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are:

The symbols which will be used throughout Sections II, III, IV, and V

1,

2.
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NOMENCLATURE

Terms describing the source.

(Ro, 0,0) = Coordinates of the source

SO = Surface surrounding the source

(ro, 60, x//o) = Coordinates of a point on So

€ = Radius of a spherical surface concentric with

(R ,0,0); €= ‘Bo- zol

\' = Volume of gas introduced by the source

W = Energy introduced by the source
Atmospheric quantities.

P, = Atmospheric pressure

Py = Atmospheric density

To = Atmospheric temperature

o 1/2
c, = Speed of sound in air = (YR T )

Ratio of specific heats

2
"

= Gas constant

N T

Height of the tropopause

1<
i

Wind velocity

iv
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NOMENCLATURE
continued

3. Quantities detected by the observer.

P = Excess pressure

P = Excess density

u = Particle velocity

w = Frequency of a wave

t = Time

(r,0,y) = Coordinates of the observer
4, a = Radius of the earth
5. g = Acceleration due to gravity
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ABSTRACT

The pressure pulse at large distances from a nuclear explosion is
investigated. A source representation is established which produces parameters
characteristic of these explosions on a surface enclosing the source. An integral
equation for the pressure is obtained in terms of a ring source Green's function,
where the integration extends over the source. Pulse forms are obtained for
explosions on the ground and in the atmosphere when various temperature models
are considered. When the stratosphere is assumed to be either of the isothermal
or thermospheric type, a general theory is established for determining the number
of modes of propagation. In addition, a method for examining the dispersive effect
of local winds is established.

This work is being continued under Contract AF 19(628)-304.

vi
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I
INTRODUCTION

We start with a qualitative description of the effect of a nuclear explosion
in generating a pressure pulse in the atmosphere. The overall description is
necessarily qualitative since there is no quantitative formalism which can describe
the initial stages of the blast. This problem of describing the source - the initial
stages - is so difficult because the tremendous release of energy sets up shock
waves and turbulences for which we have no adequate mathematical description.

After propagating some distance from the blast point the pressure pulse
will become so attenuated that the pressure of the pulse will be sufficiently small as
compared with atmospheric pressure. At this distance from the center a linearized
theory furnishes an adequate description and it is possible to handle the mathe-
matical problems. The distance from the center at which this linear description is
useful will depend upon the size and altitude of the blast. However, no precise
criterion as to the amount of over pressure consistent with the linear theory can be
given,

The work which has been done on this contractto determine the nature of
the pressure pulse differs in many respects from that done by Scorer [195@ , Hunt,
Palmer and Penney [196@ , Yamamoto [1957] , and other earlier authors. Since the
most significant contributions made here either have been or are expectedto be published,
we shall, in the four sections which follow, present a general treatment to empha-

size the most important features. The points which are new and which bear special

1
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emphasis, are several. Perhaps the major contribution toward an interpretation of
nuclear explosions is that a means has been devised whereby a pressure pulse may
be determined for a source located in the atmosphere as well as on the ground.
Previous authors have considered only the latter case. In addition, it has been
established that as the height of burst is increased the lower frequency effects be-
come more pronounced. Other significant contributions are as follows: (1) In
Section IV an upper atmosphere with an increas ing temperature profile is con-
sidered. To our knowledge, previous authors have considered only the isothermal
stratosphere, which does not correspond to physical reality; (2) given a particular
temperature profile, a qualitative method is established for determining the number
of modes of propagation which might be expected; (3) given the wind and temperature
profile in a local region, the dispersive effects of the wind may be calculated; and
finally (4) a rather detailed interpretation of source phenomena is presented in
Section IV.

The four sections which follow are essentially condensations of works
already published. In instances where the reader wishes greater detail he may
refer to the appropriate articles. Briefly, the format is as follows:

Section II: A review of the work of Weston, [1960 and 1961] in which a
pressure pulse produced by a large explosion in the atmosphere is investigated.

The source is characterized by a surface S o surrounding the explosion, in which the

pressure and velocity are known quantities. With these as '"source' boundary
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conditions an integral equation for the pressure is established where the integration
extends over So' The gravity wave portion of the pressure pulse is then considered
for three different models of the atmosphere as the height of source and distance to
the observer are varied.

Section III: A review of the the work of Weston [1962a] in which the spec-
trum of the gravity and acoustic waves is discussed for two general models of the
atmosphere. The emphasis is placed upon frequencies for which a mathematical
singularity does not arise. A method is established for analyzing the discrete
modes as concerns the minimum and maximum speeds of propagation and for deter-
mining the number of modes which will arise.

Section IV: A review of the work of Weston [19621)] which is essentially
a continuation of the ideas and methods presented by Weston {1960 and 1961] . A
general treatment of the source is presented, in that for a large explosion in the
atmosphere the characterization presented by Weston [1960 and 1961] may not be
sufficiently accurate. It is assumed that in the stratosphere the temperature ine
creases linearly with altitude which has a reasonably close correspondence with the
actual atmosphere. The pressure pulse produced by a large explosion is then
calculated for an observer at a given distance with a particular tropospheric tem-
perature profile. It is shown that as the height of burst is increas ed, the gravity

wave portion of the pulse becomes increasingly dominant. For an explosion at
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ground level, the first three modes are evaluated, while for a burst at 76 Km only
the gravity wave mode is computed.

Section V: A review of the work of Weston and van Hulsteyn [_1962] , whichj
considers the effects of winds upon the gravity wave. It is shown that for a pulse
traveling downwind in a uniform horizontal wind field, the effect is to increase the
dispersion and the phase velocity in the gravity wave mode.

