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ABSTRACT

_ Jo,-a<x < a
N(x)-{No, . >a}

is the distribution function of the positive ions in an electron-ion gas, if the ions

are held fixed, and if the initial distribution of the electrons is

_
1 202
e

2T 0

N(x)

we first calculate the limiting electron distribution as t — . Assuming that
the true electron distribution for finite t is a perturbation from this limiting
distribution, we find that the perturbation equations can be satisfied by transverse

electromagnetic waves with certain discrete frequencies, isn. These frequencies

fall into two classes, their real parts having, respectively, the form

) cnw . cTn
R(i Sn)"’ a2’ and R(lSn)'\J T
e 3/20
where c = velocity of light in vacuum, and h = 7 , Where w is the
W

plasma frequency.

iii
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I
INTRODUCTION

This report presents a highly simplified model of the electron distribution

in the rear of, and slightly behind, an object traveling through a rarefied, totally

ionized gas; its velocity is much greater than the rms velocities of the ions and

much less than the rms velocities of the electrons. It has been shown, by Dolph

and Weil (1959), and by Sawchuk (1962), that behind such an object there is a 'hole’

in which the ion density is very low in comparison to the ion density outside the

hole and that the electron-ion configuration is electrically neutral. Our first

simplification is to replace this hole by a well defined vacuum, and to make the

problem essentially one-dimensional by letting the hole be the region between two

parallel pianes, 2a units apart. We then investigate the manner in which the hole

'fills up' .

The time interval is one in which only the electron motion is con-

sidered, the ions being assumed not to move.

We first assume that the only forces on the electrons are the Coulomb forces

of the ions and other electrons, and that the phenomenon is governed by Vlasov's

equations.

In Appendices A and B, we extend a result of Iordaneskii ( 1959 to

show that these equations have a unique solution, and that the solutions have a limit

as t> 00 .

In Section II, we find the limiting electron distribution and electric

field. The limiting distribution we call the terminal distribution.

In Section III, we assume that the forces on the electrons are electromag-

netic forces, and regard the electron distribution and the electromagnetic field

as perturbations of the terminal distribution and the electrostatic field found in

Section II.

Writing the appropriate linearized equations, and assuming that the

electromagnetic field is transverse, we secure a partial differential equation for

the electric field. When we take the Laplace transform of this equation (as a

function of the complex value, s ), we find that for large s, the poles of this
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Laplace transform can be evaluated by fairly elementary methods. Appendix C
provides a mathematical justification for the use of these methods.

In Section III, we represent the electron distribution by approximating,
linearly, the true electron distribution, which enables us to find, routinely,
asymptotic representations of the poles of the Laplace transform. These are of
two types. Ifh = e3/2>u , where A =0/v2 w , obeing the rms velocity of the
electrons, wbeing the plasma frequency (we call X the Debye length, and it differs
by a numerical factor from the usual Debye length), and if a/h >> 1, then one set

of poles have the form

nrwe nwi
s~ & -log — =
n g wa 2

and another set has the form

SNg 3 }l+n7ri
n h 2 a - ’

(c is the velocity of light in a vacuum).

We hesitate to attempt a heuristic explanation for these poles, which cor-
respond to very high frequency, damped, electromagnetic radiation, except to
say that they are a consequence of the collision-free Boltzmann and Maxwell
equations. The electron-ion configuration appears to behave as some sort of
resonant cavity, which selects from the frequency spectrum of the electron motion

certain privileged ones which are allowed to propagate.
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II
THE TERMINAL DISTRIBUTION

We consider a gas, consisting of ions and electror;ls,:whiigg at t = 0 has the fol-
lowing properties:
a) The ion number distribution is

Nos IXI > 2
N(x) =
0, IxI< a

b) The electron distribution function is N(x) V(v), where

Rl
T 242

V(v)='l—“ e -0 <v<®
2m ¢
We assume that the evolution of this system for t > 0, is governed by the Vlasov
equations

1
= 4y=-14 E(x,t)ai =0
X m ov

®
g;(- = _% [g f(x, v, t)dv—N(x)}

{

o

In (2-1) the functions f and E represent the electron distribution function and the
electric field, respectively. The constants , q, m, € represent respectively the
charge and mass of the electron, and the dielectric constant of free space. The
use of (2-1) carries with it the tacit assumption that the ions do not move, that the
forces on the electrons are electric Coulomb forces, and that the electron and ion

densities are large enough to permit the use of a distribution function.

Equation (2-1) must be solved subject to the initial condition f(x, v, 0) =

N(x)V(v). Since the initial data is not differentiable, there\are, in general, no
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solutions to (2-1), unless we enlarge our definition of a solution to mean a pair
f(x,v,t), E(x,t), where 0E/dx exists almost everywhere and satisfies the second
equation in (2-1), and f(x, v, t), instead of satisfying the first equation of (2-1),

remains constant on the characteristics of the first equation of (2-1).

In Appendix A to this report, we show that with the additional restriction,
E(~o, t) = 0, a unique solution of the type just described exists, and in Appendix

B, we show that as t+c0 , the pair f, E have limits, g, G, where g and G satisfy

_B_g gGa_g_=0

Vox ~ m 7 5y

‘ (2-2)
36 9 1
% &g [ SCD g(x, v)dv -N(x)
-
It is further shown, in Appendix B, that
v Y]
0 - 202 o2
g="— e e
V2T o > (2-3)
9y __ 4
ox m @

7

We shall call g the terminal electron distribution and

i
W(x) = g(x, v)dv = N e ,
-

the terminal electron density.

In Appendix B it is observed that y{x) = ¥(-x) and G(x) = -G(-x), and that
Y() = Gloo) = 0. 1t is then sufficient to study the equations only for 0 < x<

s

with G(0) = 0. Using (2-3) and the second equation in (2-2), and letting,
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q
g=-13G,
we obtain the pair of equations
dy _
dx g
30_2 (2-4)
dy_ 2 77 _ Nx
0
o N

In (2-4), w | which is the "plasma frequency' and ¥ (o0) = g (0) = /(c0)=0.

To solve this system we consider separately the regions 0<x<a, agx,

and use the fact that both ¢ and ¥ are continuous (butnotd /9 x ).

The region 0 < x<a . In this region, N(x) = 0, so

dy _

&Y (2-4')
v

..

dx

A first integral is easy to obtain, and using the fact that § (0) = 0, we have
e
g =20'ce -e , (2-5)

in which wo = y(0) , and is yet to be determined. If zi =e , it is elementary

to derive
o wzo
g =y2 woz tan\)-—-*2—'"cr X

Wz X (2-6)
v =o’log|z’ sec.
8% %°¢ 3 o
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The region a < x. Here, N(x) = No’ and

dy _
ol 2
v (2-4")

g-g:u?[eﬁ—l}

Using the fact that § (o) = () = 0, we obtain a first integral

13
_@z:z(ozg{e(ﬂ_l-%:]. (2-7)

The solutions to (2-4") can then be obtained by quadrature, but the integrals are

non-elementary. However, using (2-5), (2-7), and the continuity of § and y, we

obtain
z2 =1 +¢_(_a2l , or, from (2-6),
0 o
Wz a
z; =1+log [Zf) sec? \/'2“00 ] ) (2-8)

Equation (2-8) can be used to determine Z s if it is required thaty and § be
bounded for 0< x< a. In this case, the solution of (2-8) corresponds to the first
intersection of the graphs of the functions .

