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PREFACE

This is the forty-seventh in a series of reports growing out of the study of
radar cross sections at The Radiation Laboratory of The University of Michigan.
Titles of the reports already published or presently in process of publication are
listed on the preceding pages.

When the study was first begun, the primary aim was to show that radar
cross sections can be determined theoretically, the results being in good agreement
with experiment. It is believed that by and large this aim has been achieved.

In continuing this study, the objective is to determine means for computing
the radar cross section of objects in a variety of different environments. This has
led to an extension of the investigation to include not only the standard boundary-
value problems, but also such topics as the emission and propagation of electro-
magnetic and acoustic waves, and phenomena connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify data
determined theoretically; (b) investigation of antenna behavior and cross section
problems not amenable to theoretical solution; (c) problems associated with the
design and development of microwave absorbers; and (d) low and high density

ionization phenomena.

R. E. Hiatt

ix
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INTRODUCTION

This is the first of a series of reports aimed at summarizing the available
information about the scattering properties of selected bodies of simple shape.
Perhaps the simplest of all shapes is the sphere, and it is probable that more has
been written about this one body than about all other bodies put together. To detail
all of the results in one report is therefore impossible, and in seeking to summarize
them so as to provide an intelligible account, an author is compelled to restrict him-
self to those theories and those methods of solution which he feels are most signi-
ficant.

In taking as the subject of this first report the diffraction of electromagnetic
energy by the sphere, our object is to gather together in one place some of the more
useful forms of solution, both exact and approximate, giving also a brief account of
the methods of derivation. Wherever possible references are given to tabulations of
the functions and series involved, particularly in connection with the standard Mie
solution.

Section II is devoted to the Mie solution and since this is the starting point
for most of the other approaches, a detailed description is given. Certain special
applications are discussed, and references are given to computations based on the

Mie series.
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For sufficiently low frequencies an alternative representation of the solution
is possible in which the field components are expanded in ascending positive integral
powers of ka, where k is the wave number and a is the radius of the sphere. The
corresponding expansion for the far field amplitude is the so-called Rayleigh series,
and this is described in Section III. Two derivations are given: in the first of
these the series is obtained by expanding the various terms in the Mie solution, but
in the second the low frequency expansion is obtained directly without any explicit
reference to the Mie result.

Section IV is concerned with the high frequency scattering behavior and the
approach which is adopted is based on the Watson transform. In recent years the
Watson transform technique has been generalized to an extent which permits the
asymptotic solution of a large class of diffraction problems, and the general method
stems from the fact that locally all convex bodies with radii of curvature much
larger than the wavelength are similar to a sphere of radius equal to that of the
convex body in the direction of energy flow. This local analysié led Fock E94Eﬂ to
construct certain universal functions which have been computed and tabulated by
Logan [1955% . Since this material does not appear inany standard reference, a
relatively detailed exposition is given.

In the final section the physical optics approach is considered insofar as it

applies to the sphere problem. The approximate expressions for the current
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distribution and for the far field are compared with the exact expressions derived
from the Mie series, and a numerical comparison for ka = 10 is presented.
Although the previous methods have covered the region of 'applicability' of physical
optics, it was felt that this approximate but well-known technique should be included
both for historical interest and because of the ease with which rough and ready
answers can be obtained thereby. For a general and more critical exposition of

the physical optics method, the reader is referred to Baker and Copson [195@.
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II
THE EXACT SOLUTION

This section is devoted to the exact solution of the problem of scattering of a
plane electromagnetic wave by a sphere. A brief account of the derivation is in-
cluded since almost all subsequent computations and approximations rely to some
extent on this exact result. In addition to the homogeneous sphere and the important
limiting case of perfect conductivity, results for two concentric spheres are also
presented. The simplifications stemming from the "far field" assumption are also
discussed. A guide to computed results available in the literature is presented and
some representative curves are included.

2.1 The Mie Series For the Sphere

The first exact solution for the scattering of a plane wave by a homogeneous
sphere is usually attributed to Mie [1908] although much work was done before then.
Thompson [1893] treated the perfectly conducting sphere with equal rigor, and in
his exhaustive work on the sphere Logan [1959] gives precedence to Clebsch [18 63} .
Nevertheless the series solution for the sphere in terms of spherical wave functions
is usually referred to as the Mie series and this general usage will be employed
here. Descriptions of the solution abound in the literature, the most popular, per-
haps, being that given by Stratton [194IJ and it is his presentation on which the

present account is based.
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The problem is that of determining the electric and magnetic field vectors,

E-E'+E°, and H-H '+ 1
(where i and s denote incident and scattered respectively), external to a homo-
geneous sphere of radius a, permeability u;, permittivity €;, and conductivity s,
in the presence of an incident or primary field given by
-ikz

N
=E Xe ,
0

i

o]

i -ikz

fast

--H ¢

oY °
A rectangular Cartesian coordinate system (x,y, z) has been employed in which
eqns (2-1) describe aplane wave travelling in the direction of the negative z-axis with its

1 k
electric vector confined to the x direction. H = YE , where Y= 7= — s the
o} o Z wu o

intrinsic admittance of free space; k is the propagation constant of the medium in
which the sphere is imbedded, which medium is assumed homogeneous, isotropic,
and a perfect dielectric and is here taken as free space. In terms of the permittivity
and permeability,

2T
N , (2-2)

where A is thewavelength, M.k, s.units are employed and the harmonic time factor
e has been suppressed. The restriction to free space is a trivial one because in

a medium characterized by € and u different from their free space values, a pro-

pagation constant k may be defined as

An underlined symbol denotes a vector and a caret denotes a unit vector.

