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ABSTRACT

The time-dependent perturbation of electron density arising from the mixing
of two collisionless plasmas, characterized initially by unequal densities and equal
electron temperatures, in a field-free region is investigated. It is assumed that
changes jn electron gas pressure, taken to be a scalar, occur adiabatically and that,
for the time interval considered, the ions are immobile. Viscosity and heat con-
duction are neglected.

It is found that the following phenomena occur in the more-dense medium
within a distance of about 1.5 Debye lengths from the interface: (1) The electron
density at the interface immediately assumes a value about midway between the two
unperturbed electron densities; (2) a rarefaction wave of increasing amplitude
propagates into the more-dense medium with a velocity equal to the adiabatic
acoustical velocity; (3) after the passage of this wave, rapidly damped electron
density oscillations at the two plasma frequencies occur; and (4) after the oscil-
lations die out, the electron density varies smoothly from a value of about one-half
the difference in the unperturbed densities at the interface to the unperturbed value
far from the interface. Similar phenomena are expected to occur for the less-dense

medium.
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I
STATEMENT OF THE PROBLEM

The problem under consideration is that of determining the mixing of two
plasmas, originally of different densities. It is assumed that, for t(time) < 0, the
half-space z < 0 (Region 1) is filled with a plasma having electron and ion densities

each equal ton 0 particles per cubic meter, and the half-space z > 0 (Region 2) is

1

filled with a plasma having electron and ion densities each equal to n 0 particles

2

per cubic meter. Here n1 0 and n20 are constants, independent of x, y, z, and t.

For t = 0 the two plasmas are allowed to mix and the problem is to determine how

the perturbations in electron densities, in Region 1 and n, in Region 2, vary

Ny 1

with t and z. The time interval considered is assumed to be short enough that the

ion densities in the two regions remain essentially unchanged. Other assumptions

are these:
(a) The mean free path is assumed to be very large so
that collisions can be neglected.
(b) The initial electron temperatures (TO) are equal in the
two regions.
(c) The perturbations in electron densities, n.. and n_,, the

11 21

z-directed electron streaming velocities, u1 and uz, and

the induced electric field intensities, E, and E_, are small

1 2

enough that second-order, and higher, products of these



terms can be neglected. This is also assumed to be true
of the derivatives of these quantities.

(d) There are no externally impressed electric, magnetic, or
gravitational fields.

(e) The plasmas obey the perfect gas law. The electron gas pressure
is, rather arbitrarily but necessarily, assumed to be a scalar
given by p = nkT.

(f) The various physical quantities vary only with z and t, there

being no variations in the x and y directions.

(g) Pressure changes occur adiabatically, so that, for the electrons,
Bl on
vp =k 0z VKT oz’

where 7 is the ratio of specific heats andX is a unit vector
in the z-direction.
Our working equations for the electrons, then, are these, written in two

dimensions, z and t. MKS units are used.

mn —g-% + YKT % +nekE-=0 (momentum equation) (1)
o 9 (nu)=0 (continuity equation) (2)
ot 0z

9E _ e (n - n) (Poisson equation) (3)
oz 60 o] '

p=nkT (equation of state) (4)



There are five unknowns, p, u, n, T and E, in these four equations, plus the
equation under (g), above. Here:
m =mass of electron
n = number density of electrons
n = number density of ions
p =pressure of electron gas
e=1.602 x 10-19 coulomb
E =electric field intensity (z-directed)
u = z-directed streaming velocity of electrons
€," 8.854 x 10-12, permittivity of free space
k =1.380 x 10723 joule per degree K

T =temperature in degrees, Kelvin,

Now assume that, in Region 1, for t > 0, the electron density can be

written
n,=n, + nll(z, t),
where
1< M9
and Dy is a constant. Similarly for Region 2:

n2 =n20 + n21 (z, t).



Also, in the same way,
Py *Po " Pyp
Py “Pyo ¥ Py
The unchanging ion densities are Dy and o in the two regions.
Making use of the assumptions mentioned above, one obtains the following

forms of the four basic equations for Region 1, with a similar set for Region 2:

ou anll ,

m n, Y + vk T0 o2 + n,,© E1 =0, (1a)
_?_Il.]:l + n .a_.u_]; =0

ot 10 8z (2a)

E == =& 4 (3a)

oz € 11°
o
=n_ kT,,+n kT, (4a)

P11 7Mo% t11 " M1t o

To obtain a single partial differential equation in Dy alone, one may differ-
entiate (la) with respect to z, differentiate (2a) with respect to t, and use this

differentiated form of (2a), and (3a), in (la). There results:

2 2
an11 ) vao an11 +w2 L
at2 m azz pl 11

0, (5)




where 2

W, = (6)

is the electron plasma angular frequency squared in Region 1.
In order to solve (5) for nll(z, t) one may take the Laplace transform,

obtaining

2
on YkKT 0
2 1 o N1 2
- +0) - —= -— =
lel(z,s) snll(z, 0) " — azz +wp1N11(z,s) 0.
t:

(7)

Here N_ _(z,s) is the Laplace transform of n, l(z, t). We are assuming that both

11
oy
n,. (z, +0) and —— are zero so (7) reduces to
11 ot
t=+0
2
oN
2 711 2 2 )
c az2 - (s +wp1) N11 =0, (8)

where

c= \I 'YkTQ/m (9)

is the adiabatic acoustic velocity in the electron gas.

The solution of (8) is

_Z( 2 2 ¥4 sz+ 2
c,‘s +wp1 ,I wpl

N, (2,8) =F,(s) e +—F2(s)e° , (10)

where Fl(s) and F2(s) are undetermined functions of s, only. By a completely

similar process the following equation is obtained for Region 2:



z |2, 2 zl 2 2
_EJS p2 c\S T

Nzl(z’ s) = F3(s) e + F4(S) e (11)

In order to take the inverse Laplace transforms of (10) and (11) for
obtaining n, 1(z, t) and nzl(z, t), one must find the undetermined functions Fl(s), ces

F 4( s). This is done by applying boundary conditions.



