals. A comparison between the exact solution (in terms
of the integrals of Reference 12) and the approximations used provides
an estimate of the error of the asymptotic approximation. A third
method expresses the integrals encountered in the second method in
terms of continued fractions at large distances. The same expression
is obtained from the first and second methods; a different and more

accurate one from the third method.

Method 1: Asymptotic Solution Obtained by Considering a Scattering

Problem
a) Development of Asymptotic Solution

For r >>a, Equation A.9 may be expressed as:

2
. i . n
v ikr+ -rl om ~i(n+%) » . l: o
E¢ - - 2—1r2 e o g’;{ gn- : e 205 Jm%(ka)sm (m%)ag‘

(A.10)
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The expression in brackets may be obtained from a two-dimensional

scattering problem, For this purpose consider a perfectly conducting,
non-slotted wedge in the polar coordinate system, a, ¢, as shown in

Figure A-3: TY

%o

FIG A-3
For this wedge geometry the geometric optics fields are:
~ika cos(@#-g,)
Ye.0.) = 2¢ w(m+ g44;) (A.12)

d
- -ika cos(g+¢,) :
Vs.0.(Ho) = 22 u( -4-4,) (4.12)

where u 1is the Heaviside unit function. The scattered fields

corresponding to the above geometric optics fields are (Ref. 13):

2
0 -in I
%o m gg,)
%:_f e b ° Jn"r (ka)(l—% ano)COS n—2-6;l— (AOlB)

n= ﬂ;
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and
ﬂ2
® iR n(g-g,)
2 P L 2
ﬁg _ e ° er (ka) (-l)n(l -5 6 )cos s (AJ1L)

From this it appears that the bracketed expression in Equation A4.10 is
Y (8,) - ¢ (=@,). The total geometrical optics solution ‘}’G o, given
by the sum of Equation A.11 and Equation A.12, may be expanded into the

set of functions sin(n + %) g .
o

= ZCD\ f (ka) sin .S.n__:é)_'fr;d (A15)
y n g,

G+0s n=0

where, for ka large,

.

0 o o [T 2 ika+M
fa(ka) & (1) 5= /_k?i e 4cos(n+%)%_ re T EL (A416)
o 0

By separating out the geometrical optics solution expressed in Equation
A.15 and Equation A.16 from Equation 4,10, and by using the asymptotic form

of f (ka) and J 7 (ka), and then summing the terms not involving

+ L
. (n 2) p;
¥eo. '
ikI“"ﬂi ik +"i
A 2T Zr | ¥s.0. 28, 3
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- 1 - 1
{} cos 11%1@. cos T(m=F)

o) o)
This asymptotic expression may be obtained through other methods (see

Section A-1,2, iiethod 2a), It is not applicable to the transition regions

#=2% (- @, for which an asymptotic formula must be derived separatelys.

b) Comparison of Scattering Problem with Results Obtained from the
Pulse Solution of Keller and Blank
The bracketed expression in Equation A,17 may be obtained by con-
sidering the solution obtained by Keller and Blank (Ref. 1l, pp. 75-9L)
for the two dimensional scattering problem of a plane pulse incident on a
perfectly conducting infinite wedge. Again considering the polar coordinate
system a, § and letting V(<, ff, t) be the pulse solution, the time

harmonic solution is given by Duhamel's theorem (Ref. 1L, p. 90):

00]

Y(w) =-iw / v(t) eth dt (4.18)
-®
and
(o0]
7(t) ='2—11’-i- / W‘E’w) oM 4 . (4.19)
=00
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The pulse solution corresponding to the geometric optics field

~ika cos(g~go) -ika cos(g+g,)

y/G.O.z Z[e u(ms ¢"¢o)' © u(” ’¢'¢o)}

(A.20)

VG.O.=25 i [0r2 cos (o) ulr+ gy )-uf (142 cosge g, )] utr -¢-¢0)}

(A.21)

The diffraction field obtained from Keller and Blank (Ref. 14, p.81)

iss

A
(1-f°") sin Aw
V=2 tan™t Pz
D

(1+¢ 2h)cos A -2(’x sin X\ ¢
(A.22)