Finally, in Section VI a description of the new work (Contract AF 19(628)-
304) in progress is given. This current effort is devoted to (1) an attempt to better
characterize the source in terms of the behavior of the ""linear' region and (2) the
analysis of the linear equations for a simple model of the atmosphere in order to

| determine the functional behavior on the physical parameters.
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I
THE PRESSURE PULSE PRODUCED BY A LARGE EXPLOSION
IN THE ATMOSPHERE, PART I

The basic problem is to determine the form of the pressure pulse that an
observer will detect when he is located at some large distance from a nuclear explo-
sion. The method that will be employed here will be to set up the equations of motion
in spherical coordinates and assume that winds, earth's rotation, and horizontal
variations in the earth's atmosphere may be neglected. The requirement that the
observer be at a great distance from the source is such that terms of the form p /p0
and p/ Py be much less than unity. On this basis, the equations of hydrodynamics may
be linearized, and, after taking the harmonic time dependence and eliminating p and
u, a separable equation for the pressure is obtained (see Appendix A). The features
which affect the nature of the detected pulse are the atmospheric structure and the
characteristics of the explosion. The first of these may be satisfied by ascribing
a certain temperature profile which, as will be shown in Section III,determines the
number of modes an observer will detect and which also limits the speed of propa-
gation. The source phenomenon may be described by locating it at a point (Ro, 0,0)
and by specifying the pressure and velocity on some surface surrounding the source.
The only initial restriction upon this surface, which will be denoted by So’ is that it

be large enough so that on So’ p/ P, is much less than unity.
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From appendix A the differential equation for the pressure is given by

- ar) -1
@1 6 e S )
r

p) =0- (1)
The efiect of vertical variations in the atmosphere is introduced through the operator
L and through g(r). Equation (1) is obviously separable, and, by assuming axial

symmetry about the source, is independent of the azimuthal angle y. Writing

o) pe, 0 = () X0 @

one obtains, from equation (1)

2 9
- [% g-f—]+ [q(r)+i-u2l Br) = 0 (3)

and

X
1 9 . (21
0 + -= (0) =0 (4)
sin 0 90 [Sm 96 ] Lu 4] X

where #2 'fli is the separation constant.

Using the standard boundary conditions that the kinetic energy in an
infinite column is finite and that the vertical velocity is zero at the earth's surface,
we have that p;l/ 2(1") p(r, 6) must be squared integrable over 0 £ r <, and, that

at r =a,

¢+ Af =0. (5)
It can be shown from this [Weston, 1960 and 1961_] that the excess pressure may
be represented as an integral over the set of continuous modes plus a sum over the

set of discrete modes, but that the dominant contribution to the pressure pulse
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th

arises from the discrote zet. Accordingly, for the j*~ mode, the eigenvalue in (3)

, while the eigenfunctions are ¢j(r) and Xj( 6) respect-

s [

and (4) is denoted by ,‘; -
ively, This featurs encbies us to construct a ring source Greens function whict

satisfies the inhomogeneous counterpart of equation (1), namely

S(x-r )§(6-6 )
; G(r) 0 0
(\—-.,L)G_‘_._i\____ G = gg)
v 2 27 2 sin 6 '
such that G(r, T ) is squared intecrable and, that at r = a,
&) 3 - 1= O . 7}
From (1) and {6}, togeiher witii tie boundary conditions, it is found thai
-1/2 ¢ . -if2 41/2 \
p / p(r, 6) = / B 4G Lolp p)—p/ pLoG} ds ()
o ‘. { o o
Sy ‘

where n is a unii vecter nor:acl {6 the surface So and where L, is the Siffaren g
operator L which operates on the saurce coordinates. If p(r,t) andn - ui» ti ire

known on the surface So’ the forinal mathematical problem reduces to one of deter-
mining the expansion for G(r, _1:0) . The eigenfunctions Q)j(r) satisfying equation {3)
and the boundary conditions can be shown to be orthogonal over the range a < r< o,

so that
-<r>¢( )7((6 6,)

/¢(rr
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Upon substituting this form of G(r, ;0) into equation (6) it is found that

' 1
Xj(@, 90) =— ————-{ P_1/2 + uj(cos 90) P-1/2+Hj(_ cos 9)} (10)

4cosT "‘j

for Goﬁ— 6 <r. The representation for G(r, _;'0) of equation (9) may then be re-

expressed as
f(r, r)

0 2 2cos T [Jj
J

which when substituted into equation (8) yields a solution of the form

'1/ 2 olr) = Z (12)
2cos T u

In order to determine the time dependence of p(r, t), the inverse Fourier transform

of (12) must be performed with the result that

@ I
or, 1) = == oY% gt )1 (13)
2r o — 2cOS T W
J

-0

Equation (13) is the formal solution to the problem, which is dependent upon the
nature of the source and the vertical structure of the atmosphere. Before specify-
ing these, however, a quantity?xj may be introduced which is defined by

NERRIE 1/
H i 4

I

wa hj, (14)
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- -1
the approximation failing only for w < 10 4 sec . It may be shown Weston, [1961],
that the portion of the pulse that arrives directly without circling the earth, is given

by (09)

p1/2(r)

.9
p(r,t) o

[ e [tray ], (15)
“® ]
wher'e)\j has the physical significance of being the inverse phase velocity of the
jth mode.

In order to determine the quantity Ij of equation (12), [Weston 1961J
assumed that the surface SO is a small sphere of radius € centered at (Ro’ 0,0) and
that the disturbance is spherically symmetric about this point. The pressure and
normal component of the velocity on S0 may be obtained from observational data
with the stipulation that p/ po<<1 on So' Since an exact description of the source is
unnecessary so long fis these quantities are known on So’ we may consider them as
having been produced by an equivalent "acoustic" source. In this manner the function
which generates the quantities observed on So may be obtained. In addition, choosing

an explosion of less than 1 megaton, the source is effectively an instantaneous

volume source, from which it developes [Weston 1960] that

. 1/2
Ij iw fj(_r_, R, Vo, (RO)

where V is the total volume of gas introduced by this equivalent source.
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From equations (9) - (11), together with the normalization condition for

¢j [Weston 1961], fj for an observer on the ground is given by

w?l. PR )P _y +,.(- cos )
£(ao, ¥ = ie hTH (16)

g

I‘:

mu?

Except for w < 10—4 sec-l, the following approximation may be made

X -1/2
P_1/2+ b (-cos 6) = [5 TW 2;1)\j sin 9} cos {wa)\j(w-e) - 14} (17)

where 0 < 0 < 7. Introducing the relative intensity function

_w2 ¢,(Ro)
Q. = ! (18)

5

A’:

mu?/

r=

the expression for Ij becomes

v Pm) ]
. - -9)-= 19
I = J'w—)\j Qj cos [w a)\j(n 6) 4] (19)

j '
—ﬂza sin 6

10
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This quantity is dependent upon the size of the source through the intensity function
. 1
Qj defined in equation (18) and upon the height of burst through the term po/ 2(Ro).

Substitution of equation (19) into (15) yields after some manipulation

pO(RO) p (a)
p(ad,t) = 2 ]wk Q (w)
27 asin 6

{cos [w(t—- a G)xj) + %] + cos [w (t-a(27r -G)Aj)+:—iz] }dw . (20)

The second cosine term in the integrand represents the portion that reaches the

observer via the antipodal route while the first represents the portion that travels
directly along a great circle. The dependence of the pressure upon distance enters
through the quantities (af) appearing in the integrand and through the [a sin 9-]-1{2érm
in the amplitude.