II
BOUNDARY CONDITIONS

Boundary conditions on nll(z,t) and n21(z,t) must be satisfied at z =0 and

at z =+ . These last conditions are:

lim n21(z, t) =0, (12)

Z—3%00

lim nll(z, t) = 0. (13)
Z—>- @

The boundary conditions at the interface (z = 0) are obtained by using the
conservation equations for mass, momentum, and energy, together with the
following assumptions:

(a) Viscous effects disappear because of the uniform unidirectional

drift motion of the particles.

(b) Second, and higher, order terms are neglected.
(c) Heat conduction is negligible, because of the very low density
of the gas.

The resultant boundary conditions at z =0, then, can be shown to be these:

T, = T2 (14)
u =u2 (15)
n, = n2 (16)



From (16) one obtains (for z =0)

n +(n1 -n_), (17)

21 ™M1 0~ 20

which shows that our results will be valid only for values of (n1 0y 0) of the same

order of magnitude as n and Do



I
CALCULATION OF ELECTRON DENSITY PERTURBATIONS

We are now in a position to apply the boundary conditions listed above and
thus to determine Fl(s), s F4(s) of (10) and (11). It is necessary to use also
the conservation of momentum equation, and (12) and (13), in the process. When

this is done the following relations are obtained:

Fl(s)=0 (18)
2 2
(n..-n, ) s™Hw
20 10 2
Fo(s) = : : (19)
%90 \]2 2 ,\lz 2
s|— stw ., Tl tw
n10 pl p2

1

) =, (20)

F3(s) = Fz(s) + (n10 ") 3

F4(s) =0, (21)

We may now determine n, 1(z, t) and nzl(z, t) by using the results of the last

paragraph and then taking the inverse Laplace transforms of (10) and (11). We

obtain i

lim Nll(z, s) eSt ds, (22)

n, (z,t) =
1 B—>rw

2ri

Y- iB
and a similar equation for n21(z,t).



- s tw
Moo p2
n. . (z,t) = ——— lim ds.
11 27i n
B> 20 [ 2 2
S|—™ |Is +w 1+ s tw 9
v - iB nlO

(23)
An examination of the integrand of this integral shows that there is a simple

pole at the origin, branch points at+iw

bl and +1i wpz , and only these. Branch

cuts can be chosen as shown in Figure 1. It turns out that the Riemann surface of

the integrand has four sheets. On the branch cuts betweeniw ., andiw ., and

pl p2
between - iwpl and -i wpz, the first and second sheets are connected and the third
and fourth sheets are connected. Between iw _ and - iw _ the first and third sheets

p2 p2

are connected and the second and fourth sheets are connected.

One may, as is customary, alter the path of integration of (23), as is
indicated in Figure 1, in order to facilitate the integration process. In choosing
the alternate path we must make sure that, in traversing this path, we remain on
the same Riemann surface as is used for Path 1 from v -iBto v+ i B, and either
that no poles are enclosed between the two paths, or that the values of the residues
at the poles are properly taken into account.

In order to make a proper choice of alternate path, let us rewrite (23) as

follows;

10



- ——\\IT) v+iB
F 4
. Do) N
/ 1 | 13 AN

X Branch Points

O Simple Pole
________ Branch Cut

Paths of Integration

FIGURE 1: S-PLANE FOR INTEGRAND OF EQUATION (23)
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Z wzl
S(t+ o 1+ -;'g— )

n -n S +w2 e ds
2
20 10 . P (24)
nll(z, t) ——3‘;1—-— lim e - ,
0
o s —11_2— Jsz-i-wzl +Jsz+ wzz
Y- iB 10 p P

remembering that z < 0. If we assume that (t +~2— ) <0, which means that
t < |z|/c (25)
for the real part of s very large, we see that

lim
Re s —=0

nll(z, t) =0. (26)

Consequently, since no singular points of the integrand are located on Paths 1 or
3, or within the region bounded by these two paths, we see that
lim ( / - /) =lim / =0, (27)
B—ro  Fin1  Pams P > ®  Pathl
Therefore,
nll(z,t) =0 fort < )zi/c. (28)
For the case when (t + -2—) >0, or
t >|z|/c, (29)
we have devised Path 2 of Figure 1, since in this case the integrand becomes
infinite on Path 3, as Re s—sm. Path 2 has been so chosen that one remains on

one sheet by crossing no branch cuts. Also, no poles or other singularities are

12



enclosed between Path 1 and Path 2. Therefore, the value of the integral as
determined along Path 2 is equal to the value determined by following Path 1.

In order to carry out the integration it was found necessary to make some
simplifying approximatic~s in the integrand, which limit the validity of the results

to values of z less than about 1.5 Debye lengths. Then for

|z] < 1.5 Debye lengths, t >|zl/ec

the following approximate result was obtained:

W (cosh—z-w )
W
p2 c_pl pl z .
n,,(z,t) = (0,0 Dw) g t e Sl(wpzt)
T Y1 ¥
10 P
1 “p2
- — sinw _t+ —cosw _t
2 2 27 w .t 2
27 w Lt 1

16 n2j|wpl wp2 1

— +
+ > 7 (cos wp'lt cos wpzt)
p2( 90 nlo)(w +w )
+ —2 —1—(sinw t-sinw t)
3 pl p2
W o~ W t
p2 pl

(Eqn. continued on
next page)

13



4dn. w A B C
- 10 pl z (—1+‘—1+ —l)cosw t
5 3 t pl
7rw2 (n..-n. Nw ,+w ) t t
p2 20 "10""pl  p2
A B C D E
+(=2+ 24 2 ) cos w 2t+(—41'1'-+ "-2—)sinw lt
t ¢ t p t t P
+(-]?&+£2-)sinw t (30)
4 2 p2 :
t t
Here Al’ P E_ are functions of w , and w

2 pl p2°
It is obvious that the first four terms in the expression for nll(z, t), given

by (30) go to zero as (nzo—n1 0)——>O, as they must. The remaining terms in this

expression also go to zero as (nzo-n1 O)——y 0, since they arise from evaluating

integrals between the limits of Wpo and wpl, and these limits are equal for n20= nlO"
The expression for nll(z,t) given by (30) was obtained by assuming that

Ny > By In order to complete the analysis it is necessary to either compute the

perturbation n

(z,t) in Region 2 for N> Ny OF to recalculate n

21 20 11 formjgny.

