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INTRODUCTION

The problem of characterizing the radar properties of complex targets
is such as to forbid a precise delineation of the methods. That this obtains
will be made clear below as we point out the methods by means of examples.

We will find that, although the formal solutions are known, the application of
them to a given radar target usually leads to such complicated and involved
treatments as to render these formal solutions practically useless. What is
necessary is to first approximate the complex target by a collection of simple
shapes, to next find appropriate methods of characterizing the radar proper-
ties of the simple shapes, and finally to recombine the simple shapes along

with their radar characteristics to give a useful radar description of the original
complex target.

We start with an outline and review of the pertinent electromagnetic
formalism. This is a necessary starting point in defining the quantities which
are used to characterize radar targets and in developing the approximate methods
used in finding these quantities. The basis of the development is Maxwell's equations
which can be found in any standard text in electromagnetic theory (Ref. 1).

In rationalized MKS units Maxwell's equations are

VXE=“8B s V'B=p
ot (1.1)
— —L —
VxH = 9D +7, V-B =0
ot



where E = electric field intensity, H-= magnetic field intensity, D = electric
displacement, B= magnetic induction, :T\ = current density, and p = charge
density.

If now we assume an harmonic time dependence of the electromagnetic

quantities of the form e ! these become

—_ — —_—
VXE =iwB , VeD = p
_ (1.2)
—~ — —_ -
VxH = -iwD+J, V:-B =0,
Now in an homogeneous, isotropic, and source-free region we have
B =nuH
D =¢E (1.3)
T =0

where p and € are the magnetic permeability and the dielectric constant of the
medium respectively.
Substituting in equation (1.2) and separately eliminating E and H we have
that both E and H satisfy
pxwxp) =P (1.4)
where k2 = w?p €. Since both field quantities E and H are solenoidal in a source-
free region equation (1.4) becomes
W+ Y =0, (1.5
The conditions imposed on the electromagnetic fields at the interface of two perfect

. ‘e . A
dielectrics with unit normal n are



Q(D—;.——D;) =O

-
B>

I/;X (ﬁ; - Ez) =0
(1.6)

[=>2

A — — - —_
nX(Hl'Hg) =0 » ’(Bl‘Bz) = 0

where the subscripts 1 and 2 refer to the two sides of the interface. In the case

of a perfectly conducting surface the conditions are

ﬁx}—f= 0
R 1.7
A.B =0

In our determination of the radar characteristics of the various targets we take

them to be illuminated by a plane wave. This is no essential restriction on the

source of illumination since an arbitrary source can be expressed in every case
as some combination of plane waves. Assuming an incident plane wave we have
that the field quantities are of the form

V=7 +9, (1.8)
where RZ is one of the vector fields satisfying Maxwell's equations and the
- -
boundary conditions, Y o is the incident plane wave, and ¢ls is the scattered
field.

The problem is now specified except for the behavior of the fields at
infinity, the radiation condition. This condition is equivalent to the physical
requirement that the scattered field behave as outgoing or diverging waves at
large distances from the scattering surface. Moreover, it is a mathematical
requirement that the solution be specified uniquely. We state it in the form

lim S

r
— Sr

(Ref. 2) A - - 2
rx(Vx ) -ikipg| dS =0 (1.9)




where r is the distance from the origin of the fixed reference frame to an
enveloping sphere Sr of radius r.

The above formulation of the problem, in terms of a differential equation
and boundary condition, leads to an integral equation formulation making use of
a Green's function, To show this we consider first a scalar problem. Let ¥

satisfy 2 3
(V' +K)Y =0 (1.10)

and the boundary conditions

P o=t

(1.11)
oy _
an  ©

on a finite closed surface S. Let the source of radiation be surrounded by a
small sphere S, and let the entire region be bounded by a large sphere Sy

Then, in general

@ =| (p@E XED ez E) ) &5, (112
Y
an an

where G is the free space Green's function

ik |7 - 7|
¢ (1.13)

4r |F--f"| ’

9 is the outward normal derivative and the integration is over the bounding
on
surfaces, S, S, and 8. The integration over S, vanishes by virtue of the

requirement that ) satisfy the radiation condition and the integration over So

gives the incident wave. Therefore

) = Y + fs(fg% - gG) ds . (1.14)



In the case of the vector electromagnetic fields we get the similar

expressions

E =J [ VGx(ﬁxﬁ)]dS-._l_VXJ.[VGx(ﬁxﬁ)]dS

ik
S (1.15)

= _ — A 1 = A
H Sf [VGX(Hxn)]dS-I-i_I; fo [vex@Exf)]ds .

If the scattering surface is perfectly conducting the boundary conditions require

A —

nxE =0 on S . (1.16)
In addition we can recognize the surface current density as

K=10xH onS$S . (1.17)
These reduce the equations (1.15)

E =E+L px fvexfds
ik
S

ﬁ‘='ﬁ'o—vaxf<‘ds
s

(1.18)

To put the second of equations (1.18) in the form usually considered we

note that for r very large,

Jkr -t 1"
vG E ikkre , (1.19)
47r
- A
where kf = kr; hence, o .
. N lkr "j.k . rl
H=H,-¢ m?xfe ® xH ds. (1.20)
471r
The scattered field is o .
-~ ikr dkgert
Hy = - e ikf'xJ’ e (n xH) dS. (1.21)
4rr
S



The electromagnetic fields are not physically measurable quantities
as such. A physical measurement can be made of such things as distances,
times, and energies. Hence, we are led to characterize the properties of
a radar target in terms of the radar cross section whic.h is a measure of the

energy scattered from the target. Precisely, the radar cross section is

defined as
H (6, 2
a(6,p) = lim 4r r? ——Lﬁ)
r—0 HO
or
2
c(0,0) = lim 47 1 | Es(6.0) (1.22)
r—0 EO

where HS or ES are the scattered fields propagating in the direction given by
the angles (9, f) and E or H  are the strengths of the incident fields.

There is a class of problems which are soluble by means of separation
of variable. These are those for which the operator in equation (1.5), 7% + kz,
is separable in some coordinate system such that the scattering surface is a
coordinate surface. We refer to these as separable problems. The solutions
then appear as a series of the special functions of mathematical physics. The
usefulness of this approach is restricted by two considerations: First the
special functions are not sufficiently tabulated in all cases and second the
series solution may be too slowly convergent. In fact, only in the case of the

sphere has this approach received much attention.



Although we will make little use of these separable solutions in
characterizing the radar properties of complex targets we will briefly
consider one such solution, the sphere. We will use this solution as a
starting point for considering the various approximation methods which will
be used for more general shapes.

To motivate this consideration of the sphere solution we repeat the
point made above: After the resolution of a complex radar target into a
number of simple shapes we need a way of deciding what approximate methods
are appropriate to finding the radar properties of the simple shapes. For a
given orientation of the simple target and polarization of the radiation this
decision, in most cases, is made after comparing certain "characteristic
dimensions" of the target with the wavelength of the radiation. Since the
behavior of the sphere as a radar target is invariant under rotations and

since it has a single dimension, the radius, we first consider this simplest

case.



THE SPHERE

We take the harmonic series solution for the scattering of a plane
electromagnetic wave by a perfectly conducting sphere.. This solution, first
given by Mie (Ref. 3), is expressed in spherical coordinates. We take the
incident plane wave directed along the axis 6 =0, the z-axis, and polarized
with the electric vector along f =0, the x-axis. With a perfectly conducting
sphere of radius a at the origin the scattered field at any point (r, 8, f) in

space is given by

[0d)
; . o ;
Eg = -Eo cosp le (i)n 2n+1 Jn(ka) hfll)(kr) Pnkcos )

n(n+1) hg) (ka) sinf
, ' (1) '
[ kajp(ka)] [krby" (kr)] 4 ()

— P (cosf)
[ka h") (ka)]' kr @ n

)

(2.1)

o)
ES = E, sinf 2 (i)F 2ntl In (ka) h(l)(kr) d P(l)(cose)
p 1 n(nt1) hfll) (ka) ™ o B

i [kajn (ka) ] ’ [krhfll) (kr)]' Pg)(cosé))
[ka hfll) (ka)]' kr sind




1
where E  is the amplitude of the incident field, jn and h.fl) are the spherical
. 1)
Bessel and Hankel functions respectively, and Pfl is an associated Legendre
function. The primes denote differentiation with respect to the argument of
the functions. The far field form of this solution is found by using the
asymptotic form
(1) .+ _ikr
-i)

h “(kr) = ( €
n W kr

in equations (2.1), retaining terms of order 1 s

r
Z’m i) P (cosh)
EZ = iE, cosf 2ntl ](rl‘) n
1 nn+l) h, ' (ka) sinf
kaj (ka)|' 1
- [ 1(11) ] ' (—i% Pfl) (cos0)
[kah (ka)]
n
(2.2)
ikr i (
s L4 e E 2n+l nka) 4 ()
E, = -E_sin — P_ (cosH)
) 0 g kr = n(nH) h-fll) (ka) o (cos

! (1)
[ka in (ka)] Pn (cosB)

[ka h-gl) (ka)] : sinf

The limitation on this representation of the sphere solution is the rate
of convergence of the series as a function of the parameter ka. This parameter,
in the case of the sphere, gives the comparison of the characteristic dimension

of the sphere, the radius a, with the wavelength A = Ek"— . Hence, a study of



various approximations to the solution and the validity of these approximations
as a function of ka will serve as an introduction to the consideration of more
complicated shapes and the approximation of their behavior as radar targets.
First we make the restriction ka<<1; i.e., we consider spheres which
are very small compared with the wavelength. On examining the terms in the

series of equation (2.2) we see that since

jn(ka) = 2B _n. (ka)n + O{(ka)m-ﬂ

(2n+1)!
ﬁ (2.3)
h(l) (ka) = - i (2n)} (ka) -n-1 +0 [(ka) -n-3:|
n 2 n!

only the first order terms need be considered for ka sufficiently small. In

this approximation the fields (2,2) become

ikr

s _ e 2.3 _1
EG - E, cosP k™ a” (cotd Z)
(2.4)
El = -8 E_ sinf k“a” (1 - €os0)
g r 0 2

and the radar cross section is

2 2
¢ = 4r (k2a3) [ (cose.-%) cos? + (1 ——% cos6) sin’p ] . (2.9)

On examining the way the parameters enter the expression for the

cross section we see that we can rewrite equation (2.5) as

2yt
C e —

2
- [ (% - cosf) cos?f + (1 - % cos6) sin’( ] (2.6)

10



where V is the volume of the scatterer. This is characteristic of the large
wavelength or Rayleigh approximation: The cross section is proportional to
the volume squared and inversely proportional to the fourth power of the
wavelength.

The physical content of this result is essentially that our probe, the
electromagnetic radiation of large wavelength, is not fine enough to sense mqre
than the over-all size of the target, the volume. This result also obtains for
other shaped targets so long as they are sufficiently small (Ref. 4). Quite
generally we have in the Rayleigh region for backscattering

r=4 K* V% fa,b,...) 2.7)
where f is a correction factor taking into account a more detailed description
of the target, a,b,..., being the parameters describing the shape of the target,

We can continue this process, computing the higher magnetic and
electric multipole moments, The resulting series of multipole moments would
be precisely the series of equation (2.1). This important observation leads us
to point out that generally the radiation from the excitation of any target can be
considered as arising from a collection of electric and magnetic multipoles,

As in the case of the sphere, as the wavelength of the radiation becomes smaller
with respect to certain characteristic dimensions of the target, the more
multipoles are necessary to characterize the target.

In the high frequency region for the sphere, ka >> 1, the rate of

convergence of the series (2.1) is so slow as to make this representation of

11



the solution inappropriate. There is an alternative formulation making use
of the Watson transform (Ref. 5), however, we will approach the problem in

a more generally applicable, although approximate, way.

12



PHYSICAL OPTICS APPROXIMATION

Substituting (1.13) and (1.17) into (1.18) the following expression for
the scattered field is obtained

1 2 e.
g = — (ﬁxH)xv—-dS- (3.1)
8 47 3 R

If the field induced on the directly illuminated portion of the surface by the incident
radiation is ‘taken to be approximately the geometrical optics field the scattered
field can be approximated. By this we mean that, at a given point on the
geometrically illuminated part of the sphere, the field is approximately
that which would be induced in the limit ka > w. This is also the field
which would be induced on an infinite plane tangent to the sphere at the
point in question which,after an elementary consideration,is found to be
twice the tangential component of the incident magnetic field on the geometri-
cally illuminated side of the sphere and zero in the shadow.

Equation (3.1) is then rewritten

ik
R xH )xVeR ds, (3.2)
GO R

R

T

1
s 4T
illuminated
side
where ﬁGO =2 ﬁi with ﬁi the tangential component of the incident field.

The cross section in this approximation is

13



w/2
= (2ka)? s sin B cos B Jo(ka sin 6 sin )

=)
D:N

0
(3.3)

ika(l+cos 6) cosf
e d3 ,
where 6 is the angular separation of the incident and emergent direction. For
backscattering this reduces to the simpler expression

0(0) _, _ sin2ka 1 -cos2ka

1’ ka (ka)?

» (3.4)

where we note that the leading term is just the geometrical optics result.

In the above we have made no special use of the fact that the physical
optics method was applied to a sphere. The only requirement was that the
surface be able to be locally approximated by a plane for the purpose of
finding the field on the surface. Hence, we suggest that the method of phys-
ical optics is more generally applicable. The important reservation in its
application can be seen from a comparison of the results of summing the
series (2.1) computing the cross section for backscattering and comparing it
with the result (3.4). As ka increases both the exact solution and the physical
optics solution oscillate about the geometrical optics value but the oscilla-
tions are not the same. From this we conclude that physical optics can be
used to approximate the magnitude, although no better than geometrical
optics, but can give no information about the oscillations about the geometrical

optics value.

14



We start with equation (3.2) and consider the physical optics approxima-
tion to the field scattered by a perfectly conducting surface S. Let the incident
field be given by

ik.T

H =H fe . (3.5)
i o

We now divide the surface S into the geometrically illuminated side S;, and
the shadowed side, S, (Figure 3-1) by means of the shadow curve /1\< A= 0

where k is the unit vector in the direction of propagation of the incident wave

and ﬁ is the normal to S.

\ shadow curve

incident wavefront

FIG. 3-1

The geometric optics current is given by
K = : (3.6)

If T is the position vector of the field point and ¥’the position vector of a

surface element of S,the gradient of the Green's function in the far field

15



approximation can be written as

ikR ikr -1kf-r'
v -£ ~ = e iif , (3.7)
4TR drr
where R = \ r -r'| and f{f = kr. Substituting in (3.5)
R ik ikr N -il—;f- r’ ikr .
B =-— -£ @MxH )xT e ds=<£ F(B) , (3.8)*
S 2T r 1 r
Sf
where
R -ikH - >
F(B) = —= [(?-%f—@-ﬂﬁ] , (3.9)
2T
and N
| . K e (k- 1)
f= j e ds. (3.10)

@ -um|F|”. (3.11)

If we take into account the polarization of the receiver, we can define an

effective cross section,

Al2

o @) =41r‘ .4 , (3.12)

A
where d is a unit vector in the direction of the receiver polarization.

e

>R

where S' refers to the illuminated portion of the surface.
16



In the simpler case of backscattering we have T - -/l\q and

4t 2
¢ = M , (3.13)
A‘Z
where

ne ds. (3.14)

A 2ik. T
g =k

A
To simplify the discussion we orient the coordinate system such that k =72,
then

1 !
g = S n 621kz ds. (3.15)

But we note that n, dS is just the projection of the elementary area dS on a

plane perpendicular to the direction of incidence and we write

n ds = 98 dz!
oz’
Finally
2ikz/
gzge 38 g (3.16)
oz’
or more generally
2ikp
g=[e 284 (3.17)
v ap

where p is the distance measured in the direction of incidence and A is the
area of the projection of the part of the scatterer to one side of a plane of

constant p (the side indicated by arrows in Figure 3-2), the projection being

17



-
<«—— Plane of Constant p

Shadow Region

—_—
Direction of /
Incidence <

/
Nluminated | W
Region

Shadow Curve

FIG. 3-2: THE SHADOW CURVE (GENERAL)
made onto the plane of constant p. From equation (3.17) we see that physical optics
predicts no dependence of monostatic cross section on polarization (at least the form
of physical optics which we are using here). Equation (3.17) may be interpreted as
saying that each element of area makes a contribution to g, but with a phase factor
eZikp so that two contributions may either add or cancel depending on their relative

phases.

As an example of physical optics we will again consider the cross section

of a sphere. For the sphere in Figure 3-3 the area function is

0 (p £ -2)
A = 7r(a2 —pz) (-ag pg 0 (3.18)
ra’ (0K p)

Direction of Incidence

FIG. 3-3: SHADOW CURVE (SPHERE)

18



From equation (3.18) we find:

0 (p £ -a)

dA

5 = ﬁ ‘—21rp (-ag PO (3.19)
0 (0g p)

The variation of A and dA/dp with p is shown in Figure 3-4. For short
2ikp : L
wavelengths, k is large and e oscillates very rapidly (that is its real

and imaginary parts oscillate very rapidly). As a result, whenever dA/dp

A " dA

[ ]
!
)
N
)

Ta

—» 0 | > p
-a

FIG. 3-40 A AND dA/dp - I

varies slowly the contributions for values of p differing by A /4 will nearly
cancel. Only the regions where dA/dp changes rapidly will contribute
appreciably to the integral. From Fig. 3-4 it is clear that the main
contribution comes from p = -a. For this particular problem the integral
can be evaluated exactly; so, let us see whether the above ideas agree with

the exact solution. We have

(o]
2ik, ; -2ika
g Se P (omp)gp-ma o2ka, T -1). (3.20)
2K
-a

19



-2ika
The terms having an e factor can be interpreted as the contribu-

tion from p =o. With this interpretation we see that the contributions from

the intermediate region have cancelled each other, For large k the term,

ria _—2ika . . . .
T e dominates the others. This term is due to the jump in dA/dp
2
at p = -a. The other two terms are due to the discontinuity in d 2A at p=-a
dp

and at p = 0. According to the interpretation used here we should find that
another area function for which dA/dp has a jump of 27a at p=-a but is
otherwise continuous (varying but little in a distance of a wavelength) should

give the same result (for large k). For example, suppose that as in (Fig. 3-5)

0 0 (p <-a)
dA
_ and 2 = , (3.21)
A= dp
27a [ _e-B(p+a)j] Wae—B(p+a) 0> -2)
B . A
2ra ) -
"'B"' T 2ma
L p | \ p

FIG. 3-5: A AND dA/dp -

then we can again evaluate g exactly with the result

®
2. - +a) . 93
g - % . ikp omac B(p g - MR, 2ika (3.22)
2 g+ PL
2

20



For large k, equations (3.20) and (3.22) are in agreement so that the inter-
pretation which we have been using seems to be accurate.
There is another way of looking at the physical optics integral which

can be very illuminating. If, for the sphere problem, we let

p
f(p) = S ezjkZ (-27z) dz, then g = £(0).

-a

Now f(p) is a complex number and as p varies from -a, to 0, f(p) traces out
a curve in the complex plane. This curve is called a vibration curve. The
vibration curve is the limiting form of a vibration polygon obtained by

replacing the integral in equation (3.17) by an approximating sum

ZeZikzn <&) Az .
" n

dz /,

The individual terms in this series can be looked on as little vectors in the
complex plane which add up as shown in Figure 3-6. The magnitude of each

vector is %Ai-> Azn, and the vector points in a direction making an
Z
n

angle 2kzn with the real axis. If we take a constant value of Azn then the
angle which the resultant vectors make with the real axis will increase

steadily, If —é—di is constant then the vectors will go around a circle of

radius L dA

If dA varies slowly then the vibration curve will
ok | dz dz

21



spiral about a relatively fixed point with a slowly changing radius. However

each time da has a discontinuity the point about which the vibration curve
dz

is spiraling will jump proportionately. For the sphere, the vibration curve

will appear roughly as in Figure 3-7. It can be seen that the spiral ends

. -2ika
ma ¢ .
k

As a second example of a vibration curve, let us take an area function for

at approximately the original center of curvature which is

dA
which —— has two jump discontinuities as shown in Figure 3-8. In this case

the vibration curve will take the form shown in Figure 3-9.

D
- dZ /n n\ // /
/ / \e2ian (%)n Az,
et

e

FIG. 3-6: VIBRATION CURVE -1

This can be analyzed as follows: at p = 0 the center of the vibration spiral

is shifted to the point A (Fig. 3-10) and the spiral follows the large circle.
The radius of the circle slowly decreases until the spiral is following the small
circle. At the second discontinuity the center is again shifted, this time, to

the point B. The center of the spiral ends at the same place as the spiral
itself. Thus by tracing the motion of the center of the spiral we can find the
value of the integral. In more complicated cases this can be quite a useful

aid to our thinking.
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FIG. 3-7: VIBRATION CURVE - I  FIG. 3-8: dA/dp HAVING TWO
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FIG. 3-9: VIBRATION CURVE -IO0 FIG. 3-10: SHIFT IN CENTER OF
VIBRATION SPIRAL
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If —g—ﬁ‘— behaves in the same manner for two bodies then the physical

optics cross section for the two bodies will be nearly equal. We have seen that

bodies like the sphere which have finite radii of curvature will have a da

. dp
which has a jump where the incident field first hits the body and then goes
smoothly to zero. At the point at which the incident wave first hits such a
smooth body we can approximate the body by a paraboloid having the same
principle radii of curvature. Once we have found the cross section for such a

paraboloid we will have an approximate cross section for all such smooth

bodies. We take the equation of the paraboloid (Fig. 3-11) to be

9 2
p =2+ I (3.23)
2R, 2R,

-

FIG. 3-11: THE PARABOLOID

where R, and R, are principle radii of curvature at the point (0, 0, 0) where

the incident wave first hits the paraboloid. The area function is

A =2mp VR, Ry (p> 0).

Thus
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%3 - VR E, (0> 0).

This does not go to zero for large p but we can modify the body very slightly

so that
%=2WVR1& o PP (o> 0)

where B is very small. We then have

(00}
21k VE R
g=je " ouwVETR edepB'_;T) TiV R Ry (3.24)
K
0

Substitution of equation (3.24) into equation (3.17) shows that the approximate
cross section of a smooth body is

o =7 R Ry (3.25)

where R, and R, are the principle radii of curvature at the specular reflection
point. This formula was obtained by assuming k large so that the return was
essentially from the specular reflection point. Hence the same result could be
obtained alternatively by using geometric optics. As a result this formula for
o is often called the geometric optics formula for o.

Equation (3.25) is one of the most useful cross section formulas due
to its extreme simplicity. It is convenient for applications to have a few
formulas giving R; and R,.

If the equation of the surface is given in the form z = f(x, y) then

(1+f° +£2 )
y

Ri Ry = X (3.26)

f f -f2
XX'yy Xy
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If the equation of the surface is given in the form F(x, y, z) = 0, then

(F + F + )
R R =—— L % (3.27)

If the equation of the surface is given parametrically as x =x(u, v),

y=y(u, v), z=z(u, v) then

_ (EG-F)
R R = - (3.28)
LN-M
E-=x +y + 72 F=x x_ + +z7 2 G=R2 +y +2
LY T W Ky TV TR 7 S S
X *u *v Xav *u ¥y v *u ¥y
L= Yau Yu Yy M= Yy Yy Yy N = Yoy Yu Yy
z z oz z z  z z z z
w u v w o ou v vwoou v

For a body of revolution given by the equation p = p(z) (Fig. 3-12) we have

RR = |—— (3.29)
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where a is the angle between the direction of incidence and the axis of the

body. p and p" must, of course, be evaluated at the specular reflection point.

Direction of |
incidence

FIG. 3-12: A BODY OF REVOLUTION

In many cases in determining the cross section of a simple shape we
find that there is one expression for "normal" incidence and a second expres-
sion for the cross section at "non-normal" incidence. In these cases the cross
section (for short wavelengths) is much larger at normal incidence than at
non-normal aspects. When the actual value of the cross section at the
non-normal aspects can be neglected, we might use, instead of the non-normal
incidence formulas, an expression giving the width of the peak. To obtain
such peak width formulas we require that the sum of the non-normal Cross
section contributions be equal to the desired fraction of the normal incidence

value; such expressions are presented in Section 4.11.
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MONOSTATIC CROSS SECTION OF SIMPLE SHAPES

4.1 Introduction

In the preceding section we have presented in some detail the methods
to be employed in obtaining expressions for the radar cross sections of simple
shapes. Here in Section 4 we shall concentrate on the simple shape configura-
tions; i.e., ellipsoids, elliptic cones, cylinders, and thin wires, tori and
wire loops, the ogive, flat plates, the tapered wedge, corner reflectors (and
multiple scattering in general), and the paraboloid. These discussions will be

devoted primarily to the optics region,

4,2 The Ellipsoid

The ellipsoid has been found to be extremely useful in modeling parts
of aircraft and missiles. Ellipsoids of various dimensions model quite well
such components' as the fuselage, the engine nacelles, the wing tanks, and the
wing tips. In most instances it is portions of prolate spheroids which are of
the greatest use and thus we shall concentrate on the prolate spheroid.

The equation of the ellipsoid can be taken to be

(X2 + (P + (2 =1 4.2.1)
and the coordinate system employed is shown in Figure 4.2-1.

In the case of vanishingly small wavelengths we obtain, through the use
of equations (3.25) and (3.27), the following expressions for the monostatic
cross section:
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To Radar

FIG. 4.2-1: THE COORDINATE SYSTEM USED IN THE ELLIPSOID ANALYSIS

For the general ellipsoid

212 .2
r = T a“b“c ~ . (4.2.2)

. 2, . 2 2
2 sin’0 cos®f + b? sin"6 sin’ P + ¢” cos?d)

(a
For the prolate spheroid (a = b)

42
¢ = mh-e ) 4.2.3)

(b2 sin6 + c? cos?6)?

For the sphere (a =b =¢)
2
c =mTa . (4.2.4)

For larger wavelengths, still in the optics region, the application of

equation (3.17) to the prolate spheroid problem for the case of § = 0° yields

0_(00) = (%_)(1 _ sin (2ke) + 1 -coséch) ) . (4.2.5)
c ke 2(ke)

In the Rayleigh region we can employ the methods presented in

Appendix B for incidence along the major axis.

29



In the resonance region the methods of Appendix B are applicable, but
we should call attention to the work which has been done on the sphere and the
prolate spheroid whose ratio of major to minor axis is 10:1. A summary of
the work performed on the sphere is presented in Reference 6 and the efforts
expended on the 10:1 prolate spheroid are documented in References 7 and 8.
The radar cross section patterns for the sphere and the 10:1 prolate spheroid
in the resonance region (for incidence along the axis of revolution) are presented
in Figure 4.2-2.

The above enables us to obtain good estimates of the radar cross section
contributions from ellipsoids used in modeling portions of aircraft and missiles
over almost the entire range of wavelength-to-body dimension ratios.

As an aid in the application of equation (4.2.3) we present in Figures
4,2-3 and 4.2-4 graphical presentations of the cross section of a prolate
spheroid for various values of the length-to-width ratio, l'é— . Figure 4.2-3
shows the way in which the cross section at 8 = 0° varies with the ratio
_%_ (1< % K 15) for a fixed value of the semi-minor axis, b, Figure 4.2-4

gives the ratio of ¢ (6) to ¢(0°) as a function of @ for various values of b . The

(¢}

_2_ = () is extremely useful in

'ywpper bound'' to this ratio (obtained by setting
deciding whether or not an aircraft component so modeled will contribute
significantly.

It is of interest to compare the results obtained through the application

of equation (4.2.2) with some recent experimental data on oblate spheroids
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FIG. 4.2-3: RADAR CROSS SECTION OF A PROLATE SPHEROID
(OPTICS) - THE NOSE-ON CROSS SECTION AS A
FUNCTION OF THE LENGTH-TO-WIDTH RATIO

(see equation (4.2.3))
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obtained at the University of California (Elect. Res. Lab., Quarterly Progress
Report, 1 April - 30 June 1958; Series No. 60, Issue No. 21; 15 July 1958). In
terms of the notation of equation (4.2.2), the expérimental parameters were
a=b=2), c/h =1.5, 1.0, 0.75, 0,50, and 0.25. The aspect can be defined

by taking 6 = 90° and ¢ =0°, In the experiment, which was conducted at 9340 Mc,
the incident electric field was polarized along the minor axis and a three-inch
diameter sphere was used as a standard. The results of the experiment and

the theoretical value of cross section (compared to the return from the sphere)
are shown in the following table:

RADAR CROSS SECTION OF OBLATE SPHEROIDS - THEORY AND EXPERIMENT
(in db above the return from a 3'' diameter sphere)

a, b c Cross Section
Experimental Theoretical
Measured Ave,
21 1.5 a 3.7
4,2 3.2 1
2.7
3.3
21 1.0 2 -0.2
0 0 -.8
0.2
21 0.751 -3.4
4.3 4,2 4.0
-4.0
4.2
20 0.501 -9.6
-10.0 -10.2 -7.5
-10.6
-10.6
2\ 0,25 -15,0
-14.2 -14.5 -13.6
-14.7
-14.4
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4.3 The Truncated Elliptic Cone™*

The truncated elliptic cone has proved to be very useful in modeling
wing surfaces and portions of fuselage surfaces. The truncated cone is placed
in the coordinate system shown in Figure 4.3-1; the cone is assumed to be
truncated by the planes z = L; and z = Ly with Ly > L;. The half-angle of the
cone in the xz-plane is taken to be & (i.e. tana = Liz ). The ratio of a to b is
given by 7 and the direction to the transmitter-receiver is specified as shown

in Figure 4.2-1, The equation of the cone is taken as

x? + n?y? = z"%tan’a (4.3.1)

FIG. 4.3-1: THE TRUNCATED ELLIPTIC CONE

*
See Appendix B for a discussion of the finite cone at the nose-on aspect.
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This can be written in the parametric form

x' = z' tanacos '

(%) tanasin ! (4.3.2)

Z' — ZY.

(<—
I

A small displacement on the surface can be written as
B =dd L+t +dr -
] i dy 1y z' i, =
A A
(tana cos i, + -%tanasinﬁ)‘ i + /i\z ) dz' +
(—sinﬁ)‘/i\ + L cos pr 1) 2 tan adf'. (4.3.3)
X 7 y . .

The surface area element is (from equation 4. 3. 3)

= A A
ds ——[(—sm]b'1x + % cosf! 1y) z' tana dﬂ'] X

(tanaCOSp'/i\ + Ltana/ sinp!/i\ +i/\)dZ':] (4’3-4)
x % y oz

' A
= z' tana ( cos f P +smpr D - AL T ) gprgy,
X y ”» Z

The projection of this on the direction of incidence is

tan o A

_ cos ' 2 A A
dA = 2! tana/dﬂ)’dz' (—;7—— 1X+smﬂ'1y - 47 IZ) .
. AL A A
(sin6 cosPi +sin6 cosPpi +cos6 1,)
X y
L
7

where the polar angles § and ) are shown in Figure 4.2-1. The phase factor

(4.3.5)

= z'tanadf'dz' (55 sinf cosfPcosf' + sinf sinf sin " 7 cos 0 tana)

on the surface is

. A A A A
e2ikp = exp. [—Zik(sin(-) cos i+ sin6 sinf iy+ cosG'i‘Z)- (x' i‘x+ y' itz iz)]

= exp. [-Zikz'(sine cos ) tanacos ' + % sin 6 sinﬁtanasinp'+cos9£| .
(4.3.6)
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2ik . ,
The physical optics integral is g = f P dA. There is a stationary
phase point at (the other stationary phase point is not on the illuminated side
of the cone)

9 . / 1 . . s Al
6 ta + = sinf ta + cosf
e (sinf cosf n-af cosf) . sind tan o sinp’ + cos6)

= sinf tana (-cosp sin¢'+—717— sinf) cosp’) = 0
or

sin¢' = sinf . cos¢’ = cosf

L]

Vsin2p + p2 cosf Vsin2p + n? cos*y (4.3.7)

Evaluation of the integration with respect to ¢' by the method of

stationary phase gives
L,

g = J V 71 2"tan @ - < Sind -1 cosh tan a/>
k sing ¥ sin®p+n°cos’d \Vsin2p +ncos’d 7

Ly

(4.3.8)

X -Zikz’(isine tana sinzy) +17 cosz¢ +cosf) - T
e n £ dz’

Unless the factor _717- sinf tana sin2¢ + nzcosz¢ + cosf is nearly zero
(normal incidence) we may integrate this by parts and neglect the new integral
compared with the constant terms (this is a way of evaluating the two contri-

butions which come from the points z = L; and z = Ly) to obtain

ng TN z'tana : ( sinf — - 1 cos0 tana>
k sinf Vsin?p +n° cosp  \ Jin*p + n? cos’P

(4.3.9)

. ; L
—Zikz’(L sinf tan o ¥sin®p + ncos“® + cosh) - I* 2
7 7 1

e

- 2ik (—717—sin6 tan o Vsinp+ ncos“p+coso)
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Evaluation at the two limits gives the two contributions to the cross
section. At normal incidence the phase factor is a constant and equation (4. 3. 8)

integrates to give:

2 32 )
g = (Ly 77 tan @ sinf -1 coso tana>.
3 k sin Vsin?p+ pcos”@ \ Vsin2p + nZcos®p 7

(4.3.10)

From the above we obtain expressions for the cross section which are

applicable only for sinf N sine. At normal incidence the cross section is given

by 1323037
_ tr(p -1 tante (4.3.11)
oA M Icos Bl
where normal incidence is defined to be the direction given by
tang = - n : (4.3.12)

tana Vsinp + 1 cos’f
For non-normal incidence there are two independent scatterers, the
ends of the cone. If one of the ends of the cone is smoothly rounded then at
non-normal incidence its contribution would have to be computed by means of
a formula for the rounded end (for example the ellipsoid formula). The two

contributions are given by
2

3 sin@ - L coshtana
- = ALn"tana Vsin2p + n* cos“p
8r sind Vsin®p + n2cos’f sind tana Vsin?) + 1° cos”p + Ncosé
(4.3.13)

where L has the value L; or Ly depending on whether the contribution is from

the small end or the large end of the cone.
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For the truncated circular cone (7= 1), equations (4.3.11) and (4.3.12)

become )

;o= —S% [LS/Z-Lf/Z] e (4.3.14)
and

o = | ALtane 14,02 (g) (4.3.15)

8 1 sinf

A graphical presentation of equation (4.3.14) is given in Figure 4.3.2 and a
graphical presentation of the relation between normal aspect to a cone and the

angles o, 6, and @ is given in Figure 4.3.3.