The integration in equation (20) is, of course, dependent upon the
dispersion relaﬁonkj =7\j(w) for a particular model of the atmosphere. The three
models considered, including Scorer's model, are taken to be isothermal above a
height , Y , and have certain temperature profiles below this height. Therefore, the
eigenfunction, ¢, of equation (3) is an exponential above r - a = f [Weston, 1961]

and must be determined as a function of r in the range azr<at{. The usual

11
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condition that the pressure and vertical velocity must be continuous at r =a + £
produces the desired matching conditions at this interface. The dispersion relation-
ship, (i.e., the value of 7\3 which corresponds to a given w) is then obtained by
requiring that §' + Ap =0 at r =a.

The three atmospheric models considered are described in Appendix B,
together with the dispersion relationships which were obtained for the lowest or
gravity wave mode. Higher modes, which were not calculated, would result in a
superposition of wave trains upon the gravity wave mode, as can be seen from equa-
tion (20). Since the directly received portion of the gravity wave mode is of greatest

interest, it may be written, from equation (20) as

po(Ro) po(a) \ /jD T
p(af, t) = 27 3 oin b . Vo Q(w) cos [w(t-aGA) + Z] dw (21)
0

The second term in the integrand has been omitted, since it corresponds to the

portion that followed the antipodal route. In equation (21) the subscript j has been
dropped since it is understood that only the gravity wave mode is being considered.
From equation (18) together with the dispersion data of Appendix B, the integral of
equation (21) may be determined. For sufficiently large values of a9, the tail of the
pulse may be obtained by the method of stationary phase. The head of the pulse
however, is a much more complicated problem but may be computed by asymptotic
techniques {Weston, 1960 and 1961]. The pulse forms which are obtained by these

methods for the various atmospheric models are shown in the figures of Appendix B.

12
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III

GRAVITY AND ACOUSTIC WAVE MODES

Before discussing more complicated temperature structures than are pre-
sented in Appendix B, it would be worthwhile to develop some means whereby one
could determine the number of modes he might expect to observe. In this section
we shall indicate a method which will enable one to determine whether or not high
frequency modes might arise. The analysis, however, is limited to atmospheric
models which are isothermal above a height £ or else have temperature varia-
tions of the form T0 oC z1+€ above z = £, where € is a small, positive quantity.
The latter model is of some interest since it has a closer correspondence with re-
ality than does the isothermal model.  The only restriction placed upon the at-
mospheric structure below z = £ is that the temperature does not vary radically
with altitude. The majority of observed temperature profiles satisfy this require-
ment.

The approach is similar to that used in the preceding section, except that a
flat earth approximation is used in obtaining the pressure equation. For purposes
of spectrum analysis this simplification presents no inaccuracies since the interest
is purely in the atmospheric structure. When the hydrodynamic equations are

linearized and a time dependence of the form exp (iwt ) is taken, the resulting

13
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equation for the pressure is
-1 w2 A2 A -1
VeLlp,M2p) + | 2= - 2o v (B) | (p, M2 p) =0, (22)
- o 2 h h 0
0

in analogy with equation (1) of the last section. The functions h and A are defined

in the same manner and

L= | 2 1 9
= ox ° 9y ° h oz

is the Cartesian counterpart of the L mentioned in equation (1).

Equation (22) has a separable solution of the form

p W2 (2 p(r) = pla)e VXX (23)

where, as before, A is the inverse phase velocity. The equation for ¢(z), then, is
2
— + - - & =
= [h dz] [cz A A +(h) =0 (24)
)

with the boundary conditions that () be squared integrable over the range (o, )

and that §'+Ap = 0 at z =0,
The function h presents some difficulties in that for certain values of w
at a given height it may have a zero. This may be seen by writing it in the form
T !
n-i- £l £+ ] s

T
W co (0}

Because of this mathematical singularity, it is useful to introduce frequenciesj

wB and wb such that h does not vanish anywhere for w > wB or for w'< wb .

14
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For an atmosphere which is isothermal above a height z = ./, equation (24)

may be simplified by substituting

x = /Z |h|1/2 dz

if w> w (26)
Uy B
g = |n| * y(z)
or

z 1

X =w/ |h|/2 dz
° if w < W (27)
1 1

¢:w/2 lhl/4 y(z)

Equation (24) then reduces to

4 4 y[/\-g(x)] = 0 (28)
dx
where
2 2
T T > wg
h,Q C‘Q
J\ = ) (29)
) 2. L
5 -5 i w <y
w by )

15




THE UNIVERSITY OF MICHIGAN
2886-2-F

The function g(x) itself is rather complicated in the troposphere [Weston 1962a]

but above z = ,Q s

g(x) = 0.
As in the preceding section, there is a continuous spectrum for 0 < N< o, but
this does not contribute significantly to the pulse and will thus be neglected. Since

the discrete spectrum arises from /\ in (o0, 0) [Weston 1962a] we have that

2
2 5 1 AX 0 >0
i/ Cjz wzhj B
2
A
7t2,é- L ! W £ W
i 2 2 b
¢ w h!

If the minimum value of <, is cb, it may be shown [Weston 1962a] for

2 2,-1
w > w_. that there is no discrete mode corresponding to A in the range A < (cb) .

B

Similarly, for w < wb s Az > (0123)_1, where CB is the maximum value of co. We

then have the upper and lower bounds on hz except for w in the range Ly < W<y

16
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At this point the Sturmian comparison theorem may be introduced to deduce

the number of discrete modes that exist. The approach is to let u(z)

be de-
fined by

Z
Ado]

f(z) = u(z) exp [—[

(30)
0

so that from equation (24), u(z) satisfies

IS 7‘
-2 A
d_(i [exp[ - 0 dﬂ uJ . w2 <_1_2__ h2>exp[—2/ Adg} u=0,

Co (0]

(31)
If
Z
-1
k- |h] ™" exp [-2[ Ado]
Z
k, = H-1 exp[—Z/ Ado]
2 0

where H is the maximum value of |h| , and

z
2
G1 = W (Kz_—l—z—) exp[-2[ Ado] sgn (h)
0

C
0

z
2 2
exp[-z/o Ado] (1 Ch —l)cb2
3
c

. w> W
2 21 2% Y02 .
0 CB CB W wb
then k; > k) >0 and G > G, in (0,4).