The latter procedure was followed and the following result obtained (for n]0< n, 0):

14



z
W o COSh (o wpl) 91
T

) +
n
n20 W l+w 2

_ _ Z .
nll(z,t) = (n20 i, o Si (wplt)

-

1

Z 1 Z
- = = sin(w ,t)+ = = cos (w .t)
9 tZ C pl 2nt pl
pl
16 n20 l wpl wp2 1
+ > 3 (cos wplt + cos wpzt)
- + t
™ wp2 (n20 1ulO)(wpl wp2)
+ —2 (sinw ,t -sinw .t
t3(w -w.,) wpl p2
p2 pl
4n Al B, d
W
- 20 pl Z (-—1+—l+'—)cosw t
c t3 2
2 (n,.-n, Nw ,+w ) t
T 92 Y20 T M0 p1 T “p2
1 ! 1 1] !
+ ( A52 +B:2,’ + c )coswlt+(£}+ —E'z—l-)sinwzt
t t t P £t P
D| El
+("—2‘+’—2)sinw t . (31)
4 2 pl
t t
1 1 1 1
Here Al’ Bl’ ceen E2 are functions of wpl and wpz.

15



It is now in order to investigate the physical significance of the two different
expressions for n, 1(z,t): equation (30) for g > Byg and equation (31) for o< Do
This is done only for the case of 0o > Do

It will be remembered that nll(z, t) =0for |z|/c > t. This means, of

course, that the electron density perturbation n_. has a front which is propagating

11
in the direction of decreasing z with a velocity c, the adiabatic acoustic velocity
in the electron gas. This is characteristic of weak discontinuities, as discussed

in Section 93 of [1 ] We are, of course, dealing with a weak discontinuity since
the linearization of the original partial differential equation, (1), is valid only for

n, / n o= (nlo—nzo)/ n, =0.1. Another restriction on the solutions is that z

must not exceed about 1.5 Debye lengths.

The following are the values of A TR E 9 which appear in (30):
_ 2
A =- 24a /“’pl
2
“p2
B, =2a (5 -—92— Y+4b
wpl
C1 =0
D. = 24a + 6b
1 W
pl

16



) 2
A, = 243/“’;)1

2

“52 “b2
B = -[10a 2 +6p 2= +2¢
2 2 9

wpl p
C,= 0

1 “b2
D = — (242 ¢ +6b)
W W

2 b1
W W W
E. = -2w a(—Rz—)3+b(-ﬂ)2+c(—ﬁ)
2 pl W W W
pl pl pl
Here
a=-90.1
b =169.5
c=-79.3

a+b+c=0 (exactly),

these being numerics arising in a curve-fitting procedure used as an approximation
in evaluating the integral of (23).

If we now consider the following numerical values:

12
n, = 10" " particles per cubic meter,

n20 =0.9x 1012particles per cubic meter,

To =1000 degrees, Kelvin,

17



we find that
h = 2.18x10°° meter, (Debye length)

c = 1.590 x 105 meters per second, (adiabatic acoustic velocity of
the electron gas)

f1 = 8.98 megacycles per second, (plasma frequency of Region 1)
f2 = 8,52 megacycles per second, (plasma frequency of Region 2)
wpl = b5.64x 10’7 radians per second =27 fl,
wpz = 5,35x 107 radians per second =27 fz,

wpz/wp1 = 0.9486,

2
(“’pz /“’pl) = 0.900.

If these values are used in (30), there results, after collecting terms:

n,,(zt) 7
——— =-0.512 cosh 355z - 113 2 Si(5.35 x 10" t)
10 20
+ [5. 03x10 32 45501072 L o9 62x107% -Z—J sin(5. 35 x 107t)
2 3 4
t t t
+ [- 0.949 x 10782 40,802 x 0 %L 1 o03x10 P2
t 2 3
t t
+9.74%x10°% —tzg] cos(5. 35 x 107t)+ [8. 65 x 107" —;— - 5.52 x 102 —13-
t t
-2.91 x 10720 -Z;J sin(5. 64 x 107t)+ [o. 802 x 10 14 —12 +8.60 x 1071 —g—
t t t
—0.74 %10 -z ] cos(5. 64 x 10" t), (32)

t

18



If one now attempts to use this expression to determine numerically the
values of n 1 on the wavefront progressing in the direction of decreasing z, it is
found that, because of the very small values of t involved, it is very difficult to
obtain accurate results. Consequently the integral of (23) was re-evaluated under
the assumption that t was small enough to allow us to replace sin rt by rt, and
cos rt by unity. The resulting required integration is straightforward (after making
other simplifying assuﬁptions as before) and the final result is (for o > Doy and

very small t):

n, (z,t) (cosh-z- ) W LW 8]
Tt e % e b Ppp2 z, ;L p2
r ) n20 - C 6 w2
(- N ’
b A +
Mo Moo - Ldpl wpz pl
10
[—-——— 2
+ _.LQ n20 wpl wpz wpl (1 __.(J_JR?_‘)?‘
3r (n n_) 2
10 200 (w 1+wp2) Yoo pl
2
) {g_ "10 bl “pl oz t}
T 2 c
- +
(g =ngg) (o Fug) W,
w6 Us Ld4
212 _p2 p2y . c b2
. - 21 - = -
i“’l[—s'“ 6 )t G- -y )}
pl wpl wpl
w4 w3 w2
2 la,,_ w2, b p2, c. _p2 122
wp2[_4(1 4 )+3(1 3 )i-z(l-2 )J . (33)
pl L”’pl wpl



