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PREFACE

This paper is the twenty-sixth in a series growing out of studies of radar cross
sections at The University of Michigan Research Institute. The primary aims of this
program are:

1. To show that radar cross sections can be determined analytically.

2. A. To obtain means for computing the radiation patterns from antennas
by approximate techniques which determine the pattern to the accuracy
required in military problems but which do not require the exact
solutions.

B. To obtain means for computing the radar cross sections of various
objects of military interest.

(Since 2A and 2B are interrelated by the reciprocity theorem it is necessary
to solve only one of these problems.)

3. To demonstrate that these theoretical cross sections and theoretically
determined radiation patterns are in agreement with experimentally
determined ones.

Intermediate objectives are:
1. A. To compute the exact theoretical cross sections of various simple
bodies by solution of the appropriate boundary-value problems
arising from electromagnetic theory.
B. Compute the exact radiation patterns from infinitesimal sources on
the surfaces of simple shapes by the solution of appropriate boundary-

value problems arising from electromagnetic theory.

(Since 1A and 1B are interrelated by the reciprocity theorem it is necessary
to solve only one of these problems.)

2. To examine the various approximations possible in this problem and
to determine the limits of their validity and utility.

3. To find means of combining the simple-body solutions in order to
determine the cross sections of composite bodies.

iv
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To tabulate various formulas and functions necessary to enable such
computations to be done quickly for arbitrary objects.

To collect, summarize, and evaluate existing experimental data.

K. M. Siegel
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SuU Y

We present an expoéitlon and certain generalizations of recent work on a
class of problems in classical electromagnetic theory. Briefly, we indicate the
approach as the Fock theory. It is a method of obtaining the fleld induced by an
incident electromagnetic wave on or near the surface of a good conductor. The
surface is restricted to be smooth, convex, and of characteristic dimensions
which are 'large' with respect to the wavelength of the incident radiation. The

term 'large'' will be made more precise below.

vi
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I

TWO DIMENSIONAL PROBLEMS

At the outset we make the point that Fock's method is an essentially two-dimensional
method which has as its prototype the solution of the diffraction of electromagnetic radiation
by a perfectly conducting, infinite circular cylinder. For this reason we propose to review
the solution of the circular cylinder problem. We follow and add somewhat to the treatment
of W. Pranz (Ref.1). We consider a perfectly conducting circular cylinder of radius a
having its axis along the Z-axis of a Cartesian coordinate system. Let a plane wave be

incident along the X-axis .

Figure 1.1
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We now wish to determine the magnetic field induced on the surface of the cylinder. If the
incident magnetic field is in the Z-direction
- ikx ﬁ

Ho- e ? (1'1)

the only non-vanishing component of the field on the surface is in the Z-direction. Hence,

we write
H=12 Vo (1.2)

The function | is then required to satisfy the equation
(Vi +K)Y =0 , (1.3)

where k = -Z-;-'— » A, the wavelength, and the boundary condition

Y | = | (1.4)

OT |pmg
Using a method of R.K. Ritt (Ref.2) we can immediately write the solution as

oHE _3x _ Y
W(aa¢) -1 dy e“/(¢ - )+011V0(¢ —Z_)
ka sinJ x H} ) (ka)
-oHE

) (1.5)

where § 18 the polar angle. But since Im~ > 0 we can make the convergent expansion

1 e 2 2{/ my
-2 . .
sihy x = ® Z ® (1.6)
m=0
Substituting in Equation (1.5)
[+
[
BU - zk: Z f (1‘)1';/ [eiV(Gi-Ztm) N eiV(G-f-Zl'm)] , (1.7)
.
m=0 H, (ka)
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where we have put 6= ¢ -% ’
{1.8)
' = .3_'.. - ¢
2
8o, quite generally, we have the problem of solving integrals of the form
© 1ve
(o) = / ¥~ (1.9)
H, (ka)
—m

where 0 lies in the range [-.g_ ) oo] .

We assume ka >> 1 and propose to use certain asymptotic approximations to the
Hankel function. The appropriate asymptotic forms are found by an examination of the
stationary points of the phase of the integrand.

Using Langer's uniform asymptotic form of the Hankel function (Ref. 3)

T _
1) - 1+ sina - cosg (1) _ 1 ,
Hf, (ka) = e / Py H_l [m (sina azcosa}J s {1.10)
3

where J = ka cosa. We find that the integrand has the phase
p= V0 -ka(sina -acosa) . (1.11)
Hence, the phase is stationary ata =-6 or
Y = kacosf . {1.12)
We now draw a distinction between the regions § ~ - _g_ and 6 near zero or positive.

The first region corresponds to the physical region of direct illumination, geometrical optics
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region, and by carrying out a stationary phase (Ref.4) evaluation of the integral we find

{ka sinf
e

6) = rka (1.13)

8o for § ~ - L
2 ika cos¢
Y m=2e . (1.14)
This is just the geometrical optics approximation. The magnetic field induced on the
surface is given approximately by twice the tangential component of the incident magnetic
field.
For 0 near zero we have the condition at the stationary phase point that / ~ ka and

the Langer form reduces to the Nicholson asymptotic form (Ref.3) which we write as (Ref.5)
1

B (ka) "'Q'i;— () 3w (1.15)
where
-1
t-(—‘-‘-g‘-) 3 (v-ka) , (1.16)
and w(t) 18 the Airy integral tz- L z8
wit) = = je 3 4z . (1.17)
VT a
with the contour [" given in Figure 1.2. Changing the variahle of integration to t
© imét
(6) = -x1m’ o2 9 —1-[" ah 1.18
rim’e {\/; 0 (1.18)

1
where m = (—lﬁz"; )3. The integral to be evaluated 18 then of the form

Ve w'(t)

l;t
gy) = L f° dt (1.19)
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where we restrict 5 to be near zero or positive. For 5 >0 g(;) can be given as a

residue series

15t
1 g’/ 1 ,
g5) = — (@2rl) —_— ’ (1.20)
VT Z aw' t)l
where
w'(tn) =0 , (1.21)

and we have deformed the contour to encircle the zero of w' which lies in the first quadrant
(Ref.5). For 5 ~ 0, however, the residue series converges slowly for 3 > 0and

diverges for § < 0, hence 3(5) need be found by quadratures.