1

17
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Equation (31) for u(z) may be rewritten as

d du
= [kl d—z—} -Gju =0 (32)
which satisfies the initial conditions

ulo) = e u (0) = 0

while corresponding to k2 and G2 there is a function v(z) defined by

d dv
&z [kz & ] - Gyv =20 (33)

satisfying the initial conditions

v(0) = a, v'(0) = 0

The Sturmian éomparison theorem states that u(z) can have at most as
many zeros as v(z) in the interval (0,{ ). The number of a mode is determined
by the number of zeros it has in (0, J! ), so that the gravity wave, or zeroth, mode,
has no zeros, and so forth. The function v(z) which satisfies (33) and the bound-

ary condition v'(0) =0, is

inh|K
v =e8/2 {cosh\[ﬁ_ £ —'SI—J_———E } (34)
2 K
where Z
E=(2-7) g / &z
0 %o
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K——l—— i} H wz(xzcbz—l)cbz ) >wB
4 2-m%° | 2, 2 2 2
Y)'g -
w(l)\cB)cB W <wb

Since cb and CB are known for a given model of the atmosphere, the number of

zeros and hence the number of modes may be determined for w >w

B andw<wb.

From equation (34) and the Sturmian Theorem, the following may be deduced:

If '51 is the value of €& at z = 1 , then if

1) g’f <2 andK >0, u(z) has no zeros.

2) Sl < 2 and K< 0, u(z) has at most n zeros if R E,f <n7T

(3) El > 2 and K > 0, u(z) has at most one zero.

(4) Sj >2 and K <0, u(z) has at most n zeros if Ff SI < (n+l) 7.

As an example, Scorer's model has the property that the upper isothermal
atmosphere is coldest, so that cb = Cf( and hj = H. In addition, SI < 2
and k > 0 so that only the gravity wave mode may exist for w > Wg-
The analysis in the thermosphere case where TOaC Z1+€ is a more com-

plicated situation, but it may be shown by a procedure analogous to the isothermal

situation that a discrete set of modes exists for w > wB which is bounded by

2 1
2 L]

(@)
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Thus, these discrete modes have a phase velocity greater than or equal to the
speed of sound. There exists, however, a wide frequency range 0w g Ly which
must be investigated. It can be shown that if the multiplicity of the zero of h is
of order one, the effect of the vanishing of h at z = Z, is to create a turning
point; in effect, @ will be oscillitory on one side of Zo and non oscillatory on
the other. The main effect of the vanishing of h is to create an additional set of
discrete spectra )\i unbounded above. These then may propagate at speeds less
than the minimum speed of sound. These features will be discussed in the follow-
ing section, which is similar to the first section except that the thermosphere

model replaces the isothermal upper layer model.

20
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v

THE PRESSURE PULSE PRODUCED BY A LARGE EXPLOSION
IN THE ATMOSPHERE, PART II

In the first section a specific point source representation was considered
such that the time dependence of the source function made I]- proportional to V. In

the more general case, if n- g(ro, t) is the normal component of velocity on Sos

and N(ro, w) is its Fourier transform, then it can be shown [Weston 1962 b] that

1
. 2
Ij = 1wfj (r, Ro) Po (RO) B (35)
where
. 2
B = lim 4r7e N(ro,w) (36)

€-0

As before € represents the radius of the spherical surface S, described in Section]I,
which is allowed to shrink to zero. According to Brode [1956 and 1957] a good

approximation for the positive phase of the excess pressure in So prior to shrinking

is given by Mg Mg Mg=p
p=—p; [l- ] exp [— J (37)
M L L

1l
Po
W

where “sis the normalized shock radius (u =€ ( ) , M is the normalized

S
distance from the source, W is the initial energy of the explosion, L is the normal-

ized length of the positive phase, and Py is the excess pressure on So' If an acous-

tic representation is to be determined, the problem is to find a function f(t) such
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that
(g -
) (t- E—)
p - ———————————
n
| n
f'(t- —) f(t- =)
and n u-= + 5
P,CT Py It

is given by
1 b
W .3
f(t) = (—) " ugp; te T, t>0
Po
" 1
where L w.3
T = — (—)
¢, Po

of SO is shrunk to zero, the radial velocity is given by
€
f(t - g)

by @
(00)

u

4 i
e gt at

so that B =lim
€30 po(R,) -0

Performing this integration,

THE UNIVERSITY OF MICHIGAN

and is thus related to the temporal duration of the positive phase.

(38)

(39)

where r, is the radial distance from the source, and equation (38) gives the

pressure profile required by equation (37). It is found that such a source function

(40)

(41)

As the radius

(42)

(43)
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wrlup oy L 1—(wT)2+2in}

B - (—) ° e (44)
poRy) P [1+@n?)
It is to be noted from the definition of T that it varies with the size of burst
1
q 1 1 .
through (W 3 and with the height of burst through — . For sufficientl
gh (W) g gh = p—o)gg' y
small values of (wT), B is given approximately by
2 1
T ugpr W 3 :
B = (—) (45)

PolR,) Po

From the definition of B in (36) however, it may be seen that for an instantaneous

volume source, B = V which gives a relationship between V and W, As a particular

example, if L = .35 and Mg p1 =,196 Py
drw
V = ———— (.024) (46)
’Ypo

From equation (41), values of T for certain heights of burst and certain
values of W are calculated and given in Appendix C. Since our concern is with
frequencies on the order of 500002 = 10,(wT) is much less than unity for most
explosions on the ground. For a one megaton explosion at 76 Km, however, T = 160

seconds so that the approximation of equation (45) is not valid.
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The expression for p(ad,t) given in equation (20) of the first section was
based on the assumption that B = V. For large values of (wT) however, one would

have to write

B -|B| ¥ (47)
where
-1 2T

B=tan —— (48)

1 - (wT)2

47 T upy [ W %,)— 1
and |B| = — (49)

Po(R,) P 1+(wT)

The real part of the expression in the integrand of equation (20) is then given for

the directly received portion by
|B] cos [ult-a0 2 )+ & -8] (50)

In the discussion of the thermosphere model that follows it will be assumed that
B(w) = V is a sufficient approximation for the energy range and heights of burst
under consideration, Hence, f = 0 in equation (50).

For the particular thermosphere model chosen, /( = 106 Km is the height

of the tropospause, and the temperature, T is given by

T, =228 + 18(z - 106), z >106 (51)
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With this temperature structure it is found that above 106 Km, the function ¢(z)

which satisfies equation (3) is given by

-L
7 2 ] 72
B(z) = p, 2 {(’Yg2_w20§+g00 0)E-2gc2 u) F} e (52)

where y =20l TJT,'

and the dot represents differentiation with respect to y.