4,4 The Cylinder and the Thin Wire

The cylinder has proved to be very useful in modeling portions of a
fuselage, a wing tank, an enginé nacelle, etc. Very thin cylinders, that is
circular cylinders whose radii are very small in comparison with the wavelength,
have been extremely useful in modeling the sharp edges of some wing surfaces;
these very thin cylinders are referred to here as thin wires.

For the case in which the wavelength is small in comparison with both the
length and the radius of the cylinder, the cross section formulas can be obtained
as limiting cases of the results obtained for the truncated elliptic cone (i.e.,
equations (4.3.11) and (4.3.13) ). To accomplish this let tan o = Liz s Ly=Ly - L,

Ly > oo. The results obtained are for the cylinder at normal incidence (8 = 900)

2T L2 3.2 b2 (4 4 1)
2 2 2 . 2413/2 s
A |a®cos®P+b s1n¢]

o =
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FIG. 4.3-2: CROSS SECTION OF A TRUNCATED CIRCULAR CONE AT NORMAL
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and for non-normal incidence we have two components (assuming that the ends

are not rounded or smoothed in any manner) each equal to

9 i
s = A.a.z b2 sinf . (4.4.2)

8r cos?6 [azcoszy) +bsin? 3/2

For a circular cylinder these expressions reduce to

¢ =21l (4.4.3)
A
and
¢ = Aasing (4.4.4)
81 cos? 6
respectively.

The application of equation (3.17) will yield an expression for the
cross section at the off-normal aspects which incorporates the phase between
the contributions from the two ends of the cylinder., The expression is more
complicated and not so convenient to apply as those given above, but if knowledge
of the oscillations in the cross section as a function of aspect is required, this
result can prove to be extremely valuable., The expression so obtained for a

circular cylinder of length L and radius a is

) 2
¢ = ra? sin’@ M> (A% + B?) (4.4.5)

cos @

where
A = Jy(2ka sin6 ) with J; the Bessel function of the first order,
B = (2/m) -S; (2ka sin6 ) with S; the Struve function of the first order,

6 = the angle between the cylinder axis and the direction of incidence.*

* As an aid to computation the expression (A2+B?) is presented graphically as a
function of (a sinf /1) in Figures 4.4-1 and 4.4-2,
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The above is for cylinders whose dimensions are large in comparison
with the wavelength; let us now turn our attention to the case in which the
radius, a, is very small in terms of the wavelength; i.e., to the thin wire case,

We will consider first the cross section of a perfectly conducting wire
which is many wavelengths long but only a fraction of a wavelength thick, Per-

haps the simplest formula which is in good agreement with experiment is Chu's

2

formula (Ref. 9) sin (_ZT_TL_ cosB)
2 .2
7L sin"6
2rL cosf 4
r, = cos?p) = A cos

2 N 2
(L) #(m—2
2 Y a sinf

where L is the length of the wire, a is the radius of the wire, ¥ =1.78...,

(4.4.6)

6 is the angle between the wire and the direction of incidence, and f is the

angle between the polarization direction and the plane formed by the wire and
the direction of incidence. No attempt will be made here to derive this formula.
Except for 0 near 90° the two tips of the wire scatter essentially independently.
A slight change in 6 has a pronounced effect on the relative phase of the two
components so that theyre is a rapid oscillation, the components sometimes
adding and sometimes cancelling. When we approximate a part of the aircraft
by a thin wire we will not be able to determine the relative phase of the two
components accurately so that the proper picture is to replace the wire by two
independent scatterers (except for 8 near 90% each having an effective cross

section given by
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= | X tan” 9 cos4¢
P 2
167 | (L) + (m _L_)
2 Y1 a sinb

At 6 = 90° equation (4.4.7) diverges while equation (4.4.6) does not.

0o (4.4.7)

The reason for this is that at this one aspect the wire acts as a single scatterer.

For 6 = 900 then we must use equation (4.4.6) which reduces to:

2 4
7 L cos § (4.4.8)

e - .
(1) + (m _Zt_)z
2 Yra

Now let us turn our attention to the case of wires whose length is
comparable to the wavelength. The approximation technique employed here is
derived from the work of Van Vleck, Bloch, and Hammermesh (Ref. 9). In
Reference 9, the radar cross section, o, the average return for fixed direction
of incidence but random polarization, o(6), and the average cross section for

all aspects and polarizations, o, are related by the following equations:

= .i_Uw sinf do df , (4.4.9)
g
o0 = | o ap , ' (4.4.10)
2T
T2
T = J o(6) sin6 dO , and ©(4.4.11)
0
8 4
o = _3_ CcOoS ¢a’(9) (4.4:.12)
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where the angle 6 is as shown in Figure 4.4-3. The angle § is the angle between
the electric field of the incident wave and the plane formed by the direction of

incidence and the wire (i.e. the plane of Figure 4.4-3).

Direction to
radar

FIG. 4.4-3: THE THIN WIRE COORDINATE SYSTEM

Reference 9 contains plots of ";29) vs 6 for the case of .I_i_ equal to 0.5,
1.5, 2.0, and 1.25, If the wire in question is one of these in size then direct
readings from these plots combined with the application of equation (4.4.12) will
yield the desired estimate of the cross section; these four plots are reproduced
in Figure 4.4-4.

A complete presentation of Methods A and B will be found in Reference 9.
All of the data presented in Figure 4.4-4 is for a wire of radius equal to 1 /900
of its length; it can be expected, however, that over a wide range of radius values
these angular distributions of wire response will be appropriate. This is illus-
trated in Reference 9 in the determination of _f_z- for wires of three different radii:

their Figure 2, which contains these results, is reproduced in Figure 4.4-5,
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FIG. 4.4-4: ANGULAR DISTRIBUTION OF RESPONSE OF WIRES (REF. 9)

(L/a = 900 where a = radius of wire; A--Method A, B--Method B,

C--Chu's formula)
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If other wire lengths are of interest in a specific problem one can employ

either Method A or Method B as given in Reference 9, the Chu formula, or one
can apply an approximation process based upon the material of Reference 9.
This approximation procedure involves using the plot of —E@— s (0= 900) given
in Reference 9 combined with the information presented in Reference 10 relative

to angular variation in response together with equations (4.4.9) through (4.4.12)

0'/7\2
.40
.36
.32
[~
.28 a Z :
// ‘
.24 Z _
.16 Z /2\ ;
12 ZELZ
.08 3 @__ %
.04
| | AR EEEEEREREEREEEER
0 5 1 1.5 2 2.5 3
L/

FIG. 4.4-5: RADAR RESPONSE OF WIRES - AVERAGE CROSS SECTION
(225 < L/a < 900)
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The 900 plot referred to above is shown in Figure 4.4-6 where the data of
Reference 9 isk compared with the Chu estimate. We see that the Chu formula
suffices for wires which are more than two to three wavelengths long, The
cases of wires which are one wavelength and three-fourths of a wavelength long,
will be discussed to illustrate the approximation process referred to above.

For the wire of length A we know from Reference 9 that

~ 0.163 and o) sin® _ 0.04 at g=90°.
22

sl

From Reference 10 we find that ;rﬁ%g_@_ takes on its maximum value at
0 =~ 540. Using this information together with data about the location (in 6) of
the half-power points (Ref. 10), a broken line graph approximation of the curve

ﬂ;i’l@. vs 6 can be obtained. In doing this we employ the knowledge that
X

/2

f o(6) sind 49 ~ 0.163 . (4.4.13)
Az

0

For the wire of length 3)/4 we find (from Ref. 5) that

/2
, J‘ o (6) sind de = 0,023 (4.4.14)
AZ
0

and

o(0) sinb  _ .04 at §=90°.
AZ

Since a wire which is three-fourths of a wavelength long is a "non-resonant'
i i i o(0) sinf
wire we can employ equation (19) of Reference 9 to obtain values of =

at a few values of § (say 30°, 60°, and 75°) and then fair a curve through these
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points using the area integral in equation (4.4.14) as a check on the resulting
curve. Figure 4.4-7 shows the results obtained for these two cases; the half-
wavelength wire is also included in the figure.

It should be repeated that the above considerations are based upon the
analysis of wires for which L/a =900. In view of the data presented in
Figure 4.4-5, however, it can be concluded that these estimates should still be
appropriate for a wide range of wire radii. To investigate this point further,
the cross section of a thin wire is plotted as a function of wire radius for 6 = 90°
in Figure 4.4-8. In addition to the wire estimate, the optics expression for a
cylinder is extended into this region of wire radius space as well as the cylinder
data obtained from Mentzer (Ref. 11). We see from Figure 4,4-8 that the cross
section of a wire of given length does not change rapidly with changes in wire
radius and thus that the methodology presented here for a wire whose radius is
1 / 900 of its length can be considered appropriate for almost all ''wire'' computa-
tions which arise in connection with problems of estimating the cross section of
an aircraft or a missile,

The work of Weber (Ref. 12) is also very useful in the consideration of
wires whose lengths are less than 0.8), both for the monostatic and bistatic
cases. This point will be discussed in Section 5.

Van Vleck, Bloch, and Hammermesh in Reference 9 also give some
consideration to the very short wire case, a wire whose length is such that
)/.L > 10. The expression they obtain for the cross section is (in the notation

employed here)
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s = (A,Z /97T) (ﬂL/»G COS4¢ Sin49 . (4.4. 15)
[1-mer/a)?

From this expression we see that if A/L > 10 and L/a 2 10, then it follows

that o[ £ 8.5 x 1078, The magnitude of the return from such wires is

relatively so small as to make it possible to neglect such wires in most problems

of determining the cross section of an aircraft or missile.

4,5 The Torus and the Wire Loop

The coordinate system employed in the analysis of the wire loop and the
general torus is as shown in Figure 4.5-1; the polar angles are as given in

Figure 4.2-1.

FIG. 4.5-1: TWO VIEWS OF THE TORUS (WIRE LOOP)

When the wavelength is small in comparison with both a and b we proceed
as follows: For off-normal incidence the cross section is obtained by use of
equations (3.25) and (3.29). The equation of the torus is taken as

(P _a)2+zz = b2 . (4.5.1)
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From equation (4.5.1) we find the p'' needed for equation (3.29). There are
two contributions to the cross section, one where the incident wave hits the
"outside'' of the torus and the other where the wave hits the "inside'' of the
torus. In the two cases we have p =a + b sinf and p = a - b sinf respectively.
Substitution in the resulting form of equation (3.29) yields the two contributions
(it should be noted that the second contribution exists only if the inside of the
torus is not shadowed by the outside; i.e. only if b/(2a) < lcos@l). To obtain
the expression for the normal aspect we make use of equation (3.17).

Thus, for the short wavelength case we have at normal incidence (8 = 0°)

3, .2
s = o7 ba (4.5.2)
A
and for 8 > 0 we have the two contributions
r o= 1{( ba +b2) (4.5.3)
sinf
and
¢ = 1r( ba -bz) . (4.5.4)
sinf

In the range 0 £ ’cos6| < b/(2a) the second contribution (eq. 4.5.4) is no
longer present.

If b is very small in comparison to the wavelength the torus takes on the
form of a wire loop. The cross section of a wire loop takes on a resonant peak
in the vicinity of ka = 1 and the magnitude of the cross section at this peak is
relatively independent of the wire radius. To obtain an estimate of the cross
section of a wire loop on the optics side of this resonant peak we extend the

methods used on the ''straight thin wire''. We shall do this first for a wire

56



which has a radius of about 1/85 of a wavelength (a value chosen for convenience
in computation) after which we shall consider the case for arbitrary (but small)
values of b.

The scattered field from a small straight piece of a thin wire is like that

of a dipole so that it has the form

A A A eikR
ES=CdZRx(Rx£) (4.5.5)
R

where C is a constant to be determined, al is the length of the piece of wire,

A
R is the vector from the piece of wire to the field point, and £is a unit vector

A
along the piece of wire. At normal incidence with the polarization parallel to £ ,

the cross section is

(dL)

T

) (4.5.6)*

. 2
c =lim 4r
) ¥ o)

]

A A
If S is the polarization vector then C is proportional to ;/)\ - L. Thus let C=C, (ﬁ 4).
2 A A 4

For the case to which equation (4.5.6) applies we have 6- d - IR xR xZ) | =1.

Substitution of equation (4.5.5) into equation (4.5.6) gives
9 2 2

= (4.5.7)
T = 2
oY

%k
It is here that the assumption that the wire radius is A /85 is made. The

expression on the right side of the equation is obtained from the Chu formula
for a wire radius set equal to )/ 85.
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Substitution back finally gives (taking into account the phase leg in making the
round trip from the radar to the wire and back to the radar)
p.2 Rx(Rxf) 2kR

IEII dl——ﬁ——_ e . (4.5.8)

E =
8

2
Thus, corresponding to the physical optics formula for the cross section (equa-

tion 3.17), we have, in the case of a thin wire

where,

N AA A A 2k.T
g = S(ﬁ‘ L)Rx(Rxb) e al. (4.5.9)
. A A .
Due to the relation p « R = 0 we can also write

o« P 2

6 = - 5(6-2)2 e atl . (4.5.10)
e T

The integration in both equation (4.5.9) and (4.5.10) is taken along the wire.
The edge of a truncated ogive gives a thin wire contribution where the thin wire
is a loop in the x-y plane as shown in Figure 4.5-2. The thin wire contribution
is given in general by equation (4.5.10). To evaluate this for a loop consider
that on the wire we have x' = a cosp', y'=asinf', and al =4’dx'2+ dy'2 =adp’
R =,i\X sin + {\z cosf. The direction of the dipole is /2= —sin})'/i\x+cosﬂ'/i\y. We
have i‘{ /r\’ = ();'lﬁx + y"i\y) -/1\< = a sinf cosf'. The polarization vector is
/[\) = -cosf sin‘[?x + cos X/i\y + sinf siny /i\z, where ¥ is the angle between the
polarization vector and the y-axis. Substitution into equation (4.5.10) gives finally
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z
[}
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N
"

FIG. 4.5-2: WIRE LOOP

For 6 =0, equation (4.5.11) gives & . ma’. For 6 enough greater
than zero that 2ka sinf >> 1, we can use the asymptotic expansions for the

Bessel functions:

JO(z) ~ ;Zz_ _ cos(z-m/4) + Elz_ sin(z-r/4) - 12222 cos(z-r/4) +.. ]
(4.5.12)
J,(2) ~ }Zz—( - cos(z-r/4) + :3_: sin(z-r/4) + 1218(;2 cos(z-r/4) +.. ] .
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Using equation (4.5.12) and the average values of sin’(2ka sin@ -7/4),
sin(2ka sin@ -7/4)cos(2ka sin@ -7 /4), and cos?(2ka sinf - /4) (which are 1/2,

0, and 1/2 respectively) in equation (4.5.11) we obtain
(4.5.13)
a.k 00847 + 8cos?6 sin?y - 8cos?0 sirfY co ¥ -cost ¥
T sinf 32 (ka sin)?

Average o, ~

Except when cos ¥ is nearly zero the first term in braces is sufficient

and the cross section becomes B a? for

9~ Acosty (4.5.14)
7° ap

For cos ¥ =0, the cross section becomes 37 a? when

(4.5.15)

0~ A
e

The above analysis is carried out for a wire of radius equal to about
1 / 85 of a wavelength; an approximation for a wire of arbitrary radius can be
obtained by replacing the right hand member of equation (4.5.6) by one which
involves the wire radius; that is, for example, Chu's formula. This substitu-
tion into equation (4.5.6) results, upon the application of the steps outlined in
the equations following (4.5.6), in the following expression for the cross section

when 6 = 0°

2
LA (z/2) +(1n(85/7m)) (4.5.16)
Ta (r/2)* + (In(\/y 7b))*

where b = the wire radius, a = the loop radius; and Y =1.78.... .

*A plot of equation (4.5.16) is given in Figure 4.5-3; one will observe that the cross
section is not critically dependent upon the radius of the wire for small values of b.
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The situation for 6 = 0° for various sized wires has been investigated
by Kouyoumjian (Ref. 13). Kouyoumjian's results are shown in Figure 4.5-4
together with the corresponding values derived from equation (4.5. 16).

Kouyoumjian in his paper, "The Calculation of the Echo Area of Several
Scatterers of Simple Geometry by the Variational Method;' which he presented
at the Symposium on Microwave Optics at McGill University in June 1953 gives
us a relation between the return from a wire loop at § = 0° and at 6 = 90°. This
relationship is displayed in Figure 4.5-5 where we note that if the loop radius is

about 0. 10 of a wavelength we can expect a return like that from a small sphere.

4.6 The Ogive

4.6.1 The Complete Ogive

Methods for obtaining the cross section of an ogive in the Rayleigh region
are discussed in Appendix B. Thus, let us first consider the case of the cross
section for very small wavelengths. The coordinate system employed in this
discussion is shown in Figure 4.6-1. We see from Figure 4.6-1 that the ogive
is obtained by rotating an arc of a circle of radius Rlabout a chord located a dis-
tance Rl—a from the center of the circle. This results in an ogive of length L and

half-angle @ which are related to Rland a by the equations

cosa = 1—(a/R1) and L = V R? (Rl—a)2 . (4.6.1)

2 1
Using the cylindrical coordinates (w,f,z) the equation of the surface is
(W+R - af +2* = R}, (4.6.2)

with|z| { L/2and 0K W < 2.
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To Radar

FIG. 4.6-1: THE OGIVE - GRAPHICAL DEFINITION OF THE
COORDINATE SYSTEM

Applying the optics approach defined by equation (3.17) and ignoring all

contributions except that from the tip we find that for 0° < 6 < (90° - ) we have

2, 4
o(6) = 2 tan IS (4.6.3)
16w cos™0 (1 -tan“a tan™g)
with V )t741rR1< ag (n/2) - ¥ A741rR1.
At 0 = 90° - o we find that the cross section is given by
2 . 2 2
¢ (90°-0) = ﬁz:m;t) = a (4.6.4)
T

(4 tan®(a/2))

In the region(90° - Q< 8 < 90°, the application of equation (3-25) yields

the expression
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— 2 _ _Ri-a
o(6) = TR (1 o) ) (4.6.5)

The symmetry of the body is such that we have o (6) = o (7 - 6).

It is of interest to check the behavior of equation (4.6.3) at 6 = 0° for
large half-angle ogives since as the half-angle approaches 90° the body takes
on the shape of a sphere.

Since ﬂRf is the cross section of the sphere (at these small wavelengths),
let us consider the ratio o (OO) / 7rR21 using the expression in equation (4.6. 3).

ogive

Employing the maximum value of « indicated under equation (4.6.3), we find that

o 4
o(0) = |/ A ot l/ A . (4.6.6)
7rR21 AT R, 4R,

Since the limit of x cot(x) is 1 as x approaches zero, it follows that the maximum

value of the nose-on cross section for an ogive predicted by equation (4.6.3) is
2
TR{.
As pointed out in Reference 4, a better approximation for the near nose-on

aspects of thin ogives is given by

a(6) = (2/(-1+cm(kL))2 (f(e))4 )\2/41r ;. (4.6.7)
where
f(e) = [_iIEQ___] sin[(kL/Z) (l—cose)] s
(1 -cos6)
and

Cin(x) = modified cosine integral of argument x.
As an aid to the application of equation (4.6.7) a plot of F' =1 /{ (-1 +Cin(kL))2}
is presented in Figure 4.6-2. This substitution results in equation (4.6.7)

being condensed into the form
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FIG. 4.6-2: THE FUNCTION F IN EQUATION 4.6.8
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| 4.2
o(6) = F'(®e) " X). (4.6.8)
For the nose-on case we again note from Reference 4 that in the
resonance region for thin ogives a better approximation to the cross section

is given by

2. 4
Atanta 4 3 (4.6.9)

e(0°) =
167 2

From the work of Fock (Ref. 14) an estimate can be found for a lower bound of
ka for which the current on the rear has attenuated sufficiently to justify the
neglect of the contribution from the rear. It is assumed that an attenuation of
the current reaching the rear tip to less than one-tenth of the current at the
shadow boundary is required to insure that the front tip contribution dominates.
Using Fock's expressions for the current on the rear of the sphere, the minimum
kR, for which attenuation to one-tenth takes place is plotted against the half-angle
of the ogive in Figure 4.6-3. It is seen that for thin ogives (say a < 30°) kR,
must be greater than 200 in order for the tip contribution to dominate (that is,

in order for equation (4.6.3) to be appropriate at 6 = 00).

4.6.2 The Truncated Ogive

Let us consider an ogive truncated in the manner shown in Figure 4.6-4.
That is, z is limited by the relation
ERR b< Ll . (4.6.10)

Let the radius of the circle cut by this truncation plane z = b from the ogive
have a radius = a'. The application of the optics methods defined by equation

(3.17) indicates that for incidence along the z-axis the cross section is given by

68



kR,

/
104 V/l'///////// ////' /
\[// [ [ 17 J JUJ 7 N7 J1 ] /[ /
NIV ENNITERENITEEEEITYE
[V ]/ S NNVNANE
\<///// [TV AT /l
i, ’
3 \{ / / Region in which the / / / "
10 7 "tip" answer may be 71771 Bound determined
\</ /17 7] used to approximate y—7 by the limit on
\ / / the nose-on cross / / /, imposed by optics
section of an ogive / / / T method
]
z // /]!
10 Iy 7 77777177
7 N 7717
| Bound determined / / / //
from Fock theory / / / //
__ considerations of /
the contribution /
101 from the rear |
/3
/
‘/'
7
// R
/'I
109 //
0 10 20 30 40 50 60 70 80 90

a (in degrees)

FIG. 4.6-3: REGION OF APPLICABILITY OF THE OGIVE TIP

ANSWER FOR NOSE-ON INCIDENCE

69



//\\
y, \
; \
\
/ \
/ \
/ \
\
I \\ -« Q! —»
y/ | ~
Y S N
/ ar| \\
/ | ~
\\
b N
N
N
N
N
N
N
N
N
N
-— a — .
FIG. 4.6-4: THE TRUNCATED OGIVE
¢ = (2" tan” (@) (4.6.11)

where o' is the angle between the z-axis and the ogive tangent plane where the

ogive is truncated. For 0 <6< o' and6< (90° -a) there are two contributions

to the cross section given by

2
)\a'gtan . (g +a') and ka'gtanz' (g -a) (4.6.12)
T S1n T S1n

Foro'< 6 < 90° - o' (a range which exists only, when o' < 450), the second of
these contributions is absent. For the remaining values of 6 (6 < 90°) the ap-
proach used for the entire ogive in Section 4.6.1 is applicable (i.e., equation

4.6.5).
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The expressions given above for the cross section of a truncated ogive
are those obtained by physical optics through the application of equation (3.17).

If the truncation of the ogive results in an opening then this also must be treated.
If the rim is sharp, then the wire loop contribution should be added to the con-
tribution obtained from equat{ons (4.6.11) and (4.6.12); this can be done using
the methods given in Section 4.5. If this truncation leaves a flat plate, then the
methods discussed in Section 4.7 should be used.

Often one is confronted with an ogival shape which is truncated with a
sphere (see Fig. 4.6-5). The approach one can use for this body is similar to
that used for the complete ogive and in fact results in the upper bound for the
"'creeping wave'' contribution from the rear of the ogive given in equation (4.6.9).

The sphere cross section can be decomposed into a geometrical optics
term plus a diffraction term; the optics term comes from the region of specular
reflection and the diffraction term from the effects of the currents induced in
the shadow region and near the shadow boundary, This consideration leads us
to attempt to approximate the ''contribution from the rear" for a shape like that
shown in Figure 4.6-5 by using known sphere results. Reading values of the
cross section from the exact sphere curve (see Fig. 4.2-2) we obtain the following

estimate for this rear contribution

-5
Trear = 1,03 (ka) /2

T a2

(4.6.13)

where the a is as shown in Figure 4.6-5. Experience has shown this to be a
good estimate for values of ka from 1 up to about 15. For larger values of ka

let us employ the physical optics expression for the cross section of a Sphere.
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Although physical optics does not accurately predict the location of the
relative maxima and minima it does predict with reasonable accuracy the
amplitude of these relative maxima. The sphere cross section in the physical
optics region is given by equation (4.2.5). This expression takes on a maximum

2

value whenever 2ka = (4n+3)1r/ 2. With the approximaﬁon 7a“ used for the con-

tribution from the first Fresnel zone, we have

FIG. 4.6-5: AN OGIVE CAPPED BY A SPHERE

(VE[+ VE_)Z ~ 7a° (1+ 1 )2 (4.6.14)

from which is obtained

2

c o x g (4.6.15)
rear 4(ka)
2
A

~ = . .6.16

167 (4.6.16)



A maximum value for the contribution from the rear can be obtained by

assuming that o = a2 + o in equation (4.2.5) and maximizing the right

rear
hand side of the equation; this results in the a)/2 estimate of equation (4.6.9).
As an aid in computation a plot of equation (4.6.13) is given below in
Figure 4.6-6. A much more detailed computation of this "contribution from
the rear' was made by V.E. Pound of the Cornell Aeronautical Laboratory,

Incorporated (in C.A. L. Internal Memorandum No. 830-141). The results of

Pound's computation is also shown in Figure 4.6-6.

4.7 The Flat Plate

In this consideration of a flat plate let us assume that the plate is located
in the x-y plane with the polar angles defining the direction of incidence as

indicated in Figure 4.2-1.

4.7.1 The Rectangular Flat Plate

Employing the physical optics approach of equation (3. 17) we find that
for a rectangular flat plate 2a by 2b (the 2a dimension along the x-axis and the

2b dimension along the y-axis) we have for 6 = 0°

2.2
¢ = O4ma b 4.7.1)
AZ
In the y-z plane (§ = 90° or 270°) there are two components each given by
2
co=—3— . (4.7.2)
7 sin” 0
In the x-z plane (f = 0° or 1800) there are two components each given by
2
o=, (4.7.3)
7w sin” 0
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FIG. 4.6-6: RADAR CROSS SECTION CONTRIBUTION FROM THE REAR

OF A SPHERE OF RADIUS a
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For other aspects there are four components each given by

2 2
. = X" cos“6 . (4.7.4)

6473 sin"9 sin2¢ cos2¢

4.7.2 The Circular Flat Plate

The circular flat plate or disc cross section formula is

2
2 .
co= T2 |g ( 4ma sing ) ) 4.7.5)
tan” 6 A

where a = the radius of the disc and Jy(x) is the Bessel function of the first

kind. When the asymptotic formula for the Bessel function is used (ka sin §3>1)

it is found that the scattering is due to two components with the magnitudes

given by a) . (4.7.6)
87 sinf tan?6

4.7.3 The General Flat Plate

With the flat plate located in the xy-plane we have for normal

incidence (8 = 0°)

2
= 4rd” (4.7.7)
2 |
where A is the area of the plate. For non-normal incidence we have by
extending the results obtained for the circular disc that there is a contribution
to the cross section from each point on the boundary of the plate at which the
boundary is perpendicular to the direction of incidence. If a is the radius of

curvature of the boundary at this point (and a is finite) then the contribution is

as given in equation (4.7.6), If a is infinite then the plate in question would be,
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at least in part, rectangular and the approach of Section 4.7.1 would apply.

In the case of an elliptical disc defined by the equation

X 2 N 2
(?) +<b> =1 4.7.8)
we find for 6 > 0°

2.2 '
¢ = Aa’ b ) 4.7.9)

81 sinf tanZG(aZCOSZQ)-FbZ sinzsl)):m2

4.8 The Tapered Wedge

We shall postpone the consideration of the tapered wedge (shown in
Figure 4.8-1) for the present; it is discussed in Appendix A in considerable
detail for general polarizations (see Section 6.6). We will remark, however,
that over a wide range of aspects the return is dominated by the sharp edge of
the tapered wedge, which may be treated as a thin wire. It will be observed

that for

(1/tan @) < tand cosp

the tapered wedge looks like a cylinder for short wavelengths.
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FIG. 4.8-1: THE TAPERED WEDGE
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4.9 Corner Reflectors and Multiple Reflectors

The subject of corner reflectors and multiple reflectors in general has
been discussed in a previous University of Michigan Report. We are including
the material of that report in its entirety as Appendix C to thisreport and thus
the reader is referred to Appendix C for the discussion of corner reflectors.*
We will, however, in the present section make a few comments on double
reflections.

The methods of geometric optics are applied in this analysis of multiple
reflections and the case of multiple scattering by N bodies is discussed in Ap-
pendix C. Here we restrict our attention to the case of N = 2, Approximating
each pair of aircraft components in the vicinity of the reflecting points by the

surfaces
2 2

+ = -z (i = 1and?2) (4.9.1)
2pj1 2Pip

Xj

Where the z; axes are oriented in the direction of the normals to the surfaces

A A
(thus iz . iz = 0**) and

1 2
AA TR SN A A 0
i, i, =1;1i_ i =i +i =1 -i =
X1 X X Y1 Y1 X yi ¥ ?

the material of Appendix C indicates that the double-reflection contribution to

the cross section is given by

Additional comments on corner reflectors will be found in Appendix D.
* K
In order for the reflected ray to return in the direction from which it came it

is necessary that the normals to the two surfaces at the reflecting points be
perpendicular,
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(4.9.2)
T P13 P12 P21 P22

b2 sin(Zz)[ sin(2&)+ _pbll_ cost + %U-sin C] [Z-l-—ebl—2 cost-f-—%i sinZ;]

0'—

The geometry of the situation as well as graphical defninitions of the parameters

¢ and b are given in Figure 4.9-1.

FIG. 4.9-1: DOUBLE REFLECTIONS (showing one of the two rays;
the other ray follows the reverse path)

In the cases corresponding to L= 0° or 900, one body is in the shadow
of the other, or a triple reflection is involved. For these reasons it is thought
to be desirable to limit the application of equation (4. 9.2) to the range 15°< &

< 750. With this restriction we see that the double-reflection contribution is

bounded by the relation
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2T P11 P12 P21 P
- < 11 P12 P21 P22 ) (4.9.3)

b2

This inequality is extremely useful in determining the question of whether
double reflections need be considered in the problem of estimating the cross
section of a given aircraft. Often one is presented with a situation in which
the b is zero. The above expression can be made to yield an estimate of the
cross section in such a case if one of the p's is infinite. For example suppose

that b = 0 and py; = o0 . Equation (4.9.2) can be rewritten in the form

(4.9.4)
T P11 P12 P21

sin(Z&')[b sin(2§) + pyy cosf + pyy sint] [2 52_2 + :;-’-12 cost +sinC]
22

o =

from which it follows that
) T P11 P12 Pa1
limo = . (4.9.5)
b —»0 sinf sin(zg‘)[ P2 cosl + pyy sinZ]
P22 —s00

4,10 The Paraboloid

For a paraboloid defined by the equation <+ y2 = - 4pz and with the

direction to the radar defined as in Figure 4.2-1 the methods of geometric

_ 167 2
o) = (1+cos(20)iz

2 4
= 47psec0

optics yield

(4.10.1)
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The above gives the value of the cross section of the infinite paraboloid. In
using a paraboloid to model the nose section of a fuselage or a wing tank one,of
course,is dealing with a truncated or smoothed paraboloid and care must be
taken to add the contributions from the truncated rear of the paraboloid.

It is shown in Reference 18 (and in Reference 15) that equation (4.10. 1)
yields the exact cross section for incidence along the axis of symmetry; that is,

for 6 = 0°.

4.11 Summary

In this section we have presented the methods of approach to be used in
determining the radar cross sections of the simple shapes used in modeling the
components of an aircraft or a missile. As stated earlier our knowledge of
radar cross sections, even for simple shapes, is far from being complete; the
state of the art is such that good approximations are available in the optics region
and in the Rayleigh region but the knowledge of the behavior of the cross section
of a given shape in the resonance region is, by comparison, quite meager. Thus,
it is not surprising that from time to time one will be confronted with a complex
shape for which the methods and formulas presented here are not completely
adequate. In such a case it is often possible to obtain the necessary information
from a judicious analysis of existing experimental data on shapes of ''similar"
size and shape. That is, apply the methods given here to the study of the ''ex-
perimental configuration' and by working backwards obtain an estimate of the

contribution of the simple shape component of the ''experimental configuration'’
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We shall close this discussion of simple shape cross sections in the
optics region (and that has been the region of primary concern in this section)
with a brief examination of the peak width method of approach.

To obtain an estimate of peak width (i.e. the aspects gt which the cross
section is only 1/2, 1/10, 1/100, ete. of its value at the "normal' aspect) we
require that the average cross section for non-normal incidence be (1/N) times
the cross section at normal incidence, solve the resulting equation for the aspect
angle and thus obtain solutions 6y at which the cross section is only (1/ N)th of
the value at the peak.

This situation arises when the body in question has one principal radius
of curvature which is infinite; the bodies discussed in this section having this
property are the Cone, the Cylinder, the Thin Wire, the Torus, the Wire Loop,
and the Flat Plate. The thin wire situation is discussed in Section 4.1 and the
case of the wire loop in Section 4.5 (equations 4.5.14 and 4.5. 15); here we shall
restrict our attention to the cone, the cylinder, the torus, and the circular flat
plate.

The Cylinder: The cross section of an elliptic cylinder at normal aspect (8 = 900)
is given by equation (4.4.1) and the cross section contribution of each end of the
cylinder is given by equation (4.4.2). Thus, if the sum of the two non-normal-

incidence cross sections is to be (1/N)th of the cross section at § = 90°, we have

2 .
27 1.2 a2 b2 — N A2 Db sm@N

Ma? cos2¢+b2 sin2§25)3/E

. (4.11.1)

3/2
8 coszeN (a’cos®p +b’sin’f) /
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This expression reduces to

(sinfly _ 8127

— , (4.11.2)
cos’ Ox N2

and for small )\(ON close to 90°) this is approximately equivalent to
cosdy = (N/2) (\27L)? . (4.11.3)
From the above we obtain

b = (r/2)+ (N/2"* (/2 71) (4.11.4)

as the measure of the peak width; i.e., the angles at which the cross section is
down by a factor of N from its value at 6 = 90°.