Z-plane

J

— 3

Figure 1.2
The Contour

5
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Substituting in Equation (1.7)

(04}
Y - Z {e‘ksn gy) +en E‘Fn"} , (1.22)

n=0
where we have put
Sn = ka (6 + 2xm)
(1.23)
8, = ka(6'+2rm) ,
and
1
Bo= (52.)3 (6 + 24m)
2 (1.24)

1
3 o= (.?:.)’3‘ (6' + 2xm)

We anticipate the generalization of this approach and note that Sm and Sm' are path
lengths on the cylinder surface while /Em and Sml are certain reduced distances
corresponding to these path lengths.

Finally we give the interpretation of the terms of Equation (1.22) as "creeping
waves''. We note that the angles 6 and ' measure the angular distance from the geo-
metrical shadow boundaries of cylinder. This is illustrated in Figure 1.3. The inter-
pretation, first proposed by Franz and Deppermann (Ref.6), is that a wave is launched at
the shadow boundary and then creeps into the shadow. The subsequent terms in the series
with 6 replaced by 6 + 2an will then represent terms which have made n circuits around

the cylinder. The justification of this interpretation has been given by Friedlander (Ref.7).
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For the incident magnetic field along the y-axis we have an analogous treatment.

Briefly, we have on the surface,

"ffs- ¢x (1.25)

where ¢ 18 a unit veotor on the surface in the ¢ -direction and

1 Z y ei V (6+2xrm) + el v (6'+2xm)
- . (1.26)
X ;;3' dy H(}/) P~

In and near the shadow we approximate the Hankel function by the Airy integral in

Equation (1.26) and find Z

where 8, and En are as defined above and
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15t
fs) = = | — at . (1.27)
Vr' w(t)
Again, f(;) can be evaluated by a residue series for 5 > 0 and by quadrature for § ~ 0.
For ¥ < 0, the optics region, the Nicholson approximation to the Hankel function
is no longer valid. We use Langer's asymptotic approximation evaluated by stationary

phase and find tkx
X ~ 28infe . {1.28)

The '""ereeping wave'' interpretation obtains just as before.

We now give Fock's work (Ref.8). Fock, by means of a physical argument gives a
description of the field in the region of the geometric shadow boundary near the surface
in terms of a parabolic differential equation. The import of this in terms of Franz's con-
cept of creeping waves will be made clear below.

We let f(X,Y) = 0 be the equation of a convex cylindrical surface, the cylinder axis
in the Z-direction. We consider a plane electromagnetic wave to be incident in the X-
direction and we take the origin of coordinates to be on the surface at the geometrical
shadow boundary, the coordinates given by the solution of -gi = 0, This i8 {llustrated in

Figure 1.4. Further, we assume a parabolic approximation to the surface, i.e.

2
fix,y) = y+——;— x |, (1.29)

R,
where R, is the radius of curvature at the shadow boundary, the origin of our coordinate

system.
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Y

EDEE

Figure 1.4

This essentially two-dimensional vector problem can be characterized in terms of the

scalar problems
(V3+1HY =0 , (1.30)

ket e incident wave will bave the functional

where we assume the time dependence e
dependence eikx and this we introduce explicitly putting
Y=y, 1.31)
Substituting in Equation (1.30) we have
U + Uyy
Now we come to Fock's order argument. He supposes that the variation of the

+ Zika = 0 . (1.32)

functions U in the y-direction, normal to the surface, is greater than the variatior in the

x-direction. The physical content of this argument is apparent: There is a large variation
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in the fleld quaniities on crossing the shadow boundary, y = 0, x > 0, but having eliminated
the dependence on the incident field the variation in the x-direction should be relatively slow.

Fock makes the more precise assumptions

U k 1.33)
oy = (( - v (1.33)
v k
——— 0 — .
=G, (1.34)
where m and M are dimensionless parameters satisfying the inequalities
M>m>»1 . (1.3%5)

Based on this order argument we neglect the second derivative with respect to x in
Equation (1.30) and write

Uyy + Zika = 0 , (1.36)

This implies M i8 of order m? so we put

M=m , (1.37)
and define the new variables
} - BE (1.38)
R,
2m 1 X
- y+— =), 1.39)
L R, © 2 R ((

Making the change in variables, Equation (1.32) becomes

kB, _—
UV,V; "'i——z—— -;1-3- (U5 + }U,) ) 0 . (1940)

10
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Now choose m such that the coefficient of the last terms becomes one, i.e. put

m3 = }?9- . (1.41)
Equation (1.40) is now
U'?'I + 1(U5 +5 U,)) -0 . (1.42)
For the purposes of a formal simpnﬁcaﬁonswe put
U= 43 -5 v . (1.43)
This results in the equation
V.m + qv+iv5 =0, (1.44)
If the incident magnetic fleld lies in the Z-direction
B == 7. (1.45)
The tctal fleld will be of the form
= Vi,

where ¥ satisfles Equation (1.3C) and the boundary condition

an |x0

, (1.46)

i.e. the norma] derivative of Y vanishes on the surface. In terms of the function V and

the variables §," this condition is

———-—g; = () at V]al: 0o . (1.47)
A particular solution is given by
v =elt wi-q) (1.48)