The function F is the particular hypergeometric function

l—‘(l‘b) r'(b"l) 1-
Fly) = ——— 1F (@b y)+ y  (Fila-b+1, 2-b;y)
Ma-b+1) [M(a)
(53)
with g
b=1-
RT,

['YRT; + (v -1)g]

g

b
and a=— -
2

9 3

2 TRTO'

From the linearized equations of hydrodynamics, it may be shown (Appendix A)
that the vertical velocity is given by

1
iwa b= pg 2 (Pr+ AQ) (54)

25




THE UNIVERSITY OF MICHIGAN
2886-2-F

The boundary condition that §§ and u, be continuous at the tropopause (z ={)

requires that in the troposphere §(r) be such that at z =4 ,

pr+ Ap j[g(v—xch, )+ c2 wk]F-ch WA F}

(55)

w2 hf {[7g2-03 w2+ L gc(z)]F—2g WA 0(2) F}

Using the condition that §' + A@ =0 at the ground, equation (3) may be evaluated
numerically in the lower atmosphere to determine the eigenvalues and eigen-
functions. The particular temperature profile considered is given in Table C-IIL.
The values of A corresponding to various frequencies are given for modes "0",
"1 and ""2'" in Tables C-III, C-IV and C-V respectively. As was discussed in the
second section the problem of deciding which X belonged to which mode was deter-
mined by the number of zeros of {§ in the interval (0, 106).

The final step is to integrate equation (20) after determining the behavior
of the relative intensity function Qj' For a burst at ground level, these are given
by equation (18) of the first section, while for a burst at height z o they are given

by
Z

~ Po(z) % ’ g
Qj (w, 2o) = } Qj(w) exp — do (56)
P,(0) 0

Omitting the details of calculation, Qj(w) was determined for the first three modes

with a burst at ground level, and for the gravity wave mode with a burst at 76 km.
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Integration of equation (20) with these results yielded expressions for p(aé, t).
These are shown in Figures C-I and C-II with af = 5500Km. The profile presented
in Figure C-I indicates that the gravity wave arrives first with a definite
compression but that the first and second modes are superimposed shortly there-
after. It would appear from these results that the high frequencies obtained by
Yamomoto in his microbarograph recordings could be attributed to this compli-
cated mixing of the modes.

These results incidentally, were obtained prior to the recent Russian
test series. The microbarograph recordings obtained by Carpenter, Harwood,
and Whiteside [196 1] indicate that the forms obtained here are correct. The height
of the firing, however, is not known to us. Since the burst recorded was in the
30 MT range this would have produced a large value of T had it been on the ground
and a larger value had it been in the air. This instantaneous velocity approximation|
which we took would have to be replaced by source dependence given in equations
(47)-(49). Since B(w) varies as 1/ l+(wT)2 the effect of increasing the height of
burst would be to diminish the contribution to the pressure pulse of higher freq-
uencies. Hence, if the location and magnitude of the burst are known, one should

be able to distinguish between a surface burst and one high in the atmosphere.
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THE EFFECT OF WINDS UPON THE GRAVITY WAVE

The final problem considered is an attempt to include the effect of winds
upon the gravity wave. Microbarograph recordings have shown that winds affect
not only the arrival time of the lowest mode but also tend to ""stretch' the pulse.
Both of these phenomena indicate that the winds appear to affect the phase velocity,
or, in other words, to alter the dispersion. When one speaks of winds, however,
the problem of horizontal variations in the earth's atmosphere necessarily arise.
On a global scale, these would make the pressure equation unmanageable in that it
would be non-separable. This difficulty is circumvented by considering the earth's
surface as composed of a number of local regions such that in each the wind is
uniform and horizontal. Here we shall consider the behavior in only one such
region, but if one were interested in obtaining the global effect he would have to
consider all such regions and match the solutions appropriately at their boundaries.

The local region considered must be small enough so that horizontal
variations in the atmosphere may be neglected. If its dimensions are on the order
of a few wavelengths of the gravity wave, this criterion is fulfilled. In addition,
with an area this small, the flat earth approximation will be sufficient. Hence, a
cartesian coordinate system may be established such that the x-axis points east,

the y-axis toward the north pole and the z-axis is vertical.
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The procedure is similar to that mentioned in the first section, in that an
equation for the pressure must be determined. The primary difference between the
linear equations involving winds and those excluding winds is that in the wind case
the particle velocity is superimposed upon the wind velocity wherever a velocity
term occurs. In Appendix A a derivation of the following pressure equation is

presented:

v [eod e (e (326 o

(57)

Ifi £ is a unit vector in the direction of v and if i . is horizontal and normal to _ig,

we may write

v =i, v(z)

3

With this definition, the second term in equation (57) becomes

i v o [§¢_ +A¢] (58)

h(I)z 0z 0§ |0z

where § is now a function of ( g,n,z). If a function Y( £, n, z) defined by

Z
¢=¢/eXp{—/ Ado} (59)
equation (57) becomes

2 2
1 19% | ey [ 1 8 ). ho
hw {822 ¥ oz 2A hg 9z (bis) | + ¢l v ot

(60)

2
o [_1 _ase]+i[_l_@(.b_]+l v AV
W w hpl 0z odfoz
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Since the winds are uniform and horizontal the coefficients in this equation are

functions of z alone so that a separable solution

(&, n, z) = X(z) exp | -iw( ‘s”)_\g + nin)] (61)

exists. With this form, the equation which X (z) satisfies is

2 - -2
d7X 1 dh ) w dv —=]1dX 22 ©
e + - - —— —_— —_ - - — =
2 [2A hG dz * w dz )xg] dz [hw A 2 ]X 0
dz ¢
(62)
which, since
1 W w dv
W dz o dz "€
reduces to
2 dh_2 52 -
dX - foax : (“’)] dx+[l—1—%-hw2x2])( = 0 (63)
d 2 -2 dz dz c
Z hw o

as the wind speed approaches zero, w —»w and this equation becomes identical to
its non-wind counterpart. The dispersive effects of the wind are introduced through
the separable form of ¢ in equation (61) where the eigenvalue is A instead of X and
through the definition © =w [1 -V _1] . Accordingly, for a given atmospheric
model equation (63) may be solved with appropriate boundary conditions, thereby

obtaining the relationship between X and w .
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The temperature and wind models which were taken are presented in
Appendix D, together with a graph indicating the manner in which wind affects the
dispersion. The effect of winds on the horizontal propagation is to speed the
arrival time significantly at large distances. In addition, the shape of the pulse is

altered, or ''stretched" in that low frequencies are most affected.
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VI

CURRENT STUDIES

The aspects of the problem which are currently under investigation may
be divided into two groups.