It should be noted that the above assumes that both ends of the cylinder
are sharply terminated. If one end is smoothly faired into another body (such as
a sphere or an ogive) then equation (4.11.1) would have to be appropriately
modified.

The Truncated Cone: The cross section at normal aspect (defined by eq. 4. 3.12)

is given by equation (4.3.11) and the cross section contributions at the non-normal
aspects are given by equation (4.3. 13). If we assume that the truncated cone is
sharply terminated at each end, then the equation we obtain for the determination

of the GN is
3/2 3/2 2 4 3
8m(Ly -L; )tan A _ NML;+Ly) "M tana

9)\772 cos>8 | 8 sineN(sin2¢+ nzcoszjb)l/2

(4.11.5)
sinGN coseN tan o

(sin?@ +9 2cos*P)1/2 n
sinf); tana (sin’f + nzcos2¢)1/2+ 7 cosOy
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Making use of the expression for 6 )| given in equation (4.3.12), we find that

equation (4.11.5) may be rewritten in the form

(4.11.6)
641r2(L23/2-L3/2)2 n?
! ( n2 +tan’a (sin2¢ +9° cos2¢)) =
ON X (L, + Ly) tan*(9 - 6))

from which we obtain the measure of the peak width

SIAVNL, +L) 2 -1/2

6, -6 = ( n +tan01(Sin2¢+n2°052¢))
N 1 8w (L23/2-L13/2)

(4.11.7)

For the case of a circular cone (1 = 1) we have

3\ Y N(L; 1y cose |
87T(L2 /Z _Ll / )

The Torus: The cross section at normal incidence (6 = 0°) for the torus is
given by equation (4.5.2) and the non-normal incidence contributions are given

by equations (4.5.3) and (4.5.4). Thus to determine .. we have

N
87° bal
=T 2% = N(2ba 7/ sinfy) . (4.11.9)
From which we readily obtain (for small )
lon| = NOyarta) (4.11.10)

The Circular Flat Plate;: To determine BN for a circular flat plate (for small ))

we employ the expressions given in Section 4.7 to obtain

4 (ma? 2 _ 2N . 2t @.11.11)
X 8m sinfy tan? O (a2 )3/2 ’ o
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from which we obtain

I eN\ = Y&z yra) . (4.11.12)

The peak width results for the cylinder, the torus, and the circular
flat plate are shown graphically in Figures 4.11-1 through 4.11-3 (where the
magnitude of (GN - 0) is plotted against N for four different values of the ratio
of wavelength-to-body dimension. The material of these figures will make it
possible to obtain a good estimate of the peak width for almost all cylinders,
torii, and circular flat plates as long as the wavelength is no greater than

0.3 times the critical body dimension.



ON - gLI (in degrees)

FIG. 4.11-1: PEAK WIDTHS FOR THE CYLINDER
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FIG. 4.11-2: PEAK WIDTHS FOR A TORUS
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FIG. 4.11-3: PEAK WIDTHS FOR THE CIRCULAR FLAT PLATE
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BISTATIC RADAR CROSS SECTIONS

5.1 Bistatic Cross Sections For Angles of Separation Less Than 180°

Bistatic cross sections for small wavelengths have been discussed in
considerable detail in Reference 15 where the cross sections of several simple
shapes are presented. There is, however, a very simple relationship which
exists between the monostatic and bistatic cross sections that permits the
determination of the bistatic cross section in terms of the monostatic results
presented elsewhere in this report. Thus, we shall direct our attention to
this relationship which we shall present in the form of a theorem:

IN THE LIMIT OF VANISHING WAVELENGTH THE BISTATIC

CROSS SECTION FOR TRANSMITTER DIRECTION R AND RE-

CEIVER DIRECTION ﬁo IS EQUAL TO THE MONOSTATIC CROSS

SECTION FOR THE TRANSMITTER-RECEIVER DIRECTION ﬁ+ﬁo

A
WITH k = ﬁo FOR BODIES WHICH ARE SUFFICIENTLY SMOOTH

PROOF: From page 12 of Reference 15 we have the cross section as a

function of receiver and transmitter positions given by

o =4 [IFXIZ + le|2 + le'z] (5.1.1)
where

'§=i15—[(ﬁ NT-@ .M] 5.1.2)
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with T = S: i exp [+ik?' . (ﬁ‘o +/1\<)] ds (5.1.3)
S

i = V-1

k = 2x/), (A=the wavelength),
ﬁo = unit vector directed from the receiver to the origin,
Q -

= unit vector defining the incident magnetic field direction,
S' = illuminated region of the body,

a = unit outward normal to the surface,

r = radius vector from origin to a point on the surface of the
reflecting body, and

A
k = unit vector directed from the transmitter to the origin.

Let the origin of a rectangular coordinate system be located inside
the reflecting surface. Since the body is not specified in what follows there
will be no loss in generality if the transmitter in the bistatic case be placed
on the z-axis of the coordinate systeni and the receiver be restricted to lie
in the y-z plane. Thus, the geometry we shall employ in the bistatic case

is defined by

. A A

ﬁo = (sin 26) 1y - (cos26) 1
A

k= -1, , and (5.1.4)

4

() = cos f, /i\x+ sin¢t?y ;

2

and in the corresponding monostatic case by

89



A . A A

n, = (sin ) 1y - (cos @) i,

A

k =(sme)?y - (cos6) T , and (5.1.5)
A _

i = cos f ix+sin¢t cose/i\y+sin¢t sin()’i\z .

This geometry is illustrated in Figure 5.1-1. Also, 6 is restricted to be less

than 90°%; ie. 0 +% # 0.

Z
| (n0+k) k
| 6
no : /‘N
| |
| |
I 20
| |
I |
[ R S -y
X

FIG. 5.1-1: BISTATIC GEOMETRY USED IN PROOF OF RELATIONSHIP
BETWEEN BISTATIC AND MONOSTATIC
CROSS SECTIONS
First let us consider the vector . We have, in the limit of vanishing
wavelength (Ref. 15, p. 16)
, A
- @ +k)

3 Ttk
l’ﬁo+’1\<|

jexp [-lrik-f“‘ (ﬁo+?<)} ds , (5.1.6)
S!

where the integral is evaluated by stationary phase. Thus, in the monostatic
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case we have

-~ A -
f=p '( exp[ikr'. (Zﬁ)]ds, (5.1.7)
S! '
where

A
1/3 = (sin@) /i\y -(cos ) i,

and in the bistatic case we have

i’

= —6jexp[—ikf.(2f)‘cose)] ds. (5.1.8)
Sl

Thus, evaluating these integrals by stationary phase (page 14), Ref. 15 we

obtain expressions of the form:

in the monostatic case

i =[(Asin9) /i\y - (Acos®) /i\z:’exp(ikC), (5.1.9)

and in the bistatic case

f{(Atane)’i‘ - (A) f\z:] exp (ik C cos 6). (5.1.10)
y

Therefore, in the monostatic case under consideration we have

= . ik ikC, & A A, g
F = oy [(Ae ) (1, cos 16,54-1y sinf), cos 6+1, sinf, sme)} (5.1.11)

from which it follows that

|Fxl2 +|Fy| 2+ IFz|2 =|kA/21r,2. (5.1.12)

In the bistatic case under consideration we have
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= ik ikCcos6 , , A A ) ‘ A A

F Tor {'-Ae (sinfl, s1n.26)(1y tanf -1,) - (tan sin26 +cos26) (i, cos¢5t+1y sinfl;)
(5.1.13)

Thus,

2 9 2 2 . 2 2 .2 2 c 24 .2
‘FXI + ‘Fy| +|FZ‘ -\kA/ 21rl ‘:(tane 8in26+c0s26 J'cos (), +sin’p, cos20+sin"f, sin 26]
2
:|kA/21r| : (5.1.14)
From the definition of ¢ it follows that for both cases under consideration
_ 2
o = |kA| /T (5.1.15)

and thus if the body is smooth the bistatic cross section corresponding to a
transmitter direction, i\{, and a receiver direction, ﬁo, is equal to the mono-
static cross section corresponding to the transmitter-receiver direction, 1’1\0+ﬁ,
in the limit of vanishing wavelength.

Thus, if the wavelength is small in comparison with the dimensions of
the body, we can determine the bistatic cross section by applying the above
theorem together with the monostatic results of Section 4. ¥

For the thin wire an approximation procedure based upon the material

of References 9, 11, and 12 is as follows:

If R(9) is the angular factor predicted by Terman's graphs (Ref. 10),

%
Recent experimental work (Ref. 16) has indicated that this procedure will give

good results even for comparatively large wavelengths, wavelength to body
dimensions that one would find in considering the B-47 aircraft at 250 Mec.

92



then we have in the monostatic case
- 4 2
7(6,,0,) = K[R(e)] X (5.1.16)

where by o (0 ,Gt) we mean that 6, denotes the direction to the receiver and ﬂt
r

the direction to the transmitter, and K is independent of aspect and the wave-

length depending only on the wire parameters. In the bistatic case we would

have

(6,6, = K[R(er)] 2 [R(et)]2 PLE (5.1.17)

Equations (5.1.16) and (5.1.17) imply that

v (6y,6,) = \/cr(er,er)xcr(et, o) (5.1.18)

i.e. that the bistatic cross section is equal to the square root of the product of the
two corresponding monostatic cross sections. A study of Weber's work (Ref. 12)
indicates that this approach is appropriate for the case of the half-wavelength wire.
It is important to note that in the bistatic case the reciprocity theorem
permits the determination of complete patterns with a reduction in the computa-
tional effort. The theorem states that the effective cross section is unchanged

if the positions of the transmitter and receiver are interchanged.

0.2 Bistatic Cross Sections For An Angle of Separation of 180° - Forward Scattering

Here we shall concentrate on the case of an angle of separation of 180°,
the case in which ﬁo +ﬁ = 0 (see Figure 5.1-1). This case, as will be recalled,

is not covered by the theorem of Section 5.1.
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This case is of considerable importance and warrants special attention
for two reasons. One is due to its nature which we will find is considerably
different than the type of bistatic scattering discussed in the preceding section.
rIl‘he other is due to what might be termed a misuse of the term. This type of
scattering phenomena is only observed for an angle of separation, B, such
that B = 180°. (Experimentally, of course, the phenomena of forward scat-
tering will be observed over an interval around B = 1800, however this is a

small interval.)

¢ D Transmitter

Receiver

Scattering Body

______ .,

FIG. 5.2-1: GEOMETRY FOR ANALYSIS OF BISTATIC CASE

For the geometry shown in Figure 5.2-1 we have from equation (3.2.6)

of Reference 15 that the cross section in the bistatic case is given by

o8 =4r|F-d|” (5.2.1)

where

fiﬂ—‘-[(ﬁ AT-@ D 3]
27
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with

8 = direction of receiver polarization ,

4 = direction of incident magnetic field,

k = 2r/X,

ﬁo = direction from receiver to the origin ,

f{ = direction from transmitter to the origin,

t - 5’1’{ exp [ ik e @, +R)]as,
S

S' = illuminated portion of the body,

T' = radius vector from the origin to any point on the surface of the
scattering body, and
f = the unitoutward normal to the surface.

If in our discussion we do not specify the body geometry of the scatterer there
will be no loss in generality in our consideration of this optics case if we
restrict the receiver to lie in the yz-plane and the transmitter to be located
on the z-axis (as shown in Figure 5.2-1).
With the above we may rewrite equation (5.2.1) in the form
c(B)=i):’2— -2 G-d-B.hE-d]° (5.2.2)

Restricting our attention to the case of 8 = 1800, we have

A
a

>

A N A N . N\
o =iz » k=-i , (cos {bt) i+ (sin ¢t) L, =

A A . I
and  d = cos .1 +sin g. iy
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from which we obtain upon substitution into equation (5.2.2)

2
(5.2.3)

= _4_7!.— i i
o (m) . (cos B, cos Py +sinP; sinf.) [ IS' n, dS]

The integral in equation (5.2.3) is merely the projected area in the xy-plane
and if we represent this area by A we obtain

47 A” cos’ (p.-9,)

)t2

o (w) =

(5.2.4)

If the polarizations are chosen so as to obtain the maximum return then this

expression reduces to
4T A?
X

o (m) = (5.2.5)

The case of forward scattering by a sharp edge can be handled in
terms of the material of Reference 17; the ratio of l ﬁs' tol ﬁll is displayed
graphically in Figure 5.2-2.

The subject of forward scattering is discussed in more detail in Appendix

5.3 Bistatic Cross Sections - Illustrative Examples

Several examples of bistatic cross sections for simple shapes can be
found in References 18 and 15; here, to serve as an illustration of the applica-
tion of the material of Section 5.1 and also to give the reader a feeling for the
relative magnitudes of monostatic and bistatic cross sections, we shall consider

the following simple situation.
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|H/H

pa— Observation
Point

1.2

inc ‘

1.0

Direction of
Incidence

0.8

0.6

0.4

0.2

0

-8 -6 -4 -2 0 2 4 6
J2kr  sin( €/2)
(1) Field is independent of @ for 6 > f o
(2) IH/Hinc‘ = (7r)"1/ 2.‘1«‘( - ﬁE‘ sin (6/2)‘ where F (x) = §( exp (-iX ) du

(3) This neglects an edge wave which is effectively uniform over the values
of € considered and decreases with increasing distance from the edge.

(4) Except for the approximation (3), the result is exact for the half-
plane and within 1% for wedges of angle p < 15°.

FIG. 5.2-2: {H/ Hincl AS A FUNCTION OF ANGLE FROM SHADOW
EDGE FOR A WEDGE

97



Let a transmitter (and receiver) be located at the origin of a rectan-
gular coordinate system and let a receiver be located at the point (0, 2d, 0).
Let a body in the shape of a 10:1 prolate spheroid move "between' these
two points at an altitude equal to Z, following a flight path defined by the
vector ¥ = (cos f) fx + (sinf) /i‘y. This flight path will cross the yz-plane
at the point (0, y, z 0)'with 0K y < 2d. This geometry is shown in Figure

5.3-1.

| .
. Recege}r;
(0, 2d, 0)

Transmitter

FIG. 5.3-1: GEOMETRY FOR BISTATIC ILLUSTRATIONS

In these examples we will assume that the vector 9 lies along the
major axis of the spheroid. We shall consider the cross sections as a
function of the altitude Zo the cross-over-point y, and the flight direction
f. In each case the monostatic cross section (receiver at origin) and the

bistatic cross section corresponding to the transmitter at the origin and

98



the receiver at the point (0, 2d, 0) is determined. Specifically, we shall
consider the following three cases:

(1) z,/d =0.04 and p =0; y =0, d, and 2d; -0.4 { x/d g 0.4.

S

(2) x/d = -0.2 and p =0; z,/d =.12; 0¢ yg 2d.

(3) x =0, zo/d = 0.2.

In each case we make use of the theorem of Section 5.1 to determine
the cross sections for the bistatic case from the material of Section 4 which
of course also yields the monostatic data. The results obtained are shown
in Figures 5.3-2 through 5.3-4 for the above three cases respectively.

We see from Figure 5.3-2 that for flight paths which are normal to
the base line the bistatic return is appreciably larger than the monostatic
if the object passes over the transmitter, there is little or no difference in
the two returns if the flight path is over the bistatic receiver, and that if
the flight path is over the midpoint of the base line then the monostatic
return tends to be the larger.

From Figure 5.3-3 we note that for detection at a given distance
from the base line the bistatic return is larger if the path is over the
transmitter, the monostatic is considerably larger for flight paths over the
midpoint of the base line, and that for other parallel flight paths the mono-
static return tends to be slightly larger.

Figure 5.3-4 gives information about the relative magnitudes of the

bistatic and monostatic returns at the moment the object passes over the
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base line; we see from the figure that if the object passes over the base line
with § = 0 or at y/d = 0.5 then the two cross sections are equal. If y/d is
less than 1/2 then the monostatic return is either the same or greater than
the bistatic. For y/d > 0.5 and § # O the bistatic return is larger, and if
y/d is close to one then the bistatic return can be considerably larger.

The situation becomes more complex if the body in question is not of
this simple form; for example, if the prolate spheroid discussed above should
have wing, rudder, and stabilizer surfaces attached, then the comparisons
would be somewhat different. For most of the aspects one would consider
(assuming a similar flight path) the contributions from the fuselage (the
spheroid) would dominate, but there would be aspects at which peaks in the
return would result due to contributions from the edges of the wing surfaces.

In comparing the radar cross section in the bistatic case with a
corresponding monostatic case it is important to note that shadowing effects
can play a dominant role. The theorem of Section 5.1 might lead one to
think that the relationship given there for simple shapes would also hold
for cross section studies on such shapes as aircraft. If the wavelength is
sufficiently small and if none of the contributions are shadowed out, then
the theorem of Section 5.1 would be applicable to the complex body problem.
However, it will often happen that components which are dominant for the
monostatic case will be completely shadowed in the bistatic case and

conversely. This situation is illustrated in Figures 5.3-5 and 5. 3-6.
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Bistatic - (1) and (3)
Monostatic -(2) and (3)

10

| Bistatic - (2)
Monostatic - (1)

10

—

-0.20 -0.16 -0.12 -.08 -.04

0 .04 .08 .12 .16 0.20
x/ 2d

FIG. 5.3-2: COMPARISON BETWEEN BISTATIC AND MONOSTATIC CROSS

SECTIONS OF A TEN TO ONE (c/b =10) PROLATE SPHEROID FOR THREE

FLIGHT PATHS NORMAL TO LINE JOINING TRANSMITTER AND RECEIVER
(Altitude = d/25)
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FIG. 5.3-3: COMPARISON BETWEEN BISTATIC AND MONOSTATIC CROSS SECTION
OF A TEN TO ONE (c/b =10) PROLATE SPHEROID FOR LOCATIONS RESTRICTED
TO AN ALTITUDE EQUAL TO 0.06 TIMES THE DISTANCE BETWEEN TRANSMITTER
AND RECEIVER AND AT A FIXED DISTANCE FROM THE "CROSS OVER" LINE
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Note: —Z—M—=11f¢=0 ory/d=0.5
B spheroid (0, y, .1d)
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FIG. 5.3-4: COMPARISON OF BISTATIC AND MONOSTATIC CROSS SECTIONS OF A
TEN TO ONE (¢ /b = 10) PROLATE SPHEROID FOR LOCATIONS ABOVE THE LINE
JOINING THE TRANSMITTER AND RECEIVER AT AN ALTITUDE OF 0.1 d WHERE
THE DISTANCE BETWEEN TRANSMITTER AND RECEIVER EQUALS 2d AS A FUNC-
TION OF THE ""CROSS OVER POINT" AND THE ASPECT
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In Figure 5.3-5 we show the case in which shadowing leads to a larger
bistatic return than the monostatic return. We see from the Figure that in the
bistatic case reflections are received from both the fuselage and the wing tank
while in the monostatic case the fuselage is in the shadow of the wing tank.

Figure 5.3-6 displays the type of situation which will lead to a much
larger monostatic cross section than the bistatic cross section. We see from
the figure that for the nose-on case (monostatic) reflections will be received
from the fuselage, all the engines, and all of the wing tanks. In the bistatic
case illustrated; however, only the return from the fuselage is received. The
energy which is incident upon the wing engines and tanks on the left is re-
flected away from the bistatic receiver by the fuselage and the fuselage
shields the wing surfaces on the right so that none of the incident energy
reaches these surfaces. Thus we see that, in this case, if the bistatic angle
is much larger than 40° (it is about 90° in Figure 5.3-6) we would expect
shadowing to greatly reduce the bistatic return.

These two Figures (5.3-5 and 5.3-6) indicate why one must be careful
in applying the theorem of Section 5.1 to a problem involving the determina-

tion of the bistatic cross section of a complex shape.
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6

THE COMBINATION OF THE COMPONENT CROSS SECTIONS

Having completed the first two steps of the theoretical method, one
is then presented with the problem of properly combining these component
cross sections to obtain the estimate of the cross section of the complex
body itself. As a result of the first two steps we have, for any given com-
bination of aspect angle, wavelength, and polarization, N components for

which cross sections have been computed, i.e., we have the set of values

dl, 0-2’ 0-3’ e« o o o o o O'N-

In considering the proper manner in which these component cross sections
should be combined we first must consider the question of shadowing effects.
When one body is in the shadow of another, the effect that the shadow
has on the scattering properties depends upon the parts of the body which
are in shadow. In general, the cross section of a body is mainly determined
by the returns from those parts of the body giving specular reflections and/ or
from the discontinuities on the body surface. Thus, if these portions of the
body are in shadow, then that component will not contribute significantly to
the cross section of the complex of simple shapes making up the aircraft or
missile under study. Conversely, if these critical portions of the body are
not in shadow, then that component will contribute to the cross section of

the aircraft (or missile) just as if there were no shadowing at all.
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Having taken shadowing effects into account, we then have N scatterers
to consider and thus N values of cross section to consider. There are two
methods of combination which we shall consider; both of them have their
limitations and both have been found to yield results which are in good agree-
ment with experimental results. One of these methods of combination involves
the consideration of the fact that these N scatterers are located at different
distances from the radar and involves the attempt to determine the relative
phase angles between the returns from these N scatterers. This approach
leads to the following expression for the cross section of the entire body; we
denote this expression for the cross section by op kcross section by relative

phase):
N

)
ot | 3 o e,

j=1

(6.1)

where cj = the cross section of the th— component and }Dj = the relative phase
angle associated with the jt—h- component. The magnitudes of the ﬂj are de-
termined by the expression shown in Figure 6-1. Thus, in this approach it
is necessary to determine estimates of many additional distances from the
aircraft drawings. As can readily be seen from the expression for the pj ,
their values are directly dependent upon the ratios dj /X, and it is obvious
that for a large aircraft at small wavelengths it might be impossible to
measure the d] from the aircraft drawings with sufficient precision. In addi-

tion to this difficulty in measuring the dj (and thus the pj), it is to be noted
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FIG. 6-1: DETERMINATION OF THE RELATIVE PHASE ANGLES

that an aircraft vibrates to some extent while in flight and this vibration
could suffice, in many cases, to effectively change the values of the § j*
Also, as pointed out in Section I in connection with the question of trying
to obtain extreme precision in theoretical values for the radar cross sec-
tions of aircraft or missiles, minor variations between two aircraft of
the same model designation might suffice to effectively change some of
the ¢j. All of these facts tend to discourage the use of this method of
combination.

As an alternative to this method of combination we have what we

refer to as the random phase method of combination which yields the
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"average" radar cross section. This method is based upon the assumption
that the many different ﬂj are randomly distributed between 0 and 27 (after
each pj has been placed in its equivalently smallest form using the fact

that exp(i ﬂj) = exp (i pj - 2im) ); then upon averaging over the }Dj we obtain

as our expression for the "average" cross section

o' = ZA o5 (6.2)
i=

Associated with this method of approach we can estimate the amount of
possible deviation from the average cross section, o', by employing the
RMS spread. This measure of the possible variation in cross section due

to relative phase effects leads to the following bounds on the cross section
o't 8 (6.3)

where
2 N 2 N 9
S =(Zo_) - Z g .
) - J

j=1 j=1
The random phase method which uses the average cross section

section and the RMS spread is designed to give estimates of the amount by
which the cross section might deviate from the average value due to phase

effects. On the other hand, the relative phase method of combination is

designed as a means of estimating not only the amount by which the cross
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section deviates from the average value but also the location (in aspect or
wavelength) of the relative peaks and nulls.

Which of these two methods of combination to be chosen for a
particular problem would depend upon the purpose of the calculation. If
one were interested in finding an order-of-magnitude estimate of the cross
section as a function of aspect for some fixed wavelength or as a function
of wavelength at some fixed aspect, then the random phase method should
be adequate. If, on the other hand, one should happen to be interested in
determining the manner in which the cross section might vary (due to phase
changes) with aspect at a given wavelength or with wavelength at a fixed
aspect, then the relative phase method can provide information of considerable
interest. It is true that the precise determination of the [bj is often impos-
sible andin such a case one could not place much confidence in the results
obtained. However, even in this case one can obtain some idea of how the
ﬂj will change with aspect (at a fixed wavelength) or wavelength (at a fixed
aspect) and thus, if one is only interested in determining the type of oscil-
lation in cross section to be expected, the relative phase method can yield
useful data even though precision is lacking in the determination of the ﬂj.
Of course, if the ratios, dj/ A, can be determined with sufficient accuracy
so that the ﬁj were known to, say, two decimal places, then the relative

phase method will yield fairly good estimates as to the location of the relative

peaks and nulls.
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The random phase method of combination has been applied in the past
to the determination of the radar cross sections of many different aircraft
and missiles and the results have been found to be in good agreement with
experimental data (the two sets of results, theory and experiment, agreeing
in almost all cases to within 2 to 10 db with differences greater than 6 db
occurring, for the most part, only in the vicinity of an experimentally de-
termined peak or null - a situation which can usually be traced to an extreme
type of phase effect).

The basic premise that the cross section of an aircraft (or missile)
can be estimated by (1) breaking up the aircraft into its components, (2)
determining the radar cross sections of the components, and (3) adding the
component cross sections to obtain the cross section of the entire body, has
been checked out experimentally. The Air Force Cambridge Research Center
applied this process on a missile shape (about three wavelengths long and
1.25 wavelengths thick). The cross section of the entire missile was first
determined experimentally, then the cross sections of the components were
determined (again by experiment); it was found that the sum of the component
cross sections (upon taking shadowing effects into account) was approximately
the same as the cross section of the entire body.

To obtain some idea of how the relative magnitudes of the O'j effect
the estimates of oscillation due to phase changes either through the use of

the random phase method or the relative phase method let us give a little
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attention to the cases N =2, 3, 4. In doing this let us assume that the cj

have been ordered according to magnitude as follows:

0 1< Ty
o< C, L0y OF
01< 02\<03g04

with the cross sections normalized so that 01 =1 mz.

For the case of N =2 we have considered the cases of 02 =1, 1.5,
2, 4, and 9 m?. The average cross sections, the RMS spread, the relative
phase maximums, and the relative phase minimums have been computed; the
results obtained are shown in Table 6.1. We see from the table that the
magnitude of the possible variation from the average is adequately predicted
by the RMS spread in all cases if 02/ cl > 4 and is not adequate in other
cases only if the ]bj are such that cos(ﬁ)2 - p,) is negative and close to -1.

For the N =3 case we have examined a variety of different values
of the cj and in addition to the quantities determined for the N =2 case we
have also determined the relative pha.se minimum for the special case of
cos (p o " p3) = 0. These results are shown in Table 6.2. An examination
of this data indicates that the maximum is adequately predicted through the
use of the RMS spread and that the minimum values are also adequately
predicted by the RMS spread if the phase angles ﬂz and f 5 are such that
cos (f, - ﬂ3) is non-negative.

The N = 4 case was considered in a similar manner and the results

obtained are shown in Table 6.3; in this case only the relative phase minimums
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were calculated in the relative phase consideration of the problem since it has

already been observed in the N = 3 case that the greatest differences in the

two sets of estimates occur in the vicinity of relative nulls.

o 0q The RMS Spread o' The Relative-Phase Spread
1 1 0.59 - 3.4 2 0 - 4.0
1 1.5 0.77 - 4.2 2.5 0.05 - 4.9
1 2 1.0 - 5.0 3 0.17 - 5.8
1 4 2.2 - 1,8 5 1.0 - 9.0
1 9 5.8 -14.2 10 4,0 -16.0

TABLE 6.1: RELATIVE PHASE AND RANDOM PHASE FOR N =2 (¢ in m?)

(¢ in m?)
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°1 73 The RMS Spread o' | The Relative-Phase | Relative Phase
Spread Min. cos(pz-—p3)=0
1 1 0.55 - b5.45 3 0 - 9.0 0.18
1 9 4.84 - 17.2 11 1 - 25 4,7
1 49 36.9 - 65.1 ol | 25 - 8l 317
1 2 1.0 - 9.0 5 0 - 15 1.0
1 9 4.38 - 19.6 12 .36 - 29 5.4
1 49 34.7 - 69.3 52 21 - 89 38
1 4 2. 07‘- 15.9 9 0 - 25 3.3
1 9 4,10 - 23,9 14 0 - 36 6.9
1 49 31.5 -176.5 54 16 - 100 40
TABLE 6.2: RELATIVE PHASE AND RANDOM PHASE FORN = 3




Relative Other
01|09 03|04 o' | RMS Spread Phase Relative Phase Minima
Minimum | cos(f5-p ,) =0 cos(f5-p 4) =1
1 |4 |81|100] 186 | 52 - 320 0 130 256
1 |4 |64|100( 169 | 49 - 289 0 113 225
1 | 4 |49|100| 154 | 48 - 260 0 98 196
1 |4 |36|100]| 141 | 48 - 234 1 85 169
1 |4 |25/|100| 130 | 51 - 209 4 14 144
1 |4|16]|100| 121 | 55 - 187 9 65 121
1|4 9|100| 114| 60 - 168 16 58 100
TABLE 6.3: RELATIVE PHASE AND RANDOM PHASE FOR N =4

The relative phase minima appearing in Table 6.3 were determined by

employing equation (6.1) to obtain

o5 = 10+JF3e

Thus, if ¢3 - P, = 2nm, we have

GP}I7+/?3

if p3 - {)4 = (2n+1) 7/ 2, we have

0P2‘7+iﬁ3

2
; and

I 2

. : : 2
1(p3'p4) +9 el(pz—p4) + el(pl‘p4)

The material presented in these three tables clearly indicates how

highly dependent the relative phase estimate of the cross section is on the
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phase angle between the two largest contributors. If one is sure that the
relative phase angle between the two largest contributors is such that its
cosine is non-negative, then the random phase method of combination
(average cross section plus the RMS spread) will suffice as a means of
estimating the range of the possible variation in the cross section,

It is of some interest to consider the case in which the two largest
contributions are of equal magnitude. Let us assume that of the set of N
values of cross section the two largest are o and o, and that 0y =0,.

2

We may place equation (6.1) in the form

N N-1 N
o, - Z o +2 Z Z /0 9 cos(f -pk). (6.4)
n-=1 n=1 k=n+1

Under the conditions we have imposed, equation (6. 4) may be placed in the

form

05720, + 20, cos (p, -pz) +2Vo,

[>]=

\/o_k (cos (p1~ﬂk)+cos (pz -lbk) )

e

=3

N-1 N

N
+ Z on+ r;\ k;el 2 S cos(pn-[)k). (6. 5)

n=3

We readily see that if f, - ﬂ2 =(2n+1)r, then the entire first row of
the right side of equation (6.5) will reduce to zero and the magnitude of

OP is determined by the role played by the remaining o (n=3,4, ..., N).
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ILLUSTRATIVE EXAMPLES

7.1 Radar Cross Section of a Missile

In this section we shall illustrate the theoretical method for the cal-
culation of the radar cross section of a missile or an aircraft by determining
the radar cross section of the fictitious missile shown in Figure 7.1-1. We
will note from Figure 7.1-1 that this missile consists of a paraboloid faired
into an ogive which in turn is faired into a cylinder; four fins are mounted in
the back. The fins are taken to be rectangular in shape in the form of flat
plates with sharp edges (for simplicity we shall assume that these edges are
in the form of wires having a radius of X /85). The calculation shall be per-
formed at a wavelength of 1 ft (this choice of wavelength will permit us to
illustrate both methods of treating wires discussed in Section 4.4). We shall
consider two polarizations: vertical polarization - the case in which the
E-vector is in the plane determined by the direction of incidence and the
z-axis, and horizontal polarization - the case in which the E-vector is normal
to this plane. The cross section will be determined for two different values
of p (P = 0" and )] = 45°) as a function of 8.

We observe from Figure 7.1-1 that there are the following components
to be considered:

(1) the paraboloid section of the fuselage, oy (This component will

0 0
contribute for 0 <6 <~ 76.),
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(2) the ogive section of the fuselage, 09 (This component will
contribute for ~v76° < 6 < 90°),

(3) the cylinder section of the fuselage, 0 3 (This component will
contribute for 90° < 6 <180 when p = 0° and for 0°<6 st80°
when f is between 0° and 900; we shall assume that the rear
of the fuselage consists of one sharp rim in the form of a loop
of radius 3 ft. withthe "wire" having a radius = X/85.),

(4) the fin in the + x, z-plane, o & there are four parts of this

component to be considered:

0'4, ) = the contribution from the leading edge,

(og 4,2 = the contribution from the side: edge,

(o) 4,3 = the contribution from the trailing edge, and
0'4’ 4 = the contribution from the flat surface,

(5) the fin in the + y, z-plane, o (We have the same four parts to
consider as in 04.),

(6) the fin in the -x, z-plane, o (We have the same four parts to
consider as in o 4.), and

(7) the fin in the -y, z-plane, 07.(We have the same four parts to
consider as in 04.)

To determine the magnitude of o, we make use of equation (4.10.1)

and we see that this contribution is independent of both wavelength and polariza-

tion. Thus we have
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4 2 0
o, = (r/ 4)sec 6 ft  for 0 <6 < 76°, (7.1.1)

For 02 we make use of equation (4.6.5) and again we see that the

contribution is independent of both wavelength and polarization. We have
2 0
0, =33 (33 - 30 csco) ft for~ 76 <o <90°, (7.1.2)

To determine the magnitude of 03 we must consider three cases;
6 =90°, 9~ 180°, and & # 90° (but less than 180°). For 6 =90° we

employ equation (4.4.3) and thus we have (since a =3 ft. and X =1 ft. )

o, = 6712 for 6 = 90°. (7.1.3)

When p = 0°, L = 20ft. and when 0°<  <90°, I, = 24 ft.

For 6 # 90° (but near the broadside aspect) we make use of equa-
tion (4.4.4); we note that since the front of the cylinder is faired into the
ogive, we have only one such contribution. Thus for this range of 6 we have
(since A = 1ft. and a =3ft.)