11
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where w(t) is an Airy integral, the solution of

wi(t) = tw(t) . (1.49)
Since two independent solutions are needed we define
1 Zt-_%.. 73
dz

A . (1.50)

1 Zt-—;- /

wg (t) = —— e dz ,
w-i
A |

where the contours f; and /; are given in Figure 1.5. We then look for the solution in

a1

~
\

Figure 1.5
the form

V = "'i-— f eift (Wg(t-j)—“;wT&('t-)- Wl(t-j)} dt, (1.51)
ZF C Wl(t)

12
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where we note that this satisfies the differential equation and the boundary condition, and
has, from the asymptotic values of the function w; and wg the correct phase for this problem.

The contour C is the same as /—;inl!'igure 1.5.

The magnetic fleld is then 3
- -
H, = eﬂ“ e 155 +13 v (1.52)
or making use of the relationship
wi{t) wg(t) - wi(t) wi(t) = -21 , (1.53)
the field on the surface, } = 0, is given by
ikx
Hy, = e &F) , (1.54
where 1';
i ist
) = ¢ 1 dt -8 . (1.55)
o> w f w'(t)
For the incident fleld
H o= o= (1.56)
we have the boundary conditions
H, =0 , (1.57)

and since we confine our attention to the region of the shadow boundary, the normal
component of the magnetic field is given by Hy

Hy-O on 8, (1.58)

13
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Writing as before

fkx

i I
@ must satisfy
Vo +2k 2® . ,
9x

and

=0 on 8

We repeat the order argument and write Equation (1.59) as

ﬂ+zik _@i—o

ay 9x

d=0 on 5.

Now ﬁ is a divergence-free fleld

V-E=0 ,
8o if we write
— fkx
H = ¢ ",
the divergence condition becomes

K+ V- =0

Repeating the order argument we neglect %Ei as compared with iqu leaving
) 4

-1

H?zkay’
or

-t

14

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)
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The fleld component Hy on the surface is given by

1y +15
B o= o> Lo 3 Y, (1.66)
m av}
where Y satisfies
Y o+ +1 = 0
n* Y s (1.67)
Y= 0 on 8
This has a particular solution
617 t wit- ;) . (1.68)
So we write
- [ 5t o) - M) e }dt 1.69
Y I {Wz(t - M e a6
and 15t
1 IS U i O Al (1.70)
Using the notation
15t
f(z) = L [ 8 dt (1.71)
’ VT {w(t)
we have that on the surface 53
i
Bo=dl el gy . (1.72)
m

We are now able to apply Fock's solution to the circular cylinder and compare it with
the Franz "creeping wave" solution. From Equations (1.20) and (1.55) we have for the

circular cylinder solution and the Fock solution the function

15
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izt
gs) = _L AN (1.73)
T w'(t)
However, we note that for the circular cylinder
1
Eg (____)3 0 , (1.74)
L2
while in the Fock treatment
[kR_\3
= | =2 = , (1.75)
5 F k 2 R,
or in terms of polar coordinates, since R,=a and x=a sin @
1
¥ = (.k_.a;\3sin6 . (1.76)
/F \ Z })

These arguments of the function g(§) thus agree to first order for § ~0. This imposes a
restriction on the applicability of Fock's method as it stands.

To bring these solutions into agreement we return to the creeping wave interpretation
and Fock's derivation of the parabolic differential equation. From the creeping wave inter-
Pretation we have a wave launched at the boundary which then creeps along the surface into
the shadow boundary. Now the natural description of such a phenomenon would be by a
parabolic differential equation. This Fock has done. However, we note that ;F measures
distance along the direction of propagation rather than along the surface of the obstacle.

We now observe that the argument used by Fock in his derivation of the parabolic

equation is also applicable outside the region 5 ~ 0 provided we compare the variations

16
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of fleld along the surface of the obstacle and perpendicular to the surface of the obstacle.
That is, we can use the Fock equation anywhere in the shadow region provided we define a
new set of variables § and v) for each increment we move into the shadow. To illustrate
this we write the formal solution of Equation (1.44) as

V(5,7) = o)

he
where T--<5%+ )

This gives us an expression valid for say % < 51 << 1, Given this we then redefine

V(O,‘) ) (1.77)

our variables and write

V(s = TR s 6) (1.78)
which generalizes to
V) = e 3 VR (1.79)
with s 1
= ( (kB(s))3 ds 1.80)
; j ( 2 ) R(s) (
0

where ds 1s the element of path length along the surface and R(s) is the radius of
curvature at s.

Applying this reasoning to the circular cylinder we have that

e /ka‘% ade
5 = f ()3 ado (1.81)
0
1
- (ka}3
(z} o . (1.82)

This is,. however, the expression appearing in Franz's treatment and, hence, we have

brought the Franz and Fock solutions into agreement.
17
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This important generalization of Fock's work was first found by J.B. Keller (Ref.9).
Keller proceeds from a local solution of the circular cylinder similar to the above treatment.
We now make a comparison of the Fock result for the circular cylinder with the sum
of the harmonic series as given by L. Bailin (Ref.10) for ka = 12. In this we use two

"ereeping wave'' terms.

—

Figure 1.6

At the point 0 in Figure 1.6 we determine the contribution arising from the lowest order
terms which "oreep'' in from each shadow boundary, Then, with the incident magnetic field

parallel to the cylinder axis we have

H = emeg[ (%)

L7 L

3
+ K2t g[(ké_a)% ‘.—} ’

where §' = x - . The comparison {8 shown in Figure 1.7 .