The first group concerns the region near the source of the pressure pulse
where the excess pressure can not be regarded as a small perturbation of the un-
disturbed pressure. The equations which must be solved in this region are non-
linear and a numerical solution using the method of characteristics is the best that
can be expected. The particular approach to this rather general problem that is
being used is to start at a certain distance from the source with an assumed time-
distribution of pressure, which is similar to the observed pulse and which differs
from the undisturbed pressure by less than 10 per cent. The distribution of radial
velocity which is consistent with this assumed pressure and with the acoustic
solution can be determined and these values are used as initial values for a back-
ward space integration of the equations, i.e., to positions nearer the source. The
solution will provide evidence of the nature of the modifications produced in the form
of the pressure pulse as it traverses the non-linear region and, in particular, an
estimate of the accuracy of the use of the acoustic approximation in this region. A
knowledge of what happens in the non-linear region is necessary if an attempt is
made to deduce the nature of the source from observations of the pressure pulse

produced at great distances from the source.
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The second group of topics under investigation concerns the difficulties
introduced by the use of a mathematical model of the atmosphere extending to in-
finity vertically and by the use of the finite energy condition as the boundary condi-
tion at infinity. Physically, the use of an infinite atmosphere is not very realistic
but it may be justified by the idea that the pressure pulse is not much affected by
the nature of the atmosphere at great heights. Unfortunately the mathematical
solution varies considerably with the boundary condition that is assumed to hold at
infinity and it is difficult to find an acceptable model of a finite atmosphere without
enclosing it with a rigid boundary. If the finite energy condition is used with the
infinite atmosphere (which is the usual practice and is obviously a necessary condi-
tion), the solution involves velocities which increase exponentially with height, which
is unrealistic and also violates the linearization process by which the equations were
derived. If, however, the condition is imposed that the velocities must remain
finite everywhere, no solutions are possible, One way to overcome this difficulty
is to introduce the effect of viscosity on the wave. Viscosity is of negligible impor-
tance near the ground, but when the density decreases, the kinematic viscosity
increases and so it is important at great heights. In the absence of viscosity the
choice in the upper isothermal layer is between two solutions, both giving increasing
velocities but only one having finite energy in a vertical column. If it can be shown

that one of these solutions gives finite velocities when the effect of viscosity is
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introduced, the solution of the problem can proceed as before and if the same solu-
tion is involved as was chosen by the finite energy condition, the use of this condition|
is justified. It may, however, appear that the other solution is required, possibly
for a limited range of frequencies, in which case all previous solutions will have to
be modified. Another possibility is to use a finite atmosphere with a top layer in
which the temperature decreases linearly so that the pressure decreases to zero at
a finite height and it is not necessary to put a rigid boundary on the top. This model
admittedly bears no resemblance to the actual atmosphere but neither does the in-
finite isothermal layer usually assumed and it does have the advantage of finiteness.
Another topic under investigation is an examination of the simplest model
of the atmosphere, that of two isothermal layers, which is treated incorrectly by
Hunt, Palmer and Penney [1960] . The correct form of the frequency equation is
being examined analytically to see if any deductions can be made of the effect of

varying the relevant parameters.
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APPENDIX A

DERIVATION OF PRESSURE EQUATION

The equation for pressure will be derived in cartesian coordinates in the
presence of winds. Modifications to the spherical case in the absence of winds will
be indicated at the end of this appendix.

The equations of motion with wind included are:

g—%+(g-V)g+(g-V)z+(z-V)g= Momentum
1
- V o+p)-1i,8 (A.1)
Pot P

9p Continuity
—+ V- oo+ V- (pov)+ V- (pw)+ V- (py) = 0 (A.2)
ot
5
— 4w D+ Do+ @ Yo+ (v Ve Energy

9
(‘3(2; + e {—aﬁt +(u Vo Vo, +(u- Vp+(y: \l)p} (A.3)

Second order terms in the perturbed variables will be neglected. In

" . 2
addition, since p o Po and co are functions of z alone and since the wind velocity
(v) is uniform and horizontal, several terms in (A.1 - A. 3) are identically zero.

The harmonic time dependent forms of the equations then become, respectively
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v 1 g
wa+ (v Vatw, —=-— Vp-i — (A. 4)
0z Po R
iwp+(v- V)p+ ¥V (pu)=0 (A.5)
iwp + (v V)p - 0(2) [iwp+ v _\Zp] +
o (Tny - & Do) -0 oo

If it is assumed that p, p, and u have separable solutions whose horizontal variations
are of the form exp [—iw(-i & +7ty y)] , then, since (v+ V) operates only on the

horizontal variation,

1>

(.‘L' V)x:_]‘wz.

X (A.7)

(where X represents p, p, or one of the components of u). For simplification we

define w such that

G:w[l-x-’g] (A.8)
Introducing the quantities
1l
2
p=p, D
_1
R=p  2p
4L
U=p, %u




2886-2-F

ov. 1 Po'
GU+U, — =-Vp-—i — p-i, gR

-— VA — VA

0z 2 Po
1 po
BR+ (Y- U)+=— —= U =0
2 Vo, 2 Yo
1w¢—coin+[_J- - ¢, =0
po po

where the prime denotes differentiation with respect to z.
P
Defining B = — + —&

, (A.11) becomes
Po Cz
0

2 2 )
1w¢—co R -¢c BU,=0

which when substituted into (A.9) and (A. 10) respectively, yields

_ ov _ 1 v
-521_J+inZ—:=—iwy¢-—i_Zf£L i @
0z 2 Po
1 _
-i,8 | — Wwf-BU,

c

0
and

1 - 1 Pa’
— iwp -BU,+ Y- U+— — U, =0
C

o

Po
Upon introducing the quantities

Po'

a-L 10
2 b,

, 8
o2
(o}
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(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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and g po' g
h=—= T3

W Po Co

equation (A. 13) in matrix form becomes

while (A. 14) may be rewritten as

When h # 0, the solution of (A.15) is

B 7] i ov
) _ 9%
h 0 iw
Ux w Py
. ov
U - 2 3 0 hsz iw y
y hw oz
-2
U 0 0 W
Z
B i

ov )

w

|

B ov. | B
-5 0 iy — UXW
0z
ov
0 B i — U, | =-
oz
0 0 ~hir? U
L VA

— 2 g. z _
iwf + ¢ V' U-c AU,=0

.