(1- FZA) sin Amr

- ’c,an"'1

— u(t- %)

(1 +P2X)cos Aw + 2p1 sinA g

where (0 = & , A= %— and the tan™l lies between
ct +| c2t2 -a? °

O and ™ . The diffraction field may be obtained by applying Equation
A.18 to Equation A.22

7 A
Y = - / eiw t2 tan-1 (l-{’2 )sin Amw l
D A " (1+P2x )cos A =2 pk sin A ¢ J
© (A.23)
tanl (1- 222 )sin Awr & .
(1+ sz)cos AT+ ZPR sin A ¢
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The integrals may be evaluated through rapidly convergent expansions

(Ret's 15), of which only the first term is used here. By examining the

value of the integrand for t = % + € ( € small,) it is observed that,

except for @ = =( - f,), the integrand varies asj?. Constant terms,

however, are brought about by values of tan=t

close toT jhence,to avoid
this, the 't.an'l will be chosen between = gand'-g. This will be indicated
by t)n‘{. Equation A.23 is then in such a form that the rapidly con=

vergent expansions mentioned above may be used.

A )

® 2 S
BN 3 RSP VAR
" 1+ (27\) cos A\ = 2 el sinA #

(1= Pz)‘ ) sin AT
-t, dt,

1 +p2x) COSAT + 2(3R sinA g

The field of Equation A,21 persists only until t -% 3 the terms
introduced by the shutting off of Equation A.21 cancel the first term
of Equation A.2l and the scattered field becomes (by using Equation 1

of Reference 15):
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2
, [T e 17/1 (L-p"") sinam
‘P=(’UG.O. 3T

(1 +0 22 yeosam =20 A sinAg

}m/-l (1-f°2A) sin Ar
(l+,027‘)cos?\’ﬂ' #2p N sinAg

(4.25)

o
"

olp
<+

m“ﬁ

As ka + o, this may be reduced to the expression between the brackets

of Equation 4,17,

Method 2: Asymptotic Expressions Obtained by Use of Oberhettinger's

Formulas for Diffraction by a Wedge. Estimate of Error.

a) Asymptotic Expression Excluding the Transition Regions, and

Bstimate of Error,

Oberhettinger obtained the Dirichlet Green's function for the two
dimensional case of an incident cylindrical wave with direction of

incidence ¥ and axis parallel to the edge,

y

Direction to
Field Point

Direction of
Incidence

g

X

FIG A-4
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The expression is:

Q0
o(8) = f I:“o(ka) - ! (i) + Z Ing (ka) }éxlt;'zh’)< } (4.26)
il By W,

{} =cos§%(¢-b‘) +0081%!0- (F +¥'+ 28,) .

t{J » from expression (A.,6) with the proper coefficients, may be expressed

in terms of this Green function. Then

v [0 - o] (a.27)

By use of Equations 29 - 35 of Reference 12, this may be written as:

1/2
p =St ”[(wa - 2ar cos(f - ¢);/J a(T+ § - g)
1/2
- 2Hél) [k(rz + 3.2 - 2ar COS(¢ + ¢O)) J n('"’... ¢ - ¢0) (A.28)

1 - Hél) [:k(r2 + a% + 2ap cosh x)l/z:' dx
+ - cos %_ (m+ @) ./ T : 7
(o) (o] A m—o- - Sin m; ( ¢)

(This equation is continued on next page).
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1) + a2 1/2
1 sz ” (” ¢)/ H{L) k(r a? + 2ar cosh x) ]
cosh ”x + sin ,276,5 (- g)

1 1/2
> HC() ) [k(r2+32 + 2ar cosh x) / ]dx

_ 7 (7~ @)
m;cosm;(” g . coshé’p& - sin _2%_ (m - @)
0 o

1/2
7 H(()l) [k(r2 rals 2ar cosh x) /] dx
+_L cos 2" (""'¢)/ - 7 P
25 cosh + sin T v+
° 0 o 20 S 28 A

Estimate of Error

An asymptotic expression as well as an estimate of the error was

found for integrals of the type

00 (l) (k)
dx (4.29)
/ cosh”x + smﬁ

where/B = (ﬂ+¢)andR2=r2+a2+2ar cosh X. Forrs»a .