(1.83)

18
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Figure 1.7 COMPARISON OF AMPLITUDES FROM EXACT SERIES AND

FOCK'S CURRENT DISTRIBUTION FOR A CIRCULAR CYLINDER WITH ka = 12

19
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As an example of the application of the generalized method we will find the field induced
on a perfectly conducting elliptic cylinder by a plane electromagnetic wave. We take the plane
wave to be incident along the minor axis of the ellipse with the incident magnetic field parallel

to the cylinder axis as in Figure 1.8.

A
\
)/

Sl

e

- e

IQ_._-.-u

Figure 1.8

If the major and minor semi-axes are a and b respectively the generalized argument of

Fock's function is given by

S 1
{ . %
L ; kn\ 3 dS
A I v A 3
"0
or (1.84)

ool —

5= (&)

{ K(s) - Z -1 ,?)} ,
and

s =a[Ee)-E(X-v.9)] , (1.85)

20
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where £ is the eccentricity
JTTT e e T
/ 2
f= 1-b_ (1. 86)
/ a3

the parameter # is related to the coordinate by
xﬂbsinvl , (1.87)

and K and F are elliptic functions of the first kind while E is the elliptic function of the

second kind. ')
| Fp,€) = S R , (1.88)
0 [1-€3sin3 p
F(%.f.) = K(g) , (1.89)
P
EB,E) = \  [i-cluip  ap . (1.90)
/}0

We compute the first two ''creeping waves'' with

= -E(¥ -
S = a(E(6) -E(T -7,£))

{1.91)
§' = a(E(g) +E(y.€)) ,
, 3‘\1
= 3 ®E) -FiE-y,0)
iy /
, 1 (1.92)
‘e KDBL 3
5 ] Z,a/ (K(&)"‘F(q:&))

21
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These arguments give for the shadow region
B, = olk8 g(x) + 688 g(cy | (1.93)
We compare this expression with the experiments of Brick and Wetzel (Ref.11) for
ka = 12 and kb = 7.5 in Figure 1.9.
Keller (Ref. 12) has given a treatment which makes more precise the content of

Fock's assumptions. This method, "the method of stretching', starts from the reduced

equation, 2 3
AU 43U 42k U = g, (1.94)
3y  ax ox
We introduce the new variables
x' = K¥x
(1.95)
y' =Py,
so that Equation (1. 94) becomes
20 28 atl
k UX'X' + k inyi + 21k Uxa = (0 (1.96)

Now to impose the condition that this goes to Fock's parabolic equation in the limit

k -» we requirs
2 = 1l+ad>d2a 20

This condition results in the equation

Vyiyt + 21V, = 0o . (1.97)
Again taking the surface to be given by
y+l 2 = | (1.98)
2 a

and imposing the Dirichlet boundary condition in the new variables

22
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Theory
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distance from specular reflection point (in cm.)

12

14

COMPARISON OF AMPLITUDES FROM EXPERIMENTAL DATA AND FOCK'S
CURRENT DISTRIBUTION FOR AN ELLIPTIC CYLINDER OF ECCENTRICITY 0. 780 WITH

ka =12 AND kb=17.5

23
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—B ' -2 x'z
V=0 on kP y' + k X =0 , (1.
2a
Hence, the boundary condition is satisfied on y' +.%_ _’.‘3 = ( provided
a
B ==2a (1.
The boundary condition in the limit is then
3
V=0 on y‘+%—-5£— = 0 for ko . (1.
Solving for a and B
1 2
a = - = 2 1.
3 B 3 (
so the reduced Equation (1.96) becomes 2
U,.+21U.ak3u,, : (1.
yy X x'x
Since the solutions of Equations (1.104) and (1.97) cannot be the same function we
therefore assume — U
U~ /‘ 3 (1.
— k
Substituting (1.104) in (1. 103) U, must satisfy
Unygr #2100, = =Ty, » B>l ,
(1-
Uoyyr #2105 , = 0,
and the boundary condition
2
U, =0 vyl X0 =, 1.
n on y > e (

24
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This treatment is, in itself, no greater justification for the Fock method but it does

make more precise the meaning of Fock's essentially physically based assumption.

25
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I

THREE DIMENSIONAL PROBLEMS

We now turn to the application of Fock's method to three-dimensional problems.
There is an essential complication present in the case of finite, convex, three-dimensional
surfaces. Again we will 1llustrate the general problem by a prototype problem, scalar
scattering by a sphere.

We start with the Dirichlet houndary condition, i,.e. we wish the solution of

(vi+1B)y = 0 (2.1)
V(@ =0 (2.2)
where a 18 the radius of the sphere. In particular we want to determine

vl (2.3)
ar!
'r=a

Let the incident field approach along the polar axis then the normal derivative of the field

induced on the surface of a sphere of radius a is given by the series

2y <ty A%
-—59- = ) (n+—2-) P, (cos 6) e ;‘ITY— . (2.4)

Since the summand has no singularities with respect to the index on the positive real

axis this can be written as the contour integral

<4 X
-a—fﬂﬂ... [y e 2 —Ll — Sec yrp* (cos @) dV (2.5)
91 c ;**(1)1 (ka) y-1
e 2

26
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where C is a contour encircling the positive real axis and where we use the notation
Pz (x) = Py (=x) . (2.6)
Since the integrand is an odd function of J/ regular in the second and fourth quadrants,

and having simple poles (the zeros of ; (1) (ka) in the first quadrant) we change the