If we now use (33) to calculate n ), as a function of z for

11/%10 ™20
t =|z|/c, we get information concerning the amplitude of the wavefront of the elec-

tron density perturbation as it moves in the direction of decreasing z. The results

are as follows:

TABLE I
z (mm) ny /(g ngy)
0.0 -0.510
-0.1 -0. 510
-0.2 -0. 560
-0.3 -0. 643
-0.4 -0.759
-0.5 -0. 908
-0.6 -1.001
0.7 -1.306
-0.8 -1.555
-0.9 -1.837
-1.0 -2.153

Another result of physical interest is the variation of Dy / (nlo—nzo) as a
function of z for values of t large enough that the oscillatory terms of the electron
density perturbation have essentially damped out, but t small enough that the ions
have not yet started to move.

This result is easily calculated by using only the first two terms of

{32) and one obtains the following values:

20



TABLE II

z (mm) nll/(nlo-nzo)
0.0 -0.512
-0.1 -0. 494
-0.2 -0. 477
-0.3 -0. 461
-0.4 -0. 445
-0.5 -0.431
-0.6 -0.418
-0.7 -0. 404
-0.8 -0.391
-0.9 -0, 379
-1.0 -0. 368
-1.2 -0, 347
-1.4 -0. 328
-1.6 -0,313
-1.8 -0. 301
-2.0 -0.293

It also is of interest to obtain an indication of the rapidity with which the elec-
tron density oscillations, as shown by (32), damp out, The t-1 term will damp
out the most slowly, Our results are valid only out to |z| = 2 millimeters and
it takes the perturbation about 10"8 second to reach this distance. Consequently,
at the end of 1()—7 second this 'c-1 term will damp out to about 10 percent of
its original value, Since the frequency of oscillation is about 8,52 megacycles,
only a cycle, or so, of this oscillation would occur. The Si(5.35x 107t) term
is also a damped oscillating term, and a plot of it shows that several cycles of
this exist.

It is considered unnecessary to make a detailed analysis of the behavior of

n,, since the equation for it is very similar to that for n

91 so very similar

11’
phenomena will occur.
21
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CONCLUSIONS

From (32), and Tables I and II, one can conclude that as t increases

from t =0 the following phenomena occur:

1.

Immediately the electron density at z = 0 assumes a value
approximately midway between n 10 and Do

A rarefaction wave of electron density moves in the direction of
decreasing z, with a velocity ¢ and with an increasing amplitudé.
At each point of the medium, after the passage of the rarefaction
wave, the electron density oscillates at two different frequencies,
one corresponding to wpl and the other to wp2. These are damped
oscillations consisting of only a few cycles.

After the oscillations die out the electron density varies smoothly

from a value of about 0.5 (n1 -nzo) at z=0 toavalueof n,_  for

0 10

large negative values of z,

22
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APPENDIX A
DETERMINATION OF BOUNDARY CONDITIONS AT INTERFACE
The boundary conditions at the interface, z = 0, are determined by first using

the applicable form of the momentum equation,

ou ou

i i 1 b — q
-1 - _ = + — E -
Py kE ;uk (nVin) ¥ (A-1)

e N

where Vi and V. are components of the peculiar, or thermal, velocity of a par-

k

ticle, and q is its charge, plus the continuity equation,

9
282 ) o) (A-2)
0t T 3xk ?

where p = mn, the mass density of the fluid. To obtain useful results from (A-1)

and (A-2), one uses these equations in connection with the equation

ou
) i Ap
—— = —— + -
5t (Pui) P =5 U 5T (A-3)

By substituting (A-1) and (A-2) for the right-hand terms of (A-3) we find that

0 u

) p ) —
— (pu) = -p _— - — — (nV.V )
9t i ;“k CE E;axk i'k

9(pu,)
qp k \
+ — - E : . -
Ei ui (A-4

m 8xk

In our case of uniform unidirectional drift motion of the particles, viscous

24



effects disappear, with the result that

AT 6ik Vin, (A-5)

where sik is the Kronecker delta. Then

1 1
T ik axi i m Bxi m ik 3xk ’ (A-6)

By using this result in (A-4) we obtain

8u d(pw )
0 Yk op
5t (pui) = E:[ , ——— - d —} +ani. (A-7)

u'k Xk 1 F)xk ik 3x.k

Equation (A-7) can be made more compact and its physical significance made

more evident by using this result:

5 du, a(puk)
— (puw) = pu — + u
Bxk iuk u'k Bxk i Bxk
Then (A-7) becomes
b
a_t_(pui)=_z Xk(puuk 8§, p) + anE . (A-8)

To get (A-8) into its final useful form, one expresses the electric volume

force in terms of the Maxwell stress tensor, by pages 95-97 of [2:,:

) T'k
qnE, = 2 = (A-9)
i X ax

25



In our case, the Maxwell stress tensor is
T, = € EE--1-6 E? (A-10) -
ik ol|ik 2 ik ’
since we are dealing with a plasma in otherwise empty space, with a constant
electric permittivity Eo

By using (A-9) and (A-10) in (A-8) we obtain

3
— (pui) = z F?Tk [— sik P-pu u + € EiEk- 5ik Pz—]. (A-11)
k

By pages 12-15 of [1 ]. we can write

T

2 (pu) = ik
at Py "'; RN

where Trik is the momentum flux density tensor, given in our case by

m =8

1
+ - + = E? -
K WP T PUY -€ E E sik 3 E? . (A-12)

ik o'ik

. .th
Now g ki 18 the flux of the i  component of momentum through a
unit surface area having the unit vector n along its outward normal. The flux
of each component of momentum must be continuous at an interface between a

Region 1 and a Region 2, so

Z;(Tl'i n = Z( i)z M i=1,2,3. (A-13)

26



At the interface z = 0, we have k =3 in (A-13) with the following three resulting

scalar equations for i =1, 2, 3, respectively .