3 sin@
Og = — ft . (7.1.4)
8mcos26
We observe from Figure 4.4-8 that the size of the cylinder (in terms of 1)
is such that these contributions are essentially independent of polarization.
The return from the rear of the cylinder (the sharp wire loop rim) is not
independent of polarization as can be seen from the material of Section 4.5.
The magnitude of this contribution is determined using equations (4.5.14)

and (4.5.15).
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A graphical presentation of the contributions from these first three
components is given in Figure 7.1-2. The data shown in this figure will
serve as a guide in our considerations of the fin contributions.

For convenience in the following consideration of the fin contributions
we shall use the notation o, (8, p). Let us first consider the flat plate
contributions which will appear only for § = 0° and 6 = 90°. We have from
equation (4.7.1) that

. 2 9
o (00%0%) =0 (90°, 0°) =6ar (1) @2/ (1) &
5,4 1,4

3 2
=3.22 x 10 ft. (7.1.5)

In the consideration of the wire contributions we note that for the shorter
wavelengths we could use either the material of Section 4.7.1 or the thin wire
material of Section 4.4 since both are based on the Chu formula. However
since we are dealing here with wires which are either one wavelength or four
wavelengths long we must use the wire theory of Section 4.4. Before we
examine the individual magnitudes of o g %5 Og and T let us consider
the two wires involved.

Employing the Chu formula with the radius of the wire equal to 1 /85
of a wavelength and assuming that the E-vector is in the plane determined by
the direction of incidence and the wire we obtain an estimate of the maximum
return from the side edges of the fins, that is from the 4 ft. edges. This

result is shown in Figure 7.1-3 as a function of the "wire aspect angle" a.
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(As is shown in Figure 7.1-3 the angle o is the angle between the direc-
tion of incidence and the wire.)

The leading and trailing edges are 1 ft. long (that is they are con-
sidered as one wavelength wires). Thus we can employ the estimate of
the return given in Figure 4.4-7 together with equation 4.4.9 to obtain the
estimate from these 1 ft. edges. This estimate (for the case in which the
E-vector is in the plane determined by the direction of incidénce and the
wire) is also shown in Figure 7.1-3.

The curves shown in Figure 7.1-3 suffice to determine the edge con-
tributions for the aspects confined to the § = 0° plane. In the horizontal

polarization case we can obtain o , and ¢ directly from the

4,2 %59 7,2
4 ft. wire curve of Figure 7.1-3 noting that for these edges a = 6; the

magnitude of ¢ 4 1 We obtain from the 1 f{. wire curve noting that o = 90° -6

(06 { =0 contributes only at 8 = 00); the magnitude of ¢ d

41 4,3 3496 3

we can read from the 1 ft. curve noting that o = 90° + 6. In the vertical
polarization case for f = O0 the only edge contributions come from the

leading and trailing edges of the fins in the yz-plane, i.e. 05, 1’ 05, 3
07, 1’ and 07, 3 these four contributions are constant for all 6 in the

interval 0° <6 §‘1800 and are given by the o = 90° case for the 1 ft. wire

in Figure 7.1-3. (We note that o and

5.3 07’ 3 must be taken as zero at

6 = 00, due to shadowing, and for similar reasons 05 4 and Onq must be

2 2

taken as zero at 6 = 1800.)
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The f = 45° case requires a little more analysis due to more com-
plicated relations between the 6 and a aspect angles and the variation in
the polarization angle. In the horizontal polarization case we can determine

the magnitudes of o d

as was done above. The treatment of the

4,2 39495 o

leading and trailing edges is done as follows. First we determine the aspect

angle @ as a function of 6. A brief examination of the geometry indicates that

sin 6
V2
Figure 7.1-4. The polarization factor, we note from Section 4.4, is the fourth

the relation required is cos a = This relation is shown graphically in
power of the cosine of the angle between the E-vector and the plane determined
by the wire and the direction of incidence. To determine the magnitude of

this polarization factor we first find the unit normal to the plane of the wire
and the direction of incidence and then by taking the dot product of this vector
with the E-vector (unit vector) we obtain the cosine of the complement of the
angle we are seeking. The final polarization factor so obtained is presented
graphically in Figure 7.1-5. These two relations (Figures 7.1-4 and 7.1-5)
together with the data presented in Figure 7.1-3 makes it possible for us to
quickly determine the magnitude of the contributions of the leading and trail-

0
ing edges for this f =45 case. We have to consider o

41 and 05,1 for

0°<6 < 1800, 4 s and Op o for 0° <9 $18OO, and we must take into
0

account 06 3 and On g for all 6 between 90 and 180°. The magnitude of

these contributions as a function of the aspect angle 6 and the polarization

is shown in Figure 7.1-6.
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FIG. 7.1-3: MAGNITUDE OF EDGE CONTRIBUTIONS FOR THE FICTITIOUS MISSILE

(A =1 ft. and E-vector in plane of wire and direction of incidence)
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FIG. 7.1-4: 6 VS @ FOR THE TREATMENT OF THE LEADING
AND TRAILING EDGES FOR THE § = 45° CASE

With the above information we are now in a position to assemble these
component cross sections to obtain the estimate of the cross section of the
entire missile. The summaries of the component cross sections are given
in Tables 7.1.1 through 7.1.4. In this illustration we shall not go beyond
this point; the "average" or '"random phase" cross sections are given in the
tables. An illustration of the relative phase approach and the RMS spread

will be given in Section 7.1.2 where an illustrative example for a manned

aircraft is discussed.
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7.2 Radar Cross Section of an Aircraft

In the illustration given in Section 7.1 we started with a drawing of
the configuration and went through the entire operation up to the point of
combining the component cross sections. Here, in the aircraft illustration
we shall start with the component cross sections and discuss the combination

of these component cross sections.

128



(uoryezire(od [BJUOZIIOH pue

‘0=0¢ WI1=Y

TTISSIN SNOLLILOIA ¥YOJd VIVA NOILLOIS SSO¥D 4O AYVININAS *T°T°L ATHVL

8¢ I1° IT1° 8¢ owlal
6g° g1’ S O eT” OLT
16° €g "’ €c’ Go ° 09T
€°T 09° 09° 80 ° 0ST
LT 08" 08° e1” ovT
c°1 Ly LV 4 0€T
9% * 810 ° 810 ° 870 ° W 021
€°1 I1° IT1° I1° 96 * OTT
0T 1°¢ 1°¢ 1°¢2 6°¢ 00T
000 ‘¥1 |j002¢E 00¢e 0°¢ 00S.L 06
0L2 1°¢ 1°¢2 1°¢ 09¢ 08
LS I1° I1° IT1° LS| 0L
eT 810 ° 810 ° 810° €Tl 09
1°6 LY 9'%| 0¢
0°¢ 08° ¢'¢l OF
0°¢ 09° ¥°11 O¢
2 1 €¢” 86 ° 0¢
96 eT” €8°| 01
0°1 IT1° I1° 8L~ 0
e Lol Lo T ho| T O € 9,[69, T 7 G €T p[E 0|1 [T o€ T2 T T Vol €0 |0 |To |

(309] oxenbg Ur) UOI}OdS SSOID

129



ATISSTIN SQOLLLLOIA ¥YOd VIVA NOLLOAS SSOMD A0 XUVININAS ‘CT1CL ATAVL

(UOTIRZLIBIOq TBOTMOA PUe ‘0= ¢ ‘U T=YX)

(1991 aaenbg ur) uor}oag ssox)d

82 I1° 11" 82 081
8°G 1" | 11" 11" 11" ¥°g 0LT
22 I1° | 1T° 11" 11" 81 091
LT I1° | 11° 11" IT° €°1 0ST
ST IT° | 11" 11" 11" T°1 0¥%1
€1 1" | 11" 11" 11" 06" 0€T
T'1 1" | 11" 11" 11" oL” 021
A 1" | 11° I1° IT° 96 01T
€¥ 1" | 11" 11" I1° 6°€ 00T

D00 1 002€ | TT° | 11" 002€ | 11" e 00S. 06
092 1" | 11° I1° IT1° 092 08

LS I1° | 11" I1° 11" LS | oL
€1 IT° | 11" 11" 11" €T | 09
0°G I1° | 11" 11° IT° 9'% | 0%
9°2 IT° | 11 I1° I1° 22| ov
81 1" [ 1T 11" 11" ¥'1| og
Pl 1" | 1T IT° I1° 86° | 02
€1 IT° | 11" 11" 11" €8 | 01
01 11" 11" 8L | O

o wﬁgmﬁbmﬁbﬁ.bbw.m €9 NdbHdbv.mbmdbm.mbﬁ.mbfv €V 2% |19 €0l %o| 1o 0

130



(uorjeziaeiod [BIUOZIIOH PUB ‘LGF = Q ‘T 1=YX)
HTISSIN SNOILILOIA ¥Od V.ILVA NOILLDHAS SSOYD 40 XUVININAS

‘€°1°L ATIIV.L

8¢ 620 - G20 - G20 * G20 - 8¢ 081
0g - 820 ° 820 ° 820" 820 - 820 - 820°| €T1° 0Ll
€C’ 0€0* 0€0 " 0€0 - 0€0 ° 0€0 - 0€0 *| 9%0 * 09T
8¢ " 050 * 0G0 * 050 * 050 - 0G0 * 0G0 °| 6L0° 0ST
(4 S90 ° G690 ° G690 ° G690 ° 690 - G| €T1° o%1
g9 clLo -’ gLo - Lo’ cL0 - cL0’ ¢L0°| eg-° 0€T
99" Geo - Ge0 * GE0 " [8T0 | S€0 ° GEO"|8I0O"| SE0°| TP~ 0g1
¢'1 IT1° IT° 96" 01T
1°8 1°2 1°2 6°¢ 00T

DOO‘TT 0°€ 0o°¢g 0007171 06
0L2g 1°2C 1°2 6°€ | 092 08

8¢ TT° IT° 96" LS| 0.4

vI GEO " |8T0 | S€0 ° Ge0 | 8T0°| €€0°| T¥° €I} 09
T .m. gL’ 2L’ cL0 - cL0°| ¢z’ 9'%| 08
9°¢C G90 * S90 * G90 * G900 | €T ¢'c| oY
LT 0%0 * 0G0 * 0S0 * 0G0 °| 620~ ¥'1] O¢
T°1 0€0 - 0€0 -~ 0€0 -~ 0€0 *| 9%0 ° 86°| 02
96 ° 820 - 820 ° 820 ° 820 °| 120 ° €8 01
88"’ G20 - S2o0 - gco - G20’ 8L” 0

o [TLo€LolBLy|TLy ¥ 90E9,18%9 1179 1576 18’12, | TG [P T JET 2T, T T €, 25 Ty

(3997 aaenbg ur) uorl09g SSOID

131



(uorjezirerod [edIII9A Pue ‘G = ¢ W T =)
HTISSIN SNOILILOIA ¥OJd VIVA NOLLOFAS SSO¥D J0 X¥UVIWINAS % T°L ATIV.L

82 G20 - S20 " | G20 _ Geo 8¢ 081
9°'g S€0 Geo GEo GEo GE0 GE0°| ¥°S 0LT
1°2 S30 S%0 - S%0 * S30 * S30 S}0°| 8°1 09T
81 680 * 680 ° 680 ° 620 ° 680 - 680°| €T 0ST
Ve 12" g 12" g 12" g 1°T1 oV
€€ W i i W 52 W 06" 0€T
0¥ gs - gg - gg s g Ss°'| oL 031
vy LS LS LS LS " LS LS| 96" 011
S L 09° 09" 09" 09° 09" 09°| 6°¢ 00T

000°TT 09" 09" 09" 09 °|000TT 06
0L 09" 09" 09" 09° 8°'€ | 092 08

09 LS " LS" LS LS| 96" LS| OL

91 g g sS - S§°| 1B €T| 09
S'9 S L5 15 W ge 9% | 0%
z'e 12° 12° 12° 127 €1 z2'g| 0¥
8°1 680 * 680 *! 680 * 680 °| 6L0 V1| o€
2T S%0 - S%0 - S%0 - S%0 | 9%0 86| 02
66 ° Geo - Geo - €0 G€0 " 120" €8°| 01
88 ge0 G20 620 S20 8L'| 0
o |PLo|E Lol L (T L 7 9 (€9 |2°9 L0V S € G [0 Co|T S|P T EF2F, 1Ty €o| 2o To 0

(3993 aaenbg ur) UOTO9S SSOID

132



The only essential difference between the problem of determining the
radar cross section of a manned aircraft and the corresponding problem for
a missile is the number of components to be considered.

Figure 7.2-1 displays the results obtained for a typical large jet
aircraft. One will note that there are many significant contributors to be
considered and that over a wide range of aspects we do not have a single
large contributor. In discussing the combination of these component cross
sections we can use a fixed wavelength and let the aspect vary or we can
consider a fixed aspect and let the wavelength vary. Let us use the latter
approach and concentrate on the nose-on aspect, that aspect at which all of
the contributors are of approximately the same magnitude. Let us assume
that there are four engines a distance d; back from the nose and two other
engines a distance d2 back from the nose; thus from the data shown in Figure
7.2-1 we would have four essential contributions to consider:

(1) the contribution from the fuselage, o1,

(2) the contribution from the group of four engines, o,

(3) the contribution from the group of two engines, 03 and

(4) the contribution from the group of two wing tanks, o 4"

The type of variation one can obtain between the relative phase and the
random phase methods will be adequately illustrated if we consider a wavelength
variation from about A = 0.69 m to A =.72 m. Over a wavelength range of this

magnitude the cross sections of the individual components will not change
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FIG. 7.2-1: RADAR CROSS SECTION PATTERN OF THE COMPONENTS OF A
TYPICAL LARGE MANNED JET AIRCRAFT AT A WAVELENGTH OF 0.71 METERS
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an appreciable amount; thus, let us assume that they are constant over

this range of X and have the following values:

2 2 2 2
= ; = ; =1. ; =1.0 .
9, 0.32 m ; 02 6.9 m ; 03 1.7Tm"; 04 m

Let us further assume that upon a study of the aircraft drawings (applying the

method shown in Figure 6-1) the following values of the phase angles have been de-
1, -9,
|91 - b
|¢ 1Py

termined

i

66.87/ X ; pz-pB =30.27/ 2

36.6m/X ; ¢2-p4 =14.87/ )

52.01/x 5 [Py -9, = 15.4q/ 1. ©

Applying equation (2.4) we can thus obtain the cross section as a function of
wavelength taking these relative pha_tkse relations into account. The result so
obtained (shown as J_(; vs. M) is presented in Figure 7.2-2. The average
cross section and the RMS spread is also shown in Figure 7.2-2 for comparison
purposes. We see from Figure 7.2-2 that even for this case, in which we have
a large number of contributors having approximately the same cross section,

the variation due to changes in the relative phase very seldom exceeds the
variation predicted by the RMS spread. Over the range shown in Figure 7.2-2
the cross section dips below the RMS minimum for only about 197 of the

wavelengths considered. As an illustration of the manner in which the two

%
Of course the wavelength is measured in the same units as the d;, in this
case the unit is meters.
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methods of combination (relative phase and random phase) compare for a
fixed wavelength and varying aspect we present in Figure 7.2-3 the results
obtained for a missile; the results are displayed on a relative scale as a
function of aspect and it is obvious that the RMS spread calculation suffices
for almost all of the aspects considered.

It is important to note that since a missile has fewer components than
a mam}ed aircraft it is to be expected that the relative phase results would
lie outside the RMS spread more frequently in a missile calculation than they

would in an aircraft calculation.

RMS spread
Calculation
AT
8 101 - p— .
[}
2 i
-~
2] -
< — &
&
“ p—
=]
S
0
g 10
le]
- - /]
3 B Relative Phase
@ — Calculation
o)
&
O I
-1
10 ,
0 10 20 30 40 50 60

Aspect Angle (azimuth in degrees)

FIG. 7.2-3: RADAR CROSS SECTION OF A MISSILE - COMPARISON OF
RELATIVE PHASE AND RANDOM PHASE (RMS SPREAD) RESULTS
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CONCLUSIONS

We have attempted in this report to present a detailed outline of the
procedure for calculating the radar cross sections of aircraft and missiles
which has evolved at the Radiation Laboratory of The University of Michigan
during the past several years. It is our hope that this report will serve as
a handbook for the calculation of such radar cross sections.

Examples of the application of this process to the determination of
the radar cross sections of various aircraft and missiles will be found in
many of The University of Michigan reports in the Studies in Radar Cross
Sections series and in the reports which supplement that series. Since each
of these documents is at present classified we have included the illustrative
examples in Section 7. It would be of considerabie value to examine the
details of some of these earlier computations. The documents which contain
these examples are Studies in Radar Cross Sections XII, XIV, XV, XVII,
XVII, XIX, XX, XXI, and XXIV. The documents in the supplementary
series which would be of interest in this connection are the reports 2476-1-F,
2541-1-F, 2550-1-F, 2200(01)-1-T, 2500-1-T, and 2660-1-F. (See Appendix H.)

It should be noted again that this process is designed for use when the
cross sections are desired to within 2 to 10 db and experience has indicated

that the method will yield results which differ from experimentally determined
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values by less than 6 db for almost all combinations of wavelength, polariza-
tion, and aspect. This is illustrated in Figures 8-1 and 8-2. The first
displays a comparison between theory and experiment for a missile shape
and the second displays a comparison for a manned aircraft. A 10 db spread
is shown in Figure 8-2 since (1) there is a 20 0/O difference in the frequencies
employed in the theoretical and experimental work, (2) the theoretical analysis
on this aircraft was one of the first applications of the method and thus did not
contain the refinements now available, and (3) the RMS spread was not computed
in this particular theoretical study. Figure 8-2 also contains an interesting
observation relative to the experimental approach. One will note that experi-
mentally one can obtain as much as an 8 or 9 db difference between the cross
section on one side of the aircraft and the cross section on the other. That
is, in terms of the coordinate system shown in Figure 8-3, one finds experimen-
tally that o(6', f') and 6(8', -p') may differ by as much as 8 or 9 db even
though the aircraft is symmetric with respect to the xz-plane. The theoretical
approach would, of course, imply that for an aircraft which was symmetric
with respect to the xz-plane o(6', f') =o(6', -p').

The material presented in this report applies for perfect conductors.
If the surface was not a perfect conductor but one having a dielectric constant
equal to € , then we could employ the following relations:

In the geometric optics region:

9 diel. Ve -1

, © F€>1 (8.1)
op.cond. Je +1
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FIG. 8-1: RADAR CROSS SECTION OF A MISSILE BODY - A COMPARISON
BETWEEN THEORY AND EXPERIMENT
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In the Rayleigh Region (sphere result):

° diel. € -1

. 4
9

o e+ 1
p. cond.

(8.2)

A plot of equation (8.1) is given in Figure 8-4 from which we see that in order
for the cross section of a dielectric surface to be a factor of ten less than that
for a surface which is geometrically the same but a perfect conducting surface,
the dielectric constant must be greater than about 0.5 but less than about 2.
In the case of equation (8.2) it is of interest to note that for large values of

€ the ratio approaches 4/9 and as € — 0 the ratio ¢ diel /o approaches

p.cond.
the value 1/9. Since in the application of this theoretical method most of the

body components considered are in the optics region, the information presented

in Figure 8-3 will suffice for most cases.
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FIG. 8-4: CROSS SECTION OF A PERFECT CONDUCTOR COMPARED TO THE
CROSS SECTION OF THE SAME BODY MADE OF A DIELECTRIC (CONSTANT =€)
AS A FUNCTION OF THE DIELECTRIC CONSTANT (GEOMETRIC OPTICS REGION)
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APPENDIX A

COMPLETE SCATTERING MATRICES AND CIRCULAR
POLARIZATION CROSS SECTIONS

1

SCATTERING MATRICES

In general, in radar scattering problems we deal with transverse
fields, i.e. vector fields whose components in the direction of propagation
vanish, in that first the incident radiation and finally the scattered radiation
at large distance from the scattering center are described in terms of such
fields. There is a certain freedom in the description of these transverse fields

which we will investigate in more detail.

The scattering of electromagnetic radiation may be described quite
generally as follows: For simplicity, assume an incident plane wave and choose
a coordinate system such that the negative z-axis is in the direction of propaga-
tion of the incident wave (Fig. A-1). Since the incident electric and magnetic
vectors lie in a plane perpendicular to the direction of propagation, the incident
radiation is completely specified in free space by the direction of propagation
and the x- and y-components of either the electric or magnetic field, After
diffraction by an obstacle the scattered radiation in the "far zone' is then com-
pletely determined by the configuration of the scatterer, its electrical properties,
and by the incident radiation. If ﬁ is a unit vector in the direction of the incident

A
wave and kois a unit vector in the direction of the observation point,
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N
the far field in the direction kO is determined by the type of obstacle
and the incident radiation, or, in symbols,

) AN A ol
Ear = S(kok ) Ea ) (1.1)
K, k

i A
where Eﬁ is the incident field moving in the direction k , EE is the scattered
)
A AN A
field moving in the direction k ,and S(k o k ) is a matrix with continuous indices
A A
koand k which depends on the obstacle and the wavelength of the radiation.

From its analog in quantum mechanics, the matrix S is called the scattering

matrix or, more briefly, S-matrix.

1.1 Scattered Field in S-Matrix Notation

If the coordinate system is rotated so that the new z-axis lies along the
direction 12 o the incident field will be specified by three components, but the
scattered field in the direction l?owill be specified simply by the x- and y-
components since the radiation field is transverse. Symbolically, this rotation

R is expressed as

S a A i
Er = = T)rRI(REA ) . 1.1
REQO (g) R S(k,%) R (REk ) (1.1.1)

An immediate condition on the new S-matrix RSR-1 is then that it leads to zero |
z-component of the scattered field.
The maximum advantage of using the S-matrix notation is obtained
when circularly or elliptically polarized incident radiation is considered.
Before going into this, however, it is desirable to give a brief review of the

polarization phenomenon.
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Consider a plane wave moving along the z-axis as in Figure A-2. If
the electric vector is restricted to lie in one plane through the z-axis, say the
yz-plane, the wave is said to be plane or linearly polarized since the projection
of the locus of the electric vector on the xy-plane is a straight line.

If the electric vector is no longer required to lie in a single plane, then
its projection on the xy-plane will no longer be a straight line but will in general
describe an ellipse in time as shown in Figure A-3. The case of circular polar-
ization occurs when the ellipse degenerates into a circle as shown in Figure A-4.

A A

In particular, for backscattering, ko= -k . An incident elliptically

polarized field can be expressed in terms of Cartesian coordinates and hence,

as before:
S A A _\.
EA =S(-k,k)E

1
= £ (1.1.2)

It is possible to express the fields in terms of an elliptic basis by a coordinate

transformation, U, such that

=1

311'2 = UE, , (1.1.3)

i
where @ is the incident vector in an elliptic basis. Then

AN 1 A A -1 =i
EI/{\ = S(-k ,k)U U Ep = S(-k ,k)U 6{(\ . (1.1.4)

The scattered field is transformed by the same transformation so that in the

elliptic basis,

S s A A _1 _bl
A = = -
€_k UE_Q US(k,k) U EQ . (1.1.5)
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1 which is used for the case in

This then gives a new scattering matrix US U~
which the incident and scattered fields are referred to an elliptic basis. Since
the fields describing the incident and backscattered radiation lie in the same
plane the two-dimensional transformation U gives the change of basis from linear
to elliptic for both the incident and backscattered fields.

Thus, by using the S-matrix formalism, it is necessary to determine only

the scattering for linear polarization and the transformation giving the change of

basis to the particular basis of interest.

1.2 S-Matrix in Terms of Fixed but Arbitrary Basis

In order to be explicit, let f)\(H) and f)(V) be unit orthogonal vectors*; these
vectors define, respectively, directions of horizonta1='<"<and vertical polarization

of an electric vector. A vector E may be written in terms of this basis as

L, ) ( f’“") o
B = E(B) BH) +EW) D) = (E<H>, E(v9 sy ) = W) B

where E'(HV) designates the transpose of the column <E§§;> .

If p(A) and 6(B) are an arbitrary pair of unit orthogonal vectors
co-planar with P(H) and f)‘(V), then they must be obtainable from $(H) and H(V)

by a unitary transformation™ *

*
Orthogonal is to be interpreted in the sense that two vectors 'f)(A) and $(B)
are orthogonal if their product P(A) . P*(B) is zero, where the asterisk
indicates complex conjugate; unit in the sense that a vector P(A) is a unit
vector if the product P(A) . P*(A) is 1.

*ok

Horizontal will mean tangent to the earth with horizontal, vertical, and
direction of propagation being mutually orthogonal.

w(1J) is defined as the product P(I). $%(J). Note here also that u* (IJ) = uw(JI).
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u(AH) u(AV)
= U(AB;HV), UTM(AB;HV) = U*'(AB;HV) = U(HV:AB),
u(BH) u(BV)

e., f)\(AB) = U(AB; HV) Q(HV), where the asterisk indicates complex conjugate
of each element of the matrix and the prime indicates the transpose of the matrix.
Since the AB system will in general be used to describe some elliptical
polarization, it is preferable to use distinct systems of unit vectors to specify
the incident and scattered fields. This is done so that right-hand elliptical polar-
ization may have the same sense with regard to the coordinate system for incident
radiation as it does with regard to the coordinate system for scattered radiation.
So if
#'aB) = u(aB;HV) PEV)
is prescribed for the incident system, the desired similarity of sense for the
two coordinate systems is accomplished by writing
D°(AB) = U*(AB;HV) P(HV)
for the scattered system. Thus f)S(AB) = ﬁi* (AB).
An incident vector Ei may be written in terms of either the basis ﬁ(HV)
or the basis fo\i(AB) :
B = BlHV) fEv) = £lan)piap) .

From this relation it easily follows that the two sets of components of E are

connected by i i
E'(AB) = U*(AB;HV) E(HV). (1.2.1a)

Similarly for a scattered vector E® the relation between components is

ES(AB) = U(AB;HV) E°(HV) . (1.2.1b)
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Since both the incident and scattered electric vectors are expressible in
terms of either unit vector basis, there will be four transformations;i.e.,
scattering matrices, relating the components of the incident vector for either

basis to the components of the scattered vector for either basis.

ES(HV) = S(HV; HV) E(HV) , (1.2.2)
ES(AB) = S(AB; HV) E(HV) , (1.2.3)
ES(HV) = S(HV; AB) EX(AB) , (1.2.4)
ES(AB) = S(AB; AB) E'(AB) , (1.2.5)

where the two indices in front of and following the semicolon indicate
respectively rows and columns of the scattering matrix. For example, if

equation (1.2.3) were written in detail, it would read*
< ES(A)> s(AH) s(AVI\ /E'H)
ES(B) s(BH) s(BV)/ \E'(V)

The elements of these matrices are associated with effective radar

cross section o by the following definition:

—E*s . A2
¢ = lim 471 _‘TR'" , (1.2.6)
I E

where D is a unit vector denoting receiver polarization. For example, if

£l = {(H) and D = D(V), then

E° = ES(H) D) +ES(V) B(V) = s(HB) D(H) +s(vH) (V)

* A ,
In s(1J), p(J) designates the incident polarization.

155



and

2 25, A

o(VH) = lim 47r

raso B(H) r'—oo0

In a similar fashion it can be shown that

o(lJ) = lim 4’
Ir'—p

2
s(13) 1

These o (IJ) will be called CROSS POLARIZATION cross sections,

Using equation (1.2.1) in conjunction with equations (1.2.2) through

2 2
E-p(V) | = lim 47 ls(VH)l )

(1.2.7a)

(1.2.7b)

(1.2.5), it follows that any three of the scattering matrices can be expressed

in terms of the fourth. Thus, for example,

S(AB; HV) = U(AB;HV) S(HV;HV) U*(HV; HV) ,
S(HV; AB) = U(HV; HV) S(HV; HV) U*(HV; AB) ,

S(AB; AB) = U(AB; HV) S(HV; HV) U*(HV; AB).

(1.2.8)
(1.2.9)

(1.2.10)*

This means that if S(HV; HV) is known completely any scattering matrix

can be calculated from it. Since the elements of S(HV; HV) are complex numbers,

there will be eight real numbers (four magnitudes, four phases) required to

specify S(HV; HV) completely. This is reduced from eight to seven because

only relative phase differences can be calculated. It is further reduced to five

* More generally, S(AB; JK) = U(AB; HV) S(HV; HV) U*(HV; JK), where JK
indicates an arbitrary basis. U(HV; HV) and U*(HV; HV) have been included

above for consistency. (They are each equal to the identity matrix).
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for backscattering because of the reciprocity theorem™ and the conservation of

ok

energy principle.

s(HV)| , [s(VWV)],| s(AH)

3 3 2 3

To recapitulate, assume that l s(HH)
| s(AV)[ are known; from these quantities the differences of phases (or relative
arguments) of s(HH), s(HV), s(VH), and s(VV) can be determined; i.e., the

complete matrix
s(HH) s(HV)
S(HV; HV) = (1.2.11)
s(VH) s(VV)

can be found.

Since s(1J) and u(IJ) may be written:

s(lJ) = |S(IJ)| 1009 s
i) (1.2.12)

wlg) = u(IJ)l e ,

%k e -] - S
If E} and E; are two given incident electric vectors, and Ef and E, are the
respective scattered electric vectors, then the reciprocity theorem states that

BS.E, = B - E, , or
i i S i S i
ES(H) EX(H) + ES (V) E3(V) = E, (H) E;(H) +E, (V) E{(V) .

If equation (1.2.2) is used to state this theorem entirely in terms of the
components of the incident vectors, it follows that

s(HV) (Eil(V) E%(H) - E;(V) Eil(H)) = (S(VH) E}(V) E;(H) - E%(V) Ei(H» ,
or
s(HV) = s(VH) .

From this equality and equations (1.2.8), (1.2.9), and (1.2.10), it follows that
s(1J) = s(J1) for I # J.

% %
Because energy must be conserved, it follows that

o(KA) + o(KB) = o(KH) +a(KV) ,
where K may be H, V, A, or B.
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it follows from equation (1.2.8) that

2 2
s(AH)‘ = | w(Am) s(HB) +u(aV) (V)|

= I u(AH) s(HH)l2+|u(AV) s(VH)I2 +2lu(AH) u(AV) s(HH) s(VH)

X cos [G(HH) - 6(VH) + (AH) - ¢(AV)J . (1.2.13)

Therefore,

_ stam|® - luam st -|uaw sl
2 Iu(AH) u(AV) s(HH) s(VH)l

cos[G(HH) - 6(VH) + §(AH) - ¢(AV)}

(1.2.14)

where 6(1J) = arg s(1J) and §(1J) = arg u(1J) .

Similarly,

cos [G(HV) - 6(VY) + flAR) -¢(Av)} - Lol <ot stvi-l oy scrol”
2 | u(AH) u(AV) s(HV) s(VV)

(1.2.15)
An expression for the difference 8(HH) - 6(VV) may be obtained from
equations (1.2.14) and (1.2.15). A check for this difference can be obtained
by assuming that o(AA) is known; then the difference 6(HH) - (VV) can be

s(AA)| , | s(HH)

calculated directly as a function of s ]s(VV)I , and the u(1J).

3

The above argument may be summarized in the theorem: If o (HH),
o(HV), o(VV), ¢(AH), and o (AV) are given, then the matrix S(HV; HV) can be
determined to within an arbitrary phase factor; and from S(HV; HV) any scatfering

matrix can be found.
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2

APPROACH TO THE MULTIPLE-COMPONENT BODY PROBLEM

In Section 1 it was shown that for a single simple geometric shape, or
a complex shape considered as a unit, the scattering matrix S(HV; HV) can be
completely specified from a knowledge of the five radar cross sections o (HH),
o(HV), o(VV), o(AH), and ¢(AV).

However, in an analytic treatment of the scattering matfix for a complex
configuration consisting of many components, each of which is a simple geo-
metric shape, a somewhat different approach must be used since component-
wise calculation of cross sections does not furnish information as to phase
differences between different parts of the target. It is reasonable to assume
that for each component of the scattering body expressions for certain of the
s(IJ) may be obtained directly from expressions for the scattered fields in
terms of the incident fields. Then, to find certain ¢(1J), to be specified below,
as fairly smooth functions of aspect and to minimize computational labor, an
average with respect to phase is made over the set of components of the scat-
terer. Such an averaging procedure assumes random phase relations among
scattered fields of the components, and requires a knowledge of nine™ real

numbers for the determination of arbitrary o (1J).

*
By the reciprocity relation; without reciprocity, 16 real numbers would have
to be known.
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That only nine real numbers are needed may be seen as follows: Let

u* (HJ)
s(13) = (u(IH) w(IV)) S(HV; HV) ( > (2.1)
wk(VJ)

represent, for the entire scattering body, any of the linear relations among
elements indicated by equations (1.2.8), (1.2.9), or (1.2.10). The averaged

2
quantity Is(IJ)' is then

| s() | 2 = ) @)

= (w(IH) u(IV)) (X) (w*(IH) wk(IV)) S(HV; HV) x S*(HV; HV)

wk (HJ) (HJ)
(2.2)
¥ (VJ) (V) .

where indicates a direct (or Kronecker) matrix product ¥ and the bar

indicates phase-averaged matrix elements. Leta, 3 denote any of the combinations

sk
The definition of a direct (or Kronecker) matrix product is illustrated by the

example

a110y7 a11by, b1 21pby5 213Py1 ag3by
ajy ajp a3 by1 by 211051 2110y, 212P21 215022 213bz1 213by;
251 222 223 by1 022 2,101 221b1, axaby1 2z5b15 223011 ap3by;

251051 231055 325b51 3z5b75 2x3b51 a53b7;

%%
In equation (2. 2) the following theorem has been used:

(ABC) ® (DEF) = AQ®D(BRE)(CE®F

where A, B, C,D, E,Fare matrices of suitable dimensions. As applied in
equation (2,2) it should be noted that s(1J) s*(1J) = s(1J) ® s*(1J).
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HH, HV, VH, VV;if s(a) = E sm(oz) where the sum is taken over the

m

set of components of the entire scattering body, then the expressions s(a)s*(B)

in the right-hand member of equation (2.2) are given by

sk = ) . spls *@ = > s (s *@)

m,n m,n

]

Z | sm(a)sn(B)‘ e
m,n

i[6,,(@) - 0,(8)]

(2.3)

Since it is assumed that random phase relations obtain among scattered fields

of the components, the last sum is zero for m 7f= n. Hence, equation (2.3)

becomes

sS@s*@ = ) s @s *@

n

2
Thus to obtain an element of the form 1 s(IJ)l = ¢(IJ) it is necessary and

(2.4)

sufficient to know a certain set of quantities sn(a)sn* (B) for each component.