1
contour C to C; 2

Y- plane

/

(
b
Q

Figure 2.1

Since Im / > 0 along C; we make the convergent expansion

@
Sec Vx = ehy> ezﬂyn (-)n . (2.7

n=0
Now making use of the reduction of the Legendre function (Appendix I) we have

I < a + )
Sec YrP* (cosf) = e 4 /7 (=) JP(+)1 (6 + 2am) - P( )1 (2r(n+1) -06)
V‘% L— ”-'2— J/"'-i- f

(2.8)

Substituting in the integrand,
27
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iz -ily 1 ( )
16) = e 3 Z(-)“ / e 3 { 0+2m) -
{ ;}15 (ka) l z

C1 ::7 (2.9)
4x
- e gy 1 (+)_1_ (2x(n + 1) - o)
(1) 1 (kﬂ.) ‘
C, S 9
i-g-' S n
1(6) = e Z (- I (6 + 2xm) - I (2r(n + 1) - o) (2. 10)
where
-1 ";"V
Ij (6) = [ B P(+)l o . (2.11)
(1) (ka) V- P
Cy g -1

For the range % Z 0 < 5% we use the expansion
6

. 16
) 1 [(v+d) 116 (1 1 e )
P (6) = e Fl2,2; /4], ———— (2.12)
v-% Verisine [ W+1) 2 2 21 8in 6
and the notation
p=6-1, =3 g (2.13)
so that

11’
-e Z B /”F(V"‘w) 1 < 1V ($42am) .
1(6) T ’() {C /(V“){ (;)(ka) e r(-z-T.yn
1

1 1/ (" +2m) AP ) (2.14)
e -
Y 53 TG vt
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or defining
i
W = /dV Fovsdy g r(%-,l el R )

o, v+ Sf}_)l(ka) z 2 cos
T
we have ©
ig "
- s Z " {p +2m) - 100"+ 2] (2.16)
J2x 1 8in6 =0

The terms of this series correspond to the 'creeping waves' of Franz. In this sense

we note that f and @' are just the angular distances measured from the shadow boundaries,

Figure 2.2.

¥
).

Figure 2.2

The field induced on the surface under the imposition of the Neumann boundary condition
follow immediately from the above on the substitution of the derivative of the spherical Hankel
function in the denominator of the summand or integrand. We then treat with integrals of the
form
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[(v+h 1 1v 9

L = / dv < e F . (2.17)
[V+1) ;t(_l) (ka)

Cy -1

We consider the integrals (2.15) and (2.17) in more detail. Assume a sufficiently

large value of ka so that the Airy integral approximation for the Hankel function and its

derivative is justified. We put e.g.

; D (k) = -im\% Ww(t) (2.18)
y-1 *
2
where 1
3 -
m-(—l?) . r= R (2.19)
The integral I; is then essentially of the form
izt
L = / TR A" (2.20)
w(t)
Cz

where we put 5 = mf and Cg is the contour running from infinity along arg t = —%! to the
origin and from the origin to infinity along arg t = 0.
We note that the form of (2.20) is very like that of Fock's function. In fact, Fock in

his paper, Diffraction of Radio Waves Around the Earth's Surface (Ref.5) arrives at just

this form which he then approximates by using the asymptotic form

1 )
/11/"'2 1 1. . e

V , L. 1; ~ [ .2
[ (V+1) F(’ R zmme> v (2.21)
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Then, in the shadow region, he evaluates (2.20) as a residue series. Since the first pole
occurs near 2 =ka, and this for |ka sin 6|>> 1 is the principal contributor to the
residue series, he approximates (2.21) by .,/ka. What remains is precisely one of Fock's
functions.

Returning to (2. 14) we see that there is an essential difference between the sphere
results and the parabolic equation results. The physical significance of this difference is
immediate on noting that the parabolic equation is strictly applicable to a two-dimensional
problem (the infinite circular cylinder) while the sphere being a finite body forces the waves
creeping into the shadow to converge on the pole 6 = x. This accounts for the term 1//8In 6
in Equation (2.14). In fact, if we consider that the energy surface density must increase

inversely as the available space we have

E ~ '\V'z ~_1_ , (2.22)
8in 0
or
~ L, (2.23)
\V ,/sine

This result has already been noted by Franz (Ref.1).
N.A. Logan (Ref. 13) has applied Fock's reasoning in approximating the asymptotic
form of Equation (2.20) itself. Since the major contribution to the integral comes from the

region t ~0 and (t) is a slowly varying function he writes
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[ 16t )
= /| &z dt v 9(0)
& L w) g d
[ Cq | (2.24)
ka [(ka + 2) : 0 izt
= -4 F!%,‘;";ka+1; e ) . dt ,
[ (ka +1) \ 21 8in6 ) w(t)
Ca
where he restricts the reglon of applicability to |ka sin 6|>> 1.
Near the pole 6 = x we use the asymptotic representation,
P, (0 = J 0/ 2V +1)cosL, +0(cos?® L) (2.25)
y 0‘ ' Z / -2_ 1] [

rather than the decomposition into P‘(f) and Pﬁﬁ which are singular at 6 = .

Using the above approximations, N. Logan has made a comparison with the sum of
the harmonic series for ka = 20 and has found good agreement between the two. In the
transition region between |¥sin@|>> 1and |sin 6| << 1 the results from either
side are continued into this region and even here the agreement was good.

Fock (Ref. 8) has applied his method to the three-dimensional problem. His result is
precisely the same as that presented above for the two-dimensional problem.