92 2 W ZO a
1 2
Z, 1-log Z, and logsec o

which occurs for 0 < z0 < 1. Itis easy to verify that as %@'—mo, zo-—>0 .

Let us define the Debye length, A , by the equation
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and let us proceed under the assumption that X /a is very small,

Now for 0 < x < a, the electron density function can be given explicitly,

ZOX

2 2

_ 2 2
W(x) = N, 2z, sec

Using equation (2-8), we have
zo—l
W(a) = N0 e , and

z2 -1 14
Wt(a) = )1: W(a) I:e ° —zj]

Therefore, approximating W(x) linearly, for 0 < x < a, we obtain a graph

(Rgure 2. 1).

FIGURE 2.1

The dotted line in Fig.2. 1 is a more accurate sketch of the curve.
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For x> a, W(x) —>NO . This approach, for large x can easily seem to be

exponential. But approximating W(x) linearly to the right of x = a, we obtain the
graph (Figure 2. 2)

\T'
1 I
~(e"1)e/2 A N‘

/

2]

FIGURE 2.2

On the basis of the above reasoning we shall approximate the terminal electron
distribution by the graph (Figure 2. 3)

=

N
(0]
—e
-3 el Y a /
-
h = eaz}\

FIGURE 2.3

8
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III
THE PERTURBATION

The computation in the preceding section assumed that the forces on the elec-
trons are Coulomb forces. A more accurate set of equations would have been the

Boltzmann-Maxwell system:

af -, 9% _ g of _
5t T 3§_m(E+;MOVXE)82 0

oH

+ — =

Vx E uo 7 0

OE 5
VxH-e€ = —qufd v (3-1)
V-H=0

q 3
v E"é;jfd v

In (3-1), f is the electron distribution function; E, H are the electric and magnetic
components of the electromagnetic field. Instead of attempting to solve these
equations we shall employ the following device: Att =0, we shall assume that the

fields and the distribution function have the following form:

E=G+€¢E

- - )

H=cH (3-2)
ko)

=g+

f=g efo

In (3-2), € is the perturbation parameter, G is the electrostatic field obtained by
taking G of the preceding section and allowing it to be the x-component of a vector

field, and g is the terminal electron distribution, ?ﬁoldﬁiﬁed by replacing v2 by
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v-v and changing the normalization from

1 to 1

V2r o (27r)3/2 03
If the terminal distribution is truly determined by the methods of the preceding
section, and if the distribution is truly determined by the system (3-1), then for

somet < co , the form (3-2) is justified for t> t .

As a matter of labeling we set the value of ty = 0. We then insert (3-2) into
(3-1), and disregard all terms which are not linear in € . We then obtain the

linearized system:

of of of 5
0 o 9 o _ 4 g
—_ p g — . — . e + . —
ot Y 9x m_(_} v © mE—EO MOXXH(,] ov
o,
+ — =
VXEO ”o ot 0
5
VXEO— €, E=_qufod v (3-3)
E : 3
\ o € fod ¥
v. H =0

Since dg /dv is proportional to v, the term involving H , in the first equation of
(3-3), vanishes. Because of the linearity of the system (3-3),we can now seek a
solution of (3-3) in which the electromagnetic field is transverse; that is, E has

only the y-component, E, and go has only the z-component, H. The equation then

becomes

10
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p:S X y
g—f+u0§%=0 (3-4)
gf 60 g-?w qfvyf d3 v
%E— = 'e% :fo d3v,

oH 3 3
ol _ _ d°v =
By ?f Ve fod v, jvzfo v=0

If we multiply the first equation in (3-4) by Ve and Vy, respectively, integrate

with respect to v, and make use of the remaining equations in (3-4), we obtain the

8 OE, 1 4 OE
2 &)L (ay—uqf[: ]

equations

12
PE 1 a E o Yo ") 3
axz 2 2 2 e E= “O qjvy \ 8§ d v (3—5)
of _of of og
iy 2 g2 -3 =
at 9x m dvy I 9y

oE
In addition, E = E(x,y,1t), since g~ = 0. We shall now use the third equation of

(3-5) to determine the right hand members of the first two equations in (3-5).

11
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At time t = 0, let f =fo(x,y,z,v ,Vv,v ). Letx(x ,v,t), v(x ,v ,t) be the
0o o 'y 'z o’ x o’ 'x

solutions of the equations:

dx
dt X
dv

X . —q—— . = = =(:
%" m G(x) ; x X s Vy vowhen t=0;

i.e. the equations of the electron trajectories in the unperturbed system. Let
xo(x, 2 t), Vo(x, Voo t) be the inverse of these functions (see Appendix A). Then,

taking into account the fact that

v % 4 G(x)ag-=0
X 0X 0

3

Vx
and applying the method of characteristics to the third equation in (3-5), we obtain

the equation

(o)
= - - . +
fo(x, V) fo (xo(x,v .y vyt 2 vtV (X, vy, t),vy,vz) a6
9g(x, Vy, Vy» V2)

8vy jo E(x,(x, v, t-?),y-vy(t—?), )z

q
*

Let us designate the second member of (3-6) as f(fl) . It is easy to see that

o) . t
[z' T 0 |og /-
ox ] " O {aVy J Bl v t'T)’y'Vy(t_m’:?'ET

" 8v j — E(x (x Voot D),y —vy(t—?'), 7)d?.

Hence, the second equation in (3-5) becomes

12
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“‘ o S : B T - 7727 B o
_3_2_E 1 _@_ w_2 ‘///0'2 E_|_MOq _a_g_
o ot T P° T
o y
t
. K 3 o
—a—tE(xo(x,v t-7),y- vy (t-2),2)d2| d” v = (3-7)
0

in which fg has the arguments given in (3-6). An analogous equation can be obtained
in place of the first equation in (3-5), and in principal, these two equations can be
used to find E. However, we shall concern‘ourselves onlywith (3-7), whose right

hand member we shall designate as p . If we take the Laplace transform of (3-17)

we obtain:

t
L [ v % f %E(xo(x,vx,t-T),y-Vy(t-?’),?)d2‘d3g} :
0

y avy
(3-8)
Zip)+s By, 0+ o 3,0
Now, we shall concern outselves with the ratio
t
0
oZ [fo 5t E(xy(x, v, t-), y-vy(t-?),?)d'r}
(3-9)

o (E)

13
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If we examine the numerator we see that it can be written as

ol 2 SE(XO(X' Vo t—?‘),y—vy(t—?‘),’l’)d’c“ -E(x,y,1)

ot
0
00 t
=g S e—St5 E(x,(x, vy, t—Z‘),y-vy(t—?'),?‘)det—og(E) .
0 0

By making the substitutions u=st, A = s?*, the ratio becomes

® "
- - A, A
5 e M S E(x,(x, vy, F%),y-vy(#—szt‘),”s: )\ -E(x, y, %) du
0

0
®
j e M E(x,y, ‘;é—)

0

Now E(x(x, vy, (u-\)z), y-vy(u-)t)z, A z) can be expanded in powers of z, giving

the series

oE oE oE
+ - pufd + _ — + .o
E(x,y,0+3} X Py <VX = Yy ay)czo()t up z

Similarly,

oE

E(X,y,IJZ) = E(X: y, O) +H é——| z+. .
t
t=0
If, in these expressions, z is replaced by i , and it is recalled that (3-9) must be
inserted into the integral in (3-8), so that the contribution of the term involving
o0E

oE
Ux —B—X+Vy Ty) t=0

will be zero, it is easy to see that the ratio (3-9), inserted into (3-8), is O(glé-).