20

o

B$H () # \I:% R Y RS
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Equation A.29 may be written as

A(()l) (kR) dx , i H(l) (kR) - ASY) (kR) dx = I +D. (i.31)

f cosh x1r f. sm/ﬁ cosh ﬂx - sm/3

o (o]

I may be evaluated by using a method which is elaborated in

the following sections

o)
1=/ A1) (xR) ax _J? 4 f e dx
=l= e
g cosh’é%; 2 sin 7 _/; (k8 [cosh "J: + smﬂ]
©® |

=\[?_ ot k / El_k}@_ (4.32)

™ 1% s:.n/S) | 2kar \R-r-a' .

®

L i (x

ik oX \]—'ar sinh x(cosh gﬂl: I sing)

- 1 ax

{2kar(R-a-r) (1 I sing)
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2 1Y (@)
Then — =Isp -J+D
cosh . sin
L, gy - o0f
eik (a + 1)
I.. = .
® xfar (1%sing)
T s 0w o
By using — = Isp
o Ccoshimg - sin f8

[
Y= 1xv, ot

Kk Jrz + a° - 2ar cos (¢-¢o)l

1
- %kvOHc(,)

3

k Jr2 + a2 - 2ar cos (f+f,)

MICHIGAN

in Equation 4.28,

1

u(7+ g - go)

-

u(ﬂ- ¢ - ¢o)

-

v Sk (a+r) 1 ] .
L g, Jar’ cos off= (r+f)

m -
cos ﬂ; (m - @)

(4.33)

(A.3L)

The asymptotic form of E¢ obtained from Equation A.3L corresponds to

Equation A.17.
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In order to estimate the error of the approximation, bounds will

be found for J and D. From the results of the following section

|4 < 2_(%11_@ (4.35)

where n is the number of zeroes of-a-g and A is a bound of B.

ox
It was found that

|3] < 1 , (8.36)
lLa \[k_'\ﬁ"' (1% sin f3)

which implies

1
. A37
2>/ € aJ? (1} sin ) ( )

o
IN

Only one zero was used for %,}_3_ in Equation A.35, since the other zeroes
X

occur at the end points where B = O,

A bound for D is obtained as follows:

(1)

H(vl)(kR) - A}, (kR)

i(kR -2 -7 o . 1
= |J:_E_; e .-2 Hfo‘u uv-%[(l+.:21_-§R)2)-2_]]d‘*

+ 1
KN

(4.38)
2" ["@+3/2) <
._J;;_?_R \]2kR1|_'(v-%) for v<3/2
(1) (1) . 1 [2
Then [H ~ (kR) - A " (KR)| < = | (A.39)
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and using this in D gives a bound:

w (1) (1)

o () - b () < go[2 1 + 7 +
A[) cosh%rg’f :Sin[j dx{ < Timlw (kr +ka‘5' 3L ({3—-2-)050 (ﬁ_'tjz'_)
(o)

General Discussion of Error in the Stationary Phase Method

The object of our attention here will be the integral

(00]

I =f g(t) eikf(t)dt

0

where £'(t)>0 except for t = 0 and f' (0) = O, By a change of variable

the integral can be rewritten in the form

f(o0)

I= _______g(t) eikf gr,
£1(t)
£(0)

Near t = O we have

£(t) = £(0) +f”(0)£’.22. + f"'(O):g-B- t 4 e

ﬂ@)=ﬂwmt+“.ﬂﬁnw)ﬁ-fwﬂ e .