We consider a finite, smooth, convex, perfectly conducting body illuminated by a
Plane electromagnetic wave. We take the plane wave to be incident along the x-direction and
erect a coordinate system at some point on the shadow boundary with the y-axis normal to

the surface and the z-axis chosen so as to form a right-handed system as in Figure 2.3.
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Figure 2.3

As before we perform a local analysis near the origin of the coordinate system. We

write

— ikx —
H=ce¢e H*
(2.26)
E = eikx E* |
Hence, the starred quantities satisfy
VxE¥ + ki x B* = - ik B*
X x - (2.27)

VxE* + Ik xE* = ik B¢ ,
from Maxwell's equations for free space.
Now we extend the order argument and write, letting ¥ stand for any of the field

components, in Equation (2, 27),
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Y _ ok
=0(zxzVY) .,
dy m ¥
¥ =0 (ky)
0 X Mq}
(2.28)
Y = (k
=0y,
where, as before,
M»>» m»>»1 |, (2.29)
and in fact, we put M=mn . (2.30)

Since each of the starred field components must satisfy the reduced wave equation

V'Y o+ 2k g—% =0 , (2.31)

by applying the ordering assumption of Equation (2.31) we have
,/‘

2 .
L SERPN:L S (2.32)
ayz 0X

Finally, dropping the asterisks, we have from the ordering assumptions and

Equation (2.27)

Ex___i_(anz_any\,
kL gy oz
E =H |,

X
y (2.33)
Ez = —H ]
g o=l [ oy, 8Hz>
X k

ay 0z
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We see then that the three-dimensional solutions of Fock are precisely the two-dimensional
solutions given above.

In fact for the incident field _, kx A
z

H =e , (2.34)
we put
H o=y . (2.35)
Then, near the shadow boundary, { must satisfy
"af‘Y"J-Zik hd = 0 (2.36)
3y dx ? :
and the boundary condition
Y | =o0. (2.37)
on 'I
S

These are precisely the conditions on H, in the two-dimensional problem as given above in
Equation (1.46).

For the incident field — ikx
H = e Yy (2.38)

on the other hand, we put

H, = & g (2.39)
where § satisfies
2
" + 21k o ] (2.40)
b =0 (2.41)
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These are the conditions given in Equation (1.59) for the two-dimensional problem. Again

making use of the divergence condition we have

m kX 1 2
Hx ) . 3% . (2.42)

We emphasize that the application of this essentially two-dimensional approach is
restricted to the region of the geometric shadow boundary. To carry these solutions farther
into the shadow region we must make use of the fact that as the surface area decreases
going into the shadow region the energy density must increase. Further, we make the
point that the "creeping waves'' propagate along geodesics on going into the shadow. The
first requirement was illustrated in the treatment of the scalar sphere problem in the ap-
pearance of the factor (sin 9)-% in the expression for the fleld. The second requirement
was met in the tacit assumption that the creeping waves followed great circles on the sphere.

-1
2 in

To determine more generally the convergence factor corresponding to (sin 6)
the case of the sphere we consider two adjoining geodesic paths arising on the geometrical
shadow boundaxy. The geodesics are determined by the two conditions:

(1) the point on the shadow boundary at which they arise, and

(2) the angle which the incident radiation makes with the shadow curve.

We write for the two paths

-1-“; = ?(IJ 81) ’
. (2.43)
=T+l ,8) ,
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where £ and /+ A/ are points on the shadow boundary and 8; and 83 are path lengths along

the geodesics. This is shown in Figure 2.4.

Figure 2.4

We choose S; and S; so that ry and r; be equiphase points, then the convergence of area

available to the energy propagating into the shadow will be proportional to

T -T
A= 12 2,
= —37 (2.44)

or in the limitas A/ vanishes

A(L,S) = Qfﬁéli . (2.45)

dtL

In order to use the Fock method, then, we require the field functions to be
-1
multiplied by the factor A 2 .
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AN EXAMPLE ; THE CONE

As an {llustration of the use of Fock's method for something other than a cylinder or
sphere, we now propose to determine the fleld induced on the surface of a perfectly conducting
semi-infinite cone by an incident plane electromagnetic wave. We restrict ourselves to the
condition that not all of the cone be illuminated and we shall use Fock's method to find the
field on the surface in and near the shadow region,

Here we obtain an approximate method of determining the field on the surface of a
perfectly conducting semi-infinite cone which has been illuminated by a plane electromagnetic
wave. In particular we take the direction of incidence to be such that not all of the cone sur-
face is illuminated and find the field on that part of the surface which lies in the shadow and
which is far from the tip. The approach is that of Franz and Fock generalized after an idea
of Keller.

We take a plane electromagnetic wave incident on a perfectly conducting semi-infinite
cone. We take the direction cf incidence to be such that part of the cone is shadowed and
apply the Franz-Fock theory to determine the fleld induced on the surface of the cone in the
shadow and far from the tip. The term '"far from the tip" will be made more precise below
and indicated as a requirement for the application of the theory.

Using the coordinate system illustrated in Figure 3.1 the equation of the cone can be

glven as
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\
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Figure 3.1

Coordinate System for the Cone
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o =8, 6 >1x2. (3.1)

The plane wave incident in the xz plane making an angle 6(6 > 7 - 8,) with the cone axis is
again characterized by the unit vector

N
/l; = —sinGTx-cos Giz . (3.2)

This fixes the shadow boundaries which are solutions of

E- Vi=o0, (3.3)
where f = 0 is the equation of the cone, i.e. in Cartesian coordinates

f=x+y -2 tan'g, . (3.4)
Denoting § =+ fi; as the equations of the shadow boundaries we have the solutions of (3.3)

tan 6,
tan 0

cos f = (3.5)

Taking the viewpoint of Franz we consider the field in the shadow as arising from

a wave launched at the shadow boundary and propagating along a geodesic according to
the prescription of Fock. This makes more precise the condition on the distance from
the tip. We now require the radius of curvature everywhere along the geodesic to be much

larger than a wavelength. In Fock's notation

(_k.!‘_)a > 1, (3.6)

where R is the radius of curvature and k = _351! with ), the wavelength.
Our first step is to find the geodesics, the curvatures, and finally the generalized

arguments of Fock's functions.
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We need the equation of the geodesic T = T (f) which starts at some point r = rg, §=0g
on the shadow boundary and, at this point, has the unit tangent vector % =?¢. (In this section
r will denote radial distance on the surface, primes denoting differentiation.)