14
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Therefore, as s> ,
2
M q t
o7 og 3
—_ E —T _ _ T
m Vy dvy j " (x (x,vx,t ),y vy(t ?,7)dTdy

0

2 Uk ‘
- 5 M rmocd)

The analytic continuation of the Laplace transform into the left half plane will

satisfy the same relationship. Therefore, we can write (3-8) in the form:

D

%"Z’(E) = ez [ SZ] Z(B)=L(p)+ s Ex,y,0) +

(¢

(3-10)

* + E

3t 3,0
We wish to find the poles ofZ (E) associated with large values of (s] . These poles
will correspond to high frequency components of E. In order to find these poles, we
must find two linearly independent solutions of the homogeneous equation associated

with (3-10), y which respectively are asymptotic to

£ rgiuﬂffzx
c 2

e

1’ Yo

as x>T o (see Appendix\@) ; the poles of L(E) will then be the zeros of the
Wronsk1a.n of Y and Y - Because our evaluation iérag&rﬁptoﬁc, we can neglect
the O( )term in (3-10), and the problem of finding high frequency components of E
is redu;dito chle problem of finding, asymptotically, the zeros of the Wronskian of
the functions Yp Vi - associated with the differential operator
\ d*y _[Sz+w2e‘w/oz}
i dXZ 2

_C

y

15
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v
THE OSCILLATION FREQUENCIES

We have now to compute the zeros of the Wronskian of the two linearly

independent solutions yI, of the equation

Y

2
(Sz+wze‘ﬁ/0)
yr- (S y =0,

c2

SIX/C S]_X/C

for which y™ e as x-», and ype as x-» -m, where

14
s = (s?+w?)

the function formed by putting a cut from -iw to i w, and choosing the branch which

is positive for positive real s. Because y(-x) = ¥/ (x), we can let yH(x) = yI( -X),

and W(yI, yH) = 2yI(0)yi(0). Therefore we need only to find yI(x), and only to con-
y/o?

sider non-negative values of x. Instead of the exact function e , we shall use

the approximate function found in Section II:

~

1 X > Xg
1
e(p/oz'v { W (x-x4) X1 < X< Xy (4-1)
_,0 O\<X<X1 )

where h = e3/2 X (X being the Debye length), x; = a —‘6/1/2 A, X =x+h. Inthe

course of finding yp we shall retain only the dominant terms in the asymptotic
expressions, and we shall discard factors\“\which will not affect the computation of

those large values of s which annihilate the product yI(O)yi(O). For x > x,, from

(4-1), we see that ST
sy
y, - N ,(X Xp)

16
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so that
dy
I 51
yI(Xz)'l, dx (Xg) = - c . (4—2)
If the new variable
2
2 W (X-Xl)
g+ LM oy 2B
z=ay ———¢ , a=(—%) , (4-3)
c? \ W

is introduced, the equation to be'soNed,\\for < X< X, is

d2
d—z};——zy=0, 7 < ZK 29,
where
a 2
g =251 g = &5
) 2 1772
Further,
dy _ a,1/2 dy
dz dx

For this equation we choose the two solutions

62/3z3/‘2 5
P(z) v ——F— 1+——§2— + ...

zl/4 487
3/2
Q(z)"'———~——e—2/3 i { 1 -2 I
21/4 48 z3/2 ,

these representations being asymptotic for large |z . Retaining just the dominant

terms, we obtain

17
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3/2
dp 1/2P~ 5 Z1/4 e2/3 z

—+
dz z
dP 1P 1 -3R 14 2/3 z3/2
— -z P~-—1z Zz' e
dz 4
3p (4-4)
dQ 1o 1 -3 14 -2z
1z Z' Q~ 4 4 z' e
dQ 1P 1/4 -2/3 z3/ 2
-z Q~-2z"" e
dz
Now for xy < X< X9 ,
v = AP+BQ, where A and B are constants.
a, a, ok
Since the values of yI(zz), —(E(zz) = o1P —dx—(xz) are respectively 1 and - Tl ,
from (4-2), we have
AP(z5)+BQ(z,) = 1
AP (24 BQI(z,) = - 52
These equations have the solution
’ |
3 Q'(z,)+ z21/2 Q(z,) B=. P(z,)+ zz/z P(z,)
W(P, Q) ’ W(P, Q) g
so that, using (4-4), we obtain
32 3/2
YIN%; 253 9_2/3 2 P+ 92/3 2 Qlz), x<x< X .
Thus 3/ 3R
ya g 2w T B g
' (4-5)
32
d 3 2/3z
a1/2 _;rl(xl),\% Z2-3f2 e—2/3 Zq /2 P'(z)+e /3 24 Q'(z)
X

18
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Sy -S2x
Now, for 0K x<x, yy=Ce®"+De €% thus, the quantitites
§xl - §xl 1/2 X -5 x
Ce®+Dpe ¢, c -De 1)

are respectively asymptotic to the right hand members of the equations in (4-5).

Before solving for C and D, we observe that

32
a(z23/2-z13/‘2)=% QNT {(s2+w2)3/2—s3}= % E%{(Sz+(3)3/2_s3} ~ S% .

c

Then solving for C, D, and discarding factors, as before, we obtain:

YI(X) "‘213" (e_Sh/c z2—3/2 _eSh/C Z1'3/2)eS(X-X1)/c +

- - - h -
+(__1_ ,-Sh 2 3/2z 3/2+é§ C)eS(X1 x)/c
64 !
Then, expressing z; and z, in terms of s, we secure the fact that the values of s,
for which the product yI(O) v (0) vanishes, are obtained, asymptotically, by

solving the equations

4
2 — — 2 -
wle sh/c _ sh/c sx /e 4 ke sh/c_l_esh/c)esxl/c=O

1 w
8 s 64 h? s
(4-6)

We shall now give a discussion of approximating solutions of (4-6) for certain |
ranges of values of s. The equations (4-6) were derived by using certain asymp-
totic forms of the solutions of the Airy equation; therefore we are tacitly assuming
that we are dealing with values of s which cause the variable z, in the above dis-

cussion, to be large. Now

v | (% |2

19
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)48

o~ [l - G

This parameter is large if the plasma frequency, w, is small in comparison with the

frequency ‘ 191 , or equivalently, since hw~g, if the r.m.s. velocity of the elec-

trons is small in comparison with ¢. This is an assumption we shall make. If

4/3 'h |2
)(Xl)

lsl~l§l , IZ)’V(}'I%

Since we are‘gg\spmigﬁhat )—}:1— <1, whether [z] will be large, for such values of
s, is dependent upon the exact values of the parameters, and cannot be decided on
the basis of the general assumption which we made in the case of |s| Nl }gll .
Hence, for [s]~ Lﬁil , the above analysis is invalid unless the corresponding
value of |z] is large. Therefore, in the contrary case, a separate analysis must

be given. We can now proceed.