Making use of this behavior we split the integral into two parts, the

first of which is the stationary phase contribution, as follows:

(a0

)
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f(o0) £(o0)

:- f g0) Har f [gm ) ]eikfdf.
£(0) ra'f"""('S'o -1 o) £(0) £'(t) J2f"(O)Lf-f(F)jq

On integrating the second integral by parts we get

(e 0]
= &) . g(0) ikf(t)
' ISP+\-f'(t) [2£(0) [f(t)-f(o)]'] i
0
00
L G 9 | e(t) g(0)
. f O | m}“
0
=1 +|8l0) _ g(0) eikf(00)
® () J2£11(0) [£(0)-£(0)]| ik

£11(0) [g(0)  3£''(0) | ik

- &(0) [g’goz _ f"'(O)]eikﬂO)

o0}
-1 ikf(t) 9 |g(t) _ 0
—ﬂfi ) at[f'(t) izfn (0) [f(t)-f(o)]'}dt.

Now by obtaining a bound for the last integral, J, in the above
equation we can obtain a bound for the error incurred by using stationary

phase. Such a bound is
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The integral just above can be rewritten in the following form

at .

A4 - )

t

n Tal
J
.1 E g(t) g(0)
kKL g'(s)” TETO) [L(6)-E0)]
j=o
b,
J
where t, = 0, t,, = @, and
g(t3) (0)
d & =0 (j=1, 2
J X n).
JE;| T(E5) T [E(0) [£(t) L0 »o
Thus, if we can get a bound of the form
< A,

g(t) _ 5(0%
M) T11(0) [£(t)-£(0)] ' |

then we have
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b) Asymptotic Expression for the Transition Region

For § = £ (m- o) the asymptotic expression (A.17) is not
applicable, For these values of @, the integrals of Equation A.28 are

of the form:

Q (1
f J0®) ax (A.11)

X FA-]

1 . T§

I (8,28) == sin
’ o) W; ’2753 o cosh.m.-cosw_
0

where & has the values:
B =aMefof ;8= -y P =mefsg .

Using the method of the preceding section, these integrals are given by:

eik(a+r)cot ﬁo
28, k [

For 52 and Sh there are no singularities., For 81 and 53, there

21 (§,20,) =~ (A.42)

are singularities at § = - ¢0). For such integrals, Oberhettirger
(Ref. 16) obtained a series representation of which the first term is

used here., Oberhettinger's integrand numerator was e-ika cosh x; fop

this reason i was changed into =i and the factor 2 elkr -1/ was
KT
added to Oberhettinger's results in order to obtain the integration of

the asymptotic form of Equation A.L1.
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e T X
l}/gll.;.’i{. J;_g elkr -ﬁ- { e-lka cos(ff - #,) W+ @ -d)

i e-ika cos(f + fo) U(m-0 -9

Then

(A.L3)
+ T (61,200) + 1( 8,,20,)

*
- 1% ( 83,2;60) - I( Su’2¢o)}
where the I terms are given by Equation A.42 and I* by

ikr - imr . i
* (6, 28,)~ -. ﬂir e U_é_?}. eike COSS-%S-X- (J2ka"|sin 8?|)sgn S .

. _%l._ (Aobly)
d‘g e [Ao( g,2¢o) - A, (8,2m) - A, (21§, 211)9

o .2
s*(z) ‘f eit dt and AO(S »20,) = T—hl B cot ff—
o o]

z
This leads to an expression which is bounded for § = T (m- #,), and which

for # # I(r- o) and ka large, gives a field E¢ which reduces to

Equation A.17.
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Method 3: Asymptotic Expansions by Means of Continued Fractions.

A different asymptotic form of Equation A.28 may be obtained by
expressing integrals of the type of Equation A.29 in the form of
asymptotic series, and then converting them into continued fractions.