5
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k=w/feu . (2-3)
Similarly, if the conductivity s is non-zero, the propagation constant can be taken as

k = Wule + 0 . (2-4)
It is convenient to have the center of the sphere coincide with the origin of the coor-
dinate system. This detracts none of the generality and permits the use of spherical

polar coordinates (r, 6, #) where

x=r sinf cos@, y=rsinf sin@, and z=rcosb , (2-5)
in terms of which the surface of the sphere is simply r = a (see Figure 2-1).
The free space, source free, Maxwell equations are

oH

+ —— =
VAE :uo t 0:
E
Val-cg =0 =0, (2-6)
V- H=V-E=0

After suppressing the harmonic time variation these equations require that all field
quantities exterior to the sphere be solutions of the vector wave equation,
UAVAF)=k*F | (2-7)
i s i S . .
where Fcanbe E , E ', H or H . Interior to the sphere, Eand H must satisfy

ValVAF)=KF, (2-8)

where k; is the propagation constant for the material comprising the sphere,
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FIGURE 2-1: SPHERE GEOMETRY
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The boundary conditions are really continuity conditions at the surface of the sphere, i. e.,

i, s
AA(E +E ) +=?AE
r=a

r=a” (2-9)

1
-
>

o

General solutions of the vector wave equation can be generated by vector

operations on the solutions of the scalar wave equation

(V2+k?) y=0, (2-10)

in the following way. If  is a solution of eqn(2-10) then the three vectors

L =Uy

M =L (ry) (2-11)
1

N:EVAM ;

are orthogonal solutions of eqn (2-7). These are known as Hansen's vector wave
functions, having been proposed by Hansen [1935, 1936, 1937] in his work on radiation
from antennas. They are discussed more fully by Stratton [1941]and Senior [1960] .
Since field quantities are required by Maxwell's equations to be solenoidal,

or divergence free, the fact that
V- L=Pv=-Kys+F0 , (2-12)

shows that only the M and N vectors can be involved in their representation.
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The appropriate scalar wave function ¢ will differ depending on whether the
field point lies inside or outside the sphere. The two forms are dictated by the
requirements that the field remain finite at the origin and that the scattered field
obey a radiation condition at infinity.

Thus, within the body,

Y = jn(klr)P;n(cos 9):?§m i (2-13)
whilst for the exterior region m cos
Y =h (kr)P (cos6) .~ m 9, (2-14)

m
where Pn is the associated Legendre function defined in terms of the hypergeo-

metric function as m n
m (-1) 1+x *
P (x)= g —
(I-m

n r ) I-x

2
1-
) oFi(-n, n+1;1—m,‘“2§_)

and jn and hn are the spherical Bessel and Hankel functions respectively defined by

INCR S O] hn(x)=‘f21r—£ Hr(lf O (2-15)
The use of the Hankel function of the first kind to represent outgoing waves at infinity
is necessitated by the assumed time dependence, e —iwt. Since the field must be
continuous and single-valued throughout the region external to the sphere, m and n
can take on only integral values.

If the expression for i given in eqn (2-13) is now introduced into the

eqns (2-11) defining the vector wave functions L, M, and N, these functions take

VThis is consistent with Stratton (1941) but differs by (-1)™ from most standard
mathematical works.
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the following forn::
(1 . 1 9 _m cos A
L =k j ' (kr)P™ (cos §) m¢ + ](kI‘) — P (cosf)  "m¢ 8
e n n sin 08 n sin
mn
0
- m sin 2
6
* rsind Jn(kr) n (cos )cos mpg
M(l) = T B 5 (k) P™(cos 0)° m¢9 (kr) ——Pm( e)cosm¢ /(2\5
—e + sinf n n cos J 96 “n 8% ’
mn
(1) n(n+1) m cos A 1 ¢ 0 .m cos A
N i (kr)P™(cos 6 # = [l | 5w
% = ]n(kr) 1ﬂ(cos )sinm¢r - kr]n(kr) e n(cos@)sinm(éG
0

e LI R
(2-16)

where the primes indicate differentiation with respect to kr, the subscripts e and

o are short for "even' and "odd" respectively and refer to the ¢ dependence of the

characteristic solution ¢, and the superscript (1) denotes the radial function used.

The superscript (2) will be used to denote the functions obtained if jn(kr) is replaced

by h (kr) and (3) will be used if _] (kr) is replaced by j (klr)

Since the field quantities are solenoidal the most general expression for the

scattered electric field is

Q0 a0
ES- g > ) (A M(2) +B N(2) ) (2-17)
- (6] (S] e e e

m=0 n=o0 Omn Omn

10
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where the coefficients Ae and Be involve only the propagation constants k

mn mn
) [0}

and k, and the sphere radius, a . From Maxwell's equations (2-6), it is seen then

that
Q [0.0)
H% -iH > > (B M(2) +A N(2) ), (2-18)
- (6] -e e - e
m-=0 n=o0o mn Omn mn Omn

where the coefficients in this equation are the same as in eqn(2-17).

Similarly, the most general expressions for the fields within the sphere

(r<a), are
[00)
(3
E=E E > (C M()+D N ) ) (2-19)
- 0 L e ~e e ~e
m=0 Nn=0 mn mn mn mn
0
and
E kl (06]
3
H=-i — E E o uP e ¥ (2-20)
= WH 1 e —e e ~—e
m=0 n=o mn mn mn mn
0 0 0 0
where the constants Ce and De again involve only the propagation constants
o mn Rub .
and radius.