Since o and B may take any of the values HH, HV, VH, VV it will be necessary

to know a set of six quantities, three of which are real, three complex (eq. 2.5).

The matrix
S(HV; HV) & S*(HV; HV) =

s(HH) s*(HH) s(HH) s*(HV) s(HV) s*(HH)

s(HV) s*(HV)

s(HH) s*(VH) s(HH) s*(VV) s(HV) s*(VH)

s(HV) s*(VV)

s(VH) s*(HH) s(VH) s*(HV) s(VV) s*(HH)

s(VV) s*(HV)

{S(VH) s%(VH) s(VH) s*(VV) s(VV) s*(VH)

161

s(VV) s*(VV)

(2.5)



is of course not a scattering matrix. It is made up of the direct product of

two scattering matrices, and will be called anm - MATRIX.
Assuming reciprocity, and taking into account that [sn(a)sn* (B)] * 2

sn* (oz)sn(B), it follows from equations (2.4) and (2.5) that it is necessary and

sufficient to know the six numbers
s (HH)s *(HH) , s (VH)s *(VH) , s (VV)s *(VV) ,
s,(HH)s *(VH) , sn(HH)sn* (vv) , sn(VV)sn*(VH)

for each n (component of the body) in order to determine an S (:) S% - MATRIX

and hence the elements ls(IJ)I 2,
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3

INDEPENDENT CROSS SECTIONS APPROPRIATE TO
MULTIPLE-COMPONENT BODIES

It was shown in Section 2 that o (IJ) could be obtained from the independent

set [s(HR[, [s(aV)%, [s(VV)|?, S(HH) s*(HV), S(HV) s*(VV), and s(VV) s*(HE).

In this section it will be shown how o (IJ) can be obtained from a basic set of
nine average effective cross sections.

To do so, it is necessary to determine the most general set of basis

A TA) . A A . . A A
vectors p(A), p(B), in terms of p(H) and p(V). The normalization of p(A) and p(B)
requires that D) - p*(A) = 1 and S(B) . 6*(B) = 1. The most general vectors

satisfying these requirements are:
i ig
A 1 2
p(A) = e cos a f)\(H) +e sin a f)\(V) s

- elfb3 sin B /I\J(H) + e1¢4 cos BB S(V) .

B(B)

There is the additional orthogonality requirement f)(A) . D*(B) =0, or
i(py -P3) i, -9y

-e cosasinfB+e sinacosfB = 0.

Thus, f; -P3 =0, -, , ande = B*. The values of the cross sections o (AJ)
and o (BJ) are not affected by multiplying S(A) and S(B) by e_isb1 and e_ip3
respectively. As a result, the most general basis vectors which need be
considered are of the form

cos a f)\(H) + ely sin & ﬁ(V) s

Bla) (3.1)

Q(B) = -gina f)(H) + eiy cos a ﬁ(V) .

*
Actually there are other solutions but they do not result in increased generality.
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The corresponding transformation matrices are:

cos o ely sin a Ccos « - sina
U(AB; HV) = . iV H U(HV; AB) = LY . Y
-Sin o e cosca e sina e cos o
(3.2)

Using equations (1.2.8), (1.2.9), and (1.2.10), it follows that

s(AH) = cos a s(HH) + eiy sin o s(HV) ,
s(AV) = cos a s(HV) + e1'}’ sina s(VV) ,

1 i¥ 1 217V
s(AB) = - > sin 2o s(HH) +e cos 2o s(HV) + = e sin2es(VV). (3.3)
Taking the squares of the magnitudes of equation (3.3) yields:

2
‘S(AH)‘ = cos’

s(H H)|"‘ + sine |s(HV)|2 + sin 20 cos? Re s*(HH) s(HV)
- sin 2a sin? Im s*(HH) s(HV) ,

2
,S(AV)I = cos IS(HV)’2 + sin’e ' s(VV)'2 + sin 2 cos Y Re s*(HV) s(VV)

- sin 2o sinY Im s*(HV) s(VV) ,

s(VV)' ’

2
‘s(AB)I2 = % sin® 2a ls(HH)I2 +cos2 2x ’s(HV)' +;1_ sin? 2
- % sin 4a cos Y Re s*(HH) s(HV) +% sin 4o siny Im s*(HH) s(HV)

- % sin? 2o cos 27 Re s*(HH) s(VV) +%— sin? 2a sin 27 Im s*(HH) s(VV)

+% sin 4o cos Y Re s*(HV) s(VV) -% sin 4o sinY Im s*(HV) s(VV) ,

(3.4)

where Re and Im refer respectively to the real and imaginary part of the

quantity they precede.
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The squares of the magnitudes of the other elements are obtained from
the conservation of energy relations, together with the reciprocity relation
s(13) = s(JI) :

2 2 2 2
s(BH) ° = |s(HH)| + |s(HV)| - |s(AH)

s8V)? = |sEv)|?+ |sovv)? - |saw)|”

s(AA)2 = s(AH)2+ s(AV)| - |s(AB)

s(8B)2 = |s(BH)| + |s(BV)|? - |s(aB)|" . (3.5)

0
Fora =45°, 7=90", let A=Land B=R. Fora =45, ¥ =0°, let
(o} o .
A=+and B=-. Fora=45, V=45, 1etA=A, B =P. The polarizations

H, V, L, R, + -,A, P, being considered are shown in Figure A-5,

+ + DO

H (Horizontal) V (Vertical) L (Left) R (Right)
+ - N\ P

FIG. A-5: POLARIZATIONS H, V, L, R, +, -,/\, P
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Then it follows from equation (3.4) that

swa|® = 1 [s(em)|* + L [s@w)|? - m s#(am) s(v)
S| = L jsv|*+ 2 [svv)* - m sx(av) s(vv)
SR = 1 ()| + 1 [s(vv]*+ L Re sk (a0 s(vv)
2 1 2.1 2
SH)|* = 2 |s(HE)| + > |s(HV)|" + Re s*(HH) s(HV)
s(+V) 2 = % s(HV)2+% s(VV)|2+Re s*(HV) s(VV)
2 _ 1 | 2 1
sQP)|” = L |s(EE|" + 3 s(VV)| +5 Im s*(HH) s(VV) . (3.6)

If the scattering matrix S(HV; HV) has been obtained, then from S and
equation (3.6), the cross sections o (HH), o(HV), o(VV), o(LH), ¢(LV), o(LR),
o(+H), o(+V), and o(AP) can be found. From these nine cross sections the
cross sections for all other polarization combinations may be obtained by using

equations (3.4), (3.5), and (3.6). Use of equation (3.6) in equation (3.4) gives

o (AH) [cosza - % sin 2a (siny + cos¥y )] o(HH)

+ [sin2a -—;— sin 2a (sin¥y +cos‘)’)] o (HV)
+ sin2a cosy o(+H) + sin 2o sin? o(LH) |,
o(AV) = [cos2oz - % sin 2a (sin Y + cos 'y)] o (HV)

+ [sinza -1 sin 20 (siny +cos¥ )] o (VV)
2

+ sin 20 cosY o(+V) +sin 2a siny o(LV) , (3.7
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c(AB) = % sinZZa (1+cos2y -sin2?) [:O‘(HH) + cr(VV)]

+ 1 sin4a (sin? +cos?) [O‘(HH) - (r(VV)] +-;— sin 4o cos?Y [0'(+V) -o-(+H)]
4

+ 1 sin 4o siny [ o (LV) - U(LH)] + cos2a o (HV) + sin’2e sin 2% o(/AP)
2

- sin2acos 27 o(LR) .
From equation (3.5) :
o(BH) = o(HH) +o(HV) - c(AH) ,
¢(BV) = o(HV) + o(VV) - ¢(AV) ,

c(AA) = o(AH) +o(AV) - ¢(AB) ,

¢(BB) = o(BH) +¢(BV) - ¢(AB) ; (3.8)
and by reciprocity,
o(HA) = o(AH) , o(HB) = o(BH) ,
c(VA) = o(AV) , ¢(VB) = o(BV) ,
o(BA) = o(AB). (3.9)

Equations (3.7), (3.8), and (3.9) give all of the cross-polarization cross
sections of interest except ones of the form o (AJ) where A and J are polarization
vectors from different bases. These can be obtained by using the m -
MATRIX defined in the preceding section., The elements of the §_®_S>=—< - MATRIX
can be obtained from equation (3.6) and the cross section can be obtained from the

S ® S* - MATRIX defined in equation (2.5).
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4

POLARIZATION EFFECTS AND THE PHYSICAL OPTICS APPROXIMATION

No REPOLARIZATION* effects obtain when physical optics is used in
computing the monostatic single scattering cross sections. However, the
physical optics approximation does yield repolarization effects for monostatic
multiple scattering cross sections.

Since the assumptions**, of physical optics are employed in this report

9

according to the methods of Reference A-1, to obtain cross sections for many
simple shapes representing component parts of an aircraft, it is necessary to
consider the degree to which the physical optics approximation agrees with
experiment and with exact solutions when available.

For arbitrary directions of incidence on a general body, if any radius of
curvature of the body is of the order of a wavelength in the neighborhood of a

stationary phase point, neither the physical optics prediction of no repolarization

* Repolarization is said to occur when S(HV;HV) is not of the form ( a 0) .

%%k °q
A simple and commonly used assumption for a body possessing principal radii
of curvature R; and Ry which are everywhere large compared to a wavelength
is, as stated in Reference A-2, p. 462, that '... the induced currents and
fields radiated from any infinitesimal unit of area are very nearly those which
would be obtained from the same area if it were part of an infinite plane, tan-
gent to the surface at the location of the element of area. The currents and
fields on the surface are determined by the boundary condition that the surface
magnetic field is entirely tangential and is twice the tangential component of
the magnetic field of the incident wave''.

For a detailed discussion of the assumptions of physical optics see Reference
A-16, p. 9.
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nor its prediction of magnitude should be accepted without further investigation.
Likewise in those cases where any radius of curvature is less than the wavelength,
the assumptions of physical optics make the results suspect, although other con-
siderations for a particular case may show the results to be quite acceptable.
For example, for the Poynting vector incident along the axis of symmetry of a
perfectly conducting surface of revolution, the physical optics indications of no
repolarization are valid. Such validity may most easily be seen from an analysis
of the boundary value problem involved.

Since the boundary conditions may be given in terms of E alone, and since
His given in terms of E I;y Maxwell's equations, the problem of a perfect con-
ductor may be stated in terms of E alone. The wave equation for E and the
boundary conditions are unchanged by reflection in the plane P containing the
incident Poynting vector and the incident electric field. Therefore, to any
solution for E°> with components normal to P, there must correspond another
solution with normal components cancelling these. Since two solutions are im-
possible by uniqueness, E® must lie in P. Thus there is no repolarization, So
the validity of the application of physical optics for the Poynting vector incident
along the axis of symmetry of a perfectly conducting surface of revolution will be
a question of magnitude only.

It has been observed that for the case of a cone or a paraboloid of
revolution with the transmitter and receiver on the axis of symmetry the physical
optics answer agrees both with experimental results and with the exact theory,

as illustrated in References A-T and A-16. Further, it has been found (Ref. A-8)
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that the geometric optics fields for the infinite dihedral agree with the exact
fields for dihedral angles of 7r/n, n= 1',2, ..., and that the geometric and
physical optics fields are in agreement for these cases.

These results suggest that the physical optics cross section may be
expected to agree fairly well with the exact solution for a wider range of objects
than the large-principal-radii criterion would indicate.

It is, of course, not necessary to be limited to the particular method
discussed ébove. A different assumption (as in Kerr's example of the finite
cylinder) is that the exact solution for a similar problem (in Kerr's case the
infinite cylinder) may be used as a guide for the assumed field at the surface of
the scatterer. It would seem reasonable to expect this solution to be a good
approximation as long as it is used advisedly.

Another approximate method has been suggested by Fock (Ref. A-9). It
is limited only by the restrictions that the scatterer be convex and the radii of
curvature be much greater than the wavelength, so that it is applicable to a wide
variety of scatterers and will yield both scattered magnitude and polarization
information.

For those components of a scattering body to which physical optics applies

it may be assumed that the scattering matrix S(HV; HV) has the form

S(HV; HV) = (1 0) S(HH) . (4.1)
0 1

From this relation the scattering matrices S(LR; HV), S(HV;LR), and S(LR;LR)

may be determined from equations (1.2.8), (1.2.9), (1.2.10), and (3.2) by putting
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A=L,B=R,a= 450 and Y = 90°, The unitary transformation matrices

U(LR; HV) and U(HV;LR) involved here are given by [from equation (3.2) with

a= , Y= 90°
1 -1
U(LR; HV) = —1— U(HV;LR) = —L1
V2 4
(4.2)
Hence,
1 i
S(LR; HV) = s(HH) (4.3a)
-1 i V2
1 -1
S(HV; LR) = s(HH) | (4.3b)
i V2
0 -1
S(LR; LR) = s(HH) . (4.3c)
10

It follows from equations (4.3) and (3.6) that, for the nine cross sections
of interest (as given in Sec. 3), the following relations hold where physical optics

reasoning is applied:

o(HH) = o¢(VV) = o(LR) , (4.4a)
c(HV) = 0, [w(RR) = ¢(LL) = 0 also] , (4.4b)
c(LH) = o(LV) = c(+H) = oc+V) = ¢(AP) = L o(HH) .

2
(4.4c)
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CROSS-POLARIZATION CROSS SECTIONS OF WEDGES

The trailing edges of wing and tail assemblies of modern aircraft, in
particular the B-47 aircraft, are thin and sharp enough to warrant simulation
by wedge, or tapered wedge, shapes. Since sharp edges will, in general, give

rise to repolarization, such edges are considered in this section,

™N

‘ y

) ~ /o %/\%

’ \

{ ¢0 X
» N

FIG. A-6: WEDGE COORDINATE SYSTEM

9.1 General Theory

Consider an infinite perfectly conducting wedge whose edge lies along the

z-axis and whose intersection with the xy-plane makes an angle ¢o with the positive

x-axis.

172



To find the total electric field for arbitrary incidence it is necessary to

solve the equation

W +BE =0, G.1.1)

subject to a radiation condition at infinity and to the conditions

V- -E=o0 , in space , (5.1.2)

A
n

=

X = 0 , atthe body , (5.1.3)
where # is a unit outward normal to the body.
Let the direction of incidence be restricted to the xy-plane with

polarizations (a) perpendicular to , and (b) parallel to the edge of the wedge.

Then equations (5.1.1) and (5.1.2) are satisfied if E has the form
A

or

-1 £
o curlL Y (xr, P) ,
where

(V2+k2) Y (@, ) = 0* . (5.1.4)

The form E = - 1 [ik curl’i\Z Y (r, #) suffices for case (a) with equation (5.1.3)
implying the condition

O P(r,t P),=0 . (5.1.5)
on

*A cylindrical coordinate system, r, @, z, is used throughout this section.
Unit vectors for these directions are 'i‘r,'i\ ,'fz. The unit vector designating
polarization perpendicular to the edge of the wedge is (a) ='i\¢,and the unijt
vector designating polarization parallel to the edge of the wedge is f)(b) =/i\z.
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Case (b) requires the form E ='i‘zlﬁ(r, @) with equation (5.1.3) implying the

condition
¢(r, i-¢0) =0 . (5.1.6)

In a recent paper (Ref. A-10) F. Oberhettinger obtained expressions
for the Green's functions for the wave equation for the conditions (5.1.5) and
(5.1.6). LetQ(p, ¥ + ;) be the intersection with the xy-plane of a line source
parallel to the edge of the wedge and P(r, ) + @) be a point outside the wedge.

Oberhettinger expresses the incident cylindrical wave in the form

Yy = ) (kR) = frl K (BR) = %1— KO[B<r2+p2—2rp cos(p-'r))l/ 2}
(5.1.7)

where k has been put equal to i3. This equation is expanded in the form
o0
_ 4 VK e
lp(i) =2 f Klé. (Br) Kil,' (Bp)cosh[z;(w |¢ ’Yl) } at , (5.1.8)
0

where Kp(Z) is the modified Hankel function defined by
i -i_1r>
2 (2) 2
K(Z) = -Lire H Ze
M 2 u

The total field (ﬂ( 9 is given as the sum of the incident field ¥ (@) and the reflected

field ¥ :

Y

2 = g{;(i)+ wo. (5.1.9)

The reflected field can be represented in a form similar to equation (5.1.8)

© 2;(¢+¢0) - C(¢+¢O)
f K, GOK, 60| 6@ +6d)e at
0

= 4
V= 7
(5.1.10)
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where, by using equations (5.1.8) and (5.1.9), f; and f; are given by

fy(8) - f(§) = - sinh [ L -7 -¢o)]

£,(¢) 280 g 0) o280 _ sinh[ € (r+ Y -¢0)] ,  (5.1.11)

for condition (5.1.5), and by

B + (%) = - cosh [ Slr -y -0)) ]

2¢ -2 €
(%) e ¢o+f2(§’)e & = - cosh [§(7r+’)‘—¢0)] , (5.1.12)

for condition (5.1.6).
To determine radar cross sections, the reflected fields must be found
for conditions (5.1.5) and (5.1.6), In particular for condition (5.1,6) it follows

from equation (5.1.12) that

= _4i

T
where
A€) = — 1 ) sinh € 7cosh ¢ (p+7) + sinh § (2¢0 -7) cosh § (§-7)

sinh 2 § ¢0

or o

-3
Y= f e " Hfl) (kr) Hfl) (ko) A(S) d¥ . (5.1.13)
0 1r lr

If the point Q(p, 7 +,) defined above is moved to infinity, the Hankel

1 :
function Hgg) (k p) may be replaced* by its asymptotic value
imr

iko + XE _ dm
/——2 e1kp + 5 )
7Kkp

*
This is justified in Section 5.2.
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To express equation (5.1.13) in a manner appropriate to the form e'ikr cos(f-7)

for an incoming plane wave, the asymptotic expansion of Hilg) (kp) must be

divided by the asymptotic expression

_ l/ Z_ .
Tkp
-ikr cos(p-7)

of equation (5.1.7) and multiplied by e . Thus equation (5.1.13)

ikp -—Zi— -ikr cos(f-7)

becomes for incident polarization (b) parallel to the edge of the wedge,

© {r
b
w” ~ —iJ e ° HS«) (kr) A(S) d¥ . (5.1.14)
0

If it is further assumed that the value of r is very large, an asymptotic expansion
%
can be substituted for the Hankel function in equation (5. 1.14) giving

ikp+TL

(b) _|/L i r
v~ o e A(g) dt .

0

The remaining integral is convergent and may be evaluated for
20> 7+ [P+
2¢0>|2¢0 oy ' +|9-7|

to give (Ref. A-11, page 55),

(b) ikr+—1£i—

b 4 2

P l/—zl e B B R (5.1.15)
~ 4¢0 kr A B 2¢o

H 3
This is justified in Section 5.2.
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where 2

A = cos—u—ﬂ +Y) + cos *—

Zpo 2¢o

and

2
7r( - ) -COS—L

20, 29,

Using condition (5.1.5) and equation (5.1. 11) it can be shown for

B = cos

incident polarization (a) perpendicular to the edge of the wedge that

+ M

(2) ikr 9
b o~ L I/ﬂ e Y+ |L-L1|enT | (5.1.16)
4¢0 kr A B 2¢o

5.2 Remark on the Use of Asymptotic Expansions of Hankel Functions in the
Integral Representation of the Scattered Field for a Wedge

The purpose of this section is the justification of the replacement of the

Hankel functions by their asymptotic expansions in the integral

o0

B LA 1
f e ng) (kr) Hit) (kp) A(%) d¥ . (5.2.1)
0

(1)
Since the Hankel function Hi§ (kr) has the representation

2o * ikr cosh t
= <€ J e cos§t dt , (5.2.2)
0

and since the asymptotic form

. T m
> ikr + EZ— "z (1)
;EIT e of H _ (kr)

has the representation
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§r mi  fm in

ikr+=%- -
2 "4 2 t1 1
l/ 2 e = ¢ g (kr)
kr 1/2

T

> > ikr cosh t
= L& 1
- J e cosh — tdt ,
2

3N
[

0

(5.2.3)

it will suffice to consider the problem of obtaining a bound for the expression

o jikr cosht (5.2.4)

S e (cosh t/2 - cos¥t) dt
0
More generally, if f(t) and g(t) are real valued functions such that g(t)/f'(t)

is of bounded variation and such thatg(e)/f() = 0, then

) £(0)  if(t)
j e glthdt-ie 20 | = J e d | gt dt
0 £'(0) 0 dt | £'(t)
< f 4 [g(—t)—] dt (5.2.5)
o |dt L£') ) o

Taking f(t) = kr cosht and g(t) = cosh 1/2t - cos § t it follows that the

problem of bounding the expression (5.2.4) becomes the problem of bounding

o)
I = 1 f 4 | cosht/2 -cos8t| |4t -

; (5.2.6)
kr dt sinh t

0

and this is done as follows:
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fo sinh t(%sinh %t+§ sin L‘t) -cosht (cosh _i_t -cos¢ t)

kr1 = ; dt
0 sinh t
°° ‘% sinh%tl ﬂ&‘smtt\ e cosh-;_—t—cosl:t cosh t
< J dt + j -
0 sinh t 0 sinh t
”%sinh%tdt °°Iwgsinz;t}dt
y J +
0 Zsinh%tcosh-i—t 0 Zsinh%tcosh%t
° [cosh %t -cos §t I cosh t dt
J 2 = I1 + I2 + 13
0 sinh t
Each of I 1 IZ' 13 may be either bounded or evaluated in finite form:
0
© 2
. =1 dt = T . I 4;2 t dt = o
1 0 cosh 12 8’ e t coshl t 2
2 0 2
w(coshl t - cos§ t) coshtdt
L = f 2 =T 4 1%.4 tanh r 21
3 sinh? t ¢ 2 2 4
0

This integration is performed as follows: on pages 142 and 163 of

Reference A-11 the integrals

) br
b i cosh e
cosazf—cosx E =lg—, ¢c>0,
0 sinh cx X cosh -2
2c
0
f coshax -1 dX = _jop (cos@L), ¢ > |a| , are given.
o  sinhex X 2c
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Put a = 0 in the first of these formulas and add:

- cosh br_
f cosh ax-cos bx  dx = log c .
0 sinh ex X cosh 2T
2¢c

differentiate with respect to c and seta =1/2, b=¢, ¢ =1:

© (cosh %t - cosrt) cosh t
f dt = L 457 gy S1

0 sinh” t 4 2 2
Therefore,
2 i Y L1 £ T 2
e Hi§ (kr) T © <] £ e 3+4 % +4¢9 .

(5.2.8)

A similar bound can be given in the case of the remaining Hankel function of
equation (5.2. 1) for the difference between it and its asymptotic expansion,

Finally, since every term of A(Y¥) is of the form

it can be seen by using equation (5.2.8) a bound which goes to zero as 1/rp for

large r and p may be given for

: S7_mi : T _mi
©-%7T ikr+2~-2= (1) 1kp+§2—— >
(1) l/z 2 4 i l/z g
I _([ e (Hi{ (kr) - i © >G{i§ (kp) Tkp © A(g)dg
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5.3 Electric Fields for Linear Polarizations

Let the incident field be polarized perpendicular to the edge of the wedge.

Then the scattered electric field for the infinite wedge is given by

E = i, X xVy l/ e 1n [ . ‘ ¢ (5.3.1a)

where A and B are given by equation (5.1.15).
ikr+ 71
If w‘a) is written as w(a) =D Vzg e 4 f(§) , then

ikr + 7i 2 ikr +T

(a)
= 21 o 1 4 [~
Vi D f(f)| ik |/kr |/ .

5 -9 ikr+1r4i— N
T 2 1 1
+D ‘/ e T e £'(f) ]

can be approximated, for very large r, by

-

1kr+7r1 (@)
kDI/ (e = kg A

in equation (5.3.1a).
If the incident field is polarized parallel to the edge of the wedge, the

scattered electric field for the infinite wedge is given by

ikr+ T

S(b (b) ~ - ' 4 2

30 _a Oy | g “/ZW . sin T | L+ L LE . (5.3.10)
z 4¢ B

5.4 Electric Fields for Arbitrary Polarizations

If the incident field, with direction of incidence in a plane normal to the

edge of the wedge, has an arbitrary polarization; i,e., if
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BN
E = E@(sinv+fcosv) +EW Y, = E@fyr B0 Y, (5.4.1a)

the scattered field is a linear combination of equations (5. 3. 1a) and (5. 3. 1b):

g8 — 1 ]/El e 4 & » | E@ig-E(), E(a)1¢—E(b)'fz
4?)0 kr 2¢o A B

(5.4.1b)
It was shown in Section A. 2.8 of Reference A-1 that to go from the field
for an infinite wedge to the field for the class of finite wedges whose current

distributions are the same near the vertex involves only the multiplicative factor
L e—m/ 4

N

electric field is of the form (5.4.1a), equation (5.4. 1b) becomes for a wedge of

» Where L is the length of the finite wedge. Thus, if the incident

length L:

i A N\
=s _ LK g2 |E@Yp-E®i, E@i+E®],
E" = sin _ L (5.4.2)
4rp 20, A B

o

9.5 Cross Sections for Linear Polarizations

The effective cross sections o for the finite wedge can now be given for
the cases where the transmitted and received radiations are of arbitrary polariza-
tion and the direction of incidence still in a plane perpendicular to the edge of the

wedge. The definition of effective cross section is, as given before by equation

(1.2.6)
=S A 2
¢ = lim 4rr® | B P , (5.5.1)
r—© El

A . . . .
where D is a unit vector denoting the receiver polarization.
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=i A A_A A
For example, if E = E(b)ll\z andp = p(b) ='1\Z ,then

ikr 2
s = _Le T [_1_ L} E(b), (5.5.2)
A
4¢0r 20,

=

and

2
c(bb) = -TL_ gin? ksl [i-+

2
, (5.5.3)

where o(bb) indicates that both the transmitted and received polarizations are
in a direction parallel to the edge of the wedge.
=i A A . A =S . .
If E = E(b)i; and p=p(a) =-1x sm'Y+1ycos v, then E is as in equation

(5.5.2) and
o(ab) = 0 , (5.5.4)

where o(ab) means that the transmitted and received polarizations are respec-
tively parallel and perpendicular to the edge of the wedge. When the transmitted

and received polarizations are both in a direction perpendicular to the edge of

the wedge; i.e., when E = E(at)(-fx sin7+/i\y cos?Y ) and 6 = f)(a) =-’i\x sm7+'fycos7 ,
then
s L ikr 2 1 1 A
£ e R { A
= 2= gin— | = - = | E(a)1 (5.5.5)
4¢01‘ 2¢o [ A B ] g
and

2 2
oc(aa) = TL  gip? Lz- I:l_ - %:I cosz(¢-7) . (5.5.6)

5.6 Cross Sections for Circular Polarizations

For circularly polarized transmitted and received polarizations it

suffices to find o(Rb), o(Ra), and ¢ (RR), where R indicates right circular
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polarization. For incident radiation, unit vectors indicating right and left

circular polarization are respectively,

im) = V% [(—/i\xsin’7+'i\ycos7)+ i'i‘z_ (5.6. 1a)

A 1 A A A

(L) = = | (-igsiny? +i,cos9) - i 1 5.6.1b)
2 [ siny +3) 3 (

For scattered radiation, the unit vector system is interchanged; i.e.,

P@® =40 and ¥ 4w .

i
It E =ER) R) and p = pR) =1° (R), then

=S E(R) L ei . 1]'2 ’i‘ 1 1 . A 1 ' 1

7z s

and

? 2 1 1)
«(RR) = r L sin? T— L L> cos(f -v) + <— + —) . (5.6.3)

i A S =g, .
IE =E(kandd =P (R) = [(_’i‘xsin7+’i‘y cos'/)-i’i‘Z]V% , then E® is as in

equation (5.5.2) and

2 2 2
o(Rb) = “; sin? T— [i + iJ = —;—cr(bb). (5.6.4)
8, 20,

i N AL N
Finally, if s given by E = E(a)(-ix sin7+1y cos7) and p by D(R) =

S
l/ﬁ [(—/i\x sin 7+’i\y cos 7)-i?z] , then E is given by equation (5.5.5) and

2 2 2
c(Ra) = ”pLZ sin2€7r¢— [_1_ - %} cos’( -y ) = %o-(aa) . (5.6.5)
8 o
0
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5.7 Summary of Formulas

For backscattering, ¢ = 7 (direction of incidence still perpendicular
to the edge of the wedge) the effective cross sections obtained in Sections 5.5

and 5.6 become:

1, 1|2
1. O'(bb) = M —C—+F ”LZ 9 ”2
M = , sin >
wr ",
2, of(@ab) = 0
2
3. olan) = M| L -1 | P
¢c D > C = cos L +cos - (5.7.1)
¢o 2¢0
M
4, RR) = ——
o (RR) 4c?
2
1 - T
5. o(Rb) = — o(bb) D = 1-cos ~—
2 Zp
0
6. o(Ra) = %(r(aa)

/

C and D are respectively the values of A and B of equation (5.1.15) for § =7.

5.8 Coordinate Systems

To apply the formulas of Section 5.7 to wedge-shaped components of
an airplane, the relations between the polar angles of the wedge and of the
airplane coordinate systems must be known, These relations are derived in
this section.
Nx N¥* AL . - I .
Leti, , iy, 17 be a unit orthogonal set describing the airplane
x%, y*, z*- axes, with ¢* and 0% as polar angles in this system. Let /i\x,/i\y,/i\z

be a unit orthogonal set describing the wedge axes, with ¢ and 6 as polar angles
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in this system; and suppose that the edge of the wedge lies along the z-axis
and that the wedge is symmetric with regard to the xz-plane.
For a fixed aspect 6* it is desired to find the azimuth, Q{L* , for which

the direction of incidence, Q) =7, is perpendicular to the edge of the wedge.

Let
A, A A A
5{* = a11-1X+ a2 1y+ a3 1,
A
= ey kB (5.8.1)
Ao A A A
i% = a31 ix + &132 1y+ a33 L .
Z
7 ¥
/
0%
/% \y*
FIG. A-T: FIG. A-8:
WEDGE COORDINATE SYSTEM AIRCRAFT COORDINATE SYSTEM
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Let the unit vector /1'\zin the direction of the edge of the wedge be given by

Ak
/i\z = sina cos B/i\f + sin a sin B ly +cos @ i,"
_ A A X A\ %
= a4 1% +323 ly +ag'l, . (5.8.2)

If the direction </\ of incidence is expressed by

A Ak
¢ = sing* cosp* i +sing* sinf* L¥+cosox 1, (5.8.3)
then for some specified aspect 6%, the azimuth ¢_L* for which incidence is
AOA '
perpendicular to the edge of the wedge (i, v = 0) is
(5.8.4)

cos (yff‘ -B) = -cotf* cota ,

where o = arccos agg and f = arctan ayg/a, 5 .

The angle ;b =Y for which incidence is perpendicular to the edge of the

wedge is given by

ay, sing* cos¢_L* +a,, sinf* sin¢f +ag, cosf* (5.5.5)
* * + in6* sinf* + *
sinf cos¢J_ a21 sinf sm{bﬁL 241 cosf

tany =
41

For incidence slightly out of the normal plane, say by an amount § u,

the cross section will drop off approximately )Lz/ 81r2L2(6 u)2 (Cf. Ref. A-1,

p. 129), that is

o 2

- 1 ~
21-on norma =2 . )2\ — (5.8.6)

normal 8r L (du)
*
Thus it is possible to find § u for which ¢ drops off by a given amount ;
norma
* it is,from equation (5. 8. 6),
fu & A (5.8.7)
2 VerLg

* 2
The amounts used for the computations later are g =1/2, 1/10, 1/100.
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It is now necessary to find the change in azimuth angle § f* for which

T orma] AroPs off by the fraction g?; that is, find § $* in terms of du.