The geodesic is given by the equations

O o ' - rsind §, P = 0
ds?
or (3.7)
A 38
pr 49X =0 , rgt s2r P =0
ds?

where s is the path length along the geodesic and the primes indicate differentiation with

respect to 8. From the second of Equations (3.7) we have

ﬂ :B-Z__r_'_

) (3.8)
g r
which has the solution
po= =, (3.9)
r
where a 18 to be determined. Now g 1
2

g = [p[r’sinzao +(—3€4) } ap , (3.10)

s

so that

-gg— =f = [r’sm’eo +(—‘-1-5) i‘ . (3.11)
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Equating this to (3.9) we find

dr = L /r‘ a sin®e, . (3.12)
dg a
This has the solution
r = asin g, sec [ (¢—¢s) sin e°+‘\{J:l , (3.13)
where \J 18 also to be determined.
Applying the condition r = r_ at § = 5 we have
@ =r, ¥ . (3.14)
sin@,
The tangent vector is given by
2 A
T = O =% dr 4, dr (3.15)
ds ds ds
which, making use of the above, becomes (3.16)

T = fom [(-f)sin 6, +¥] +Poos [ (B smo, + ] .

AN A
Now imposing the condition T =k at § = fi;, r = rg; we have
sinyY = -c0860 | (3.17)
cos 6,
Finally
r = rgcos ¥ sec [ (P - §) sin 6, + \P]

1 (3.18)
V¥ = sin~ { -9.9.5._9_}

cos 60
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The radius of curvature is given by

1 g@_.“[
’f{‘/ds T (3.19)

N
where 1 is the unit normal at the point in question, Since?x =0 ,

df o 86 Tg cosV; . (3.20)

———

ds sing, 13

Thus, using the above expression for "1\‘,

2
1 - Tg osd
- - [ cot§ . (3.21)
R & oY et
We take the generalized argument of the Fock functions in the shadow fo be
8 1
kR 3 d
¥ - ; (___) ds | (3.22)
2 R
0

Substituting and performing the integration,
1

o [ krs cos ¥ sin g, 3 )
5 (Z Ty ) -9 - (3.23)

Finally we anticipate our need for the path length,

8 = rgec ¥ sin [(¢ -p) sin 60] . (3.24)

We now apply the Fock theory. We fix on a point r, @ in the shadow and determine
the contribution to the fleld at this point arising from the wave launched ar ry, §, where

ry satisfies Equation (3.24) with these fixed r, .
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If the incident magnetic fleld is perpendicular to the surface at rg, §;, then, according

to Fock, the fleld at r, § due to the surface wave launched at r, pswillbem.ngenttothe
geodesic and given by

By = o = «3) , (8.25)

where 8 is the path length and

ol

m = (—%B—) , (3.26)

- (o 28] gy

sec 60

(3.27)

Otherwise, if the incident magnetic fleld is tangent to the surface at r_, § the field will
be perpendicular t{o the geodesic and given by

H, = o g3) (3.28)

We need the projection of the magnetic polarization, D, onto the perpendicular and
tangent directions at the shadow boundary in order to apply the above method of computing

the field. We designate these directions at the shadow boundary by

QL = (cos §, cos f_ , cosoosin¢s, -8in @, )

lal A A (3029)
q, =4, xk .

Hence, with the incident B polarization, the field K, is multlplied by (p * q,_ ) while
the fleld H, 1s multiplied by (5 @) .

There will be a contribution from each geodesic path satisfying the boundary

conditions and passing through a given point. We enumerate these.
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Let the point in question be specified by r, § where fig < § < x. Then, given the

direction of incidence we have the possible geodesics

r = rs(n) cos ¥ sec [ (2 + 9 - @5) sin 6, + W:\ ,n= 0,1,,.. (3.30)

r = rs(“') cos Y sec 'rl_ (2rm' - ¢ -¢s) sin 6° + \P] ,n'=1,2 ., (3.31)
These are to be solved for grs(n)} and {rs(n ')} , Where we note the first set terminates

at n such that
m + p-f)smo, +Y > I, (3.32)

while the second terminates at n' such that

(' -p-f)sing, + ¥ > L, (3.33)

corresponding to these will be the sets iénl and { sn.

AR

Since, in general, the shadow boundary does not coincide with the phase front of the

as well as the path lengths

incident radiation we take account of the phase by inserting the factor eik "% () or

Cd .
eik— rs(n) in each case. This gives a total phase of

én -k ?s(n) + ks(n) . (3.34)
¢, =% T,m) + k), (3.35)

These are explioitly
i’n = kroin [ (2m+p-g)smo + Y], (3.36)

én. = kr sin [ 2m' -9 -9.) sin0°+\y]
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Since we will need to add the various contributions vectorially we choose to facilitate
A N,
this by resolving the components of the field on the surface in the p and r directions. Now

the field HT lies along the tangent vector

T = fotn [(@-p)sing+¥] +fcos [ G-g)smo,+ ¥] ., (.30

while the fleld H, les along the vector

. (3.38)
6xT = -8sin [(¢-¢s) sin60+\{/] +r cos [(¢-¢S) sin 6, + W‘J .