-e¢ E_. E. = - E_ E A-
p1 ulxulz %o 1x 1z 92 u2xu2z €o 2x 2z (A-14)
- E E = - E_ E A-15
plulyulz o ly 1z p2u2yu2Z o 2y 2z (A-15)
p, + p,u? - ¢ E2 +—1E2=p+pu2 _e E? ++ EZ, (A-16)
1 1 1z o 1z 2 1 2 22z o 2z 2 2

Because our regions are unbounded and homogeneous in the x and y direc-

- -t
tions, the x and y components of u and E are zero in both Region 1 and

* Region 2, Also, we know that E1Z = E2z' Therefore, only (A-16) gives a use-
ful result:
+ 2 = + 2
PPz T Pa TRy,
or

2

+ + + 2 = + + +
by ¥pyy) * (og e duy, = (pyg+py 4oyt o) Jud

Dropping terms of second, and higher, order gives

= + = = + -
Py 7 PigTPyp T Py T Pyy TPy (A-17)

A second boundary condition at z = 0 is given by the fact that the normal flux

of electrons must be continuous at the surface z = 0. That is,

uyng = un, . (A-18)

217



We obtain a third boundary condition here by recognizing that the normal com-
ponent of energy flux must be continuous at this plane interface between the two

regions. By sections 51 and 53 of [BJ we have for the conservation of

energy, in our case,

) 1 1

1
= ( = pu? + + = E2+ = 4y H?) =
at( zpu pe 2 eo 2“0 )

—V-[pﬁ(%u2+w)—?1~(5"—7(fVT+§XI_{T_| = -9.q. (A-19°

Here :

€ = internal energy per unit mass,

w = enthalpy per unit mass = € +p/p,
—

o' = viscosity stress tensor,
X = thermal conductivity.

As mentioned previously, viscous effects do not enter in our case, so the
term u-o' in (A-19) is dropped. Also, we are assuming very long mean free
paths so collisions can be neglected, allowing us to drop the heat conduction term

XVT. Because we are dealing with longitudinal oscillations, there is no mag-

netic field and the Poynting vector term disappears.

By Section 85 of [1] we have for the enthalpy per unit mass of a perfect gas:

—_ = €+£ , (A-20)
1 o
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whence

1 p
€ T —— =, A..21)
-1 p (

Now if these expressions are used in (A-19), together with the results of the last

paragraph above, we obtain

p P
1 Y 1 1 4 Y 2
-— P o— —— = —— 4+ N -
m nlul( 5 U3 y-1 mn mn2u2( 5 Y | mnz) (A-22)
By using the facts that
Pl = p2
and
un = un,
given by (A-17) and (A-18), respectively, (A-22) above becomes
p p
1 5 0% 1 1 o % 1
£3 + = = + . -
2 1 v-1 mn, 2 2 v-1 mn, (4-23)

By dropping the second-order terms, é uz1 and % u22, in (A-23), we obtain

n, =n,. (for z=0) (A-24)

By using (A-24) in (A-17) and (A-18), we get

T

1 T2, (z=0) (A-25)
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(z=0). (A-26)

From (A-24) we have

21 = M1 T(ng~0ygy, (2=0) (a-27)

This equation tells us that our results will be valid only for values of (n1 0 -nzo)
of the same order of magnitude as n1 1 and n21 .
Taking the Laplace transform of (A-27) gives
n..-n
10 20
= + — -
Ny, (0, s) N, (0, s) . . (A-28)

A second relation involving Nll(o’ s) and N2 1(0, s) can be obtained by
taking the Laplace transform of (la), obtaining

aNl 1(z, s)

mn,, [sUl(z,s)-ul(z,O):] + ykTO 52

+n10e El(z, s) =0, (A-29)

where Ul(z, s) and El(z,s) are the transforms of ul(z, t) and El(z,t),

respectively. One of our initial conditions is that
ul(z,O) = uz(z,O) =0,

Consequently (A-29) can be rewritten

vk T ON l(z, s)
U (z,8) = -— & (z,8) - 10 L s (A-30)
1 ms 1 mnlos oz
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with a similar equation for U2 (z,8). Because of (A-25) and (A-26), we get

from (A-30):

8N21(0,s) _ iZ_Q 8N11(0,s)
0z n10 0z

(A-31)

where we have made use of the fact that

E = E
1(o,t) 2(o,t).
We can now use (12), (13), (A-28), and (A-31) to determine Fl(S)’

F4(s) in (10) and (11). From (13),

lim Nll( z,s) = 0. (A-32)
7z —) - ©

Now Fl(S) and Fz(s) are not functions of z, so (A-32), in conjunction
with (10), shows that it is necessary that Fl( s) = 0, Similarly, it canbe
shown that F 4:(s) = 0, Lastly, we can determine FZ(S) and F3(s) by

using (A-28) and (A-31). This is routine algebra and the results are:

(n. -n, ) \s?+ W

F,(s) = 20 10 p2 (A-33)
n
S—z—q Sz+w21 +JSZ+U22
™10 P p
n -1n
10 " "20
= + — -
F3(s) FZ(S) " (A-34)
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APPENDIX B

EVALUATION OF CONTOUR INTEGRAL

In order to evaluate the integral in (23) we use Path 2 of Figure 1 and rewrite

the integral thus
(2. 1) = 120 =~ 110 .
nyq,(z, t) = o i
11 5 (1 Th)

/ We (¢21 o c P11P12° erei¢td(rei¢

where (B-1)
C =a P11
8- W5 TPt
R
® 1wp2 “P91® !
PN Ut
S 1wp1 =Py q°
ifyo
+ip =
S 1wp2 Pog® s

Path 2

s =re’,
and -r/2 < ¢mn<(3/2)7r .
It is to be noted that ¥ >0, but v can be a small quantity. Figure B-1
illustrates the geometry,
The value of the contour integral evaluated on Path 2 is, of course, equal to
the sum of the integrals evaluated along the various separate paths which make up
Path 2, as shown in Figure 1. We now evaluate our integral along the various

separate paths.
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FIGURE B-1: POLAR REPRESENTATION OF s + iwp

o
o



First, we note that our integrand is analytic along the negative axis of reals,
so the integrals along paths B-O and O-C are equal in magnitude and opposite in
sign. Also, then, the integrals from 1 to 2, and from A' to D' can be evaluated
along continuous paths between these points.