Consider

cosh mX_ - cos IS

00
sin -:Lka cosh x
I(§,28,) = - E’T J dx (A.L5)
A 2,

These integrals are of the type of Equation A.29 for r>> a if i»-i
and the factor

2 oikr =i/l 55 a44ed,
Tkr

The asymptotic form of A=45 is:

1( §,20,) * . h(8 20,0 + 2)
*""o —_JE‘__ =0 (ika) ™ (A.L6)

where

)
. 7"% - i%(8,2¢°) " ([« 18])

2(2¢o)| t+2 {cosh(olcr cosh"l(lﬂ-,)-cos 1{%9_} n=o
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This asymptotic series may be converted into a continued fraction (Ref.l7)
cot & -i(ka + lL:f.)

g, \ﬂka .
Lo 2
-2

1)1+ g.'f. (sml&_) + ika + .,
g L@, L, )

(AsL7)

There are indications that the continued fraction may converge and
represent I (§ s20,)s and further that the continued fraction, when

cut off at a point corresponding to that at which the asymptotic series
is cut off, will always give a better answer than the asymptotic series.
The fields obtained from this method were calculated and compared with
those obtained fromthe exact solution; this method was found to give

a better approximation than Equation A7,

A=1,3 Geometric Optics Solution

By adapting the field of a slot in an infinite perfectly conducting
plane to an infinite perfectly conducting wedge, one obtains, for the case
of short wavelengths, a first approximation to the radiation problem:
this is a geometric optics approximation.

The field of a slot of length T and width W on an infinite per-
fectly conducting plane (see Fig. A-5) is derived as follows. Let
L << and W<<A, The tangential component of the electric field must
be zero outside the slot and equal to Vo/¥ across the slot. Such a
field may be produced by a magnetic dipole placed in the plane of the

slot along the slot: its magnetic moment is derived below. The field-

of a magpztic dipole at x=0, y=0 oriented along the x-axis is
ikr

> _ e 1L,aA_ A

E=K=—— (1~ {E?) rxi whe:;eBK must be determined.
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=
<3

i |

> X
FIG A=5 SLOT CONFIGURATION
At a distance A above the slot, for kr << 1:
A N A
N iK(xi. + yj + A%)xd _ iK(AJ = yk)
E = - .
377 72 (A.48)

k(x2 + y2 + A2) k(x2 + y2 + Az)j

N
As A0, the j component should vanish except at x = y = 0. In order
to evaluate K, the tangential component is integrated over x and y.
A
For the slot the integral has the value = L V, Jj, where the direction

of the field has been taken to be given by the right hand rule,

Then
® ©
i = enik :
=L VO = 1im LA. dx dy 5 3/2 1 \A.U9)
A+0 X (x2 + y2 + A°) k
=00 Y =00
and
ikVoL e 1.a_»a _ Vol I3 eikr
= J— - i = X{ 1 —e .
o (1=gm) Txi pp v (4.50)

This gives the exact field in the case of an infinite plane. when
Equation A.50 is used for an arbitrary body, integration takes place
over the portion of the slot visible from the field point (Fig. A=5).
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y
A

AN

» X
-/

0

FIG A-6

For a slot parallel to and placed at a distance a from the edge

of a wedge
o ik[rz - 2ar cos (B-f,) + a2 + 22
= V A e
EN—O- Vv X k dz u(1+¢-¢0)
em r - 2ar cos(f-f,) +a? + 2%

)

which becomes

ik - ~ _m i
Bev | XK a el [r 2 cos(f %)] T u(r+pg-g ) for r>> a, (4.51)
(o] onp (e}

This is in agreement with the geometric optics portion of Equation A.17
for (By) o
V0. o

A=1,l Comparison betweenthe Exact and Asymptotic Solution and Calculation

of the Error of the Asymptotic Expression.

Fields for @ = %" and go =1, §.g and Q.E were calculated from the
exact solution (A.9), the asymptotic solution (A.17) and the asymptotic
expression obtained through the use of continued fractions, The fields

from Equation A.9 and Equation A.17 are plotted in Figure A-7, and the
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fields from A-9 and those obtained through the use of continued
fractions in Figure A-8; for the latter calculation two temms of
A+li8 were used. From the graphs it is apparent that the agreement is
much better for the approximation obtained through continued fractions,
The approximation is also best for thin wedges and deteriarates as
¢o decreases., This may be expected from the estimated error of
Equation A.17: the calculation was made through the use of formulae
given in Section A-1.2 Method (2a) and results show an increase in the

radius of error from @, =7Tto @, = .B.E .