1 i v 0
V[T u) rp G DG
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(A.15)

(A.16)

(A.17)

Substitution of (A.17) into (A. 16) yields, after some simplification

(A.18)

— 2

w A A

—_— — ) — = 0
[ c? (h-b'f) ha}y)

0o
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where ) 9 1 9
L = [__ y —— — —
0x oy h oz

When no winds are present, v = 0 and w = w, so that (A. 18) reduces to

2
W A Az
(E‘L>¢+[—§-+(-—) ——}¢=0 (A.19)
c h h
)
In spherical coordinates, when winds are neglected, the derivation proceeds

in a similar manner, except that the radial dependence of the divergence of Uis

ou
2 r
givenby — U,.+ —— . This, in effect introduces an extra term, so that, in
r r

spherical coordinates

q(r)
(V- Lp+—— p=0 (A.20)
r
Where L = [_Ei_ l— i 1 _a._J
= lor 'r 59  rsing &

and

w2r2 r2 9 Ah' 2A
q(r) = + — (-A +A'———+——)
0(2) h h r

From the definition of § given above, we finally arrive at equation (1) of

Section II, namely

1
1 alr) -3
2 ) (b, P)=0 (A.21)

o

(V- L)

p)+
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APPENDIX B

TEMPERATURE MODELS CONSIDERED IN SECTION II
AND NUMERICAL RESULTS OBTAINED

Two of the three temperature models considered in Section II are as

follows:
TABLE B-I
Atmosphere I Atmosphere II
Altitude (gkm)| Temperature (°C) Altitude (gkm)| Temperature °c)
0 29 0 17
1.5 18 1.5 8
3.1 10 3.0 -3
5.9 -5 5.6 -19
9.7 =31 9.2 - 46
12.4 -53 11.9 - 49
14,2 -67 13.8 - 47
16.6 -81 16. - 47
20 -66 20 - 48
25 -65 25 - 46
30 -45 30 - 42
35 -34 35 - 34
40 -20 40 -18
45 -5 45 - 2
50 7 50 4

where altitude above sea-level is measured in geopotential kilometers and temper-
ature in degrees centigrade. Above 50 gkm, these models are isothermal at 7°¢C
and 4OC respectively. The third, which is Scorer's model (1950), was considered
for the sake of comparison. For this case the lower atmosphere has a constant

temperature gradient with temperatures 286. 91°K and 229. 53°K at sea-level and
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9. 6137 km respectively, while the upper atmosphere is isothermal at 229. 530K.
The calculated values of the inverse phase velocities for the gravity wave

mode in each of these atmospheres is presented in the following table.

TABLE B-II
Inverse Phase Velocities >\(km_1 sec)
5000 w2 Atmosphere I | Atmosphere II | Scorer's Model
0 3.15283 3.16379 3. 18947
1 3.15819 3.16773 3.19148
2 3. 16277 3.17072 3. 19355
3 3. 16695 3.17319 3. 19570
4 3.17091 3.17534 3.19793
5 3.17472 3.17728 3. 20025
6 3.17844 3.17907 3. 20266
7 3. 18209 3.18074 3. 20517
8 3. 18569 3.18233 3.20778
9 3.18923 3.18384 3.21052
10 3.19274 3. 18530 3.21338
11 3.19620 3.18672 3.21638
12 3.19962 3.18809 3.21953
13 3.20301 3. 18943 3. 22286
14 3.20635 3.19073 3. 22637
15 3. 20965 3.19201 3. 23006
16 3.21290 3. 19327 -—
17 3.21611 3. 19450 -
18 3.21928 3.19571 -
19 3.22239 3. 19690 -
20 3.22545 3.19807 ---
21 3. 22846 3.19922 -
22 3.23142 3.20035 -
23 3.23433 3.20147 ---
24 3.23718 3.20257 -—-
25 3. 23998 3.20365 -—-
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The pressure pulse forms for Scorer's model of the atmosphere for
explosions both on the ground and at a height of 9. 6137 km are plotted in Figure
B-1. In addition, pulse forms for atmospheres I and II are given in Figures B-2

and B-3, for a range of 7000 miles.
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FIGURE B-1: THE PRESSURE PULSE AT THE GROUND AT A
DISTANCE OF 3600 KM (a) AND (c), AND 6000 KM
(b) AND (d) FOR SCORER'S ATMOSPHERE, FOR
AN EXPLOSION ON THE GROUND (a) AND (b), AND

AT A HEIGHT OF 9. 6137 KM (c) AND (d). ONE UNIT

OF AMPLITUDE CORRESPONDS TO 0. 614 uBAR
PER KM3 OF GAS RELEASED.
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0 5 10 15 20 25 (Minutes)

THE HEAD OF THE PRESSURE PULSE AT GROUND
LEVEL AT A DISTANCE OF 7000 KM FROM AN
EXPLOSION ON THE GROUND (a), AND AT A HEIGHT
OF 39 KM (b), FOR ATMOSPHERE MODEL I. ONE
UNIT OF AMPLITUDE CORRESPONDS TO 1 u BAR
PER 1 KM® OF GAS RELEASED. (THE TAIL OF THE
PULSE WHICH EXTENDS FOR A VERY LONG TIME
INTERVAL BEYOND THE BROKEN LINES IS NOT
GIVEN.
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FIGURE B-3: THE HEAD OF THE PRESSURE PULSE AT GROUND
LEVEL AT A DISTANCE OF 7000 KM FROM AN
EXPLOSION ON THE GROUND FOR ATMOSPHERE
MODEL II. ONE UNIT OF AMPLITUDE CORRES-
PONDS TO 1 uBAR PER 1 KM® OF GAS RELEASED.
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APPENDIX C

C-I. VARIATION WITH ENERGY AND ALTITUDE
OF CHARACTERISTIC PERIOD

TABLE C-I

ESTIMATES OF THE CHARACTERISTIC PERIOD T OF THE
EXPLOSION FOR VARIOUS ENERGIES AND ALTITUDES

Energy
w 1 Kiloton | 10 Kilotons | 100 Kilotons | 1 Megaton
Altitude
0 Km . 356 .766 1.65 3. 96
25 Km 1.41 3.03 6.95 14.1
50 Km 3.77 8.1 17.5 31,7
76 Km 16.1 34.6 74.8 161.

Period T in seconds
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APPENDIX C

C-II: TEMPERATURE MODELS CONSIDERED IN SECTION IV
AND NUMERICAL RESULTS OBTAINED

The temperature model considered in Section III was of the thermo-

sphere variety, where, for z =106 Km,

TO = 228 + 18(z-106).

For z < 106 Km the following temperature profile was used.