Next, let us consider circular arc A-A'. On this path r = r, and r —>,

P @ p—>-7/2, andﬂﬁ-l? -r/2as B— . Then

i z Yo+
-2(¢21+¢22) Clpllplz e2 11712 troe1¢

-1 /2 Pg1Pgst e e idp
lim I = lim - - ’
A-A' i L
83— B 20 e*z(¢11+¢12 ) . e§(¢21+¢22)
p—>-n/2 n o VP11 Pa1P22
09
(B-2)
-1/2
' i / ty+itB
lim L y™ lim e ag=0 .
B—rw (/o1 B>
20007 T
o g=¢
0
Similarly,
im L, =0 (B-3)
B—>m®
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On the circular arc, A' - D', we use the form of the integral given by
(24), remembering that (t +-§- ) > 0. In the second and third quadrants (Re s) <0,

and as B —», (Re s)—» - ®, so

lim 1, =0 . (B-4)
B>

We next consider the integrals over the paths 1-2 and 9-10. Here r= r,a

constant during the integration, and

P11 =mpl
Py =W
lim 4 21 "p2
lr‘o_’0 oY) =wp2
P12 "¥p1
.
On the path 1-2:
(5 -8,
11 2
3
b= 5
lim 21 i
r —,0 = -
0 4 Poa= 5 7
1
= =T
¢12 2
L
‘For the path 9-10,
~ p =__]._ T
11 2
1
lim é ¢21 2 "
1
ro—rO ¢22- 5 7
1
Pro=3 ™
-
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Then

-2y tr e1¢
3 . pl "o
5T € lpr o af
11_2 = lim / ’ o
—
I‘o 0 ¢=I te n20 ]
0 2 ho Pl “p2
Z
. B cwpl 3
iw _e 3
P2 9T ™€ rpte
I1 2 - lim o d¢ ’
n. Pl P2 e_—_0 )
10
: (B-6)
" ZWw
c
Tiw.e °
I = p2
1-2 n
20
— w ., tw
no Pl p2
For the path 9-10,
Z, r tei¢
cpl o
T _ € ib) e d¢
2 p2
I = lim
9-10
r—>0 T nz
0 = -_—
=-yte — W, 1w
(B-7)
z
. prl .
iw e T ‘
- 2 ¢ rot e1¢
Io1o” N lim . 9,
0 r 0
- “p1 Tw 2 o7 ¢=—12T+e
10 P € —0
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c bl
17 wpz e
o107 ’ (B-8)
20
P TR
o P
- z
27i wpz cosh o wpl
Ll a*lg 0™ 7, . ; (B-9)
n10 p
fort >|z|/c.
3
N - & - -
For the circular path 3-4 we let p22—>0 and = 5 Ttie < ¢22__ 5T =6 and
then let € = 0. On this path as Poy—> 0.
=w ., tw .. = 3.
P11 7%1 " Y2 117 2
_ _3
Po1 =29y Py =™
P12 791 ™ Y2 12 27
. ifas
=- +
5= 5t pyye
. ifgy
ds=ip,, e d¢22
Then
lim I, 4~ lim
— —
Pgg 70 Pog 70
€ —>0 ¢
2

i. 3 2 ,
3 ATt j paPoo® M B2

/2 e ip, €
N 3 :
1¢ n 1_ 2 +p ) ‘

. 22 9 2 22

+ -+ v
¢ (-1 %P o9e )[ J “o1” p2 J 9P99° J (B-10}
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lim I, =0 . (B-11)

0 3-4
Poa
Similarly,
lim . I7_8=O s (B-12)
Po2
lim . 111_12=0 , (B-13)
Pol
lim I =0 . (B-14)
15-16
—
Por 7 0
=R/t E < _’:Q’_ .
On the path 5-5', we let P 0 and 5 +e < ¢12é 5T Here, as p1-2—>0.‘
_3
P11 =29y Pu=y
W ot w g = 3
Pa1 "%p2 " Y1 21 2
- g 3.
P2 "%1 Yy 922 2
i,
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Then we obtain

lim 15 , = lim
p,—>0 p,=—0
12 12
e—>0
i 3
L2 r+p..)
Z L(d ey,
3. 2 32 —c'\lzwplp12 © (-1 P98
2 \[¥p1 ¥p2 ©
’ 3+
o 4o e1¢12) "20 > A5y
L pl "12 Mo pl712
lim ) I5_5, =0
P12
Similarly
lim I =0 ,
5'-6
—
Prz 0
lim I =0 .
13-14
—>
P 0

(B-15)

(B-16)

(B-17)

(B-18)

We now consider the following four integrals as a group, since they combine

well. 0 _Z 2 - 2
2 2 e Y1 TT int
()] -r e e
p2
I, .= :
16-1 . 190 sz 2 +Jw2 2
r=w - -
p2 N, pl p2
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Yoo
s®
r=0
0
Ig o=
r =wp2
wpz
Lo-11
r=0

Zombining these four integrals gives

o

r"—<

+1

9-3 g9 " 011 |

smh = w2 - r2)(sin rt) dr

pl

2 [

2
pl

- r2 +Jw2 - r2:|
p2
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(B-23)

(B-24)



We can simplify this integral by considering the first term in the denominator:

T | 2 2]“20]2 0 2
-_— -r = r

n “ot n “o27 n .
10V P 10 ¥ P% o
Following (17), we noted that our results will be valid only for (n1 0 —n20) of

the same order of magnitude as nl1 and n21, and we have restricted our work to the

case of

<< Ny and n21<< n20 .