(ﬁ)‘y3 (-glh—)2>>1.

c
Casel: |s]~vT ,

A

Here, l%l ~ |)—2—] <1, so we approximate the first parenthesis in (4-6)

by -2sh/c, and the second parenthesis by (1 + who? /64 h2s6’) . Let us examine
the term w402/h2s6 L If
c w4c2 l w4 Xi 6 w4h4 Xy |0
c g
|s]~ X |12 61 12 o4 = ( ! )(HL)
But from
c .43, h 2
— — ) >
(1507 3 )" >>1,
we have

4
c

(ﬁ)s« T
h nd ot
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SO

4 2
W e

hz 36

<< 1.

Thus we replace (4-6), by the equation

2SX1/C + (_,)2
=t 2 -7
© 42 (4-7)
Letting z = %1— , this last equation is equivalent to the four equations
WX:
f=t & , el=ti —4 (4-7")
2cz 2cz

Now, letting z = -x + iy, the solutions of (4-7'), with Re z 0, correspond to the

intersection, for x> 0, of the curve

with either of the two curves
xtany=y, x=-ytany.

A simple sketch of the graphs of these curves shows that the intersections take

place for

enw
X ~ log — n=1, 2, ...
n g wXI 2 3 ]

Therefore the associated complex oscillation frequencies are

SNE-{—logcmr + nﬂl} .

n xi wWxy - 2

Because x;~ a, we prefer to write this as
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el ﬂwm_i} 3
s’ a{:l(’gwa‘ 5 . (4-8)

It is interesting to make the following observation. Suppose that instead of the
approximation (4-1), we had used instead the approximation

vlo? _

e - ]- ) lX' 2 a
(4-9)
=0, 1xl < a

This, in effect, assumes that h/x is so small as to have no influence, and is

consistent with the negation of

() (2> 1

s;x/c

vy = A %+ Be™* for 0 £ x< a, that the condition for yI(O)yi(O) =0is

In this case, it is easy to verify, by letting yp = e for x >a and

2
e2sa/c I,

4g%

which is the same as (4-7). Thusj\ the same estimates (4-8), are obtained. It is

reasonable to conjecture that regardless of the value of

(L) ¥ R

as long as h/x; << 1, the values (4-8) will be obtained. We have not atte mpted this

analysis, because in this report we are primarily concerned with those values of

s for which |s] ~ % , which case we shall now consider.

Case II: |[s| v % ) We shall rewrite (4-6) as
X1
z
1+ (%)2 213' e B
\e = X )
-, ¢,2 3 T%Z
15(op) 2z e

22




THE UNIVERSITY OF MICHIGAN
2'764-10-T

CZ

by setting s = oh Since we are assuming s = 0 (ﬁ- ), z =0(1), and since Re(z) < 0,

the second term in the numerator may be neglected. Thus, we arrive at

eZ = 1 1)%1 Z . (/4—10)
c.2 3 o
13(5p) 2z e

To estimate the zeros of (4-10) we first set z = 27ni and observe that the left numbend

is 1 and the right number is
-1
1 ix;/h
[1 n (5%)2(27rni)3 627rmx1/ J

However, if z is given a small negative real part, the left number remains close

to 1. ﬁb;évef-, if z is given a small negative real part, the left members remains

close to 1, and the term

c.2 3 2
(BR) 2z e

- % [
is greatly diminished, because h >> 1. Thus we expect to find solutions

in the neighborhood of 27ni . To see this more clearly, setting z = -By +y, and

equating the phase and magnitude of both sides of (4-10), we obtain

sin( }}—:ly—3 tan"lé)

sin( }}—izy—S tan~t % )

By _

e =

o (4-11)
eZB y —ZeB Y cos y-1= (a,c—h)4y6(l+ﬁ 2)3e By

Let 3> 0, and consider the second equation of (4-11). When y = 0 both sides are
zero. If we call the left side f(y) and the right side g(y), we see that

f(y)>o as y->oo,

-

and that g(y) has a maximum at y = 3h/x8, and for y > 3h/x8, gly) decreases
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monotonically to zero.

Further,

3
h 6 (1+8%) (1+8?)
g( 73) th) ( ( B)6 >> (eB)é »

since
c.\2/3 , h
hw> (X1 > 1.

On the other hand,

- 6h 3h
3h X X 3h
) = e -2e™ cos(xp -1 ,

so that for 8 sufficiently small,
3h 3h
— > e
3 X1B) f %P ).

But since f(y)> as y>o and g(y)—=0 as y—~>wm, the second equation of (4-11),
has a branch y(B) > %I-B— for sufficiently small 3 .

Now, examining the first equation of (4-11), we see that for B = 0 the values
of y which satisfy the equation are the solutions of

3 3
sin By - 3 = sin (Fy - ),

or, since x, - x; = h, y, =207 . Thus, this equation has branches yn(B) for

which yn(O) = 2n7m . Further it is an elementary calculation to show that

dy,(8)
dg

= ¥,(0),
B=0

so these branches actually extend into the region 3> 0 . These branches intersect

the branch y(B) >3 . B for Bn - y(O) ; the corresponding complex frequencies,
are then given by the formula
c (_3h 4 ]
sV 5 5 -7ni . (4-12)
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\'
CONCLUSIONS

We find that as the terminal distribution is approached, transverse electro-
magnetic fields can be generated, having tﬁé frequencies given by (4-8) and (4-12).
Whether these attenuated oscillations are dé;cé;:tagle deprends upon, of course, the
validity of our model, and upon the energy V,V,}P?}l is radiated. The energy available
for the production of these radiations is certainly no greater than the energy
necessary to create the initial ion-electron distribution of Section II. In order to
find the amount of this energy which goes into the electromagnetic fields described
above, it is necessary to solve the equations (3-1), which is just what we have
managed to avoid doing. However, the nature of the attenuation in (4-12) gives

hope that these oscillations are detectable.

In regard to the model used, we have reproduced our calculations for a
cylindrical geometry; the material in Section II is more complicated, and we have
not been able to obtain a value for h, short of numerical computation for fixed
parameter values. Aside from this, however, the work proceeds as above, and

identical formulas are secured.