A
These explicitly give the '1: and p components. Finally, we find the total contributions. On

the surface at the point r, ¢ we have, for incident polarization?) , (3.39)

~a A i AN A A
H @ =r {l e b {(P’ q,) 8(§,) cos X +(p - q )t/mp) £(8) Sinxn} *
n

i . A A A ‘
+ Z o ﬁ {(p. a,) g(;n') cos X +(p- a;,)(i/mn‘) f(3,)) sin Xn,}]af
n*=1

A 1 A N A "
+ f {Z e %‘ {(r m)(i/mn) f(5)cos X, -(p- q,) el 3n) sinxn} +

n=0

Z 1§, {(ﬁ=agu/mn.> £(3 ) cos X - (8- q,) g(F) smxn,” ,
. |

n'=1

+

where we have put
X = 2m + p-p)sing, +Y

(3.40)
X,= (@m' - p-p)sing, +Y
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A point to note in the case of the cone is that this apparently three-dimensional problem
is, away from the tip, and according to the criterion of the Fock method, two-dimensional.
This becomes more apparent if we use a geometrical method to find the geodesic paths.

We start by unrolling the cone of angle 8 by breaking it at one of the shadow boundaries

as in Figure 3.2

Figure 8.2
The Unrolled Cone

If the inoident ray makes an angle { with the shadow boundary, this ray continues unchanged
onto the unrolled surface. Then we repeat the process and find the rays wrapping around
the cone, following geodesic paths are just straight lines.
There is then no convergence or divergence of the geodesics, away from the tip, and
this is indeed & two~dimensional problem in the sense of the application of Fock's method.
This method has been used to determine the radiation pattern of an array of slots on a
cone. The computation was then compared with experiment and appears in Reference 15.

The comparison seems to establish the validity of the Fook approach,
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v

CONCLUSIONS

We can qharacterize the Fock approach as stemming from a local and primarily
physical analysis of the behavior of the fields at and near the geometrical shadow boundary.
This coupled with certain general considerations of the known solutions for the circular
cylinder, and the sphere give a method of treating the shadow and transition regions
provided we exclude any regions in which there is a focussing effect.

Aside from the use of the method in solving physical problems we can look on it as
glving a hint as to the form of asymptotic solutions of boundary value problems in which
the boundary is a coordinate surface in a system in which the Helmholtz equation is
separable. That is to say, we suggest that the asymptotic form of the special functions
associated with these separable boundary value problems may be found more easily if we
assume the Fock solution is what we are looking for. This approach should be cautious,
however, since some recent work of R.K. Ritt (Ref.2) suggests that there may be a dis-
crepancy in the case of scalar scattering by a prolate spheroid.

Extensive tables of both the Fock functions have been computed by the Air Force
Cambridge Research Center under the direction of N. Logan (Ref.16). These are for
positive values of the argument 0 < 5 < 9.99 in steps of 0.01. The function g(§) has

been computed by Fock (Ref.14) for 4.5 < % < 4.5 in steps of 0.1.
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APPENDIX I

THE CONTINUATION OF CERTAIN SOLUTIONS OF LEGENDRE'S
EQUATION TO AN INFINITELY MANY SHEETED
RIEMANN SURFACE

For the angular range 16' <0< -g-’ we have the representation

4(V/+L)e
i% . ( 2)

-16
V' r'( .,._g_) 21 8in 0 LR 2i sin 0
. (A.1)
ei(l/+';)0

+

16
S I p(ndivedi )
Vi sin 6 1 2i8in6

which is absolutely convergent in the specified range. (The series expansion is asymptotic

outside this range, i.e. for £< 8 < x -5 and |/sinE | >>1). Let 3‘-_-916, thus

(A.1) becomes

v+l
p = L [wy] M 373

F(i,1;/+3; ;:g-::— +
LN rped) V3-3 ba:ved 573 )
y+* (A.2)
L T
5-§ 5
Or equivalently
p, =L Luan {1 370 r(*.—‘-;ud;"g—) +
Y TN ey 5 S
Va1 1
+ e \/1—;—? (2'*' +Z' 33-1)
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If now we make use of the transformation of the hypergeometric function,

Fla,b,c;2z) = (1 -2) F(a,c-b;c;—;z:—l) , (A.3)

Equation (A.2) takes the form

1 [(r+1) 1Z Z(V+1) .3 <3
T I3 { 15 F(”%'V”'V*z«v‘i) +

4T _(V+1) ! (a-4)
+ e 1% FG,V-!—I;)/-I-%;S)}
From this reduction we are led {o define the functions
(+ 1 ey AT v+l i 3 3
P, (}) 2 F(L, v+l V45
v 4 T F(r+§)e ; G ¢
2
(A.5)
() 1 Dy 17 v+ 3 <12
B B Ty "3 F(forenvegs ¥l
So that
P, (cos ) = P)(,+) + PE:) (A.6)
P* (cos 6) = P, (-cos6) = i Pg) +eo" P(;>
We also note that
P o) = -2 o . (A.7)

From the arguments of the hypergeometric functions we have that they are absolutely

convergent on the unit circle except at the points § (%) =t They are, moreover,
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periodic in @ having the period ¥ so that if we continue the functions P(:) past the cut

L—l, 1__\ onto an infinitely many sheeted Riemann surface we have

P(;') (0 + 2qm) = Raind P(;) (6)
| (A.8)

P (o - 2m) = 2 L)

on the nth sheet.
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