Therefore we must restrict n as follows:

20/ 10

Boo/P = 09

n20/n10 =0, 95,

and we can say that

A

T 2.0 2|22
20'°10 {“p2 " n “p2 T
Then we can write
W I
/ p2 (sinh% wil - r2 )(sin rt) dr

I,'.:t

I £ 2i

9 (B-25)

r
r0

This integral still is untractable so we must lock for further simplifications.

Now XS X5
sinhx=rx+—3T +—5'!—+..,. . (B-26)
We can use only the first term with fair accuracy if
X3
*=03T
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or if
x < 0,774 . (B-27)

Sinh'z- w2
c\ pl

represent sinh % wpl by only the first term in the corresponding series we must

- r2 has its maximum value, sinh %wpl , when r =0, Therefore, to

satisfy the relation

2o . = 0.774.
¢ pl

By using the numerical values for w . and ¢, which are given just before equation

pl

(32), we find that our approximation for sinh Z v will be valid for
c bl

z <3 millimeters, (B-28)

which is of the order of a Debye length. We then assume that

sinh 2 |o? -r® = E |2 -2 (B-29)
cy pl cy pl
Our last simplifying assumption is this,
_ 2
2 2 ~ Z 1 r
zZ _ ~Z - = -
p prl r - wpl(l 5 3 ) . (B-30)
W
pl

In our integral of (B-25) the upper limit on r is wp2 =0.948 wpln For this value of

r we have:
2,2, 2 , 2.,
J 1-(r /wpl) —J 1 (wpz/wpl) =0, 316,
2
1 r _
(1- 5 5 ) =0.550.
wpl



Our approximation (B-30) is thus seen to be only fair at this limit, however, it
is much better for smaller values of r.

By using the above-discussed approximation in (B-25) we get
Wt Wt

[ Z9iZy sin(rt) gy 32 —L (rt)sin(rtd(rt),
2 ¢ bl (rt) c tz
=0 pl =0

(B-31)

W
~g: Z ; oz 1 , . Z _p2
12 =2i . wpl Si(w 2t) i 5 s1n(wp2t)+ 1ot cos(wpzt), (t#0) .
t pl
pl
(B-32)
w .t
2
Here p
. _ sin X _
S 1(wp2t) = x dx . (B-33)
0

In order to obtain some idea of the validity of (B-32), we have numerically

evaluated 12/ 2i, as given by (B-25), for the following values of the various para-

meters: z =1.0 millimeter,
c=2x 105 meters per second
7
wpl =5x 10 radians per second,
7
wpz =4,74 x 10 radians per second,
and for wpzt taking the values 0.5, 1.0, 1.5, ..., 20.0 radians. Then 12/21 was

calculated by using (B-32). The results of the two different calculations are shown
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in Figure B-2. The numerical integration of 12 was carried out by using Simpson's
rule, with the number of subdivisions increased at wpzt =5, 10, and 15. This

accounts for the jumps on the curve of ¥ at these points.

Our last integral to evaluate is

L= L st 7 Lo 13t Ly (B-34)
where
U1 l 2 2 " wil - t
p ijlr-w_ e ¢ 1 dr
p2
= B—35
L - , (B-35)
_ 20 | 2 2
r—wpz r;—‘ wl—r +1 r-—w2
10
2 2

- N (B-BG)
6-7 n
r [ 20 J w2 r2 +1i ] r W }
r=w - 1 -
pl n10 p 2
w2 - rz
2-w22 o pl elrt dr
12 13 _ s (B-37)
= w2 - r2 +i 22
w 1 r wpz



0.5
Yo
o 7 0/ /ﬁ\ﬁ
\ N
/ \\\/ \ L
,l \;f -7 \\ - “~
*\\ v,
a 0.3
>
e
&
<
o f
0.2
0.1
0 5 10 15 20
wpzt (radians)

w .t

P2 (sinh 2 w21_ r?)(sin rt) d(rt)
FIGURE B-2: PLOTS OF y, = P

(rt)
rt0
z Z pr Z
AND o< o wpl Sl(wpzt)- 5 '(-;sm(wpzt)-i- %t o cos(wpzt),
2w .t pl
pl
FOR -3

z=10 7, ¢=2x10", w =5x107, W =4.74x107.
pl 2
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Ly 1s” 7 : (B-38)

After considerable algebraic manipulation, we find that

Wt
plL [ 2 2.2 2 z[ 2 2
4 - j(r (;)pz)(wp1 r )(coshc bl r )cos rt) dr

370 o
nlo 20 T=y 5 l110 10 20 2_ 2
p nlo r wp2

wpl (r2 w22)(sinh 2 l wzl - r2 )(sin rt) dr
41 g b c\vp
(B-39)
n10 20 o Mo™0\ 2 2
2 r -w
P Mo p2

In order to handle these integrals we make use of the fact that our range of

integration is very small, since wp2 =0.948 wpl.
First, we consider the denominator of the two integrals. 1/r is nearly

constant throughout the range of integration, so we replace it by its value at the

midpoint of the integration range:

> - — . (B-40)
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Next we consider the other factor in the denominator, at the end points of the range

of integration

MotP0 2 2 Py 9
r=@ .: (———)r-w_=—7—uw

p2 o) P2 n, P2

) "oT %0 2 2 Mo 2
r=w ., ( )r-w2-rw2
P "o b Royy P

Sincen_. =0.9 oG the above factor is very close to w2 throughout the range'of

20 p2

integration, and will be taken equal to wrz)z.