From

sin fu = 2 sinf* cos(fpx + dp*) ta,, sinf * sin(y_iﬁ + 0 p%) tag, cosf*

(5.8.98)
it follows that

2
du £ a__ sinf* cosf* _p*" -a,._ sinf* sinf* O @*
13 L 2 13 L

2
. Bk _0px Ok " *
+a,, sing* sinfj* (1 _;L_> +a,, sinf cos?fL Y] +ag, cOSO*

2
& x 00% x| - ing* sinfX + ing % *
84, COSO A + 0¢ a q Sing sm;Z_)L 2, Sinf* cosf
2 2
du = 8, COSO* "+ fgx ]/sin 0% -a233 . (5.8.9)
2

Solving equation (5.8.9) for § p* yields

-Vsin?0% - a 352+ 7/ sin9% -a o2+ 2a,, cosf* (§u)
bpx = / s+ 38 "~ 33 , (5.8.10)

F3
a33 cosf

ip o 2 2 . .
and if sin 6% -a 33 D> 2a33 cos@* (du), equation (5.8.10) gives

du

.2 2
Vsm 0% -2 gg

(5.8.11) «

dpx =

188



5.9 Wedge S-Matrices in the Airplane Coordinate System

Let the designation of axes be as given in Section 5.8 and the direction
of incidence of energy on the airplane be as given by equation (5.8.3). Horizontal
polarization is taken to be polarization parallel to the ground; i.e., in the x*y* -
plane of the airplane coordinate system:

A Ny . A
p(H) = - i¥ sinf) * +1gk cosp* . (5.9.1)
Vertical polarization is perpendicular to horizontal polarization; hence
A A
BV) = VxD(H) = -coso* cosp* { - cosp* sinf* ’i‘y* +sinox Tx . (5.9.2)

The polarization directions ﬁ(a) and f)\(b) of Section 5.5 may be written

in the airplane system as

S(b) = sina cosfB ?X* + sina sinf /i\y* + cosa /i\z* [=/i\z* =a,3 /i\x* +a,3 /i\y* +agg /i\z*] ,
(5.9.3)
Ap(a) =7 x I/)\(b) = (sinf* sinf* cosa - cosf* sina sinB)/i;zk
+ (cosf* sina cosf - sinf* cosp* cosa) ’i\y*
+ (sinf* cosP* sina sinf - sin* sinf* sina cosp) /i\z* . (5.9.4)

The matrix U = u(Ha)  u(Hb)
u(va)  u(Vb)
can now be given explicitly as

U = [ -sinB* cosa+cosf* sina cos(P* -B) - sina sin(P* - B) (5.9.5)
- sine sin(@* - B)  sinf* cosa - cos@* sina cos(f* - p) /,

where the elements u(IJ) of the matrix are determined from the previously

given relation u(IJ) = p(I) * p*(J). Since the direction of incidence is to be
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perpendicular to the edge of the wedge; i.e., Tis perpendicular to f}(b), the
angle {Df‘ for which such perpendicularity occurs (for fixed 6*, a, B) is given
by equation (5.8.4)
cos(’l)_L -B) = -cotf* cota . (5.8.4)

For each such angle f*, U reduces to

- cosa csc O* - sina sin({lﬁ_L -B
U = . (5.9.6)
- sina sin (¢L - B) cosa csc 6%

From equation (5.4.2) the S-matrix S(ab; ab) can be read off as

ikr ) (i - l) 0
S(ab;ab) = L&  sin T ¢c D

4rf, 2 . <1 1) : (5.9.7)
- + —

C D

b —

Using equation (5.9.7) in conjunction with equations (5.9.5) and (1.2.10),
the matrix S(HV; HV) = U S(ab; ab) U' in the airplane coordinate system for any
wedge component of the airplane is

~ =

2cos’a (l + l) sina cosa sin(f * -B)
M )1/2 Jkr | Csin®9* \C D C sin§*

sina cosa sin({ * -B) <1 - 1>_ 2cos’a

C sing* C D/ C sin?6%

(5.9.8)

where M, C, D are given by equation (5.7.1).
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CROSS-POLARIZATION CROSS SECTIONS OF WIRE LOOPS

In addition to those sharp edges on an aircraft which must be represented
by wedges there are, particularly for jet aircraft, sharp edges of a circular or
loop shape. Such circular sharp edges are represented by wire loops which are

discussed in this section.

6.1 General Theory

As pointed out in Section A.2.10 of Reference A-1, the scattered field
from a small straight piece of thin wire is similar to the field of a dipole. It
is of the form

N A A .
s _ o Tx@xd ik,
r

s (6.1.1)

where d £ is the length of the wire, 1/'\is the unit vector to the field point, r is
the distance to the field point, and c/l\ is a unit vector along the wire. Kis a
proportionality factor giverhl by,

K=x0¢" 3, (6.1.2)
where i\)i is a unit vector giving the direction of polarization of the incident
electric field and K; is a constant to be determined.

From the definition of cross section given by equation (1.2.6) the cross
section of a small straight piece of thin wire is

2 Ki(f)l 3)2 iﬁr- 3)2 (d.!/)z ,
EIE—

o = 47r (6.1.3)
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where superscripts i and r denote transmitter and receiver polarizations
respectively. If p (for both i and r) is parallel to the wire, (p d) 1; for

this case (f, =, ¥ = 0) equation (5.5.3) gives for the cross section

r = — , (6.1.4)
where, in equation (5.5.3), L has been replaced by d£. Comparison of
equations (6.1.3) and (6.1.4) for this case (i.e., f)\parallel to wire) yields:

o
s

K1=

N

Hence the field equation (6.1.1) may be written as

Sla A A A A .
ss _ B @D faxd) ke

. > 6.1.5)F

To find the scattered field for a wire loop, an integration is made over the loop:

‘E‘S

| @b fulxd 2w gy

ar loop

. . . . . A A
The effective cross section of a wire loop is then, sincep - r =0,

B pr |

2
o = 4ar
E!

. : 2
=1 f @B T S ar|
T loop

(6.1.6)

where p is the distance measured in the direction of incidence.

To take into account the phase lag in making the round trip from radar to wire
and back, equation (6.1.1) has been multiplied by elKT 15 obtain equation (6.1.5).
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Consider a loop of radius a in the xy-plane with center at the origin
Figure A-9. On the wire x = é cosf, y = a sinfl; thus d£ = adf; and the direction
of the dipole is d-= -/'1;(sin¢ +/i\ycos¢. Let the direction of incidence be in the
xz-plane and be given by 7= 'i\xsine - ’i\zcose; this makes p = (x’i;(+y’i\x)- e = a sinf cosf.

Let two perpendicular directions of polarization be given by:

B(a) = Leoso siny +}cos ¥+4,sin6 sin v, 6.1.7)
A A A N,
p(B) = i,cos cos‘l'—1ys1n7+ 1,8inf cos? , (6.1.8)
Z
z

A
A\- ;
X A
\4
. A A
a = radius of loop = —]xs1n¢+1'ycos¢
A
d = direction of dipole O = —/i\xsine +'i\zcose
A , , . — A A
v = direction of propagation a = a (1xcos¢ +iysin¢)

of incident plane wave

FIG. A-9: COORDINATE SYSTEMS FOR A WIRE LOOP

193



where 7 is the angle between the polarization vector and the y-axis. Right- and

left-circular polarization directions can then be given respectively by:

bR = VIT o[ 4yti coso) ¥y + 5000 | (6.1.9)
2

A 1 Y ra,. AoA ..

p(L) = — e [—1x(1 cosf)+1y -iz(isind) | . (6.1.10)

2

6.2 Cross Section Formulas

Formulas for the following effective cross sections have been determined:
¢(AA), o(BB), o(AB), ¢(AR), o(BR), and o(RR); in ¢(1J), I and J denote receiver
and transmitter polarization respectively. For example, using equations (6.1.6)

and (6.1.7), ¢(AA) is given by:

2 2r

2 J (cosp cos?Y - sinf siny cosg)’ elika sind cosf af
T
0

o (AA)

2
= ga’ [ (sin Y cos26 +cos?Y) J0 (2ka sinb)

2 2 2 . 2
+ (siny cos 6 - cos”Y) J2 (2ka sinf) s . (6.2.1)

where Jn is the Bessel function of order n.

In 2 similar fashion the remaining formulas are found to be

2
c(BB) = wa (cosze cos?Y - sinz‘r) J, (2ka sinf)

2
2 2
+ (cosze cos ¥ +sin 7Y) JO (2ka sin6) s 6.2.2)

2
s(AB) = ma? sin’¥ cos’y| (1+cos%) J, (2ka sinf) - sin0 Jo (2ka sin6)| , (6.2.3)

194



ma |, 2
c(AR) = 2— (i cos“6 siny - cos ) JZ(Zka Sin@)

2
+ (i cos®g sin?y + cos ) JO(Zka sing) s (6.2.4)

a2 |, 2 .
c(BR) = e (i cos 6 cos?+sin?) JZ(Zka sing)

2

+ (i cos® cos 7 - sinY) JO(Zka sinf) s (6.2.5)

2 9 2
o(RR) = Zi (-cos™@ - 1) JZ(Zka sin) + (-cos?6 + 1) JO(Zka sinf)| . (6.2.6)
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DIHEDRAL SCATTERING

7.1 Wing-Body Dihedral Scattering in the Dihedral Coordinate System

Let the surfaces representing the wing and body be such that for each
surface one of the two principal radii of curvature is infinite and the other is
neither infinite nor zero. The scattered field is computed in this section for
the dihedral formed by the wing and body by Fock's formulation of geometric
optics (Ref. A-17).

Consider the conditions on a ray which is reflected back to the point
whence it came: Let /1\«: be the initial direction of the ray and let n, and n be the
normals of the wing and body, respectively, at the points where the ray hits
them. Suppose the ray hits the wing first. After hitting the wing the .ray is
traveling in a direction

£-2 R0, ; (7.1.1)
after hitting the body the ray will be traveling in a direction

k-2k-R)R -2 [ﬁ-Z(ﬁ-ﬁw)ﬁw] AR = -k . (7.1.2)

The equality is required in order that the ray be reflected back to the source.

Since equation (7,1.2) may be rewritten as:

Reate-p)® -8R = k- Bpn +det)h | (7.1.3)

A A
it is apparent that k is a linear combination of Qw and n, and thus lies in the
plane of these two vectors. Further, the scalar product of equation (7.1.3) with

ﬁw and ﬁb respectively yields:
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(ﬁw-ﬁb)[z(ﬁ-ﬁw)(ﬁw-ﬁb) -(ﬁ-{l‘b)] =0,
AAVA Ay
(kng)(n ) =0 . (7.1.4)

Thus, ﬁw . ﬁb = 0. The same conclusions would have been reached if the ray
had hit the body first.

The above results allow a coordinate system to be chosen such that
ﬁw =/i\z and Qb =/i\x( Fig. A-10). The ray is reflected from the xy-plane at
x = R’sinf, and from the yz-plane at z = R’cosf, where R’is the distance
between the two points from which the ray is reflected.

Since the geometric optics field depends only on local properties of the
scatterer, the wing and body surfaces may be replaced by parabolic cylinders

having the same radii of curvature. These are, for the wing and body, respectively,

s = - _(ycosB - x sinB + R’sin@ sing)”
2R_

(z cosa - y cose - R’cosf cosa)?
2Ry,

where R, and Rb are the radii of curvature of the wing and the body.

s (7.1.5)

Fock's formulation of geometric optics will be used. Since the pertinent
formulas are given in Section 3.1 of Reference A-17, the detail involved to
obtain reflected fields will be omitted.

Consider the case shown in Figure A-10 where the ray hits the wing
before it hits the body. (The reverse case can then be obtained from the

symmetries of the problem.) If the incident electric field is taken to be

197



7
- /
R/

X \B
//\ A
W x
b
A
w
0
a
B

I

]

Incidence in xz-Plane

direction to radar =

direction of b;)\dy axis

cosa fy+ sina iz

direction of wjng axis
A .

cosB I+ sinB 1,

measured in xz-plane
measured in yz-plane
measured in xy-plane

o \ 3
—___ g
f
—y

sineli\ + cos6 /1‘
X Z

FIG. A-10: COORDINATE SYSTEM FOR WING-BODY DIHEDRAL
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- A A A -ik(x sin + z cos6)
Ei = [iycos'r+ (-ixcos9+izsin9) sin? | e s (7.1.6)

the field reflected from the wing at the reflection point on the body is

(following the procedure of the above-mentioned reference),

R A N A ikR' cos® 6
E = (sin? cosf I~ cosy iy+ sin?y sinf iz) © , : C(7.1.7)
1 +2 R’ 1-sin“fcos”fB
Ry cosf
After reflection from the body the scattered field for large R is
. . A A . . A . / 2
B = VRWRb sinf cosfO (sin?Y cosh i+ cos‘)’ly- sin ¥ sinf i,) e1k(R cos 9+R0) ,

2 R, I cosa cosP cosO - sina sinf sinel

where RO is the distance from the reflector to the radar. Thus the scattered

field of wing-to-body plus body-to-wing is

A A . ik(Rcos®0+R
N VR R, sinf cosf (sin¥ cosO/i\x+ cos?iy - sin¥ sinfi;)e ( J
E, = —Y
8
R, | cosa cosf3 cos@ - sina sinf sinf
(7.1.1)
If the polarization basis vectors are taken to be
A
A) =]
B(A) iy
A _ AL A
p(B) = - cosGB{F sinf i, , (7.1.9
then the scattering matrix S(AB; AB) is given by:
iu 1 0
S(AB; AB) = Q€ , (7.1.10)
R, 0 -1

where
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VRWRb siné cosh

lcosa cosf3 cosf - sina sinf sinGl

3

and u is a phase factor which is unimportant for the calculation of cross sections.
The form of equation (7.1.10) indicates that the incident wave has been re-

polarized (Sec. 4) by the wing-body dihedral.

7.2 Transformation to the Aircraft Coordinate System

In Figure A-10 let * be the direction to the radar, /l; be the direction of
the body axis, and ¥ be the direction of the wing axis. The direction of incidence
is taken to be in the xz-plane so that 8 is measured in the xz-plane; @ and 3 are
measured in the yz- and xy-planes, respectively.

Put a A
= cosBiy+sinf i, ,

A v sinah
cosa iyt sina ',

=> o> £>
I

= sine/i\x+ cosf /i\z . (7.2. 1).
As before, asterisks are used to denote the aircraft coordinate system.
The tie-up between the two coordinate systems is made through f, %,

and % which can be expressed in both coordinate systems. In the aircraft

coordinate systemﬁ and \Q are constant vectors for a given aircraft while

A A ) . . /-\ 1 A o
r = sinf* cosf* L* +sin6* sinf* i* + cosf* 17 . (7.2.2)

A
The expressions of equation (7.2.1) for v's\r, %, and r can be inverted to give
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A AL A
N _ cosa cosh w - sinB cosf b + sina sinB r
1= A A

W-hx

A A A
A — _sina sinf w + cosf cosf b - sina cosf r

AA
y v/}'bxr

A A
4 _ __-sinb cosa W+ sinf sin@ b + cosa cosf r
z- A
#-bxt (7.2.3)

where cosa cosp cosf + sine sinf sinf has been replaced by W Q X 1/'\ If the

A A, A A LA . .
expressions for \'f), b, and r in terms of i,%, ?y*,lz* are substituted into equa-
. A A A . . AL A, A
tion (7.2.3), the vectorsiy, Iy, and'1,will be given in terms of L%, 1%, and .1 *

except that @, B, and 6 are unknown. These angles can be determined from

A
év\'b = sinB cosa = § ,
N A
be*r = sinemcosf =t ,
A A .
r *w = sinfcosf =u ; (7,2.4)
they are
s2-t2+D
cos 2o = —————
1 -u?
2 2
cosZB =_U._-i_‘t_9__ s
1-
2 _u? +
cos 2% = ¢ uz D , (7.2.5)
1-s

2 2
- (2 stu) . The sign of D must be chosen so as

where D2 =(1 - §% - t2 - u2)
to obtain the correct physical setup of the wing-body combination. a, B, and 6

. . VA A . .
are used not only in the expressions for iy, 1y,and 1,, but also in the expression

for Q.
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The transforrriation from the scattering matrix for the AB basis to that
for the HV basis is accomplished by
S(HV; HV) = U(HV; AB) S(AB; AB) U'(HV; AB) , (7.2.6)
where

bm - pa)  Bm - B
U(HV; AB) = A A A ’ (7.2.7)
p(V) * p(A)  p(V)

o>
=

since ’ﬁ(A) and ﬁ(B) are real. Here,

/I\)(H) = - Sin$?5’?‘/i\x=7< + cosf /i\y* ,
Av) = w4 s P ST YW
D(V) = - cosf* cosP* 1% - cosf* sinf* 1% +sing*i* . (7.2.8)

The only unknowns remaining in the determination of S(HV; HV) are
Rw and R‘b From Figure A-10 the normals to the wing and body at the

reflection point are:

A _ A

n, =1z,

A A
i

oy T k00

A A : . .
which are known in terms of i_* and lz*. From the direction of the normal

i:}:
X’y:

at the reflection point the radius of curvature can be determined from the formula

2 12
radius of curvature = a_ b , (7.2.9)

[(aﬁ < b2+ (pf - A ] 3/2

. . N . A
where a and b are the semi-major and semi-minor ellipse axes and ﬁ[ and m

are unit vectors along these axes, respectively.
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CROSS-POLARIZATION CROSS SECTIONS FOR CYLINDERS

In this section the limitations on the use of the physical optics current
distribution method are considered. That such limitations exist is evident from
the fact that there is no repolarization of incident radiation in monostatic single
reflection situations according to physical optics. However, this is not an es-
sential limitation in computing the cross sections for various aircraft

components,

For example, consider the scattering from the wing-fuselage combination

illustrated in Figure A-11,

= L
0 & L)
“‘x Direction of Incidence

FIG. A-11: WING-BODY DIHEDRAL
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For broadside aspects the wing-fuselage combination was treated as a
dihedral which gives rise to double scattering (Sec. 7). Moreover, the single-
scattering contributions, principally from the fuselage, have been included.

In the case of circularly polarized radiation, an analysis in terms of
the characteristic dimensions of the wing and fuselage for the aspects con-
sidered indicates that for double scattering the dominant components will be
o(RR) and ¢(LL), while for single scattering the dominant components are
o(RL) and ¢(LR). That is, the characteristic dimensions are such as to insure
the validity of the physical optics approximation, It is then possible to set up
the following rule of thumb for the application of the physical optics approxima-
tion in determining the scattering properties of a target for circularly polarized
radiation:

1. The double-scattering contribution to o (RR) must be much

greater than that of single scattering to o (RR); i.e., the
repolarization effect of the single scattering is small with

respect to the double scattering.

2. The single-scattering contribution to o (RL) must be much
greater than that of double scattering to o (RL).

On the other hand, viewing, for example, the leading edge of the wing
there may be a measurable contribution to ¢ (RR) arising principally from a
single-scattering repolarization effect. Although in this case the physical optics
approximation may give a sufficiently accurate measure of o (HH) and o (VV), it
can give no indication of the contribution to o(RR). To take into account such

cases the polarization-dependent current-distribution method of V. A. Fock
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(Ref. A-9) is introduced. It is, in effect, a modification of the physical optics
method and can best be illustrated by a comparison with physical optics.

In the physical optics approximation, the tangential component of the
magnetic field on the surface is taken to be twice the tangential component of
the incident field on the illuminated side and zero on the shadow side of the
scatterers. Thus, the tangential component of the incident magnetic field can

be written:

. (o)

where G(§) is a function of a certain reduced distance from the shadow boundary;
§ is positive on the shadow side, negative on the illuminated side of the scatterer.
Hence, for the physical optics approximation

G(E) = 2 for§ < 0,

=0 for E >0 . (8.2)

By considering the local fields on the shadow boundary, Fock had

obtained a continuous function G(§) such that

G§) — 0
E -+

2

GEl)—2 . (8.3)
E—-
Fock's value for the field on the surface becomes the first approximation of the
method of Franz and Depperman (Refs. A-12 and A-13) applied to the circular
cylinder or sphere.

The details of Fock's method applied to the particular surface chosen

to approximate the wing surface are given below.

205



Consider a finite cylinder whose cross section is made up of one-half
an ellipse and one-half an ogive. Let the major and minor semi-axes of the
ellipse be designated by a and b respectively. Let the ogive have radius of
curvature R = a?/b, and a semi-minor axis b.

Attach the half ogive at the point of maximum radius of curvature of
the ellipse; i.e., at the minor axis. The cross-section is then a smooth curve
having an elliptic 'nose'" and an ogival "tail'. Let the length of the cylinder be L.

Under the assumption that plane radiation is incident at or near 'nose-on'';
i.e., the direction of propagation '12 is in the XY-plane making a small angle o
with the negative X-axis, the cross section is computed using a current distribu-
tion method as follows:

After Fock (Ref. A-9) it is assumed that the characteristic dimensions
of the cylinder are sufficiently large with respect to the wavelength of the incident
radiation that the current on the surface is given by the geometrical optics cur-
rent modified by a shape factor which is a universal function of a certain reduced
distance from the shadow boundary. It is further assumed that the cylinder is
of sufficient length L that edge effects may be neglected and that the same current
distribution can be used along the entire length of the cylinder.

In general the magnetic field scattered from a finite perfectly conducting

closed surface is given by the expression (Ref. A-1),
ikR

H =1 f MxH)x VE— ds, (8.4)
8 4m S R
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where S is the surface of the cylinder, #! is the unit outward normal vector to
S, R is the distance from the integration element on S to the field point, and Ht

is the tangential component of the total magnetic field on the surface. In

particular, for the backscattered far field,

— i A i
i o= K k x (0 xH) KR 4g (8.5)
S 4rr S .

where r is the distance from the field point to the center of the scatterer and
i\{ is a unit vector in the direction of propagation of the incident plane wave.

For the scatterer under consideration put the origin of coordinates on
the upper shadow boundary midway between the ends of the cylinder. Let the
X-axis be in the direction of the incoming radiation, the Z-axis perpendicular
to the cylinder surface and the Y-axis in the direction of the cylinder axis
(Fig. A-12).

First consider the case of incidence along the X-axis and the electric

vector polarized perpendicular to the cylinder axis (Fig. A-13).

In this case
H = (0, H, 0) ; (8.6)
hence,
A A —
k x (0 x H) = (0, n Ht’ 0), and (8.7
ikR .. ikr ik - 7'
e S e e s (8.8)
where,
- A
k = kk, (8.9)
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FIG. A-12: ORIENTATION OF COORDINATE AXES
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FIG. A-13: DEFINITION OF PARAMETERS
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so that

n He  ds. (8.10)

After Fock (Ref. A-9), write

0
Ht = Ht G() , (8.11)

where H,(: = elk . R The function G(§) is determined numerically and tabulated
for € = 4.5 (0.1) 4.5 by Fock (Ref. A-9).

The integration over the y direction of the integral gives simply

KL j 21k - T"
= n e
S 4” r

G(E) df (8.12)

where d£ is the element of path around the cross section of the cylinder. To
facilitate the computation divide the integral into two parts, that over the ellipse,
and that over the ogive. Let these parts be designated by Ie and I0 for the
integration over the ellipse and ogive respectively. Because of the symmetry

of the nose-on case, only the integral over 1/ 2 the cross section, from nose to

tail need be calculated. Thus,

” 2ikr

H = Db e @1 +21) , (8.13)
41.’. r e 0

where
2ik- T

I, = I n, e G(§)dZL . (8.14)
L

) e
0
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Now

n d& = -BbX dx on £ , and

hence,

2

v e S

kb

cosh d6 on LO and § is given above; hence

1/3 /3
1= < a2>1/3 je{g) §d8 — ei(ég>Z 5 G(§)

The cross section is then given by:

2 2
o = 47 ._12‘1{_> I +1 s
2T € 0
_ k2L2 2
I Ie"-Io
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1 = J Sd¥ 6 G(§)<_4a_>

(8.15)

(8.16)

1/3

L

(8.17)

(8.18)

(8.19)



For incidence at some angle o to the X-axis, the same current distribution

technique is applicable provided:

1. The radius of curvature, R,, at the shadow boundary
remains sufficiently large,

2. The minimum distance from the shadow boundary to the
"tail" is large enough for the shape factors to assume the
asymptotic value, zero.

It is required that the radius of curvature at A be much larger than a

wavelength and that the reduced distance from the shadow curve at B to the tail

C be so great as to be in the asymptotic range of the function G(£).

YI
Y /
[
/
/
- D /
- ]
a / B
AL ~ 0 XI

A | X"

FIG. A-14: COORDINATE AXES FOR INCIDENCE AT ANGLES a
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As before erect the coordinate axis with the shadow boundary as the
origin. Since there is no longer the symmetry of the ''nose-on'' case, it is
necessary to divide the surface into two parts and determine the contributions
from the two sides of the specular reflection point separately. With this in
mind two coordinate systems as indicated are used and the procedure is the
same as before.

In the case of parallel polarization, after Fock (Ref. A-9), make the

approximation that on the surface

HZ =0 , (8.20)
i o ikx
HX = Hz e F(E) , (8.21)
m
where ///,\\\
X 21\
_ { ka® /3 _ (o 13 \T\\
" 2b T\ 2 ’ ‘
. 3 C
1 -12— Ry
F(g) = L dt _
(£) - e jc ot G

t- <z
w(t) = L j e 3 4z .
w o) (8.22)
C
Asymptotically for large negative § , F(¥) is evaluated by the method of
stationary phase; thus,
|F(§)’ = 2% , (8.23)
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which gives the geometrical optic field
ikx ikx
H =2ie H X=2He 2. (8.24)
X Z g Z R
0

For positive § , the function F(&) may be evaluated by closing the contour C

and obtaining the sum of residues,

F(E) = 2ri 2 £ (8.25)

where the ts are the zeros of w(t).

The zeros of w(t) are given by Fock (Ref. A-9) and by Franz (Ref. A-13).
The values of w'(ts) are given by Franz in the form of those of a related function.
The function F(§) must be evaluated by quadratures for § <0 and as is in-
dicated above, may be evaluated by the method of stationary phase for § << -1.
The function F(§) has been computed and appears in Tables A-1 and A-2,

By an analysis analogous to the above the scattered magnetic field is

found to be in the Z direction, and is given by

, ikr il_{" 'fﬁ
g =ik e j n H e ds . (8. 26)
) 4t r S Z X

Substituting for Hx’

H, = (;:) (;) 'eﬂ:r js eZikX n F(§) ds , (8.27)

l/ 2 .
where nz = 1- n, and n is given above.
X

213



NN N IV IV N N DN DN - o b e e
e e [ Y I T D B e *« e e e

g

e & e L] . L] e & e e e
I OO O B W N M O W 0O =1 0 Uk W NN O O 0~ Uk W NN~ O

TABLE A-1: VALUES OF F(§), 0(0.1) 2.1

Re [F('s' )]

Numerical Integration

.38791

. 38569
. 37880

. 36699
.35013

0
0
0
0
0
0.32825
0.30153
0.27040
0
0
0

. 23547
.19762

.15799
0.11797
0.07918

0.04341
0.01247

Residues

0.34876
0.32747
0.30120
0.27027

0. 23550
0.19768
0.15777
0.11793
0.07920
0.04343
0.01249

-0.01193

-0,02852
-0, 03660
-0.03644
-0.02937
-0.01785
-0.00512
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Im [F(§)

Numerical Integration

-0.67188
-0.56098

0.45779
-0.36257
-0.27557
-0.19712
-0.12754
-0.06721
-0.01648
+0.02432

0.05496
0.07539
0.08582

0.08683
0.07951

Residues

. 21526
.19747
.12793
. 06291

. 01665
. 02432

. 05480
. 07526
. 08575

.08681
.07950
. 06546
. 04689
. 02651
.00722
.00815
.01748

.01986
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TABLE A-2: VALUES OF F(§), -2.7(0.1)0

Re [F(§)]

Numerical Integration Asymptotic

O O O O O O O O O o o o o o o

. 38791
. 38582
. 37987
. 37052
. 35838
. 34392
.32711
.31027
.29209
.2'7355
.25509
. 23697
.21948
.20285
.18718
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Im [F(§)]

Numerical Integration

.67188
. 79024
.91585
. 04845
.18775
. 33347
.48526
.64276
.80557
.97328
. 14544
.32164
.50144
.68455
. 87050

Asymptotic

-2.13348
-2.30150
-2.47517
-2.65543
-2.84129
-3.03128
-3.22414
-3.41898
-3.61514

-3.81216
.00998
.20819
.406'75
.60557
. 80461

9.00388
-5.20322

-5,40270
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A-1,

A4,

A-5.

A-6.

A-T,

A-8.

A-10.
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APPENDIX B

FAR FIELD SCATTERING FROM BODIES OF REVOLUTION *

1
SUMMARY

By use of approximations based on physical reasoning, radar cross section
results for bodies of revolution are found, In the Rayleigh region (wavelength large in re-
spect to the object's dimensions) approximate solutions are found, Examples given
include a finite cone, a lens, elliptic ogive, a spindle and a finite cylinder, In the
physical optics region (wavelength very small in respect to all radii of curvature)
Kirchhoff theory and also geometric optics can be used, When the body dimensions
are only moderately large in respect to the wavelength then Fock or Franz theory
can be applied and examples of the circular and elliptic cylinder are presented, In
the region where some dimensions of the body are large in respect to the wavelength
and other dimensions are small in respect to the wavelength, special techniques are
used. One example, the finite cone, is solved by appropriate use of the wedge-like
fields locally at the base, Another example is the use of traveling wave theory for
obtaining approximate solutions for the prolate spheroid and the ogive. Other results
are obtained for cones the base perimeter of which is of the order of a wavelength by

using known results for rings of the same perimeter,

* Applied Sci, Res., Sect. B., Vol. 7, 293-328 (1958). (Errata have been corrected
and slight revisions have been made, )
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INTRODUCTION

It is the intent in this appendix to use different mathematical techniques
to obtain approximate results for the far zone scattering of plane electromagnetic
waves by perfectly conducting bodies of revolution for all ratios of body dimension
to wavelength, In places speculation based on physical reasoning has replaced
mathematical rigor, We shall first discuss the Rayleigh region, then the physical

optics region, and then the resonance region,
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RAYLEIGH CROSS SECTION OF BODIES OF REVOLUTION

Rayleigh scattering (Ref, B-1) describes the scattering of electromagnetic
radiation by a body whose dimensions are much smaller than the wavelength of the
radiation, Thus the Rayleigh limit describes the scattered field, due to an incident
plane wave, approximated at a large distance from the body by the field of radiating
electric and magnetic dipoles located at the scatterer (the magnetic dipole contri-
bution is comparable to that of the electric dipole only for a perfect conductor),

To evaluate the electric (magnetic) dipole moment, the static electric (magnetic)
field induced on the body by an applied constant field must be known, In other words,
the electrodynamic boundary-value problem has been reduced to a corresponding
static problem,

Although the solution of the Laplace equation is in principle simpler than
the solution of the Maxwell equations, there are very few geometrical cases for
which even the former is manageable, The question, therefore, arises whether
any approximate information can be obtained as to the Rayleigh cross section when
a solution of the Laplace equation is not available, That this should be possible is
heuristically plausible, When the wavelength is much longer than the dimensions
of a body, one cannot discern details of the structure of the body - the observed
effect depends more on the size of the body than on its shape. Thus, knowledge of
the size of the body modified by a rough indication of shape, should suffice for a
description of the body in finding the Rayleigh cross section, It is the purpose of

the present discussion to explore this possibility.
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As background, it might be helpful to bear in mind a couple of features of
the Rayleigh approximation itself, The solution to an electromagnetic scattering
problem can be expressed as a multipole expansion, The relative importance of
terms in the expansion differs according to the distance of the observer from the
scatterer (as well as on the dimensions of the body relative to the wavelength), so
that a small error in describing the field in one region can result in completely
misrepresenting the corresponding field elsewhere. For a scatterer much smaller
than the wavelength, retaining only the dipole terms gives a good approximation
to the far zone, though the field in the near zone may be entirely wrong, Specifying
the dipole moments of the body does not determine the body uniquely (i, e, different
bodies may have the same dipole moments), Thus the Rayleigh cross section alone
cannot identify the body fully, On the other hand, the finer details of the structure
of the body, which would be exhibited by the higher moments (and seriously affect
the cross section at small wavelengths), do not affect the Rayleigh cross section,

For simplicity, consider the scatterer to be a body of revolution, make it
a perfect conductor (this is a rather trivial limitation), and examine backscattering
of a plane wave incident along the axis of symmetry, There is then no polarization
dependence, Thus, the direction of incidence will be denoted by z, the incident
electric vector direction by x, the incident magnetic vector direction by y, and the
length of the body along the symmetry axis by £ . The electric dipole moment P

is given by
P - S w £1dS (3.1)
S
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where w is the charge density, S the surface of the body, and T ' the vector,

to a point on the surface. The boundary condition yields

w= e€E*f=¢€E (3.2)
where € = dielectric constant, ﬁ = outward normal to the surface, and E=

electric field strength, Using cylindrical coordinates,

dS = p 1 Hdp/dz}? df dz (3.3)

where p is a function of z but not of § so that

A ; 2m
soe | wo 1+(2) | @E (3.4)
0 0

From uniqueness and symmetry considerations, we can write

©
E-= E an(z) cos nf . (3.5)
n=0
Then py = 0, p, =0, and
¢ e ®
2
p =€ S dz o* \1 +(%.z9) j dg cos ¢<Z an(z) cos n ¢>
0 n=0
0
(3.6)
y —
- gp =
=€ S 7 dz p al(z) 1 +( dz) € S 7 dz ¢ al(Z).
0 0

Apart from the factor a'l(z), the integral is just the volume of the body, V. In

fact, the whole determination of the electric dipole moment resolves itself into
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the determination of the factor a(z) in

E = a(z) cos (3.7
since the other terms in the series do not contribute, If the body is elongated
along the axis of symmetry (i.e, , if L > n), a'l(z) will be a slowly varying
function of z and can be removed from the integral and replaced by a mean value
(or actually by an estimate of its value), To estimate a(z), we resort to an analogy
with reflection from a plane, In the latter case, the amplitude of the total field is
twice that of the incident field, Thus we choose a = ZEO (phase differences in the

incident field at various points on the body can be neglected) to obtain

P=X2€E,V. (3.8)

The far zone electric field at a point on the z-axis due to the electric dipole is

(Ref, B-2)
2 i(kz-wt)
E=- — fx($xp) &—— . (3.9)
47TE Z

The form of the magnetic dipole far-zone field is the same as that for the
electric dipole if the electric and magnetic fields are interchanged (Ref, B~2). The
symmetry of the problem insures that the magnetic dipole is along the y-axis, just
as the electric dipole is along the x-axis, Consequently, the far-zone fields due to
the two dipoles have the same orientation and phase, If we again resort to a cylinder-
like model for approximation (with the amplitude of the total field at the surface
twice that of the incident field), it is obvious from the complete symmetry of
occurrence of the electric and magnetic interactions that the two contributions are
equal,
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Altogether, we have in the far zone on the z-axis

i(kz -wt)
E‘:;’zﬁ EOVE—T“. (3.10)
T

The back-scattering cross section is given by

2
c=471 2

4
-4 Y (3.11)
. T

lim z»0

om‘l =

This, then, is the value of the cross section to be expected for an elongated
body of revolution, * As the flatness of the scatterer increases, the approximation
is expected to get worse, in fact an infinitely flat body (i.e, a disc) has zero volume
but a non-zero cross section, To anticipate the discussion below, for prolate
spheroids the error incurred in the cross section varies from zero for extreme
elongation to 13 per cent for the sphere,

Let us now compare this pseudo-derivation in detail with the exact answer
for the special case we do know, the spheroid (Ref, B-1,) Let us define for
- |E|
F= . (3.12)

2EV
K%

convenience the quantity

N
]2

F = 1 yields the magnitude of E given by Equation (3-10), Modifying Rayleigh's

notation slightly,
_ l(l+_1._)= o (3.13)
F=35\1L 2L/ pe-1n)

where for a prolate spheroid, (Ref. B-1),

1-€?