25




THE UNIVERSITY OF MICHIGAN

2764-10-T

APPENDIX A

We are concerned with the existence and uniqueness of solutions to the system

®
of of of oA
v Ziax 030, -4 dv-
ot Vox A(x,’c8V 0, P S f(x,v,t)dv-N(x) ,

subject to the initial conditions f(x, v, 0), =N(x)V(v), and the boundary condition
A(-00, t)=0. Iordaneskii (1959) sketched a proof of such a theorem; our proof follows
in the main the outline given by Iordaneskii. The arguments are sufficiently
delicate to warrant their detailed exposition, and since our hypotheses are slightly
different, we give a complete proof. The hypotheses on N(x) is that it satisfy

0< N(x) € No’ and that [N(x)—No] be summable on - <x < . The hypotheses on
V(v) is that it be continuously differentiable, that it be positive, monotone decreas-
ing for increasing |vl , and that it be summable and have a second moment on

-0 <v<o . The problem is replaced by the one of finding an A(x, t) having the

properties that if xo(x,v, t), vo(x, v, t) are the characteristics of the system

dt _dx _dv
1 v A
then X ®
A(x, t)= 5 5 N(XO(C,v,t)V(vo(t’,v, t) )dv -N(¢)¢ d¢ .
-0 -0

We shall first assume that N(x) is continuous, which is part of Iordaneskii's

hypothesis, and then pass to the more general situation.

Let A(x, t) have the following properties:
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(a) IAIl <P(t), P(t) continuous [IIAI] S‘}I"An

(b) gé is continuous in x, and | I —-I l <\p(t p(t) continuous

(A)

(c) lim A(x,t)=
X -0

(d) A(x,0)=0
.

For brevity, when A(x, t) satisfies all the properties (A), we shall write
A(x,t) €(A) .

1 Lemma 1  Let A(x,t) € (A). Let f(x,,vo,t), w(x,, v, t) be the unique

solutions of the system

ag _
dt
(C)

dy_
M-Mﬁw

L]

which have, respettively, the values x o' Vo att=0. Then ¢(xo,vo, t), w(xo, Vg, t)

have continuous partial derivatives with respect to X0s Vo3

000y 30 8y _,

s for all t;
0Xg OV, 0V, 08X,

and

t
| Bxg, Vg, D-(xg+v ) € 5 (t-T)P(2)d?
0

t
W(X Vi t) Voléj P(?) AT
0
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Proof: The inequalities are trivial, and the rest of the statements are well-known.

Lemma 2 Let $(x,, Vo t), x[/(xo,vo, t) be the same as in Lemma 1. Then the
mapping
X = ¢(XO, Vo, t)
v = Ylxq, Vo, t)

is one-one and onto the (x, v) plane from the (xo, vo) plalle. The inverse functions

Xy = Xo(X, V, t)

(0]

v, = vo(x, v, t)
satisfy the inequalities
‘ t
| xo(x, v, t)- (x-vt) l]éj > P(7)d?
0

t
| vo(x, v, t)—vlSj P(T)d?
0

and also satisfy the equations

a_v(_)_'_v_a_‘i)_‘_A(X t)a_vg =

ot 0x ' 9v
ix-q*'v% +A(xt)?f'o"=0
ot ox *7 v )

(xo(x, v, 1), vo(x, v, t) are the characteristics of the equations

and shall be referred to as the characteristics. )
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Proof: xo(x, v, t),vo(x, v, t) are the initial values of §, ¥ in (C), such that ¢, y
*
have, respectively, the values x,vat t. If ¢ (x,v,0), w*(x, v,0) are the unique

solutions of

(c*) ~
g.ldj— = _A(¢*, t_o.) s
having, respectively, the values (x,v) at 0 = 0, then xo(x, v,t), vo(x, v,t) are,

respectively, ¢*(x, v, 1), (p* (x,v,t). The proof follows, trivially.

Lemma 3 Let vo(x, v,t) be as in Lemma 1. Then for every pair (v, t),

lim v (x,v,t) =v.
x¥-0 ©

Proof: From (C¥),

t 4
#* (o) ¢ x—vc+§ (T'-t+0) P(TNd T,
t-o -
o
lw*(c)—Vléj lA(g* ("), t-0")] do' .
0

From the second of these inequalities,

t t
|vo(x,v,t)—v|$5 lA(¢70),t—0)ldc=5 IA(¢)'(t-?’),’t')| d7,
0 0

and from the first

t
¢"‘(t-?).< x-v(t-7) +j (t'-2)P(@Ndz" .
4

29




THE UNIVERSITY OF MICHIGAN
2'146-10-T

For fixed t,v,7°, lim ¢*(t—’l’)=—oo, so that, using (A) - (c)
X> -00

lim 1A (¢ (t-7),2)] =o.
X->-00

Al @*¢2),2)| ¢ P@) ;

therefore, by the bounded convergence theorem

lim IVO(X, v,t)-v] € 0.
X2 -0

Lemma 4 Let y;(0), y,(0) be the solution of y'' -p(t-o)y=0 for which

y1(0) = 7,(0) = 1, i (0) = 3,(0) = 0 .

Then

on on

o—— < —

v ~YZ(t) ’ 9% S YI(t)
and

axo

5 £ 1Vl yp(t) + yo(t) P(t)

Proof: Let us examine (C¥). From the first equation

aw* a(ﬂf).

T oy =5\T do

g

v are continuous functions of (x, v),

Since the left member of this equation and

we have

¥ »
W) 5%
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* ¥
_3_ oy _ A x . . 0f
5o Loy < Tagt 7t 5y
Also, wheno =0
o e
ov *ov
Then
@.._(_af_}_ ) - _ _ai*_ 1
0o 0 ov
3 oy* x. [ og* 9A %
=1)= - + -
‘a“(a 1)= %‘&(Qf ta{avﬁr cw(ié,tc).
Thus * g ¥
yYF 45 ] | 293
P 1{ € ) p(t-o') |8v +cr" +o! do: ,
0 .,
*
-g') lgg— +0" do' do" +.A(0) ,
where o"
AN (o) j 5 p(t-¢') o' do' do" .
Letting

o . g" *
H(o)= 5 5 p(t—o')lQQ— +o'lda’ do", we obtain
0 %0 ov

H(0) = H'(0) = 0, and

H"(0) < p(t-0)H(0) - p(t-0)Alo) .
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- da
Now, let A (a0, 0") = yy(0)y;(0")-y1(0)ys(a), Al(o, 0)=0, o (0,0)=1, and
2 .
% = p(t-o)A20 if 1> 0. Therefore, for 6>0', X is an increasing function, and

in particular A 2 0. Therefore

(o)
H(0)< S X(0, 0") plt-0") Alo")do"
0

(0)
=5/\.(0')[yz(o)dy{(o')-yl(o)dyg'(o')}
0

o o
= 7;_/\.(0) +‘f0‘ o' [Yz(")dY{(G')-yl(c)dyz'(o'):]

= A (0)-0+y,0) .