For the incident field given by eqn (2-1), expansions in terms of vector wave

functions are given in Stratton [1941] as

. Q0
i n 2ntl (1) ) T(l)
E= E0 21?[ (1) n{n+1) (Moln i I\4e1n ) (2-21)

11
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[0 0]
. 2n+1
B'=-in Z (1) ———

O n-=1 n(n+1)

RGO RRNCIS

-22
eln oln™ (2-22)

and

No terms corresponding to n=0 occur because P(l) (cos 6) = 0.
Straightforward substitution of eqns (2-17) to (2-22) in the continuity relations

(2-9) now leads to the following values for the unknown coefficients:

A =B =C =D =0, for all m and n,
emn omn emn omn
A =B =C =D =0, form # 1 and all n,
omn ~emn omn emn
o ot uOJn(ka)[klaJn(kla)] —ulgn(kla) [ka]n(ka)J
oln n(n+l) . { 1" [ . J'
uljn(kla) kahn(ka)J pohn(ka) klajn(kla)
(ke k) <(E ) 1 ) [iga (0]
B Ao+l ontl Holp (R K] A ) k) tka) [ka) (ka
eln n(n+l) . [ 1" (ke [ . J'
uOJn(kla) kahn(ka)‘ i (kl) hn(ka) kla]n(kla)
N
o - (-1)" " (2n+1) u,

oln ka n(n+l){uohn(ka)[k1a jn(kla)J - ! jn(kla> [ka hn(ka)] '}

(i)™ (2n+1) itk a
n(n+1){u1(ka)2 hn(ka)[klajn(kla)J —,uo(kla)zjn(kla) [kahn(ka)] }

eln
(2-23)
where the prime denotes differentiation with respect to ka or kia as appropriate.
The situation is considerably simpler in the important case when the con-
ductivity of the sphere becomes infinite (Im k12—>oo ). The continuity condition

eqn (2-9) is then replaced by the boundary condition

12
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T AE =0 , (2-24)

since no fields can exist within the sphere, and making use of the asymptotic forms

of the spherical Bessel and Hankel functions, the coefficients in eqns (2-23) become,

A =)

I [kajn(ka)}

, (2-25)
eln n(n+1) [ka hn(ka)]

2.2 The Mie Series For Two Concentric Adjoining Spheres

The more complicated problem resulting when the sphere is not homogeneous
but consists of a homogeneous sphere covered with a homogeneous layer of different
material, has been solved by Aden and Kerker [1961] . The geometry is essentially
the same as pictured in Figure 2-1, except for the addition of a surface layer of
thickness d, andthis is shown in Figure 2-2 where the positive x-axis and incident E
field point out of the page.

Consistent with the notation of the previous section, the inner sphere of
radius a will be characterized by ki, €1, uy, s1; the layer by ko, €4, Ug, s,

and the whole spherical structure of radius b = a+d will be imbedded in free

space characterized by k, €,, and u .

13
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FIGURE 2-2:

In each region the representations of the field quantities are different. For
the inner sphere and for free space, the representations are similar to those used

in section 2.1, viz

r>b
E=E'+E°, H=H+H®
i n 2n+l 1) (1) i n 2n+l (1) (1)
E = i -i —_— M( +i H =-iH -i iM +N
- Eo () n(n+1) (—oln ! Neln)’ = T, (-i) n(n+1) (1—e1n —oln)’

ES:EOX:(A w2 45 ) }f’:—iHoi B M+ §? ) (2-26)*
n= n=

n—oln n—eln”’ n—eln n—oln

+

3

For convenience the coefficients are written An’ Bn’ etc., rather than AOln

B .
eln’ ete

14
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r<a

ilj 3) :
E= E 1Vi3 +D N(B) ), H= —i M( , (2-27)
- 0 n —oln n~eln”’ - wul E n eln n oln

n= =

while in the layer a<r<b

E:Eoia M4 +ﬁ Mo
n:

—oln —oln

)@Y DN

eln n —eln

(2-28)

eln eln oln n-—

E k,
. i C a1 g N0 D
n— oln

where the superscripts on the wave functions indicate the radial functions which

(1)

occur. Thus M " and §(1), defined in eqn (2-16), contain the radial function

jn(kr). If this is replaced by hn(kr), 1\_/1(2) and E('z) result. Similarly, replacing

jn(kr) by jn(klr) yields 1\_/1(3) and ﬁ(g); replacing jn(kr) by jn(kzr) yields M(4) and N

(5) (5)

and by h (k,r) gives M~ and N ~'. The continuity relations require 14;\ E and
a L

(4)

A,\ H to be continuous at the interfaces r = a and r =b. This provides a sufficient

number of equations to determine the unknown coefficients, of which only An and

Bn’ the coefficients of the scattered field, are presented here. They are
1

i (kb) f +[kbj (kb)] f

n 1 n

A - _(_i)n 2n+l : 2
n n(n+1) h (kKb)f +[kbh (ka\ f
n 1 L n 2

\ (2-29)
T ]n(kb)fg-[kb]n(kb)_] £,

-1 1 B
n n(n+1) hn(kb) f3+[kb hn(kb)J f,

15




THE UNIVERSITY OF MICHIGAN
3648-1-T

h
where i (kea)

- nuz {[kZb jn(kzb)]' ﬁ(zahn(kzaﬂ'—[kza jn(k2a)]' ﬁ<2b hn(kzb)] '}

2

()|
J%I%fl{jn(kga) [kzb hn(kzb)JY'hn(kza)[kzb jn(kzb)] } ’

jn(kla)

f=

2 KoM,

{{kza jn<k2aﬂ ' h (lgh)- [kza hn(kza)]' jn(kzb)}

[klajn(kla)]'
+ — {J (kzb) h (kza) (kza) h (kzb)} '
Koy n n

2
f =

T [klaj n(kla)]Y {jn(kza) (kzbhn(kzbﬂy—hn(kza) (kb jn(k2b)]'}
[0}

! 1
iR k2 i, kla{ (b (ip)] oah ()] - - [keai ()] (kb () } ,

{ [kza jn(kza)]' h (kpb)- [k2a hn(kza)]' jn(kzb)} : (2-30)

Scharfman [1954} considered the limiting case when the inner sphere becomes per-
fectly conducting and the continuity condition at this interface is replaced by the
boundary condition eqn (2-24). The expressions (2-29) for the coefficients of the

scattered field are still valid but the f's defined by (2-30) simplify as follows:

16
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1 [, ' ; '
sl smntor]

1 .
f, = —/J—(—) { ]n(kzb) hl’l(k2a) ‘]n(kga)hn(kzb)}

i, - M—l— ( f:—j {[kzb jn(kzb)]'[kzahn(kzaﬂ'-[kzajn(kza)]' [kzb hn(kzbﬂ'}

0]

1
f =—

A {hn(kzb) [kzajn(kza)) - (kob) [k2ahn(k2a)J} . (2-31)

2.3 The Mie Series For Two Concentric Disjoint Spheres

When the inner radius of the layer is larger than the radius of the inner
sphere, i.e. a plane wave is incident upon a sphere with two layers of different
material upon it (see Figure 2-3), the problem is even more complicated.