+e
Lo (3. 14)
2e3 1-e

L - -
= 3

*1t should be noted that for the acoustic case the treatment would be equivalent except
that instead of the two components (electric ang néagnetic) there would be only one,
and thus the cross section would be o= (1/7) k'V",
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. For an elongated

where e = eccentricity -- i,e, the semi-axes are a, a,
1-¢2
spheroid (¢ = 1) , L—> 1 and F — 1, checking the approximation.
Next, let us inquire into the shape correction by first examining its form

for the spheroid, We already know the prolate result; for the oblate spheroid,

1-€° -1 1-e?
L= 5~ sin e~ (Ref, B-1) (3.15)

where the semi-axes are now a, a, ay 1-€?. As these expressions are quite

complicated, it is profitable to examine their limiting values,  Consider a sphere

(e=0); From (3, 14)

3
1og<-1i) =Z<e+ %— e +) (3. 16)

(3.17)

-1
2 2 2 4 9
le:g (2—’3‘)] =[§- §:l =5 (3.18)

It is easily demonstrated that F is monotone decreasing as we progress from
a sphere to an elongated prolate spheroid, Hence, it ranges from 9/8 to 1 -- very

nearly constant, of the form 1 + decaying term,

Examine the disc limit (e —» 1 for oblate spheroid): Let

e=sinx, (3.19)
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Then
2

L = cos x ¢sc x (x csc X - coS X), (3. 20)
Let T
= — - X, (30 21)
y 2
Then )
L= siny sec y[(% -y)secy-siny}. (3.22)

Expand near y = 0 (equivalent to e —1):
T Ty 2 x 4
L~y [( =~-y) -y] = 5 -2y = Zy(l- =) (3.23)

1 1
L) Ty ye-Fy)

yrT v (3.24)

o]
"
i
U

For small y, y:::\[ITeE; if we call the semi-axes a, a, b, theny &2 b/a,

Combine the information about F, In the oblate case, F is again monotone,
increasing toward the disc limit, The prolate spheroid discussion indicates that
we should split off from F a unity term, and that the remaining term should decay
as b/a — o, Thus we write

A (4o N & it = eV (3.25)
Frlt gy [1 +(7r + 4-1r);]~1+ ry (1-y) -

We now postulate that for all spheroids (with semi-axes a, a, b), the shape correc-

tion factor is approximately

P14+ L+ e (3. 25)

1
Ty
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where y = b/a. Numerical comparison indicates that the approximation is valid
to within one per cent, The Rayleigh cross section of a spheroid for backscattering

along the axis of symmetry is

o=

2
4.2 1 .- (3. 26)
kV[1+7rye} .

SHES

The cross section of the spheroid depends on itsvvolume and on a correction
factor involving y = b/a, Except for very flat oblate spheroids, the éhape correc-
tion factor can be neglected, Where it is not.neglected, the shape correction
factor is a simple function of y, which is a measure of the elongation,

The natural extension of the discussion is to postulate that for all bodies
of revolution the Rayleigh cross section for backscattering along the axis of symmetry
can be expressed as

4v2(1 L V)2 3. 26
141
k v © ) (3.26)

SHES

where y is a measure of the elongation (characteristic dimension along the axis of
symmetry)/(characteristic dimension in the perpendicular direction). For elongated
bodies, the term in y drops out and there is no ambiguity, For flattened bodies, the
answer is sensitive to the choice of characteristic dimensions, but a good approxi-
mation should still be attainable, The ambiguity can be eliminated in a number of
cases by imposing a restriction on the choice of characteristic dimensions: in the
limit of extreme flattening, the cross section must tend to the value for the approp-

riate disc,
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Illustration I: Finite Cone

Consider a right circular cone of altitude h and radius of basea. As
h — 0, the cross section of the cone must go into the cross section of a disc of

radius r -- i,e., we must have

2 3
1 1 -y, &h 4
VF = §7ra2h(1+;y‘e y)__) 3y - 3 a. (3.27)

Thus, the appropriate ratio of characteristic dimensions to be used in equation

(3. 26) is
y = h/4a. (3.28)

Hence, the cone has the same cross section as a spheroid of equal volume whose
semi-axes are (a, a, h/4),

Ilustration II: Lens

Consider a symmetrical convex lens of radius of curvature Rl(the body of
revolution obtained by rotating the shaded area in Figure B-1 about the n -axis).

In the disc limit (d constant, ¢ — 0),

3
VF_)_Y = % d . (3029)
Ty
Hence, we take for the lens
_ 3V - 3V . (3.30)
VY 4R sin’6
The volume of the lens is
2r 3 2
v= g R, (1- cos 6)(1-cos 6 + sin 6). . (3.31)
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As 6 —s /2 (sphere limit), we reproduce the previous spheroid result,

as expected,

FIG. B-1: THE LENS

Dlustration II: Elliptic Ogive

Inasmuch as the circular ogive is more elongated than a sphere, the
argument from the disc limit cannot be applied to it directly,

Instead, we consider the elliptic ogive obtained by rotating the shaded area
of Figure B-2 (a portion of an ellipse) about the n -axis (which is taken parallel

to the minor axis)., For this body, in the disc limit (d constant, ¢ — 0):

3
d . (3.32)

VF —

o

s
Ty
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FIG. B-2: THE ELLIPTIC OGIVE

" The equation for the ellipse is

2
oy (df - (3. 33)
a? 1

which suggests use of the parameter 6,

sin §=c/a (3. 34)
Then

3V 3V (3.35)
3 3
4rd 47 (1-cos 6)3

The volume of the elliptic ogive is

2 3
V=2rab (sin6-6cos 6 —%sin 6). (3. 36)

As 6 — /2, we reproduce the previous spheroid result, as expected,

Special Case: Circular Ogive ., To obtain the cross section of the circular

ogive, we now merely take the special case of the elliptic ogive with a = b, From

geometry, 6 can then be identified with the ogive half-angle, Now
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.3
sin 6 - 6 cos 6 - %‘Sm 6
3 (3.37)
(1 - cos 6) *

_ 3
y=2

Illustration IV: Spindle

Consider the body of revolution obtained by rotating the shaded area of
Figure B-3 (bounded by a parabola and a straight line perpendicular to the axis

of the parabola) about the n -axis. Using the disc limit just as before, we have

3V
y = (3.38)
4rd
where the volume is
2
= %g‘ T cd (3. 39)
so that
4 ¢
= - - . 3. 40
Y75 d (3. 40)
n

FIG, B-3: THE SPINDLE
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Illustration V: Finite Cylinder

Consider a cylinder of radius a and height h. From the disc limit,

y = = (3.41)
4 as 4a

By further exploitation of this approach we can go on to obtain the
Rayleigh cross section of a body of revolution for arbitrary separation
between transmitter and receiver and for all aspects and all polarizations.
The most direct extension is to replace the body by an equivalent spheroid
and take over the spheroid results. The equivalent spheroid is a spheroid -
with the same volume and the same elongation factor as the body. The
simplified expression found for backscattering along the symmetry axis
provides a reasonable way to arrive at an elongation factor for many bodies.
The logical ultimate extension in the spirit of this approach is to formulate
the Rayleigh scattering of a body of revolution at all aspect combinations
and polarizations in terms of the following parameters only: the volume,

the elongation factor, and the aspect and polarization angles.
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THE OPTICS REGION

By the optics region we mean, generally, that region, in wavelength,
wherein the techniques of geometric and physical optics yield good approxima-
tions to the radar cross section of a body. The extent of the optics region
thus depends on the particular body being studied. By the geometric optics

cross section we mean 7 R1 R_ where R1 and R2 are the principal radii of

2
curvature of the body at the point where a ray is reflected toward the receiver.

We use physical optics (Kirchhoff) theory to denote the scattered far field, and

the cross section thus defined, given by the following expression

ikR
Bo- /e | dxBxve— o

illuminated
area

where H = twice the tangential component of the incident magnetic field,
R =the distance from the integration point to the field point,
A= the unit outward normal to the surface at the integration point,
ikR

and in which the far field approximations for V —e—R— are used. That

is, with the receiver at a very great distance from the body and if the body

v<eikR>z—ji{— (eikR)ﬁo
R

where R =r + (f - T'), T = the distance from the origin to the field point

is finite we have
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(receiver), r’/=the distance from the origin to the integration point on the
scatterer (r’= the corresponding vector) and ﬁo = the unit vector directed
from the receiver to the origin.

When the wavelength is small with respect to all of the dimensions
of the scatterer, the geometric optics cross section is an excellent approxima-
tion to the exact result. When a body is infinite in extent, then geometric
optics can be the exact solution. Examples of such exact solutions are the
paraboloid of revolution, when we are. considering plane wave illumination along
the axis of symmetry, and the wedge for particular wedge angles and for
particular angles of incidence and polarization.

Let us now consider a body which has one radius of curvature which
is small with respect to the wavelength. In three dimensi.ons we can con-
sider the infinite cone and in two dimensions we can consider the wedge.
By purely dimensional analysis we find that the tip far field behaves like
1/k and the edge in two dimensions behaves like (1/ k)l/ 2. We find that
physical optics not only predicts these types of k-dependence but also (for
large and small cone angles) that it predicts the leading term of a rapidly
convergent expansion in the angle parameter as long as the transmitter or
receiver is on the axis of symmetry.

Kirchhoff theory will give poor results for problems in which the
major contribution to the cross section comes from an edge. For example,

consider the case in which the transmitter and receiver are located at a
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point along the face of a wedge but far from the edge, with Poynting's vector,
1_;, parallel to the face of the wedge and normal to the edge (see Fig. B-4).
For the E-vector perpendicular to the surface, the exact result is:

2 _ w2 2 2

2 2p

o =21r‘f(p)|

where the cross section, in two dimensions, is given by

Es
o =lim 2rr —=

r- o Ei

while the Kirchhoff answer is zero.

l*m

FIG. B-4: THE WEDGE FOR INCIDENCE ALONG ONE FACE OF THE
WEDGE AND NORMAL TO THE EDGE

This leads one to the realization of why Kirchhoff theory would give poor
results for a finite thin cone. The major contribution to the cross section
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in the non-specular directions for small wavelengths comes from the rear
circular edge. The field, locally, would be like that for a wedge. Thus,

we need to use an improvement on Kirchhoff theory to obtain good cone
answers. We will show this improvement and also how we obtain approximate
results for thin cones in the resonance region. Thus we will show how to
obtain, approximately, a complete cone cross section curve.

Kirchhoff theory gives excellent first order approximations for bodies
with dimensions large with respect to the wavelength and the results are
too well known to warrant their discussion here.

In the region to which we must give the vague characterization as
lying somewhere between the resonacne region and the optics region there
has been a rapid and fruitful development of new ideas recently.

We begin with the remarkable paper of V. A. Fock (Ref. B-3) in
which he presented a method which we will describe as a local order analysis
of the field near the shadow boundary. He succeeds in giving the fields on the
diffracting surface near the shadow boundary in terms of one or the other of
two "universal" functions according as the incident polarization direction lies
parallel or perpendicular to the shadow curve. Strictly, these are solutions
of the two dimensional (scalar) problems and depend on the radius of curvature

at the shadow boundary and the wavelength of the radiation. These functions are

of the form S i€t
g(g) = L € at
\/-7T_ r w‘(t) (4'1)
i€t
£(g) = == S e at
Jr r wi
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where

zt - = z dz
w(t) = - j e 3 (4.2)
Jm
with the contours shown in Figure B-5.
t-plane
z-plane
r ol
— — -
1
r
FIG. B-5: CONTOURS
Z
Y
X
——
IE——

Diffracting Surface

FIG. B-6: GEOMETRY

The arguments used are certain reduced distances measured from the

237



geometrical shadow boundary, i.e., near the origin as indicated in Figure

B-6 we have

2 X
¢ - [ﬁ} 2 (4.3)
2 R

where R is the radius of curvature and k = _21r_ .

These same functions appear in the approximate solutions of specific
problems. There are two which we particularly wish to note. The fields
induced on a parabolic cylinder (Ref. B-4) and on a circular cylinder (Ref.
B-5) are given, in a sense, by these same functions. These are not
remarkably similar surfaces.

In these examples for the solution continued into the shadow we must
modify the arguments of the universal functions as follows. The motivation
for this stems from the "generalized ray optics'" of Keller (Ref. B-6). In

place of Equation (4.3) we write

5 1
r=8 [kR(s):l 3 s (4. 4)

where S is path length measured along the surface of the obstacle from the
shadow boundary into the shadow, ds is the element of path length, and R (s)
is the radius of curvature at the position s.

Franz and Deppermann (Ref. B-7), however, have given the connection

between the two in the concept of '"creeping waves". We can meaningfully
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speak of the continuation of the penumbra solution into the shadow of the
parabolic cylinder, but in the case of the circular cylinder we find we are
wrapping our solution around the cylinder if we allow the argument of the
universal functions to continue increasing. This latter concept is made
meaningful if we understand the field in the shadow as arising from waves
"launched" at the shadow boundary and "creeping" around the rear and
eventually back to the front, etc. The physical interpretation has been
justified by Friedlander (Ref. B-8) while the underlying mathematical
structure has been illuminated by Wu (Ref. B-9) with his concept of a
universal covering space.

In the following is given an account of the general procedure. Let
a convex closed surface S, f(x,y,z) = 0 be illuminated by a plane wave
incident in the direction of the x-axis. The geometrical shadow is then
given by the two equations f(x,y,z) = 0, —aa-i— = 0. Let the origin be
located at a point on the shadow boundary with the z-axis the outward
directed normal to S and the y-axis chosen to form a right-handed system.
Using the geometric assumption that the surface can be approximated by a

paraboloid at any point, i.e.,

2
z+1/2 (ax® + 2bxy + cy) = 0, (4.5)
so that _g_f_ = ax + by, and the physical assumption that the variation of this
X

field in the z-direction is much larger than that in either the x- or y- direc-

tion for sufficiently small X, Fock obtains an approximation to Maxwell's
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equations which leads to the solutions:

[0}
H =H G(g%)
y v
0, 1/3 , Ikx
HX= (—E—) iH e F(¢) (4.6)
H =0
Z

on the surface. The incident field is given by
Y 0
H =(0, H, H)) (4.7)
0 y z

while the functions G and F have the asymptotic behavior

2
lim G(%) {
> 0

(4.8)
2%
lim F(%) {
-
-7 0
where ¢ is a reduced distance from the shadow boundary given by
VL
£=( —) (ax + by). (4.9)

2a

In Figure B-T7 we compare the result using the Fock-Franz method
with the sum of the harmonic series for a circular cylinder (e.g., Bailin's
work in Reference 10) with ka = 12. In Figure B-8 we compare the method
with the experimental measurements of Wetzel and Brick (Ref. B-11) on an
elliptic cylinder of ka =12 and kb = 7.5.
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In the case of the three-dimensional problem of scattering by finite
obstacles we have an additional complication which appears in both the
scalar and vector problems. Since there is a caustic at the rear of the obstacle,
we must take account of the fact that the energy converges on the caustic and,
in fact, the "creeping waves" lose their identity in this region.

This behavior is apparent from the work of Fock (Ref. B-12), Franz
(Ref. B-5) and, more recently, Belkina and Weinstein (Ref. B-13) and N.
Logan (Ref. B-14) who have given a thorough treatment of this approach for the
sphere.

However, Fock theory can be used to determine a partial creeping wave
type field and if we can find another way to handle the partial field due to the
small radii of curvature, we can again obtain good far-field approximations
for moderate values of ka. The value of Fock theory is twofold: (1) when
the wavelength is very small with respect to the characteristic dimensions of
the body, it yields an approximation to the true field in the shadow region
where the Kirchhoff result would predict a zero field, and (2) it is a procedure
which is easily applied to sphere and cylinder problems for moderate values
of ka (ka > 5). One finds upon applying this process to spheroids that the
values of ka required in order to obtain good results may be very large.

In the three dimensional problems we see that the sphere solution
with the interpretation of creeping waves and behavior of the caustic serves

as a prototype from which we infer the solution for other shapes provided the
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characteristic parameters are sufficiently large with respect to the wavelength.
For example, a symmetrically illuminated spheroid of large enough dimensions
should be an easy generalization.

Suppose we consider a prolate spheroid in somewhat more detail. Let
the semi-major and semi-minor axes be denoted by a and b respectively. The

condition we require for the application of the Fock-Franz theory is that

k R . Dbe large where k = 2r and R . is the minimum radius of curvature,
min ) )Y min
R =B
min a

As an example of this limitation we note that for a prolate spheroid
of —E— =10 the requirement k RminN 5 would imply ka > 500. This was
pointed out by Belkina and Weinstein (Ref. B-13).

If we let k Rmin decrease while we keep ka, kb large we approach a
body which is "large" but which has "sharp" ends. We illuminate this object
along the symmetry axis and consider a limited application of our '"creeping
wave' theory. Certainly for k Rmin < 1 the forward tip will scatter more
like an infinite cone than like a sphere of radius b, hence, our theory is not
applicable. In the penumbra region all requirements are met and we feel
justified in making a creeping wave analysis. Granted this, we have launched
a wave which is creeping toward this effective discontinuity, the rear tip.
Here we must again have recourse to another description and consider the
wave to be reflected from the rear tip and again launched along the surface.

An example of this would be the thin cone radiation problem when the

source is far from the tip (a = distance from tip to source). The Green's
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function for this case is approximated by that for a cylinder and thus Fock
theory should give excellent results. If an infinitesimal slot is along a
generatrix of the cone, the Fock answer should be excellent for all ka. If
one can obtain a tip answer to add to the Fock result, then one can handle
all kinds of slots on cones.

We postpone our discussion of the ogive, finite cone, and the spheroid
approximations (for moderate values of ka) until we reach the resonance region
discussion of Section 5.

In addition to the Fock theory, small wavelength approximations can
be improved by making use of known results. Just as Artmann, in his solu-
tion for the thick half plane (Ref. B-15), replaced the cylindrical edge with a
polygon, we can obtain an approximation for the thin finite cone by replacing
the cone with a regular pyramid. The base, locally, will be a wedge and to
calculate the field scattered by the cone base, we will add up the fields
scattered by all the wedge-like segments into which the cone base has been
decomposed. We shall consider the cone in some detail, hence it might be
valuable to first present the physical optics approximation.

The problem we shall consider is that of determining the radar cross
section of a thin finite cone when both transmitter and receiver are situated
on the axis of symmetry of the cone in the far zone. We will treat the
case where the wavelength of the incident radiation is much smaller than
the altitude, Zo and the base radius, a, of the cone. The geometry of the

problem is as shown in Figure B-9.
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FIG. B-9: CONE GEOMETRY

We shall also utilize polar variables in the x-y plane as shown in

Figure B-10.

=

O>
o>

FIG. B-10: POLAR VARIABLES

The following definitions of radar cross section (of perfect con-

ductors) will be used,

- 2 =5 2
2 | Eg 2 | H
o =lim 4rr - =lim 4dr —_— (4.10)
r-+m E I+ H'
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The Kirchhoff (physical optics) expression for the scattered magnetic field

is (Ref. B-16)

S ik +ikr i A Ay = A = A
H =— £ (n.z2)f-m.0Ha (4.11)
2T r 0

where A
4tk @+ k)
f = ne ds
Sl
S’/ = illuminated area of scatterer
f = unit outward normal to S
r' = position vector of point on S
T = position vector of field point
A
@ = direction of incident magnetic field
{1\0 = direction of receiver to origin
) . . -
k = direction of transmitter to origin,
i i
Note. We assume IH | = |E \ =1. In this case, the following relations
hold. A R A A
n = sinai +cosa(i cosB+1i_ sinf)
X y
A
T/ =X'/i\ +y'/i\ +z'i
X y Z
4 -1 4.12
v (4.12)
A _ A
Ny = -1,
A
k = -4
z
z'tan o A
dS = ——— dz%N3j
cos «
Hence
A A A A
n..a=- . =
o L ly 0, (4.13)
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and A
+k?r' . (ﬁo +k)

f.te |8 as

o) o)
SI

which becomes

2T -

) Zy -2ikz’

= - tan” @ S & z'e dz'dB. (4.14)

0 0

The integration with respect to B yields

~Zg .
N 5 -2ikz’
ﬁo o f=-27tan « S z'e dz! (4.15)

0

This integration can also be performed yielding

-Z
. ) -2ikz’ Jo2ikz! 0
ﬁo-f=+21rtan o pic 5 + s
(2ik) 2ik
0
or
R 9 +2ikz g ¥2ikz 1
A f-ortan e | g + =2 - . (4.16)
° 4k 2ik 4K
Hence
+ikr +2ikz +2ikz
S i ZA~€
g - 1€ tanzoz ki e + =2 ° - ——1-?2- (4.17)
r v ax? 2ik 4k

which can be written

+ik(r + 2z ) -2ikz
- i A
HS = £ ° tanzaf iy [1— -ikz - &2 ] (4.18)

2kr
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Since Ikzol > 1 (small wavelength approximation)

. +ik (r + 2z,)
~ie

- A
HS ~ tan'a i (ikz )
2kr y ©
(4.19)
+ik(r + 2z ) 9
0
=+ & tan o
0 y
2r
Now using the definition of radar cross section we have
2 gs | 2
o =lim 47€r — =1rz2 tan4a/
-0 H! °
or
2
o =Ta 1::3.n2 a, (4.20)

We will now approximate the cone with a pyramid and determine the
field scattered by the wedge segments that constitute the base. To illustrate
the technique we will first use the physical optics approximation for the field
scattered by the wedges. We use the Kirchhoff expressions for the scattered
field previously presented where in this case (incidence perpendicular to the

back face of the wedge - see Figure B-11) we have

A A 4
n = sm;Y 1n cos Y 15
P gig+n’i‘n+g’i‘§
2 has no § component, i.e., é:'/i‘g =0 (4.21)
i, = f
(o
A /.\E
k = Ie
das = dE' dg .
sin?Y
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FIG. B-11: WEDGE GEOMETRY

A
Hence f .5‘«:1 'c/z',=0, and
o 13

L -® .

A > cos Y t2ikg

. T=- s' S e dg dt . (4.22)

0 ,
sin ¥

0

Integrating with respect to ¢ and letting £ — - £ , we obtain

[0 0] Q
N —2ikE . -2k
hof- L S e dg ==L e (4.23)
tan?Y 0 tan?Y 2ik 0

Associating the edge contribution with the value at the lower limit (just as in

the infinite cone case we obtain the "tip" contribution) we obtain

L

A . Fogp ————, (4. 24)
2ik tan Y
Hence
s -1 e+ikr A
H = a. (4. 25)
4 tan Y r



Now letting L =a dB, where a = radius of base, and integrating around the
base (5‘, = constant vector), we have
2 4 Hkr A Hkr

i - —j &ae  a4p Rl (4. 26)
drr tan? 2r tan?

(4.27)

tan2 07

But ¥ =L _ o (see Fig. B-12) where @ is half the cone angle; thus,
2
tan @ = tan ( _12r - 7)

= cot Y
and finally
2 2
o =7 a tan q, (4.28)
which is precisely the nose-on result obtained for the cone directly with

physical optics.

FIG. B-12: DEFINITIONS OF ¥ AND o
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Now we are in a position to employ this technique to obtain a new finite cone
result. We make use of the following expression for the electric field scat-

tered by an infinite wedge:

s Vo Mt T : 2 Ea) f-E®A E(2)p+ Eb)B
pS - L sin ) ]
22T - ) 2r - B A
(4.29)

(Ref. B-17) where incidence is in a direction perpendicular to the edge of the
wedge and
E(a)=Ej_ = component of the incident field perpendicular to the edge of the wedge,

E(b)=E|1l = component of the incident field parallel to the edge of the wedge,

2
A = cos ( 27r6)~l~cos (—L—)
27 - 2T -
2
B =1 - cos ( )
2m -y
) = angle of incidence measured from the bisector of the exterior

angle of the wedge, and 3 and é\ are unit vectors perpendicular and parallel,
respectively, to the edge of the wedge.

This expression is valid for an infinite wedge. In order to obtain an
expression for a wedge of finite edge length, we again look at the current
distribution integrals. We know that the integral over the edge length, will

be, in the two-dimensional case,
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2
© ik r2+‘g i(kr+%1'-) (4. 30)

—
o~
R
7]

and, in the three-dimensional case,

L ik yr* + ¢ .

ik
J e dg~ Le . (4.31)
0

This is the only difference between the two- and three-dimensional problems
so that the three-dimensional fields can be obtained from the two-dimensional
fields by multiplying by

1
Le4

/ ri
Thus we obtain, for linear polarization, the following expression for
the scattered field for a wedge of length L:
.S

E = sin
2r(2r-7)

Lo kT 2\ | E@f - 50 E@P+ Bb)
< LS - .(4. 32)
2 -9 B A

Again we are really considering the base of a cone and hence

cosB-i‘ sin f
y

A
+1 sin B -1 cos B.
X y

[
> x>

AL
p..
A

B:

-

1 A
El, we recall, is equal to -ix, but

A A
ix=-acosB+BsinB.
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Hence

i = cos B (4. 33)

and

i
'E“ = - sin B.

i i A A
Thus, using these relations for Ei ) E“ , p and B,

i A iA A A
ELp - E. B =(pcos 3+ 8 sin B) which, in rectangular unit vectors, is

A
=-i cos 288 -/i\ sin 28, (4.34)
X y

and similarly,

; i A A
Eis + E” B =3 cos B - B sin B, or simply

A
= - 1. (4. 35)

Substituting in %5 we obtain

B ]

A A A
ikr 2 i cos2B+i_sin23 i
ag Le : T > X y
E°= ——— sin - +

X
2r(27 -%) 2r Y 2 " 2
1- cos( ul ) cos ( 6 + cos L >
L o - om - 2r-v/ |

(4.36)

As before, we set (L =ad3) and integrate over B from 0 to 2, obtaining

for the scattered field from the cone,
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A
ikr 2 i
ae X
o T, T > .(4.37)
cone (27 - ) 2r -9 ( 21r6> ( 1r2 )
coSs + cos

Now, using the following definition of o,

A9 2
. 2 E
c =lim 4¢xr —
r—0 E

we obtain, remembering that 6 =x/2 + Y /2,

2
. 2 T
3 2 sin
4 a <27r-‘Y>

o = 5 . (4.38)
(27 -7) ( 72 > < 31‘_2 ) 2
cos - cos
2w =Y 2r -

. T
In terms of the cone angle @ we have, since Y = = - o s

2
3 2
T a 2
o = 5 cosecz < . (4. 39)
(3r/2 + a) 3T + 20

This result is compared with the physical optics result in Figure B-13.
The wedge solution must be restricted to cases where the ring singulafity is
dominant. As an example, for the cone with ka > 1, this obtains for @ such
that kzo > 1. Consider, for example, a cone—cyliﬁder combination viewed

nose-on (see Fig. B-14). The expression (4. 37) still applies in this case,

so that since 6 = ¥/2 now, we have
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. 2 1r2 >
sin
41r2 2 -

"2 - (4.40)
Ta (21 - )2 2 5 22 2
T
cos - cos
21 - 2r =%
In terms of the half cone angle, @, we have since @ =1 - ¥ s
L2 1r2
5 sin
+
g - i - TTe (4.41)
T a (r+ ) < 7{2> ( 27[2) 2
cos - cos
Tt+ao T+ao
1 —
Direction
23. —~— of
l Incidence
FIG. B-14: CONE-CYLINDER COMBINATION
A
T-7/2
v I . .
Direction
- of
Incidence

FIG. B-15: DEFINITION OF WEDGE ANGLE
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Similarly, for the contribution from any ring singularity, equation (4.37) .
holds where 7 is the included wedge angle (Fig. B-15).

For ka > 1, kzO > 1 the ring singularity dominates. As kzo decreases
with ka fixed the ring contribution diverges, approaching the first term of
physical optics asymptotically; hence it is necessary to use physical optics

for kz small, i.e.,

0 21 2

0~ 41

Since the ring and first term physical optics are independent of wavelength
(except for the implicit requirements ka >1, kz o >> 1), the graphing of
the complete cross section dependence on cone angle (ka fixed) cannot be
done in any two—diménsional curve without fixing A.

A similar technique of decomposition into straight segments was
employed by Artmann (Ref. B-15) in his solution of the problem of diffrac-
tion by a thick half-plane. He considered a half-plane of thickness 2a
capped by a half-cylinder of radius a, as in Figure B-16. For ka>>1
and incidence as indicated he decomposed the cylindrical portion into a
regular N-gon of length L 3> A . Then by considering the conditions under
which the rays striking near the apex S be diffracted onto the next side of
the N-gon he determined the size of the penumbra region and hence the shift
in the diffraction pattern as compared with the diffraction pattern of a completely
black screen of like form. In order for rays diffracted from one polygonal

face to have any effect on the next face, the following inequality must hold,
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FIG. B-16;: THICK HALF PLANE
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FIG. B-17. N-GON GEOMETRY
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kL | cos B(n) - cos E(n) < 2m. (4. 42)

~

The quantities involved are shown in Figure B-17. To measure the penumbra
width, or in this approximation the number and length of the polygonal sides
that have any effect on succeeding sides, Artmann proceeds as follows. First
he restricts the sides so that the only ones that affect the next one are the last
and next to last where the last side contains the apex and naturally the next
to last side immediately precedes it on the lit side (see Fig. B-17). In order
that this be true
(N-1) _(N-1)
kL | cos B —cos f3 ~ 27, (4.43)
From Figure B-17 we see that
(N-1)
B =a (4.44)
Since the next to last face (n = N-1) is not affected by rays from the preceding
face (n = N-2)
(N-1)
B = 0.

Substituting these values in equation (4.43), (4.45) yields

kLI cos @ - 1\ ~ 2T (4. 45)

but

cos sl - 2— (4. 46
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hence

2
kL —%—- o 2.

Again referring to Figure B-17 we see that

but
2 2
hence
L~a a
and
3
ka o ~4r
r 1/3
’ aoe (X ) /
ka

Once more referring to Figure B-17 we see that

yo=Lsma

or employing the above results

2 4r

y a~=a axz(—)

0 ka

Hence, reasons Artmann, the diffraction pattern of the thick screen is

2/3
displaced by this distance, ( 1;—4:) /
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(4.47)

(4. 48)

(4. 49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

a, perpendicular to the direction of



incidence as compared with the diffraction pattern of a completely black
screen.

The above small wavelength approximations assist us in obtaining
approximate far zone cross sections for may bodies of revolution. We

must describe what can be done to obtain results in the resonance region.
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THE RESONANCE REGION

To obtain answers for prolate spheroids when the radius of curvature
at the tip ( —b; ) is small with respect to the wavelength and simultaneously
when the wavelength is small with respect to the broadside radii of curvature,
b and a_2 , we must use another type of approximation. A point in electro-
magnetics is physically a region where all radii of curvature are small with
respect to the wavelength. Thus the thin prolate spheroid looks very much
like an ogive.

The approximate theory used by Belkina for thin spheroids, which she
compares with her exact answers (Ref. B-18), and that used by Peters (Ref.
B-19) for thin ogives, as one might expect, are for the problem under con-
sideration almost equivalent. Belkina's approximate theory is a special case
of Peters' more general considerations. However, she obtains physical in-
formation from exact theory, not obtained by Peters, on when the approxima-
tion is valid for spheroids.

For axially symmetric transmission, scattering from infinite cones is
extremely small in all directions except the specular direction. Local analysis
near the front tip and in the penumbra region for thin prolate spheroids or
ogives (since the reradiation is tangent to the path) provides no big scattering
effect except in the forward direction. A good portion of energy is guided

towards the rear point and again there is, primarily, a reflection back. The
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back flow of energy coming from the rear tip is again primarily in the forward
direction (flow towards the front tip) which is in the direction back towards
where it originally came from. Thus the backscattering near nose-on cross
section of an ogive looks as if it is primarily due to the tip in the rear. This
has been experimentally checked by Peters (Ref. B-19).

This suggested to Peters and Belkina that the thin body should act like
a traveling wave antenna. Peters derives the results for certain ogives, and
derives the cross section for such an antenna (both monostatic and bistatic)
for aspects out to 400 off nose-on. The theory would fail exactly nose-on
but provides excellent results for near nose-on aspects.

To illustrate the theory we shall concentrate on a specific example,
the thin prolate spheroid with E polarized field incident. The radar cross

section of a long thin body is given by

2 42 in 6 kL 2 N2)2 2
o-:’Y ); == sml:—z—— (1 - p cos 6{‘ = ___2‘.5_ [f(e):]
TQ 1-pcosf P TQ

where Q is given by

Cin [ (kL/pXL +p):| - Cin [(kL/p)(l -p)] 1
+

3

(p-1)cos [(kL/ p)(1+p):l
p 2p

Q= -(2/p2) +

+ (pH)eos [ (kL/ pi-p) | + (p%-1) _1;14 (Si [kL/pX1i+p)] - st [(kL/ p)(l-pﬂ)
with Cin(x) being the modified cosine integral of argument x and Si the sine
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integral. We see that there are three parameters besides the wavelength
which serve to describe the body. They are the voltage reflection coefficients
Y , the relative phase velocity p, and the length L.