The equation for the approximate radius of error is:

w 1 g _...1_._+ ..._.];_.-—.
bo J? [eosb] | cosp']
where

fagy (T4 P 7 (= 9)

(¢]

From these graphs it is apparent that the error increases from ¢o =1 to

¢o = EL_II. « For ¢0 = ,’2"_ the approximate solution is exact and the error

v
will increase from f = 5L to @y = 2h—- .
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ﬂ 1.2 3 f( >\ \
¢°=ﬁ— 0 !
NEERNERR
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-1.6 E¢
0 o2 ol o) 4 1,0 .
(-1)v, ei(kr .LI ka cos (¢.¢°)VIT
ioh

hl W

1,2 pam ¥
5ﬂ/ \ For ka = 1 thru 7
#o=T 0 For¢=%‘-,%,ﬂ
1.2 6& )&2 and ¢ =

7 /
~1e4 —@=— Approximate

4'/ e// M Exact

NI

0 o2 N 6 L8 1,0 1.2 1l L6

FIG. Al7 E¢ FROM EXACT SOLUTION (9) AND ASYMPTOTIC SOLUTION (17)
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E

(]

(-1)Vge

i(kr %-ka cos (¢~¢) Vi

|/21rrb’

For ka = 1 thru 7
For¢=%’r,%—,ﬂ

and¢='-'2-r

——©— Approximate

A --=%-- Exact
ﬂ =T
0 5 <
iehy = =
¢o- an 0
IN
-io‘b 4
] £
O O> 1.0 l.b

FIG. A.8 E¢ FROM EXACT SOLUTION (9) AND ASYMPTOTIC

SOLUTION OBTAINED BY CONTINUED FRACTIONS
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APPENDIX B.

CONE

We determine the field due to a magnetic dipole source in the
presence of a perfectly conducting semi-infinite cone. With a time

harmonic dependence of the form e=1't Maxwell's equations are

Vx§=ik§+ﬁ,k=%)_ (B.1)

VX -Hh ='ik ‘ET,

— B g e
where we assume a point source M =m & (¥-r'), Since the cone is a sur-
face separable in spherical coordinates, we can make use of the modal

representations

Emode: E =Vx LT (B.2)
He=-ix 1T

Hmode: B =ik LW (B.3)
fI' = Vx f“

where L =-i T xVis the angular momentum operator. The scalar Hertz

potentials satisfy the equation
(w2 + 1D = 0 (B.L)

away from the source,

Th
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If we eliminate the electric field from Maxwell's equations, we

find that the E-mode Hertz function]T satisfies

i

(V2 + k2) fn= =M . (BOS)

Since the operator L commutes with the Laplacian, we form

(V2 + k%) 1o1= D% . W (B.6)
or -~ -~
(p2+x%) = - 1 T, M§(F) (B.7)
12'

where the primes indicate an operation with respect to the variable

(x'y y', z'). Inverting the differential operator of Equation B.6

T= _1_2‘5* LW oGy (F ) (8.8)
L'

where Gp is the Dirichlet Green's function for the cone.
Similarly, eliminating the magnetic field the H-mode Hertz function

satisfies
| 2 .L” o
(v2 +x2) TT=w 1 gxi, (B.9)
ik
So by the above reasoning we find
T x V. né(F-t1) (B.10)

2N
(7% + k) - L 1
ik L'C
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and
T-11 ™ xv « 7oy (F,1) (B.11)
!

where GN (?3?“) is the Neumann Green's function for the cone.

From the above we see that the decomposition of the exact solution
into essentially a geometric optics part plus a part asymptotic in the
wave number can result only from such a decomposition of the scalar
Green's functions. That this is indeed the case has been shown by
Felsen (see Ref. 2).