Plonus [1961] has treated this problem, though not in complete generality.
The problem is specialized in the following ways: 1) the inner sphere of radius a
is perfectly conducting; 2) the two regions a < r<b and r >c consist of the same
material (here taken as free space and characterized by k, €5, and uo), and

3) the permeability of the layer b< r < ¢ is also taken to be Ho although the propagation
constant ky is different from k. The procedure is exactly the same as before. There
Fvill be three representations of the field in the three regions, two continuity con-

ditions (at r=b and r=c) and one boundary condition (at r=a).

17
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- y

FIGURE 2-3

Thus for,

re i S i S
E<E +E", and H=H +H ,

where the quantities are exactly as defined in eqns (2-26),

co>r>b

E and H are given by eqns (2-28) with uy=p, , and for

18
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b>r>a
() (2)
=E N
E Foi n—oln Bn oln 7;1 eln én-eln ’

n:

—al

- E k
: ( N(l N‘2 . (2-32)

n el ‘oln n —oln

[VIB
uz

[Jas!
n

A .
AE and v A H must be continuous and

=S

At the interfaces (r=b and r=c),

T E =0 . These conditions provide a sufficient number of equations to deter-

A =lr=a

mine the unknown coefficients. Again only the coefficients of the scattered field,

An and Bn are presented here:

| ko)t +[kc jn(kc)]' L,

At T ‘
n n(nt+1) hn(kc)f1 +[kc hn(kc)] f2
(2-33)
B - s pttl 2l Ip(kelfy +[kc jn(kC)] Ly
n n(n+1) ' ’
h (kelf, +[ke hn(kc)] f,
where
£ Lkzc jn(kzc)] {hn(ka)<hn(k2b)[kbjn(kbﬂ —jn(kb)[kzb hn(kzb)D
_jn(ka)<hn(k2b)[kb hn(kbj —hn(kb)[kzb hn(k2bj >}
_[kzc hn(kzcj {hn(ka) (jn(kzb) [kb jn(kb)] - (kb) [kzb jn(kzb)]
—jn(ka)(jn(kzb) [kbhn(kb)J -h_(kb) [k2b jn(kzbw} ) e
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f,- jn(ka){jn(kzc)(h (kzb)[kbh kb (D) k2bn k2b>
—hn(kzc)( (kzb)[kbh kb kb kzbJ k2b )}

_hn(ka){jn(kzc) (h (kzb)[kbj kb] (kb) [kzbh ksz

—hn(k20)< (kzb)[ka (kb kb kZbJ kzb } ,

f,-[ka jn(ka)J {[kzc ] (kzc)]<( 11;)2 h (kb)[kzbhn(kzb)J'—hn(kzb)[kb hn(kb)J'>
- [ken (i) < (1%) h (kb) [I5b (kzb)]'—' (b) [k hn(kb>]'>}

_[kahn(ka)] {[kzq (kzci ( )ZJ kb{kzbh kzbﬂ “h (kzb)[kbjn(kb)}>

_[kzchn(kzcﬂ'<< @2 (kb)[kzb j (kzb)J (kzb)[kb j (kb) }

7 (e {[kah )]<Jn(kb) i (1gh) < ) h (b (kb (kb) ka)

[ka i )J <hn(kb)[k2bh (kzb)J h kzb)[kbh >}
h (iye) { kah ( <J kb kZb] kzb] ( ) (kyb) [kb] kbﬂ)
[ka j (k J(h (kb) E{zb] kzb)] kzb kbh >}

2-34)

When b=a, these expressions go over to those given in eqns (2-31) for u0=u2 .
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2.4 The Far Field Amplitude

Of particular interest is the far field or far zone behavior of the scattered
field. Recall that the scattered field (exterior to the sphere and any layers) is

always written as

(2-35)

where the An and Bn are given by eqns (2-23), (2-25), (2-29), or (2-33) depending
on which particular sphere problem is being considered. Regardless of how these
coefficients are defined the expressions for the wave functions M and N can be
simplified in the far field of the sphere and its layers (if any). Specifically the
spherical Hankel functions contained in the expressions for M and N can be re-
placed by the first terms in their asymptotic expansion for large argument and

since ikr
+ !
h (kr)N(_l)n 1 e ~ -i —]‘-’ [krh (krj , (2—36)
n kr kr n
the  and  components of both M and N are of equal order for given n. By com-

parison, the radial component of N is of one higher order. Consequently, only

the 6 and ¢} components can appear in the far field which then has the form of a
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spherically outgoing wave, and from eqns (2.16), (2.35), and (2. 36)

s eil«:r 1+ PL(cos 0) 5 .
~ —_— -1 _____+ —_— 1
E EO = > (-1) An oy iB % Pn(cos 9)> cos @ 6

n=1 i
5 Prl1 (cos 6)
- — pl +i -
(An ™ n(cos 6) iB prowr >s1n¢ ¢ (2-37)

valid for r>»> ke?, where c is the radius of the entire spherical structure with c=a
for a homogeneous sphere.
This result simplifies considerably for scattering in the back and forward

directions. For backscattering (6 = 0),

. _

Pn (cos 6) _n(ntl) 9 1

— = = 9 Pn(cos 0) ,
sin 90 0

giving (00)