Voltage reflection coefficients of thick ogives and thin rods have been
experimentally determined by Peters who found that for a fairly thick ogive
the reflection coefficient is about 0.7. For thin rods Peters found that the
voltage reflection coefficient is about 1/ 3. Physical reasoning indicates that
the thin prolate spheroid, near nose-on, should be compared with a thin rod
rather than an ogive and as a result for a thin prolate spheroid we use a
voltage reflection coefficient of 1/3. However, as 0 increases from zero
(the nose-on aspect), the point at which the traveling wave is reflected may
be expected to move around the body and in this case will cause it to enter
a region of larger radius of curvature. Thus we would expect the voltage
reflection coefficient to increase to 1 as the aspect goes to broadside. The
actual values used in the graph (Fig. B-18) are as given in the following

table:

6| 0 -40° | 40° - 60° | 60° - 75°

o 0.33 0.7 1.0

The relative phase velocity (p) is defined as the ratio of the length
of the body to that of the current path on the body. For this case it turns

out that p = 0, 985.
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As the angle of incidence is increased from zero, a point is ultimately
reached at which the traveling wave theory breaks down and the analogy with
a thin wire is no longer possible. To deal with such values of 6 (i.e., near
broadside incidence) an alternative model is required. In this case the body
is likened to a thick cylinder; the thick cylinder results are displayed for as-
pects in the range 6 = 60° to 0 = 900 in Figure B-18. The thick cylinder
results are obtained from Reference B-20.

The excellent, but as yet unpublished, experimental results of J. Lotsof
of the Cornell Aeronautical Laboratory are included in Figure B-18 for the
purpose of comparison. Indeed, it was the existence of this ekXperimental
data which dictated the choice of the dimensions of the spheroid to be used
in this illustrative example.

Before terminating this discussion of traveling wave theory, a few
words about the ﬁ polarization case for the same prolate spheroid are in
order. At near nose-on incidence we should expect the same current to be
induced, and thus the same cross section. However, with increasing 6, the
spiralling of the current may be expected to lead to an appreciable reduction
in the cross section; this has been confirmed by the above mentioned ex-
periments.

Now we shall turn our atte;ltion to the problem of estimating the

nose-on scattering cross section of thin finite cones for all values of ka.

53
>

The quantity "a'" denotes the radius of the base of the cone and as usual
k =27/,
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We need the approximate behavior in the resonance region as we have already
presented small and large wavelength approximations. This is obtained by
assuming that the base is still the dominant feature as the resonance region
is entered from the small wavelength side. The resonance maximum of the
ring singularity would approximate, in both position and amplitude, the last
large maximum of the cone. Since in any physically realizable situation, the
edge of the base of a cone will have a non-zero radius of curvature, b,

(b <), the only difference between it and a wire loop (wire radius < 1)
relative to incident electromagnetic energy is that currents can exist "inside"
the loop but not "inside" the base of the cone.

When one looks at the axially symmetric cross section of a ring as a
function of wavelength, one finds that there are no minima. This then allows
one to predict that the contribution of the inner edge is negligible in comparison
to the outer edge when the wavelength is equal to the order of the loop radius
but greater than the wire radius. (If there were non-negligible contributions
from both the outer and inner edges, then at some wavelengths they would
add in phase and at some wavelengths they would add out of phase. But
there are no noticeable minima in this region!) Thus the cross section of
a loop here looks like a Rayleigh type answer, depending only on the loop
radius but not on the wire radius. This then, gives added justification for
using an analogy between the conical base and the wire loop. Kouyoumjian's
variational results (Ref. B-21) and Weston's exact results (Ref. B-22) for

wire loops in the resonance region can then be utilized. Their results
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(as a function of wire radius and loop radius) indicate that the resonant peak
is fairly insensitive to changes in wire radius but that as the wavelength de-
creases the wire radius becomes important. However, when the wavelength
decreases, we use the wedge approximation. There may be a region on the
small wavelength side of the loop maximum where other, smaller in amplitude,
maxima can occur. These lesser extrema are essentially averaged in this
approximation.

On the Rayleigh side, we find that the Rayleigh line, which is an upper
bound on the cross section, lies so close to the ring maximum (in fact may
intersect the ring curve before the maximum) that the existence of any
maxima greater than the ring maximum on the Rayleigh side is precluded.
This is illustrated in the following figure (Fig. B-19) where the experimental
results of S. Silver of the University of California, R. Kell of the Cornell
Aeronautical Laboratory, and M. Ehrlich of the Microwave Radiation Company
have been included for the purpose of comparison.

In order to obtain off-axis finite cone results and to check our assump-
tions concerning the different reflection coefficients at the two ends, we compare
the off-axis results for the cone with the traveling wave antenna result. We
add the Kirchhoff disc contribution to the results for backscattering near rear-on.
These theoretical estimates are compared with the corresponding experimental
data obtained by Ehrlich in Figures B-20 and B-21. We note that the null
near the rear-on aspect is theoretically predicted to be too near to the
6 =180° aspect. This could have been anticipated since we know from the

resonance discussion of the importance of the disc contribution.
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By using approximations based on a creeping wave type picture we
augment the above theory for nose-on results where f(6) = 0. For ogives
of 1/2 angle o, a 200, and ka>- 15 (a = 1/ 2 maximum minor dimension)

we obtain a nose-on result of

2 4

A

o (0) = tan « + az)t.
16 7

When the creeping wave contribution is negligible, then the 2r

augmentation disappears. This occurs for thick ogives. The above formula
holds for all ogive experiments analyzed to date within a factor of two. A
feeling for when to drop out the 1;5 can be obtained from known sphere
results.

The reader is now in a position to fill in roughly the complete cross

section curves for ogives and spheroids.
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APPENDIX C

CROSS SECTIONS OF CORNER REFLECTORS AND OTHER MULTIPLE
SCATTERERS AT MICROWAVE FREQUENCIES

1
INTRODUCTION AND SUMMARY

If a body is not convex, radiation incident on it may be reflected
a number of times from one part of the body to another before finally
being reflected away from the body. These multiple reflections have an
important effect on the radar cross section of a complicated body such
as an airplane. Therefore, the following study of the radar cross sec-
tions of multiple scatterers at short wavelengths has been made. This
paper presents a summary of known data on multiple scatterers, together

with a few new formulas for special cases.

The best known and best understood example of a multiple scatterer
is the corner reflector, which is widely used as a beacon and as a standard
in experimental determinations of cross section. A corner reflector consists
of sections of three mutually orthogonal planes, and has the characteristic
property of giving a large monostatic cross section over a wide range of
directions of incidence.*

A simple approximation to the bistatic cross section of a corner

reflector is given in equations (2.1.5) and (2.1.6). An optical model to

“Certain closely related configurations are also commonly referred to as
corner reflectors.
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be used in conjunction with equation (2.1.5) for determining the monostatic
cross section of a corner reflector is described in Section 2.2. Explicit
expressions for the monostatic cross sections of square and triangular
corner reflectors are given in Section 2.3. A study of the bistatic cross
section of a square corner reflector with the transmitter on the axis of
symmetry is made in Section 2.4. A discussion of the effects of con-
structional errors, compensation, and truncation is given in Section 2.5.

When the multiple scatterer has surfaces which are curved, the
cross section may be obtained by applying equation (2.1.4). The applica-
tion of this formula involves the geometrical optics approximation to the
fields on the scattering surface and this is given in equation (3.1.1). In
the special case when the radii of curvature of the scattering body are
finite at all of the reflection points the cross section may be obtained by
using equations (3.3.10) and (2.1.3). To illustrate the methods used, the
cross sections of a biconical reflector and of a pair of spheres are obtained
(Sec. 3.2 and 3.4).

A sampling of experimental data on corner reflectors is quoted in
Section 4. The authors wish to express their appreciation for the kind
permission of the Bell System Technical Journal to reproduce Figures C-16-
C-20, and of Dr. R. D. O'Neal to reproduce Figures C-14 and C-15 and the

figures in this appendix.
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THE CORNER REFLECTOR¥*

2.1 Analytical Method for Determining the Radar Cross Section of the Corner
Reflector

Although the simplest method for obtaining radar cross sections is the
method of geometrical optics (References C-1 and C-2), this method is not directly
applicable to corner reflectors because it predicts that the radar cross section
is infinite in the directions in which radiation is specularly reflected and zero
elsewhere. More explicitly, for a scattering body consisting only of plane
surfaces, geometric optics predicts that the incident radiation is scattered into
a region which, at large distances from the body, subtends a vanishingly small
solid angle. Actually the radiation must be spread by diffraction over a region
of solid angle (A /h)2 where X is the wavelength of the radiation and h is the
characteristic dimension of the body. Near the body this objection no longer
exists so that geometrical optics can be used to obtain the fields on the surface
of the scatterer when A<€h. When the magnetic field is known on the surface
of a perfectly conducting body the following formula (Reference C-3, page 466)
can be used to obtain the scattered magnetic field at any point in space:

1 ikR

H = — S(ﬁxﬁ)xve ds’ (2.1.1)
S 4,". s' R

%
Much of the material presented in this section appears in Reference C-4.
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where H is the magnetic field on the surface of integration,

Tl

S is the scattered magnetic field,
A is the outward unit normal to the surface,
k =2x/2,
R is the distance between the integration point and the field point.
The integration is performed over the illuminated surface, S', of the body.
When the field point is at a large distance from the body, (2.1.1) can
be approximated by
N K KT N -1
H~» — & S (i x H) x fe ds’ (2.1.2)
5 4r r
SI
where ? is the unit vector from the origin to the field point,
r is the distance from the origon to the field point, and

r'is the radius vector from the origin to the integration point.

In this report the radar cross section ¢ is defined as

2
o =lim 4 |H /H (2.1.3)
r-30 1
where ﬁi is the incident magnetic field. Throughout this paper ﬁil is
taken to be unity. In view of (2.1.2), (2.1.3) can be written as
T A - A ‘ik_IA"?’ y 2
o :-AT (n x H) x re asl . (2.1.4)

SI

The integral in (2.1-4) is an elementary one since the surfaces are

planes and the magnetic field on the surface is obtained by geometric optics.
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However, these integrals are usually tedious to evaluate and provide more
information than is required in most applications.

The scattered energy is concentrated in a number of beams, each of
which is centered about a specular reflection direction. Ordinarily the most
important information is the maximum radar cross section for each beam and
the half- power widths of each beam. The evaluation of the part of (2.1.4) that
corresponds to a particular beam gives nearly the same result as would be ob-
tained for diffraction at normal incidence through an aperture having the shape
of the projection of the part of the corner*that reflects rays in the direction
of the beam. Therefore, the maximum radar cross section for each beam is
approximately:

o =4 AR (2.1.5)
where A is the area of the above-mentioned aperture.

The angle & ¢ between the beam direction and the direction in which
the radar cross section has decreased by a factor of two is approximately
(Ref. C-4)

§y=75 x/B (2.1.6)

where B is the radius of gyration of the aperture taken about an axis through
the center of gravity of the aperture and perpendicular to the plane in which the

deviation from the center of the beam is taken.

2.2 An Optical Model for Corner Reflectors

One of the beams in which the scattered energy is concentrated is

o

"It should be noted that the effective aperture area used here is not necessarily
the same as the projected area which is used in a similar formula for the for-
ward scattering cross section.
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reflected back toward the transmitter. The value of A for this beam
determines the monostatic cross section through (2.1.5). The task of
obtaining A analytically can be avoided by use of an optical model which,
looked at from any direction, presents an aperture whose projected area
is A.

Such an optical model can be constructed by cutting appropriate
openings in three mutually orthogonal opaque sheets (Ref.C-4'and C-5). For the
corner reflector in Figure C-1, the openings are as shown in Figure C-2. Each
of the three apertures shown in Figure C-2 isobtained by cutting one of the
faces of the corner reflector out of each of the four quadrants so as to
give a symmetrical figure. Figure C-3 shows the optical model consisting
of the three apertures of Figure C-2. An optical model for any corner re-

flector can be constructed in precisely the same manner.

FIG. C-1: A CORNER REFLECTOR
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FIG. C-2: APERTURES IN OPTICAL MODEL OF CORNER REFLECTOR

N

The two views form a stereo pair, A three dimensional effect
may be obtained by focusing the right eye on the right view,
the left eye on the left view, and then superposing the images.
Alternatively a standard stereoscopic viewer may be used.

FIG. C-3: OPTICAL MODEL OF CORNER REFLECTOR
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9.3 Monostatic Cross Section of Square and Triangular Corner Reflectors

In Reference C-4, the value of A for the beam reflected towards the
transmitter has been determined analytically for both square and triangular

corner ' reflectors (Fig. C-4).

Square Corner Reflector Triangular Corner Reflector

FIG. C-4: SQUARE AND TRIANGULAR CORNER REFLECTORS

The value of A is expressed most simply in terms of the cosines of
the angles between the axes of the corner reflector and the direction to the
transmitter. If these cosines are £ <m <n, then A is given by:

For a Square Corner Reflector:

A=4{mv/n, (m Ln/2)

5 (2.3.1)
A=/£(4-Hn)b, (m >n/2)
For a Triangular Corner Reflector:
A =4 _i{l_ bz’ (/Z-{- m <n)
{+m+n (2.3.2)
2
A=(L+m+n - ) 12, (Z+m>/n).
£+ m+n
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The transmitter direction making equal angles with the three axes
is a symmetry axis for square and triangular corner reflectors. If§ is the
angle, in degrees, between this symmetry axis and the direction to the trans-
mitter, then, for small & , A is given by:
For a Square Corner Reflector:
A% /3 (1 -0.02146 ) (2.3.3)
For a Triangular Corner Reflector:

A (L] /7) (1= 0.00076 6 )b’ . (2.3.4)

From these equations and from (2.1.5) it follows that the dimension-
. 2 4 2,4 . .
. less quantity o A" /4rb” = A°/b" depends only on the direction to the trans-

4
mitter. Curves of constant A2/ b are plottedin Figure C-5 for a square corner

2
reflector using the trilinear coordinates L , mz, and n2. As can be seen

from (2.1.5), (2.3.3), and (2.3.4) the maximum values of ¢ for square and

4
triangular corner reflectors are 127 b /A 2 and 41b4/ 32 respectively.

2.4 Bistatic Cross Section of a Square Corner Reflector for the Symmetric Case

The analytic methods described in Section 2.1 are applicable to both the
monostatic and bistatic cross section problems by a suitable choice of the radius
vector from the body to the field point. To illustrate the procedure for com-
puting the bistatic cross section, consider the case of a square corner reflector
of side length b. The orientation of the transmitter is as indicated in Figure C-6.

The receiver is restricted to the first octant (x >0, y >0, z > 0).
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FIG. C-6: TRANSMITTER ORIENTATION FOR THE SYMMETRIC BISTATIC CASE

When the wavelength of the incident radiation is less than the side
length b, the radar cross section is determined almost entirely by the triply
reflected radiation. Thus to apply (2.1.1) it is only necessary to obtain
the magnetic field ﬁ for the triply reflected rays. Consider a ray reflected
first from the x-plane, then from the y-plane, and finally from the z-plane,

and let the incident magnetic field be

ARES

k.r’/

-iw (t - )

H‘i =% e ¢ (2.4.1)

-iwt
where 4 is a unit vector. Suppressing the time factor e , the magnetic field

along the ray going from the y-z plane to the x-z plane is
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’ (2.4.2)

where /i\x is the unit vector in the x direction. The magnetic field along
the ray going from the x-z plane to the x-y plane is

[ AaAT
{—1k|:k+2(k-1z) lz:| ~r}

[-£+ 2 (3-9) ?Z] e (2.4.3)

K A - . .
On the x-y plane r'= xi, + y/i\ , 80 that i‘z- r/=0. If N is a unit vector normal
y

to this surface, then

) ) -ik(fc.f-a)}
ﬁxH=-2(i x/é)e{

Z

(2.4.4)

In general, for triply reflected radiation,

A {-ik(l?-?ﬂ)}
/1\1xH=—2(ﬁxﬁ)e (2.4.5)

on the scattering surface.

It is still necessary to determine how much of the corner is illu-
minated by such triply reflected radiation. A consideration of the optical
model shows that the entire corner is illuminated for the transmitter orienta-
tion of Figure C-6. For orientations of the transmitter other than that in Figure
C-6, the corner is not entirely illuminated. However, these orientations present
no new problems, since the part of the corner that is illuminated in these

cases may also be found from the optical model.
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From (2.1.4) and (2.4.5) the cross section of the corner reflector is

b b
"ﬂ((ﬁ"'/l")o;,
G:iar_ Sf(f x8) xTe dxdy
% z
o o

b
A "ik (ﬁ + ?‘) . ;'
+ re dzdx (2.4.6)
0

b

M?x%x
y

[6)

A A A o A A A A A A A A
=r i tr d t1ryl +% =g +Fi +dGi =af +ad +ai
let r x x vy zlze  k E1x Fly G1Z, and a ai, ayl.y ai,.

In this notation (2.4.6) becomes

b b
-ik (Ex + Fy)
_ A A A A s y
o == {rzax1x+ Tzl - (rya + rxay) L S e dxdy
A 0 o
(2.4.7)
b b ik (Fy + Gz)
A A A - y z
+ . » - + p
rxay1y+rxazlz (ryay ra,) 1 S Se dydz
0o 0
b b 9
-ik (Gz + Ex)
- A A A
+lrai +rai -(ra+ra)i SSe dzdx
y 2% y XX ZZ xX ¥
0o o

After performing the integration, (2.4.7) becomes
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r + r r
22 2| e ikb(E+F) o ikbE o 1ka_'_1

o = — ra/i\+ra/i1 -(ra +ra)
3 Z XX zZyy XX yy ¢z EF

. \ -ikb(F+G) -ikbG  -ikbE r1
A / A e -e -e
+ r,Xay ly + rai - (ryay + rzaz) 1 o
(2.4.8)
-ikb(G+E) -ikbG -ikbE 2
+ra/i\+ra/i\-(raz+ra)’i\ € -€ -€ +1 ,
Vv Zz y XX Z XX Yy GE
To simplify (2.4.8), the following condensation symbols are introduced.
cos kb(F+G) - cos kbF - cos kbG -1
(¢] = ’
1 FG
cos kb (G+E) - cos kbG - cos kbE -1
c. - ’
2 GE
cos Kb(E +F) - cos kbE -coskb F - 1
c_ = s
3 EF
(2.4.9)
s - sin kb (F + G) - sin kbF - sin kb G
1 FG
sin kb(G + E) - sin kb G -sin kb E
S, = ’
2 GE
g - sin kb(E + F) -sinkbE - sinkb F
3 F]

EF

In this notation, the radar cross section of the square corner reflector for
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the symmetric case is given by

2 2
= (ra +r +r +
0 = — ( % Zaz) ¢, yaxc2 rzaxcg}

A
4r
2
nac —(ra+ra)c + rac
2 zy3
l: Yy

2
- +
rac+rac2 (rXaX ra)cS:l

(2.4.10)

2
+|«ra +ra)s +ras tras
yy zz 1 y X2 zZ X3

B 2
+| ras, {ra +ra)s +ras
xyl X X zz 2 zy 3

—

2
+| ras t+tras_ - a +tra)s
xzl y z 2 (rxx yy) 3]

L

This formula gives the radar cross section for any polarization of the
incident electromagnetic wave. To show how the bistatic radar cross section
varies as a function of receiver position for this symmetric case, (2.4.10)
has been plotted in Figures C-8, C-9, C-10, and C-11 for a corner reflector
of side length b =25 cm., for three values of wavelength, and for the incident
magnetic field vector parallel to one of the coordinate surfaces, that is
A A

i i
/a\' :__)E_-i-._L.

RN
The polar angles designating receiver position are indicated in Figure C-T1.
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/ Receiving Antenna

FIG. C-7: POLAR ANGLES B AND Y DESCRIBING RECEIVER POSITION

Figure C-8 shows the variation of ¢ with Y for 3 = 54. 74° and for
wavelengths of 3, 10, and 30 cm. The variation of ¢ with 3 for a wave-

o, and 45° is shown in Figure C-9. The

length of 3 em. and 7 =15° 30
Y = 45° values were obtained at two degree intervals while the ¥ = 15°
and Y = 30° values were obtained at 10 degree intervals. Because the
10° interval is too large to show the variation of ¢ with B8 accurately,
curves have not been drawn for a wavelength of 10 ecm., Figures C-10
and C-11 show the variation of ¢ with B for ¥ = 45° and wavelengths of
10 and 30 cm, respectively.

As was noted in Section 2.1, the scattering pattern of a corner

reflector is approximately the same as the diffraction pattern of an equivalent
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aperture. For the symmetric case considered, the diffracting aperture is

hexagonal. For v = 450, the bistatic radar cross section for this aperture

is
U=1081rb4 sin Toin 7/
——_kz ) sin Tsin T/ (2.4.11)
where
. 1 .
T===2 | —— sinf -cos B

The values of radar cross section (2.4.11) as predicted by this equivalent
aperture are also plotted in Figures C-9, C-10, and C-11 for comparison
with the values obtained from (2.4.10). It should be noteci that the half-
power widths given by both (2.4.10) and (2.4.11) agree with the values
predicted by (2.1.6).

Although the geometric optics and physical optics approximations are
based on the assumption that the wavelength is small compared to the
characteristic dimension of the body, there is reason to believe that the
error introduced by the use of these approximation techniques when b/ X is
approximately one is sometimes much less than an order of magnitude.
Kouyoumjian (Ref. C-6), for example, has found that the monostatic radar
cross section predicted by physical optics for a flat plate at normal incidence
does not deviate from the exact electromagnetic solution by more than a
factor of five for the range b/ between 0.8 and 5. Since it is not likely

that exact computations will be made of the cross sections of corner reflectors
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in the near future, and since there is reason to believe that the approxima-
tion techniques do yield order of magnitude answers for the square corner
reflector for A~2b, these techniques have been applied for a wavelength of

30 cm. (i.e. A /b =1.2).

2.5 Effect of Constructional Errors, Compensation, and Truncation.

Corner reflectors are generally used to direct a large signal back
toward the transmitter. This large signal is reduced in intensity if the
corner is not perfectly constructed. If the faces of a corner reflector do
not meet at exactly 90o then the beam which would have been reflected back
to the transmitter is divided into several beams, none of which, in general,
are directed exactly toward the transmitter. As a result, there will be a
reduction in signal received at the transmitter. In Reference.C-4 the
magnitudes of the errors which reduce the signal returned by square or
triangular corners (Fig. C-4) to one half the maximum returned signal are
calculated. This error,A , is measured as follows: if one of the faces
of the corner is rotated about one of the coordinate axes through which it
passes, then /\ is the distance which the part of the face farthest from the
axis moves. These errors are independent of the size of the corner, and
therefore are difficult to avoid for large corners and small wavelengths.
For incidence along the axis of symmetry these errors‘ are

Square Corner: one error, A =,40 1
three equal errors, 2\ =.24 2

Triangular Corner: one error, A =.702
three equal errors, [\ =.352)
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For some applications, such as a movable corner used as a beacon,
it is desirable to sacrifice some of the strength of the returned signal in
order to obtain a usable signal over a wider range of incidence angles on
the corner. This flattening and widening of the monostatic response pattern
can be accomplished by truncation or compensation (Ref. C-5), i.e., the

removal of some of the reflecting surface (see Sec. 4).
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OTHER MULTIPLE SCATTERERS

3.1 Formulas for Scattering from Curved Surface_s: Fock's Method

In Section 2 only scattering from surfaces having infinite radii of
curvature was considered. In this section multiple scattering from surfaces
having finite radii of curvature will be considered. In Reference C-7, for-
mulas are developed for the scattering from curved surfaces. These for-
mulas, which are useful for computing the cross section of bodies with
curved surfaces, are summarized in this section.

The scattered electric and magnetic fields, as given by geometric

optics, are

b

s D(r) ’

- | = A > D(O) ikr
H_ —[ H, -2 (n-Hj) ﬁ:l / oir) e

where D(r) is the cross sectional area of a bundle of rays at a distance

- - D(0 i
=[Ei - 2?1x(Ei xﬁ)J DO elkr

(3.1.1)

-

r from the specular reflection point, and Ei’ Hi is the incident field at

the specular reflection point.

The area of the bundle of rays at a distance r is given by

u
T ™
u v
D(r)= |, (3.1.2)
T T
u
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where Tz is the symmetrical tensor

p _ bu pv
T = T + T 3.1.3
¢ ° Tug & Ty (3.1.3)
and
T = -2 . Q +r(Q_ -cos G ). 3.1.4
pPq gpq P q ( pq Pq) ( )

where the summation convention is not being used. Here u and v are curvilinear

coordinates on the scattering surface and gpg is the metric tensor given by
do’ =g du +2% dudv+g dv (3.1.5)
8.4 8uv v+g v .1,

pq
where do is an element of arc on the surface, The g that appear in (3.1,3)

are related to the g by

pq
[ uu uv ] ' - -
g g 8v By
1
— . (3.1.6)
vu Vv Euu 8yv ~ Buy
| 8 g ] i gvu guu |
G q is the curvature tensor of the surface given by
on_ 9x dn, 9 on, gy
-G, - X R S A (3.1.7)
P 9p g d  dq 9  9q

where n, ny, and n, are the components of the unit normal to the surface

at a point %, y, z of the surface. The angle € is the angle between the
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direction of incidence and the normal to the surface. 2 is defined in
13 Q s
terms of the phase of the incident wave on .the scattering surface el (u V),

Q 1is the ordinary derivative of 2 with respect to p.
P

o =292 (3.1.8)

Y 9p

qu is the second covariant derivative

8¢

1Y) v oQ
Q =—0w .t = _ = (3.1.9)
P4 5paq Pd 5y P4 3y
I“p is the Christoffel symbol of the second kind,
qw
u
r’o=d [q, w; u] + gP" [q, w; v] (3.1.10)
qw
and [p, q; w_—[ is the Christoffel symbol of the first kind
og og og
[pgw] == 2+ I _Pd) (3.1.11)
2 9q op ow

3.2 Scattering from Two Spheres

As an example of the application of the formulas in Section 3.1,
consider the backscattering from two spheres of equal radius for an electric

-ikz
field 'i‘x e incident perpendicular to the common axis of the spheres.
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(Positive x-axis points into the paper)

ol

FIG. C-12: REFLECTION GEOMETRY FOR TWO SPHERES

First, consider the doubly reflected ray shown in Figure C-12.

the reflection from the first sphere the coordinates u and v are

where 6, and ﬁl are related to the Cartesian coordinates by

1

The normal on the surface of the sphere is

. 4 . . A A
B =sin 6; cos p, i +sin 6, sin Py i +cos 6, 1.

Thus, by (3.1.7)

L

X=r sinel cos pl,
y =r, sin 61 sin ﬂl,

Z =r cos 6,.
o}

G G
6161 6Py

%16, Gplpl
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The square of the element of arc on the sphere is

d02=r2d62+rzsin26 dplz
0 1 o 1
so that
- ¢ - [ . 2 0 T
6,67 0104 °
g g o 2 em?e
1
P16 “pip, 0
L ..J L i
and ~ ) — ) -
9191 elpl ———2 0
g g %
plel p1¢1 0 1
g g 2 2
- . r ~ sin“ 6
i o 1

The phase factor is

Q = - = -
(91, ﬂl) z r  cos f

1 1

and the first derivatives of the phase factor are
Q 1 61 =1 sin 0

hp =0

l)

The Christoffel symbols of the first kind are
i, 2 .
[}01, ﬂl, 91] =-r " sin6 cos 6y,

2
[pl’ 6 p1:| =1, sinf, cos6 ,

[91’ o 91] =[e1’ Oy pl] :[91’ Pii 91} =[p1, ps ﬂl]
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The Christoffel symbols of the second kind are

6

I 1. .

[Dlﬂl = s1nt9l cos 6,

I p1:

p, o, cotf , (3.2.11)
6 f

r,, % _r L.r l.r 1.

6.6, -~ =700, ~=lep " =Ipp =0

Therefore, by (3.1.9) the second covariant derivatives are

- - ;’ n
Q Q -Q 0
16,6, 191;01 1

(3.2.12)

2
Q Q 0 -Q . sin 6
1p.6

p—

-

Since tl = 91, and Ql = -1 cos 61 the symmetric tensor (3.1.4) is

9 2 7
T T Q°-2R Q 0
9191 04y L bl
= R.Q. K3.2.13)
9 1941
T T 0 (r -912)(1-2 o
i ¢191 pihy i 0 r

The cross sectional area of a bundle of rays at a distance R, from the

specular reflection point is [ 9 7
B 91 6, 7] Q 1 2 Rl Ql
0
T T 5
64 pl r,
= = 3.2.14
D, (Ry) b1 .. ¢ 2Ry | ( )
T T Fl1 0 1 - —
01 pl r,
L . _ N

2R1 R1
=cos 0O cos O + 1+2 — cos 6
1 1 by 1

r0 o
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The electric field (3.1.1) scattered from the first sphere is

A it B T8 01 oy 1)
—lX Rl Rl . L] *
(cos61 +2 —)(1+2 — cos 91)
To %o

For the ray shown in Figure C-12, 6, =T /4 so that the electric field

incident on the second sphere is

ik (d - —3r0)
2

-1 €
X

/(2[2‘;‘1——3)(ﬁ;d— - 1)
0o (0]

(3.2.16)

On the second sphere the coordinates u and v are taken to be u2 =0 9

and Vo * pz. These coordinates are related to the Cartesian coordinates by

x =1, sin 0, cosﬁ)z,

=d + sin 6 sin . 3.2.17
y ro in ) ﬂz ( )
Z =1, CcoS 62.

The metric and curvature tensors, and the Christoffel symbols, for
the second sphere are obtained from those of the first sphere by replacing

6, and p, by 6, and P

1
The phase function on the second sphere is given by the simultaneous

equations
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(Qy -Q,) sin26, cos ), =r_ sin 92 cos f, - r sin 6, cos Py

(@, -a1) sin 26 sinf; =d+ 1, sin 6, sinf, - r_ sin 6

(92 -Ql) cos 261 =1 cos 92
where in this example 91 =0

Hence, the phase factor and its derivatives for this example are

=
2 4

Q =d——3—-r
2 7 ©
I
Q =-—=;92, =0
2 3 2 £
0, J2 P,
2d - —2
Q S Q
2 » 8y
020y ofz 4 -3 Pyby
r
. 0

The metric and curvature tensors at 6 5

and

g
9292

%040,

L

6.6

P60,
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- I, cos 6

r2 0
0
r02
0 2
.
-r 0
o
r
0 .0
2
-

1’

T _ 3w
pl _?’ a‘ndpz‘ 2 .

+

d
2 zﬁ
J2

4y
r
(o]

=T[4 and p, =37 /2 are

sinf;, (3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)



Since §2 = T[4, the symmetrical tensor (3.1.4) is

-, -
i T r, 44 - 2 \/;rn
Tee Tep — + - I, R, 0
272 2”2 2 2d-3r
0o
= 2
T dr. R
Ty 6 Tpp 0 O 4+ —02 | (339 99
- T272 2P2 | L 2 Jed-r,

The cross sectional area of the bundle of rays at a distance R2 from the

specular reflection point is

i Ry 4-2]2r O
D2(R2)= — + 1+—
2 T, o j_d-3r
(3.2.23)

Therefore, at a large distance from the scatterer, for the doubly reflected

ray shown in Figure C-12, the scattered electric field is

9 ik(z+d-2\/_2—r)

| r0 € A
T (3.2. 24)
r
4 dz/ 1 -2

J2 d

There is a second doubly reflected ray which gives a contribution equal

to (3.2.24) and there are two singly reflected rays each of which contribute to

the backscattered electric field by an amount

r, ik(z - 2r0)4
- — e i. (3.2.25)
2z A

In addition there are backscattered rays which are reflected more than twice
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If the distance between the centers of the spheres is much larger than the
radii of the spheres, the radiation which undergoes more than two reflections

may be neglected and the total reflected field is approximately
o k(-2 J2r)
-2ikr r e
0 0 e A
-r_ e + i (3.2.26)

r
2d[— °

J2 d
L i

3.3 Formulas for Scattering From Curved Surfaces: The Method of Stationary
Phase

Another technique for finding the scattered fields when the wavelength
is less than a characteristic dimension of the scatterer is the method of
stationary phase. The field associated with a multiply reflected ray, as
given by this method, depends upon the radii of curvature of the body at the
specular reflection points. These radii of curvature are assumed to be finite.

A Cartesian coordinate system is used at each reflection point. The
z-axis is taken along the normal to the surface, and the x- and y-axes are
chosen so that the x and y planes are the principal sections of the surface,
that is sections in which the principle radii of curvature are obtained. In

the vicinity of the reflection points the equations of the surfaces are, approx-

imately,
2
% i
Zj = - - (J =1, 2, 3, ..., N) (3.3.1)
2 2
#i1 P52

where p.1 and p_2 are the principle radii of curvature of the j'th surface.
] ]
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Let 6 and ﬂj represent the polar angles at the j'th reflection point, ?j’
represent the radius vector to a point on the j'th surface from a fixed
arbitrary reference point. Assume the incident magnetic field to be
é‘leik(f{'ﬂ where T is the radius vector from the reference point to an

arbitrary point in space. From equation (2.1.1) the field scattered from

the first surface is

A
R ik k .
Ll xhx7 -8 T} ds (3.3.2)
S 2n ! r -r/

and the multipy scattered field reflected from the N surfaces in succession

is
o -il_-h/
i - 1 A A A A A elk, 21
s T\ Ny X nN_lx...x n2x n, xa xY —
(27) r! - 7!
2 1
(3.3.3)
. -y _ -y . .\, _.s/ N -b_-s, . s Y
elk I Irs - Iy e1k|rN rN_1 e1k’r rN, ikk r
Xv_-:/——:/_—_ X ees Xv . Xv—-————— e dSl...
37Ty TN T Tl TN
Assume the wavelength to be so short that k| 1/ 1 —?j' 1. For this case
J
vk >/ _"I . l "‘[ (]
e1 rj +1 rj‘ ikelk rj +1 rJl N "
V (x/  -r) (3.3.4)
r', . -1 ’ r{ . -1’ ]
j+1 j jt+1 j

In the integrand of (3.3.3) all of the quantities except the exponential factor
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can be replaced by their values at the specular reflection points. With this

approximation, (3.3.3) becomes

() g x oo [ <[ fox ) <8] e b Iy

1 2... N

(3.3.5)
11{[?{ o+ g R]
T . .
xJ...Je ! j=1 ds

where

Let 61 =%, 62 =¥y 53 Xy £y TV e e §2N_1=>3\1, 52N=yN,

and expand the phase factor in equation (3.3.5) in the ﬁj. The first order
terms will vanish at the specular reflection points, leaving terms of second

order as the leading terms in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>