Consider a ring source of magnetic dipoles centered about the axis
of a perfectly conducting semi~infinite cone of angle Go;>g_ + Per-
forming the operation indicated in (B.8) and (B.2) above, we have for a

uniformly excited source that

dv (2v +1)

1
5= A TRy (B.12)

AEF) = § (-in)

2
d
‘Jv (kr<) hgjl) (}C[' >) -5-5-5—9-'- Gg (Q, g')v)

where the contour includes the positive real axis in the complex

plane and

« B (cos 8 <)P, (-cos e>)

GO =

sinvy

P (-cos 9p)
+ 7 1 v ° Py (cos 8') P, (cos 8)

? sinvn P, (cos 6,)
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is the decomposition of the scalar Green's function mentioned above.
Provided © + 6! < 28, - n, the contour can be deformed in the case of
the second term to run frmn-%*‘i © to - % - i oo. This gives the

diffracted term:

o = 2 om -ikn % x
H gipp = # 3 /:mdx o (B.13)
5(1) (kr) H@l) (kr') K (=cos 8)
. X X X . K; (cos B)Kx' (cos 8')

cosh n x Kx(cos 9,)

where me (cos 8) = PT 14 ix (cos 8)s For sufficiently large kr and kr!
5 _

the asymptotic form of H(1>may be employed in Equation B.1l3 to give

ix
-~ . o ™
Hyipp a __"_1_;_ _1_2 eik(r+r?) / ax X © (B.1L)
rr' (x2 + L)cosh mx
20 L

' 1 Kx (= °)
. Ky (cos 8)K, (cos 8'), Eﬁ'?35525;§) .

For values of @gnear n(small cones), the employment of the asymptotic form

K, (-cos 8 n -

™
Kx(cos &) 2 Jn ("‘Oo) cosh mx
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in Equation B,1l permits the integration of (B.1i) and yields, to the

first order, for a small cone approximation

0 2]
}T =3 m  eik(r+rt) 2n 1 tan 7 an 3 16
diff 12 = — (B.16)
T cos @+cos 9

" )

If the source is permitted to go to the surface of the cone, the
same form for EAiff of Equation B.1l6 results; hence, an evaluation is
obtained for the higher order terms in the case of a circumferential
slot on a small cone.

If the ring source is on the surface ot the cone, the decomposition,
as was pointed out by Felsen, depends upon breaking up the Legendre

functions into positive and negative exponentials. That is, let

B, (-cos 0) - e ¥IV™ P, (cos 8) (5.17)

2 isinvn

so that
(1)
2 xp | Fi -
1()7;) (9)';:e p[ : {(v%)g ﬂ
J? mY sin 6 '

forvsin 6>>1, Substitution of Equation B.1l7 in Equation B.1l2 yields

integrals of the form
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v+ L ) 1
f B 2§ () eHPr ) 3
yw+1) Y
Cy
V+} -i(v+d) &
- | 4 j. (k') &7t )
V(v+ 1) 4
¢y
V+ 1 1
+ | qo 2 i (krr) et (rg
\ V(v+ 1)
Cy
vy 1 -i (v + %)'zr
- | av 2 Jy (krt) e
(v + 1)
)

where the contours are indicated below:

V =plane

Cy
| —

MICHIGAN

P}; (cos 8)

Dv(l) (eo)

Pf, (cos 8) DI(JZ) (65)

D-:(al) (8) Pv(cos 8o)

1
P, (cos 8)

D(1) (8o)

P (cos 8) p{2) (g,)

D{1) (8,) P, (cos 8,)

Cy

The integrals over Cl' and 02' can then be evaluated, using the asymptotic

form of j,, for large kr!.

These lead to the diffracted term, while a

saddle point evaluation of the integral over Cq leads to the geometric

optics term.
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APPENDIX C.

GRAPHICAL PRESENTATIONS

The expression (3.2) of Chapter 3 has been employed to obtain
radiation patterns in the region 0< 6« m-8, for the following values of

the parameters ka, 6,, and n:

ka = 50m, 751 ;
8, = 1600, 1650, 1700 ;
n=1, 2, 3,
These patterns are shdwn in Figures C-l through C-18.