Z ) ) () sy (2-38)
n n

A
Ex
0

and for forward scattering (8 = 7)
P}(cos 6)
+ +
_L___ =(—l)n 1 n(nt+1) - 9 Pl(cose) ,
sin 6 2 00 n _
O=m 0=

(A -iB ). (2-39)
n

so that
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It is now convenient to introduce the concept of a scattering function f(6, ¢).
This will be defined by the equation
ikr
e

EVE S— 10,0) T (2-40)
=" ke ’ )

A
valid for r»kcz, where? is a unit vector in the direction of E S, and accordingly
£(8, @) can be regarded as the far field amplitude. From Maxwell's equation we

then have .
S elkr A A
H~H o 5= 16,0t T (2-41)

and consequently the same function describes both the electric and magnetic fields.
For scattering in the backward direction, the scattering function will be written as
£(0), since there is no dependence on §, and eqn (2-38) then gives
+ +1
£(0)= }m‘ (" 2 gy (2-42)
Ly 2 n n

Similarly, for scattering in the forward direction,

f(7r)=i i“‘lﬂ‘“fll (A -iB) (2-43)
n=1

(see eqn (2-39) ).
The definition of f(6, ) given in eqn (2-40) differs from that usually adopted.
The function f/k corresponds to the scattering function more commonly defined, but

this has the disadvantage of not being dimensionless. In electromagnetic theory
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(and, indeed, in all branches of physical science) there seems to be every advan-
tage attached to using a non-dimensional function, and it is for this reason that
the present definition has been chosen in spite of the fact that it represents a
break from conventional notation. As defined above, the function f is independent
of r and can be likened to a polar diagram factor. It depends only on angular
variables 6 and ¢ and on the properties of the scattering body, and is sufficient to
specify the far field in its entirety.

It is a simple matter to calculate the scattering cross section in terms of
the function f. The differential cross section or bistatic radar cross section o(6, ¢)

is defined by

g 2
i E
ol6, f)= " g | , (2-44)
r->o E
and hence, from eqn (2-40),
4 2
ol6, )= <7 116, 9) (2-45)
An alternative expression is
2 2
o(6, §) =lﬁ— |f(9, ¢)| , (2-46)

where A is the wavelength, and the dimensions of ¢ are here made explicit.

The total scattering cross section o,, is related to o{6, §) by the equation

T
0. 4—17T/o(9, @ d Q (2-47)

where d2 is an element of solid angle, and by inserting eqn(2-45) we now have
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1 2
e —g][f(e,qj)[ a9 . (2-48)

An additional relation between O and f is provided by the "forward
scattering theorem'. This was first discovered in atomic theory and since then
its electromagnetic equivalent has received a variety of independent proofs (see ,
for example, Schiff [19549 , Jones [1955] , and de Hoop [1959] ). The theorem is
merely an expression of conservation of energy and leads to the equation

_4m
0= 12 Im. f(7) (2-49)

where Im. denotes the imaginary part. In addition to the scattering function and
cross section defined above there exist many quantities in the literature with
similar names but different definitions. This unfortunate situation is virtually
uncorrectable at this stage and the best one can do is exercise care in checking
definitions and be resigned to the fact that many existing results may require
renormalization before use. Some of the more common quantities are presented
here.

If the scattered far field is written

ES=E_6+E §

6" ¢

where EG and E¢ are defined in eqn (2-37), then these components can be expressed

) (2-50)

in the form

25




THE UNIVERSITY OF MICHIGAN

3648-1-T
S eikr
E. =E = cosf S(6)
6 k ’
° X (2-51)
S eikr
E, =-E — gi S
¢ o kI‘ Sln¢ 2(9) s

where S,(60) and S,(6) are defined by referring to eqn (2-37) and are called the
complex amplitudes of the scattered radiation for the two polarizations.

The squares of the absolute values of S; and S, are called the intensities of
scattered radiation for the two polarizations.

The absorption cross section o and the scattering cross section ¢ are
S

a
defined as Pa
Ga = ; R (2-52)
i
P
o P (2-53)

i
where Pa is the power absorbed by the obstacle, PS the power scattered, and Pi
the power incident. If no power is absorbed in the obstacle and the surrounding
medium is non-dissipative (e.g. free space), then Gs is the same as O defined
above.

The sum o +0 is known as the extinction cross section and in cases where
a s

o, is non zero eqn(2-49), the forward scattering theorem must be altered to read

O‘+O‘S= = Im. f(7) . (2-54)
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The various cross sections defined, i.e. differential scattering, total

scattering, absorption, and extinction are referred to as efficiencies when nor-

. . . . . . 2
malized to the geometric cross section which, for a sphere of radius a, is 7 a“.

g+t+o
Thus a s

is the extinction efficiency, etc.

2.5 Computations

Kerker ?955} summarized the then available Mie theory functions and his
table is reproduced here for convenience (Table II-1). To this has been added
the work of Scharfman [1954] which gives the back scattering cross sections of
various dielectric coated spheres. Also appended are the highly accurate tables
of the back scattering function f(0) for perfectly conducting spheres presented
by Hey, et al 1:1956] )

The recent work of vande Hulst [1957] is an excellent summary of work on
scattering by spheres. Chapters 9-14 of this work are of particular interest to
this study since they contain many tables of caleulated quantities as well as a list
of references containing other tabulated quantities. Table II-2 presents a brief
listing of the tables given by vande Hulst. Table II-3 is a similar listing of the

graphs to be found in vande Hulst's volume.
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TABLE II-1: LIST OF AVAILABLE MIE THEORY FUNCTIONS

Index of Values of )