Therefore, ]
+0| 4 - +t| < -
‘ oy T 9|2 yolo)-0, so 3 t| < yo(t)-t

Thus | g—le < y,(t), and in a similar fashion ,

ox l
=20 | .
ox |~ n® .

From Lemma 2,

g—fﬂ < v yy(0) +y,lt) B(Y)

Lemma 5 Let A(x, t)e(A), Ay(x,t)e(A), the p(t) being the same for both, and
U A (x, )-Ayx, I < P »(t), a continuous function.

Let X(l)(x’ v, t),v(l) (2)
(o) o o

responding to A; and A, , as in Lemma 2. Lety; and y, be as in Lemma 4.

(2)

(x,v,1), X, (x,v,t), v "'(x,v,t) be the characteristics cor-
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If
A (t,7) =y, (Dy (t-T) -y, (D, (t-77),

At T)=ya(t)y; (t-T)-y1 (t)y, (t-7),

then t
lx(l)—x(z)l 55 A(t,7) P, ,(2)d?
o o 0 s

|VE,1) —vf)z)l Sjot (2P, (2) 7

Proof: We have from (C*) s

¥ ¥ *
el SUNERI UMY

+ A1, t-0)-A} (8}, t-0)] }

The proof then proceeds in a fashion similar to that of Lemma 4.
®
Lemma 6 Let V(v) be non-negative, V(v)dv=1 , monotonic decreasing
for v >0, and monotonic increasing for v<.0. @ A(x,t)e(A) and vo(x, v,t) is

the corresponding characteristic, then

(0 t
V(vo) (x,v,t) )dv < 142 V(O)S P(?)a?.
"o 0

t
Proof: Let B =j P(Z)d?. From Lemma 2,
0

V-Bévoév+B s
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Therefore,

0" -B o B
S V(v )dv< 5 V(v+B)dv+§ V(v-B)dv+ S V(v )dv
0 0
-0 - B -B

B
=1+ 5 V(Vo)dvs 1+2 V(0)B .
-B

|
|

Lemma 7 Let A(x,t) e(A). Let xo(x, v, t),vo(x, v, t) be the characteristics.

Let V(v) be as in Lemma 6, and in addition be Bsiﬁf}ﬁ;ously differentiable and have

a second moment. Let N(x) be continuous, 0< N(x) < N0 with

(0 0]
S (N -NG) dx < o.

-0
Then

X o o o \\*/
Fw - 5 [S N(x_(8,v,8) V(v,(&,v,t) Jdv-N(2) | dg |
-0 - *-00 ST e |

=]

exists and \‘7{ (A)e(A) .

Proof: From Lemma 6,

(00}

5 N(xo(ﬁ,v,t) ‘)V(Vo/(/&,v, t) )dv 7

-0

exists for all { . If

t
B 5 P(2)d2’,

0
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the integrand is bounded by NOK(WB) for v<4 -8, by NOV(O) for -B<v< Bj and by
N V(v-B) for v >f3; hence
° ™
lim g N(xo(f,y,t) )V(VOiC,v,t) )av
§L -0 -
o)

=§ lim N(xé(C,v,t) )V(vo(f,v,t)dv'

© g_’EQ,

®
=5 N(xé(%&/v,t) )V(vo( $o ;iv,t)dv ,

-00

therefore the integral exists, and for every X, x

x| o
5‘ g N(X;)(f,V,t)V(V(;( g,v,t)dv-N(¢) g
X |-

exists. This last integral can be written as

X A0 X A0
5 S (N(xo)-NO)V(vo)dvafC:’+ NOS S (V(Vo)—V(V) )dv dg

X - X -

X
+S [NO-N(t’)] de.
X

The last integral has a limit as X-»-co, because of the integrability of N(x)-NO.

The second integral can be examined in the following fashion: if
i ashl

P(X, x, ) =§“<v<vo>-v<v> ) dg
X
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then
X 0 0
j 5 [V(vo)—V(v)] dv dg = 5 P(X, x, t)dv,
X - A -0
PX,x,0) =0,
and z(/
oP _ 0V(vy) o WVvg) | L
ot (X, x,t)= —5 {V:’é{)o—+A(§,t) —é;‘l—] ¢ =
X
$=x X
=-vViv) - S *A(if,‘t)a—w-‘[@l‘aﬁ
0 |-— ~7 oy

16:}77(‘} X

This follows from the fact that V has a continuous derivative, and Lemma 2. Thus

X w t w
j g [V(VO)—V(V)] dv = —J g v E’(vo(x, v, 7)) -
X - 0 -00

- V(v (X,v,2) ] dva?

Now since V(v) has a second moment, v V(v) is integrafble. For v >B,
v V(v )& v V(v-B) = (v-BIV(v-B)+B V(v-B), where =5 P(Z')d?2"'. A similar
result is obtained for v< -8, so that the integrand in this last integral is bounded

by an integrable functions, uniformly in X . From Lemma 3, and the bounded

|convergence theorem,
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X
N0 SW{V(VO)—V(V} d
-0 Y- '
t ,00
= - 5 S V{V(VO(X,V,?') )-V(V)} dv d?Z°.
0

0 -0

Now, the integral

X a0
5 5 (N(xo)-No) V(v )dv ¢ ,
X -mo

by the transformation of coordinates

XO=XO(g’V’ t), VO=VOZ§’ v, t) )

becomes

fQnte-n Vv ad,

whereﬂ is the region in the (x,, v,) plane bounded by the two curves

#(x., Vo, U= X, ¢(x \A ,t) = X . By Lemmal, this region lies between the two
0

straight lines t
Xotvot = x +5 (t-7)P(2)d? = x
0

t
x v t = X 50 (t-P)P(2)d? = x,

Thus X1 -Xo

t
S(N(Xo)_NO)V(VO)dJO 5 [N —N(x § Vivoldvg ¢ dx,

Xo7Xp
t
0}
55 [NO—N(xOﬂ dx, ;
-0
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therefore,

X A0
'5 5 [NO—N(XO):] V( Vo)dvodxo
X -

remains bounded as X-r-w , so

X ®
5 S (N(xo)-No) V(v,)dv dt
~o -

exists. This shows thati’(A) exists. It is obvious that f(A) satisfies (A)-(c)

and (A)-(d) .
aaX(A) = fN(xo)V(VO)dV—N(x),

-

which is bounded in absolute value by

t
NO{1+2 V(O)j P(Z")dZ} ,

0

as we have seen. Hence, (A)-(b) is satisfied.