The first of the integrals in (B-39) can then be written:

W

pl
4in
~ 0 2 1
I;’= _i 0 to 2 / J(rz-wzz)(wzl—r?')(coshE wzl-rz) (cos rt)dr .
n1020p1p2w2_ pap c\p
Pe T 0, (B-41

In order to handle this integral one must resort to further simplifications.
The cosh term will be equal to unity at the upper limit of integration and equal to

(cosh % lwf;l - wf)z ) at the lower limit. At this lower limit, the cosh term will be

equal to 1.1 if

2 -w2 = 0.445 . (B-42)

’z‘w
c p2

pl
By using the previously listed numerical values of c, wpl, and wpz, one finds that

the relation of (B-42) will be satisfied if z = 5. 56 millimeters. Therefore, one is

| justified in replacing cosh % J wf)l - r2 by unity, if z <5.56 millimeters.
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)((.)2 - r2 ) in the integrand of

Last, we consider the factor \l (rz- wz bl

p2
(B-41). To handle this radical we do the following:

Vrz- 2 =lr-w rr+w §J2w r-w
“p2 p2 p2 p2 p2 ’

2 -r2=r -r |w, +r 5]2&) | -r
“p1 “p1 pl o1 | %1 7T
SO
2 2 2 2 ~
J(r —wpz)(wpl- r) = J bl p2 J(r-w )(w r). (B-43)

Now the function \[ (r-wpz)(wpl—r) is zero at each limit of integration, has a maxi-
mum atr = (wpl+wp2)/ 2, and is symmetrical about this maximum. We replace the

radical by a parabola which passes through these three points. The parabolic func-

tion is 2
W ,tw W =W
_ 2 pl p2 pl "p2
y=- r- + . (B-44)
W W 2 2
pl "p2

To check the validity of this substitution, a normalized numerical check was carried

out to compare y = J(r-l)(l. 0548 - r)

with )
Yo = -36.5 (r-1.0274) + 0. 0274
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as r varies from 1,00 to 1.0274. The results are shown below:

r N ¥y
1.000  0.0000  0.0000
1.005  0.0158  0.0091
1.010  0.0212  0.0163
1.015  0.0244  0.0218
1,020  0.0264  0.0254
1,025  0.0273  0.0272
1.0274 0.0274  0.0274

These values of N and Yy check quite well. One feels fairly well justified, then, in

replacing the radical by (B-44). We finally arrive at

8i n wllhopz 9 f’pl'“’gz
r _
137 2 0 o %&blpZ (r g T )
“p2'"0 20" p1p

p2

e cosrtdr . (B-45)

The integration is straightforward now, and we obtain

32in :
3 pl p2

2 2 pl p2 ]
2( 10 nzo)(w +w ) t (wpl-wpz)

(B-46)
It is to be noted that Ié =0ifw _=

p2  “pl°
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By using the simplifications discussed between (B-39) and (B-41), we can

write the second integral of (B-39) thus:

Yol
4i n, 9 1 2 9 z | 2 2

I.é; — =2 > (r -wpz)(sinh P L )(sin rt) dr.
"107"20 “p1 p2 Vo o= 0,

(B-47)
By using the same reasoning as was used in obtaining (B-29), we find that,

in the integrand of (B-47), we can use this approximation,

.5‘2 2 |2_2
s1nhc wpl r wpl r,

if z is not greater than one centimeter.
With this simplification the integral still is intractable because of the factor

‘I wf)l - r2 = wpl I 1- (r/wpl)2 . The series approximation of (B-30) is not satis-

factory here, because, throughout the range of integration in this case, r/ wpl is

close to unity. Because of this, the radical was approximated by the following

' 1- (r/(,)pl)2 = a(r/copl)2 + b(r/wpl)-l- c, (B-48)

where the constants of the polynomial were determined by matching the two functions

111

0 IN

polynomial:

near the end points and center point of the range of (r/wpl). Following are the

values of a, b, and c for our particular range of values of r/ wplz
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a=-90.13
b =169, 46
c=-79.32

The goodness of the fit of the parabola for these values of a, b and c is shown by the

r/mpl ll - (r/(,opl)2 a(r/wp1)2+b(r/wp1)+c

following table:

0.95 0. 3122 0. 3150
0.96 0. 2800 0. 2881
0.97 0.2431 0. 2431
0.98 0.1990 0.1801
0.99 0.1411 0. 0991
1.00 0. 0000 0. 0000

With these simplifications, the integral of (B-47) becomes:

" ot 81i nlprl l
3 2 c
TR ALY

W
pl
‘ (1‘2-w2 ) |a(r/w )2+b(r/ )+ ¢ | (sin rt) dr
p2 pl “p1 )
r=w
b2 (B-49)
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This integration is straightforward, giving

" 8inmpu, zl)a |1 4 4

I, = s | T cosw t-w cosw .t)-

Sl e e ) W LE P2 P2
p2 "107"20 pl p2 pl

—(w3 sinw _t
pl t2 p2 p2

12 2 24
- i - — - + —_ : - .
wpl sin w 1t) tS (wpzcos wpzt wpl cos wplt) t 4 (wpzslnwpzt wplsm wplt)

, 24

(cosw .t- cosw .t) +12 -1-(w3 COS W t-w3 cosw . t)
t5 p2 pl W, t p2 p2

pl pl

- = (w .sinw t-w2 sinw t)-i(w cosw _t-w ,cosw
2 Lpa® iRm0, 810, 372 p2 “

6
+ i -si
b1 plt) —<4 smwpzt s1nwp1t)]

t
w2
p2 \|1,2 2 2 .
+e- -
(c-a 5 )L (wpzcoswp2t-wplcoswplt) 2(w sinw
pl

: b2 p2t— wplsm wplt)

2
W
-l(cosw t-cos w ,t) -b—Rg- l(w cosw t-w
t3 p2 pl w2 tp

5 » plcoswplt)—
pl
-1 (sinw _t-sinw _t)| -c w2 l(cos W . t-cosw ,t)
2 p2 pl p2 | t p2 pl (B-50)
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