Reference Refraction™ ka Quantity Calculated
Shoulejkin [192_4] 1.32 1,3, Scattering functions every 20°)
Blumer [1925J , 1.25 0.4,0.6,1.6,4,8 Scattering functions everleo
[1931] 133 15,3

1.5 4

© 0.1,0.5,1,3,5,10
Stratton and
Houghton [193j 1.33 0-40 Scattering coefficient
Caspersson [1932] 1.63 0.71-3.16 Sc%tteri%gfunctions at OO, 450,
@9335) 1.56 (17 values) 90°, 135°, and 180°

1.50
Gumpricht, Sung, Chin,
and Sliepcevich [I952] 1.33 6,8,10-35(5) Scattering functions everleo
Gumpricht and 1.33 20, 30, 40, 60, 80 Scattering coefficient
Sliepcevich [1953] 100, 200, 400

B 1.44 20, 80,150

1.20 20, 80
Kerker and Perlee 2.00 1.30-2.80 Scattering functions at 90°
E953 (12 values not in

Lowan tables)

Kerker and Cox E%Eﬂ 2.00 3.0-5.0 (11 values not Scattering functions at 1300
in Lowan tables

Engelhard and 0.4,1,1.5,2,2.5, 3, Scattering functions every 10°
Freiss [1937] 1.44  4,6,8

Paranjpe, Naik, and 1.33 4,5,6,17,8,9,10,12, Scattering functions every 10o
Vaidya [1939] 20, 30

Ruedy {1943] [1944J 1.33 1/8,1/4,3/8,1/2, Scattering coefficient
- 3/4,1

(continued on next page)

/51 Ky ioppy

+
€ we
OHO OMO

+
Index of refraction m =
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TABLE II-1 (continued)
Reference Index'of Values of Quantity Calculated
Refraction ka
Houghton and Scattering coefficient
Chalker 1949 1.33 7-24 (33 values)
Lowan 1948 1.33 0.5-6.0 (15 values) Scattering functions every
1.44 10° and scattering coefficient
1.50
2.00
4,21 - 2.51i  0.100-1.00(.05) Extinction coefficient
1.0-3.0(.1)
5.55-2.851  0.10-1.00(.05) Extinction coefficient
1.0-2.0(.1)
8.18 - 1.96i  0.100-1.00(.025) Extinction coefficient
3.41 - 1.94i  0.10-1.00(.05) Extinction coefficient and
1.0-5.0(.1) A and B
7.21-2.651  0.1000-1.000(.025) Extinction coefficient
1.00-1.30(.05)
8.90 - .69i 0.10-0.30(.01) Extinction coefficient and
0.300-0.430(.005) A and B
0,43-0.60(.01) " !
Riley 1949 1.486 0.5-3.0(.1) Scattering functions every
10° and scattering coefficients
Aden 1950 9.01-0.43i 0.6-60 Scattering functions at 0°
o) 0.6-6.0
Gumpricht and 1.20 1-6(1) A and B
Sliepcevich 1.40 8 n n
1951 1.50 10-100(5)
1.60 100-200(10)
200-400(50)
1.33 4,5,6,8
1.44 10-100(5)

100-200(10)
200-400(50)

(continued on next page)
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TABLE II-1 (continued)
Index of Values of
R :
eference Refraction Ka Quantity Calculated
Kerker, 0.126 Backscattering by particle con-
Langleben_and sisting of two concentric spheres.
Gunn {195 Inner sphere m=1.75, outer spherg
m=8.9-1.51
Scharfman @954] 1.26 Backscattering by lossless dielec-
tric coated perfectly conducting
sphere. Outer spherel. 6{m< .
+
Hey, Stewart, Pinson 0(.01)10 Backscattering function £(0).

and Prince [195@

+
The actual quantity tabulated is f/2, not f as listed at head of each column

(see Hey and Senior [1958]).

TABLE II-2: PARTIAL LISTING OF TABLES TO BE FOUND IN VAN DE HUI(:ST]
1957

Refractive ora/) Page

Index, m No. Quantity Calculated

[09) 1(.1.6

1.8-90 161 Efficiency factor

.8, .93,1f€ Maxima and minima of the extinction

1.33,1.5,2 - 178 curve.

m close to 1 - 180 Extinction and absorption by partially
absorbing spheres.

complex - 273-274 Complex values of m for which computa-
tions have been made.

3.41-1.94i Extinction coefficient and intensity

7.20-2.65i,00 1.3 277 functions.

1.50-in' .5-7.0 295 Extinction by spheres.

(n' small)
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TABLE II-3: PARTIAL LISTING OF GRAPHICAL PRESENTATIONS OF DATA IN
VAN DE HULST [1957]

Refractive
Index, m: 21a /) Page No. Content
2 0-4 137 Phase angle vs 2ma/X
2 0-12 151 Extinction curves of sphere
1.55
1.5
1.44
1.33
1.25
2 1-6 152-1533 Scattering diagrams
1.55 1-6
1.33 1-5
1.50 1.2-2.4
00) 0-5 162 Efficiency factors for extinction and for
radiation pressure.
[00) 12-10 163 Scattering diagrams.
1.5 0-20 177 Extinction curves computed from Mie's
1.33 formula.
1t e
.93
1.33 10 236 Scattering diagrams.
1.33 30,35,40 260 Intensity distribution.
1.27-1.37i 0-3 276 Efficiency factor for extinction, radiation
pressure, absorption and scattering.
1.29(1-ik) 0-20 2178 Variation of extinction curves if the
imaginary part of the refractive index is
varied.,
8.9-. 69i 0-1.5 283 Extinction curves (showing resonance
8.18-1.96i peaks)
©
® 0-3 285 Radar cross section o computed for
3.41-1.94i backscattering by water drops at

A=3mm.
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Some representative bistatic cross section curves for a perfectly conducting
sphere are included here (Figures 2-4 through 2-20) to indicate the behavior of the
sphere as a scatterer. These were computed at Air Force Cambridge Research
Laboratories and appear in King and Wu [1959] . The back scattering cross section
as a function of ka for the perfectly conducting sphere is also given, Figure 2-2I.