Now, let us examine the integral

‘{:{V(Vo)d ‘Jo ,

in which the region of integration, in the (x o’ vo) plane lies between the curve

¢(x0, Vv, t)=x, and the straight line XtV t=x , with the convention that the integrand
is to be taken positive in those simply connected parts of this region which lie above
the straight line, and negative in those which lie below. Because of the inédﬁéﬁfft\f\

in Lemma 1, the vertical distance between any two points in this region is bounded

by t
2f<t-'r> P(?)d 7,
0
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so the integral obviously exists. By Green's theorem, this integral can be represen-

ted as

vo(x,m, t)
Itx, 0= - 5 vigg 2xolnnd g
o x—§0£x, n, t) n
I(x,0) = 0,
and
@
ol ov X- 0 ,X- 0x
Fral —j_OL-V(Vo)—a?Q —V(—tﬁ)) at("t‘yp)] é—‘;’) dn
100 Yo
9_(_9%9
—5 V(£)dE a7( at)dn
t

Because of Lemmas 3 and 4, the fact that V(v) has a second moment, this
last integral can be integrated by parts; we obtain

100}

3t [rofdn 3220 2l vessorgn 23] o
(0] (00] e
- g n V(vo)dn+f i(’%)(’%) (,;%Xo dn
-Q0 -Q0 —_—
(00
= - S n [V(VO)—V(nZ] dn
-0

From above, we have already seen that this is the same as

X [0 0]
- 5 S (Vivg)-vn ] an

-0 -0
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Therefore we have

100
j§V(vo)dj O=g S [V(vo(x, v, t) )—V(v)] dv .
A -0

X
-00

Now, by rewriting the representation for (A), we obtain

- X=X <\
t R
Y - j S (N(xo>-N0)v<vo)dvodxo+5 [vgv)] dAC\
=00 -0 ~Q0 S

0
+ J‘ g(N(XO)_NO)V(VO)dJo+ N, f g [V(vo)-V(V)] dv .
A -® “-00

By using the preceding equality,

() Fa) = ax, t)+fA  Ngvtvhad,

where X // \
Ao(x,t)=5 { fﬁ“@-\w)v(ﬂdv-m(c)} dg,

- -0
AN

which is easily seen to be the same as the sum of the first two integrals in the

immediately preceding formula. It is clear that, uniformly in x,

(0. 0]
| Jea) < 5 [No-N(0) ags No{1+2 v(o>fp(r)d?} .

o e 0

This shows that J(A) satisfies (A)-(a), and completes the proof of the\lemma.
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Corallary: Let A;e(A), and An-Hz j((An), n=1,2,... . Then A e(A) for all n,
and there exists a p(t), P(t) such that pn(t)S p(t), P (t) ’;I’(t), all n; p(t), P(t)
depend only on A .

Proof: The first statement is immediate. From the proof of the Lemma, it is

clear that Pn 4 Py can be chosen to be

o) t
L 5 [NO'N\(@] db+N 0{1+2 V(O)j P (?)d T}
-00 0
t
Pt No{ 142 v(o)j Pn<?)d?}

0

Thus, P(t), P(t) can be obtained by a Picard type iteration.

Lemma 8 Let Aj(x,t), Ay(x,t), be as in Lemma 5. Then there exists con-
tinuous functions K(t, ?'), K,(t,?) dependent upon P p above, such that
?

t
| #a)-Fiaylls 5[K1(t,?>HA1-A2H +fK2(t, 21 ||A-All d?J a7
0 0

Proof: From the preceding lemma,

J(A)- }(Az) f _{ (N(x0)-No) V(v )dJ

+N f S{D[V V(l)(t’ V, V(V(Z)\(C v, t)] dvdf
“0 Y-

where 4|, is the region between the two curves ¢(1)(xo, Vo t) = X, ¢(2)(x0,vo,t)= X,

with the same convention in sign as before, By Green's theorem, the first integral
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can be written

(1)

"It o o o)
_j [N(xo )-N(J V(S)d'é’—x‘a -

-0 —G)

2)
NixZ)-N 5 V(g)d £ %}dn

"
I () §V°
- _ ﬂl_
5_ (N(xg)-1) %52 ) V(BE +
(0]

(2) (1)

0 5 Xo
+ V(g)ds — [S N(£)-N dS} } dn
S_ on X(z)[ OJ

(00]
1) ° 1)

o Vo %o
)
.. V(g)d] 2 5 (N(£)-N )de -
J‘ {[ 5 (2) o ’
-0 v 00]

(0]
(1) (2)
0 5 Yo
- [S( (N(s)—No)} o S V(E)dg 1 dn .
(2) "
XO -0

Thus

| § St vivy)
A

12

®
d:;'fo‘lv(l)-v(2 |V(O|S (N(£)-N,)dg

+N |x(1 —xf)z)l .

As for the integral

42




THE UNIVERSITY OF MICHIGAN
2764-10-T

from the preceding lemma, this is precisely

j‘ S ) vir'?) ] avaz.

But
o) 10
5 v[voh-ve?)] § O ay
- -0
where 2 2
v j P(Z1)d?'E 6 £y +5 P(2) T .
0 0
But then
09) )
‘j VW(VS))—V(VE)Z)) )dv Slvg) -V vl IV‘(G)I de,
-0 -0

and, in a fashion similar to that in which an upper bound on

™
5 V(vo)dv
-0

was found, this last integral is bounbed by a function of 2 dependent upon P(2)

alone. These results, together with Lemma 5, complete the proof.

Theorem: Let N(x), V(v) be as in Lemma 7. Then there exists a unique A(x, t)e(A)

for which ;T'(A)=A

Proof: The Corollary of Lemma 8, and Lemma 9, show that starting with any
function, A; € (A), the sequence of iterates, A j (A ), converges uniformly on

every bounded t interval. Lemma 9 also gives uniqueness.
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We now pass to the less restrictive hypothesis - namely, that N(x), instead of
being continuous, \p/e,merely measurable; the above techniques of proof fail because
the partial derivatives of the characteristics, with respect to x and v, can no longer
be assumed to exist.

Let N(x) be the lin;iit\therefore of a sequence of continuous functions N, (x),
in which no generality is lost in assuming that the N (x) satlsfy the condition

0 < Np(x) S N(x). Let Am)

J(A(m) ___A(m)
(m)

Each A" (x,t) €(A), and can be obtained by the iteration process. If the same

(m

first interate, say A~ )(x t) = 0 is used for all m, then the corollary to Lemma 7

shows that thePﬁ )(t) and P( m)

(x,t) be the corresponding solution to the equation

(t) are all the same, having the common value P(t)
and p(t), respectively. The only modification is that in the proof of the corollary,
the iteration formula for P must be changed by replacing N(£) by 1nf N (§)

Now, using (:7’ ), in Lemma 7,

A, =2, 0+ £ SN vivgad

m
where 0 L X-X
N t)=f f " xo)-Ng Vivo)dvgdxgt {NO—N(m)(C)} at
_(D —a) -
and A corresponds to the region between the curves x0+vot=x ¢(m)(x 0t)=x,

m),

¢ m) having its obvious meaning. How, by the Lebegue theorem, A (x t) has the

limit
X ™
Ao(x, t)=f 5 N(§-vt)V(v)dv-N(¢) ¢ d¢ ,
-0 ~“om

and the integrals
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JJ N V(v o)ad,
A m

all have the same bound, as in Lemma 7, determined by P(t). Therefore, a

subsequence of the A(m(x, t), say A(mj)(x,t), converges to some functioné(x, t).