TABLE C-II

TEMPERATURE PROFILE

Height (Km) Temperature (OK)
0 290
1,47 281
2.94 270
5.49 254
9.01 227

11.65 224
13.51 226
16.05 226
19, 59 225
24.5 2217
26.4 231
34.3 239
39.7 259
44.1 271
49. 277
o4, 277
80 165
91 165
106 228
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The calculated values of the inverse phase velocities for modes
"0", '"1", and "2" for this temperature model are presented in Tables C-III, C-IV
and C-V respectively
TABLE C-III

INVERSE PHASE VELOCITY A FOR MODE "Q"

5000 w2 A
.05 3. 18077
.2 3. 18093
.0 3.18149
.9 3.18195

1.8 3.18388

2.33 3.18519

2.8 3. 18663

3.2318 3. 18841

3.5069 3.18983

3.7457 3.19143

3.9712 3.19340

4,2 3.19674

4,35 3. 19979

4,5 3. 20427

4.6 3. 20859

4,7 3.21463

4,8 3.22330

4.9 3.23574

4,95 3.2436
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TABLE C-IV
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INVERSE PHASE VELOCITY A FOR MODE '"1"

5000 wz Y 5000 w2 A
3 1, 5025 6.5 3.17991
3.2318 2.05585 6.75 3.18120
3.5069 2.37990 7 3.18228
3.7457 2.57611 8 3. 18557
3.9712 2.71701 8.5 3. 18699
4,2 2. 85164 9 3.18841
4,5 2. 98294 9.5 3. 18995
4,8 3.08486 1a 3.19178
5 3.12938 10.5 3.19422
5.25 3. 15641 11 3.19793
5.5 3.16743 11.5 3.20451
5.75 3.17287 11.8 3.21084
6 3.17610 12 3.21624
6.25 3.17828 12.2 3. 2202
TABLE C-V
INVERSE PHASE VELOCITY X FOR MODE '"2"
5000 wz A 5000 w2 A
5.5 2. 37693 15 3.18958
6 2. 53209 15,5 3.19057
7 2.74838 16 3.19146
8 2.89013 17 3.19304
9 2. 99269 18 3.19445
10 3.07155 19 3.19576
11 3. 13242 20 3. 19699
11.5 3. 15506 21 3. 19818
11,75 3.16365 22 3.19933
12 3.17021 23 3. 20044
12.5 3. 17869 24 3.20153
13 3.18265 25 3.20261
13.5 3.18525 26 3.20366
14 3.18705 27 3.20470
14.5 3.18844 28 3. 20573
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In the following figures, the head of the pressure pulse at ground level at
h distance of 5500 Km from the source is shown. The solid, dashed, and dotted
curves of Figure C-1 correspond to the contributions of modes 0", "1'" and "2"
respectively for an explosion on the ground, while in Figure C-2 only the gravity

wave mode for an explosion at 76 Km is shown.
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FIGURE C-1: THE HEAD OF THE PRESSURE PULSE AT GROUND
LEVEL AT A DISTANCE OF 5500 KM FROM AN
EXPLOSION ON THE GROUND. THE SOLID, DASHED
AND DOTTED CURVES CORRESPOND TO THE CONTRI-
BUTIONS OF MODES "0", "1'" and "2'* RESPECTIVELY.
THE AMPLITUDES ARE GIVEN IN u BARS PER 1 KM3
OF GAS RELEASED.
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FIGURE C-2: THE HEAD OF THE PRESSURE PULSE AT GROUND
LEVEL CORRESPONDING TO MODE "0", AT A
DISTANCE OF 5500 KM FROM AN EXPLOSION AT
AN ALTITUDE OF 76 KM. THE AMPLITUDE IS
EXPRESSED IN UNITS OF 2.9655 x 1074 1 BARS
PER 1 KM3 OF GAS RELEASED.
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APPENDIX D

TEMPERATURE AND WINDS PROFILE CONSIDERED IN SECTION V,
DETERMINATION OF DISPERSIVE RESULTS FOR THIS CASE

The particular model of the atmosphere to be considered has the following

temperature and wind profiles:

‘TABLE D-I TABLE D-II
TEMPERATURE PROFILE WIND PROFILE
Alt. (gkm) Temp (°C) Alt. (gkm) | Wind Vel. (M sec )
0 18 0 0
1.5 8 12.2 -9.5
3.1 7 16.5 8.5
5.7 -12 20.0 7.5
9.5 -35 25.0 13.0
12.2 -51 30.0 15.5
12.0 =60 40. 0 29.0
16.5 -66 61.2 38.0
20.0 67 69.0 30,0
25.0 -56 768.5 0
30. 0 Z48
35.0 Z38
40.0 -26
45,0 -11
50.0 6

where the altitude is measured in geopotential kilometers (equivalent of . 98 dynamic
kilometers).

Between the surface of the earth and 12, 2 gkm the wind velocity is assumed
to decrease at a constant rate. Above an altitude of 50 gkm, the atmosphere is

isothermal at GOC, while above 76.5 gkm the wind velocity is zero. It should be
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mentioned at this point that in the numerical calculations that were performed the

wind velocity enters only through the term v - A . The results which were obtained

are based on the assumption that the wind velocities given in Table D-II are the

components of the wind in the direction of Z\ .

The method of solving equation (63) simply involves the application of

fairly standard boundary conditions which are as follows:

a)

Above 76.5 gkm (75 Km), the atmosphere is isothermal as has been
stated, so that the solution of equation (63) is an exponential. The
condition that the kinetic energy be finite in a vertical column above

this altitude requires that the solution be

K=exp [— Bz+ Asz] (D.1)
where
2 2 21 1 <2
B =AS —hsw [—5 -\ J (D. 2)
%
and
A= @-v/2) 5 (D. 3)
c
s

Below 75 Km, equation (63) was solved by numerical methods, and the
imposed boundary conditions were:

At 75 Km, the pressure and the vertical component of the velocity are
continuous. This implies that ¢ and ¢' /h must be continuous here.

Normalizing i so that ¢ =1 at this altitude, the boundary condition
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from (D. 1) is that ¢'(75) = (-B +AS).

c) At 49 Km where there is a discontinuity in the temperature gradient,
pressure and the vertical component of the velocity must be continuous.
Therefore, we require that at this interface, y and ¢! /Dzh be con-
tinuous.

d) On the surface of the earth, the vertical component of the velocity is
zero, so thaty'(0) =0, This final condition makes it possible to obtain
.

The results obtained for this particular wind profile are plotted in Figure

D-1 (solid curve). The dotted line, on the other hand, represents the results which

were obtained when the wind was neglected.
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