This was plotted from the tables of Hey et al [195 6] .
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III

LOW FREQUENCIES

At low frequencies the scattering function f(6, §) can be expanded in series
of ascending (positive) powers of k with coefficients which are functions of 6 and §.
Associated with each power of k is the corresponding power of a parameter ¢
having the dimensions of length, and since (8, [b) is independent of r, this parameter
must be a characteristic of the scattering body. It is obvious that in the case of a
sphere the parameter is the radius. For sufficiently small values of k£ this expan-
sion is absolutely convergent (a fuller discussion of the convergence properties is
given in section 3.4), and is generally referred to as the Rayleigh series for the
body in question.

The present section is entirely concerned with this expansion, and the
purpose is not only to determine the form of the series (i.e. the powers of k which
it contains), but also the precise coefficients of the various powers.

In section 3.1 the series is obtained directly from the Mie solution by ex-
panding for small argument the spherical Bessel and Hankel functions occurring in
the solution. In so doing the aim was to set down explicitly a significant number of
terms in the expansion, and presented here are the first five terms in the expansion
for the real part of £(6, ), together with the first four terms in the expansion for

the imaginary part. The resulting expression for the scattering function then

ol
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includes terms in plz, where p = ka.

In section 2.2 an alternative method is developed whereby the Rayleigh
series is obtained directly without any reference to the Mie solution, and without
ever having to solve a boundary value problem as such. There is no limit to the
number of terms which can be calculated in this way, and while the derivation of
the higher order terms can become tedious, the labour is no worse than that
involved in the expansion of the Mie coefficients. In addition, the calculation is
partially self-checking.

One of the main advantages of this new approach is the promise which it
holds of being applicable to other (and more general) bodies for which the exact
Mie-type solution is not available, but even with a spherically stratified sphere it
may be quicker to use this method to obtain the first few terms in the Rayleigh
series, and in section 3.3 the leading term for a dielectric coated sphere is
calculated.

3.1 Derivation from the Mie Series

Since the exact solution for the sphere is known in the form of the Mie
series it is only necessary to expand the radial functions for small p to obtain the
Rayleigh series.

The coefficients of the vector wave functions for a perfectly conducting

sphere are given in eqns (2-25), and using the fact that
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0 © _ (_g_)izm
i) = JTE Zb " S (3-1)
n 2 m- m' (m+n-l——2‘)!
© m, p . 2m

n (-1)6) n m,p,2m

h (p)=ﬁ —%:1— — 2 -i(-l)n‘f-ﬂ—ﬁz<—l) (_g—,
n 2 m=0 m!(m+n+?)! m=0 m' (m—n—;—)!
(3-2)

we have immediately

1 3 3 2 i 3 3 4 2 5 1 6 T 7T
T - — -— - - + — - -
Aol zp<15p 3P TP TR g P g P

67 3 1511 9 13
"% P tass p>+0(p)

. 3 (.3 2.2 3.3 4 25 16 1 7
el ' P 10 P 3 1P "5 P TP T35 lh
133 3 17331 9 13
" 330 P T 2335 p>+0(p)

i 5/ 5 2 i 5.5 6,2 1 13
- L SIS g ~2— 50 4 = +
Aotz ~ 5a P (1 21 P T35 P T g7 P 189”’) 0k

5 5 2 5 4 i 5 5 & i 7 13
Bao 35 ° <1'42 Pt 8P t30P T oe? 126">+O(p)
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- i 7 72 9 4 13
La) = —_— 4+ —
el3 2025 P (1 60 P 7 9900 p> 0l
i i 9 9 2 13
Aa = " 200052 P <1' 77 p>+ 0l )

i ] 9 153 2 13
Boia ™ 7 (g0 P <1" 1540 P >+ 0l)

) 1 1 13
A * " 3oweaeE P T Ol
i 11 13
- +
Bois - @mp P T Ok
13
Forny5, A, and B __are O(p ).
oln eln

1
The above expansions are sufficient to specify f (0, ) correct to Olp 2),

but rather than write down the resulting series for arbitrary 6 and ¢ we shall
concentrate on the particular cases of back and forward scattering (6 =0and 7

respectively). Substitution into eqns (2-42) and (2-43) then gives

Ho) = = 3 .5 2,10 4 6651923 6 249170261 8
S P9 754 P T 900 7038000 P 1875352500 °
6 6 2 1951 4 5795 6 13

5 P " To268 P T 6804

+ 0(p ) (3-3)
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) - L8], 1B 2 1183 4 670057 6 8369355737 8
=9 P 90 P “2100 P " 793800 P 6876292500

6),,6 2 237 4 56689 6
95 P 7 94500 * " 56700 P

+0ED) (3-4)

3.2 The Alternative Meihod

In order to illustrate the term-by-term technique for deriving the low
frequency expansion it is convenient to consider once again the problem of the field
(eqns (2-1) ) incident on a perfectly conducting sphere,

The first step is to postulate a general expression for the scattered field
and the obvious form is that shown in eqn (2-35). Each of the vector wave
functions Mo

0 and N involves the radial distance r through the Hankel function
—e

1 In

hrl (kr) and its derivatives with respect to kr, and consequently any power of r is
always accompanied by a like power of k. Near to the surface of the sphere r ~a,

and for sufficiently small values of kr (that is, for sufficiently low frequencies)

!

i (2n)! kr 1
h (k) o~ - ~- L E<rhn (kr)} (3-5)

+
&)™ 9P o

As a result, all the components of lﬂeln are of equal order in the near field (in

contrast to their behavior in the far field), while the components of MO n for the

1

same value of n are of one higher order. If, therefore, the product Be11 N is

ell

to remain finite in the near field as the frequency decreases indefinitely, it is
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necessary that