The expression actually calculated is

- sin 6 ka 2 2 5
lBE,| = — ls' |7+ {on | cos?e
T on n n

vhere B is given by Equation 3,5 and Sﬁ and T'n are given by Equation 3.3.
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1.6
o |
1.2

EEEEEEEEE

FIG. C.1 40° CONE WITH ei¢ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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EEEEEEEEE

FIG. C.2 40° CONE WITH e21¢ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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90=160°
ka= 50x -
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FIG C.3 40° CONE WITH e3 iy EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP

@ - DEGREES
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2.8
2.4
00 = 165°
ka= 507 +—
n=1.0
2.0

FIG. C.4 30° CONE WITH ej'¢ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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00 = 165°
ka=50r +—
n=2.0
0 2 4 b 8 10 12 14 16 18 20
|BE|
\\ AN
N_— N
/ \ N\
/ NIV
/ \/

6 - DEGREES

FIG. C.5 30° CONE WITH e2i¢ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP

85



THE UNIVERSITY OF MICHIGAN
2472-13=T

90 = 165°
ka= 50r +—
n=3.0
0 2 4 6 .8 10 12 14 1.6 18 20
|BE|
/ \-/'*
/ o
2 4 6 8 10 12 14 16
6 - DEGREES

FIG C.6 30° CONE WITH e>i¥ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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90 =170°

ka= 507 +———

n=1.0

0 2 4 .6 8 10 12 14 16 18 20

|8
\ PN
N4
2 4 6 8 10 12 14 16
6 - DEGREES

FIG, C.7 20° CONE WITH ei¢ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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00=l70°
ka= 507 +——m

n=20

|BE]

TN

N

AN

2 4 6 8 10
6 - DEGREES

12

FIG. C.8 20° CONE WITH 321¢ EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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6,=170°
ka=50x

n=3.0

0 2 4 6 8 10 12 14 16 18 20

|BE]

\F_/F_ — \
/
2 4 6 8 10 12 14 16
@ - DEGREES

FIG. C.9 20° CONE WITH e3 iy EXCITED CIRCUMFERENTIAL
SLOT 25 WAVELENGTHS FROM TIP
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26

2.4 \
6, = 160°

\\ \
T |

LA A N
\

6 - DEGREES

~ FIG C.10 4O° CONE WITH ei¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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VA

/
E—
P////

EEEEEEEEE

FIG. C.11 40° CONE WITH e2i¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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I.-I

: >
1

EEEEEEEEE

FIG. C.12 40° CONE WITH e3 i¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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2.8

A
\ 90= 165°
ka= 757

ST |

\ 0 2 4 6 8 10 12 1.4 1.6 18 20

i

NERA i

WIREFAWS
\ VA NN
VY \V/ \|/

0 2 4 6 8 10 12 14 16
6 - DEGREES

FIG. C.13 30° CONE WITH ei¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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\U/

FIG. C.14 30° CONE WITH e2'? EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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2.8
2.4

6, = 165°

ka=757r +——
20 n=3.0

0 2 4 . tli 1.0 1.2 14 1.6 18 20
1.6 I'ﬁl
|&E|
1.2
o N
VAV
1/ \ /N /LN
/ ~ N\

0

2 4 6 8

6 - DEGREES

10

14

FIG. C.15 30° CONE WITH e3 i¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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8, = 170°
0 2 4 6 .8 |1£| 12 14 1.6 18 20
N
N\
\
\
\
\ —
\ /N T
N\ NV
\/

FIG. C.16 20° CONE WITH ei¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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00=170°
ka= 757 +——
n=20
0 2 4 b .8 10 12 14 1.6 18 20
|&E|
4/-\

/ NI N

/ g I \/

2 4 6 8 10 12 14 16
6 - DEGREES

FIG. C.17 20° CONE WITH e2i¢ EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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60= 170°
ka=75x

n=3.0

B¢

0 2 4 6 8 10 12 14 16 18 20

6 - DEGREES

10

FIG. C.18 20° CONE WITH 3% EXCITED CIRCUMFERENTIAL
SLOT 37.5 WAVELENGTHS FROM TIP
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