Obviously A(x, t) is bounded by P(t), and although not necessarily differentiable

with respect to x, it satisfies the Lipshitz condition

IA(XIJ t) "A(Xz, t)l s p(t)TXl-le
since this condition is satisfied by all the A(mj)(x, t). Hence, the functions
(mj)  (m;)
X , v
0 0 (
which are characteristics for A(x,t). But the curve
. _(m)) (m;)
parameterization x_=x J
oo 0

converge to the region A, corresponding to the curve X = xo(x, n,t), vo=v0(x, t).

arising from the solution of (C*), will converge to functions XV,
m;)

F(x4, vy, t)=x has the
(x,m,1), VY (x,n,1), so that the regions 4

Thus by the Lebesque theorem

A(x,t)=Ao(x, t)+ {‘/N(XO)V(VO)C])% .

But this is equivalent to
X 00

A(x,t)=j 5 N(xo(c,v,t) )V(vo(t,v,t)dv-N(C) dg ,

=00 -0

and Xo’ v0 are the characteristics for A(x,t), we have established the existence
of a solution. If Aj(x,t), Ay(x,t) are two solutions, the estimates of Lemma 5,
remain valid. Since A;(x,t) and Ay(x,t) are absolutely continuous, if we impose
the additional hypotheses that N(x) is almost everywhere continuous, the charac-

1 @ (@ (2
s X, V

1
teristics Xo’ Vé will be almost everywhere differentiable, and proof
of Lemma 8 is easy to modify to give the conclusion of that lemma. Hence,
uniqueness is established. We have then the theorem:
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Theorem: Let N(x) be measurable, 0 < N(x) < No’ and
o
[N -N(9)]dt <oo.

-0

Let V(v) > 0, having a continuous derivative, second moment, and

®
Vividv =1 .

-0

Further, let V(v) be decreasing for |v| increasing. Then there exists an A(x, t)

lim A(x,t) =0,
X0

such that
X (00}

A(x,t)=.5 f Nix (£, v,8) WV(v (€, v, hav-N(¢) pdg,

- -Q0

where xo( ¢,v,t), VO(C,V, t) are the characteristics for A. If N(x) is almost every-

where continuous , A(x,t) is unique.
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APPENDIX B
We shall, in this appendix, sketch the proof that if N(x) = N(-x),
V(v) = V(-v), the solution A(x,t), of Appendix A, and the distribution function
f(x,v,t) = N [xo(x, v, t)]V [vo(x,v, t)] have limiting values as t — oo, and in part,
we can find the functional equations which must be satisfied by these limiting values.
The first observation is that, due to the symmetry of the functions
N(x), V(v), that xo(x, v,t) = —xo(-x, -v,t); vo(x, v,t) = —vo(—x;-v, t) so that

f(x,v,t) = f)-x,-v,t) and A(-x,t) = -A(x,t). From what has gone before, this

shows that
X (00
A(x,t) = / /f(C,V,t)dV—N(C) ¢, (B-1)
0 -
and
0}
88_? (x,t) = -[ vi(x,v,t)dv. (B-2)
-00

From (B-1) it is possible to conclude that A(x, t), is bounded, and

A(x,t) 2 0 for x >o0. The details of the argument are based on the following
heuristic idea. If A(x,t) were unbounded, thinking of f (x,v,t) as the distribution
function of the electrons, an increasing number of electrons would have to enter the

region between o and x, and remain there. On the other hand, electrons entering
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this region are accelerated positively, this acceleration increasing as A(x,t) in-
creases. This decreases the number of electrons which can enter. The only alter-
native is that A(x,t), being unbounded, is oscillating with large amplitude. But
(B-1) shows that A(x,t) is bounded from below, which is a final contradiction. By
similar arguments, it can be shown that A(x,t) > o for x>o0. But then this
implies that xo(x, v,t) — o for x>0, v < o and xo(x, v,t) — - for
x>0 as t—>» . By considering the equations for the characteristics, it is

easy to show that

t x
[V (xvt) -2 / / -gfé,(f,’t‘)dfd’t' )
o ¢ [:xo(x, v, t), vo(x,v,t),"c’_]

where ¢ [x (x,v,t), vo(x, v, t),T] is the x coordinate, at time ‘2, of the particle
0
which arrives at x with velocity v, attime t. But then the remarks above

show thatas t — @,

X

[v (x,v,t)]2 P -2/ AL, 1) de
0 .

-

Then, from (B-2),

(00) X
%—?“——} -va vV \/\72—2f A(C,t)df;l dv s
(0] -
-

A
and since the integrand is an odd function of v, gt— —> o0 ast —> o, which,
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together with the fact that A is bounded, shows that A(x,t) has a limit, A%*(x),

X
and F(x,v,t) has alimit F*(x,v) = NOVUV2 -2 j A*(C)df]. Thus we
o)

have the functional equation

x [ : €
A*(x) = f j NoV[P_Z / A*(f)d% dv - N(§) Y d¢ ,
0 -0 -

which is the content of equation (2-2) and the remarks at the bottom of page 4.
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APPENDIX C

Suppose that the function y(x, s) is the Laplace transform of some function of

(x,t), and that

%} —[s2+ W(X):] y=h(x,s), (C-1)

where h(x,s) =O0(1s] ), 0 £ W(x), and W(x)~9W0 as x> o . The solutions of the

homogeneous equation

2
[+ W) ] y=0, (C-2)

will be a linear combination of the two functions ¥i(x, 8), yo(x,s), which, for both

large |sl and large x have the asymptotic forms
X 1/2

S [s2+w(§)] dt

0

nxs) = 1Y
[sz +W(x)

§* [swwe) " 9

ya(X, s)
[sz +W(x) 4

[Since any two solutions of (C-1) differ by a linear combination of y; and y,, and
lsince any non-zero linear combination of y; and y, must increase exponentially in

s for some value of x, there is only one solution of (C-1) which is

o (1 ) for all x,

Isl

and this must be the solution y(x, s) which we seek, because y(x, s) is, a priori, a

Laplace transform.
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Now if we form the Green's function:

1 Vi(x)yo(x')  x<x'
G(x,x')=— , (C-4)
W(y1, yo)

yi(x)ys(x)  x>x'
and consider

(00}

5 G(x, x"h(x', s)dx' , (C-5)

=00

this is the solution of (C-1) which vanishes as x> T o . But from the general theory

I\..\Z

of such operators, it is known that the

° () -
1

and since h(x', s) =O( Is| ), the solution given by (C-4) is O{l—s_l_) , at least when

h(x, s) is in LA(-0, o). But by approximating h(x, s) by functions in L% -0, o ),

norm of such operators is

we see that the appropriate form for the solution of y(x, s) which is O —l-i— , or
equivalently, which is a Laplace transform, is given by (C-4), so that the poles of

y(x, s) are given as the zeros of W(y;, y,) .
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