3
Bk

and since Be is dimensionless, k must be associated with a length parameter

11
which can only be the radius of the sphere. Hence Bell =0 (p3) for small p, and
from a consideration of the higher powers of kr in the expansion of é—r Ekr hn (kr)_-]

for small kr we are led to write

3 9 3
= + + + -
Bell p (Blo pBu o 512 P 513 + o ). (3-6)
Similarly
5 2 3
By = P (BygteByyToBgy T e Bygt e ) (3-7)

and so on. Any of the above coefficients may, of course, be zero.

a like analysis would suggest that the expansion

For the product A .. M
oll —o

11 —oln

2
for A0 should start with a term in o”, but by choosing instead the expression for

11

the magnetic field near to the surface (so that A011 occurs in combination with Noll)

2
it is seen that the coefficient of p~ is in fact zero. We therefore take

+p3a +...)) (3-3)

3 9
= +
A = P (g teetea 13

11 12

analogous to equation (3-6), and similarly

5 2 3
= + + + -
Aol2 P (a20 pa21 e %9 Progg™ - ), (3-9)

ete.
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At the surface I = a the boundary conditions require the vanishing of the
tanzential components of the total electric field, and substituting the expressions

for E_l and ES, we have

P cos 0

5
X + (Aolnhn( )> 35 P (cost) + < [p (p)]) 1" 0,

n:
(3-10)

and

P (cosb)
X cos 0+ Z ( oln n(p))m_— ( eln p [p (p)]>— Pn(cose =0,

(3-11)
where

X - —1pcos€ _ i (1Qcos9 . (3-12)

Since the expansions for hn(p) and ;IT [p hn (p):]Y are known, the coefficients aij and
Bij in the expansions for the AOn and Ben can now be determined by equating to zero
the coefficients of each power of p in equations (3-10) and (3-11).

In both equations the lowest power of p is p0 and the coefficient is made up
of a contribution from the single vector wave function geu and the static term in
the incident field expansion. To this order in p the two boundary conditions reduce

to

(1+ iBlO) =0
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and
1+ iBlO) cos 6 =0
giving
B10
The second stage in the analysis involves the terms in p. Contributions
from the two further wave functions Moll and §e12 are now introduced, together

with a contribution from Nell’ and are matched to the second term in the incident

field expansion. We have

~icosf - 1alocos8 + 1611 +138 iBzocos 8 =0

2
-i -, + i + 181 =
icos 6 iay 1)311 cos 6 + 18 1820 cos 260 = 0

and by identifying coefficients of like trigonometrical functions in each equation, it
is found that

1
= 0 0 T T2 Boo =

Continuing in this manner the various terms in the expansions of the Aoln
and Beln can be derived, but since the analysis is so entirely straightforward there
is little point in including further stages. Suffice to say that the results are in
accordance with those given in section 3.1.

On the other hand, there are several features of the method which it is

desirable to point out. In the first place we remark that the analysis at each stage
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is to some extent self-checking, in that the nth stage provides 2n + 1 self-consistent

equations from which to calculate 2n-1 unknowns. Moreover, the nth stage (which

brings in contributions from the wave functions M and N _ ) requires that
—oln-1 —eln
Bn—l 1_: BH-B 3 > Bn_s B2 ot
and « s o s a e
n-21 n-4 3 n-6 5

all have the value zero, and therefore introduces no new power of p into the
expansions for the corresponding coefficients of the vector wave functions. In fact,
each stage yields a correction term to the expansion for either Aolr or Belr (r ¢n),

but not both, and since Ao and Belr are of the same order in p, two successive

Ir
stages are needed to give a new order of correction to both these coefficients

A further point of interest concerns the real or imaginary character of the
aij and the Bij' At every odd stage in the analysis an even power of p is matched
to a like power of p in the incident field expansion, and from eqn (3-12) it is
apparent that this implies the matching of the appropriate aij and Bij to a real

coefficient. In contrast, the even stages produce values of aij and Bij which are

pure imaginary and hence

. real e ts o . odd
o, is | . if (i-j) is
ij imaginary even
whereas
. real . . . .. €even
Bij 18 imaginary i G-3) is odd
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It now follows that when n is odd all even powers of p in the expansions for Aoln and

iBeln have real coefficients (odd powers having pure imaginary coefficients), and
the reverse situation holds where n is even. This immediately determines the
power of p in the expression for (6, {) which have real or imaginary coefficients,
and reference toeqn (2-37)shows that all even powers must have imaginary
coefficients, while the odd powers have real coefficients. The fact that the first
imaginary coefficient is 0 (p6) is a consequence of the vanishing of e and Bll’
which thereby removes the p4 powers. These conclusions are confirmed by
eqns (3-3) and (3-4).

Our final remarks concern the initial stages in the analysis. At the first
stage the coefficients of p0 are matched and this requires that the incident field

ik . .
factor e - be replaced by unity, so that };31 and P_Il are independent of one another

0
contributes a term of order p , and

to this approximation. Moreover, only Bell

consequently this first approximation has produced a near-field boundary-value
problem in which the electric and magnetic fields are decoupled. Although the
coupling is re-introduced at the second stage, it may be of interest to consider
why the initial decoupling does not affect the derivation of a complete solution.
The first stage essentially reduces the problem to a static one and gives
only BIO = i, which corresponds to a simple electric dipole. Thus, the first stage
ignores the magnetic dipole contribution to the scattered field, which contribution

is of the same order as the electric one, and to obtain the electric field due to
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the magnetic dipole either of two methods can be adopted. The first of these would
require the corresponding first stage in the solution of the magnetic field problem
and the subsequent use of the field relations to determine the contribution to Es.
In practice, however, this is not necessary in that the second stage in the solution
of the electric field problem re-introduces the coupling between the electric and
magnetic fields and brings in the magnetic dipole contribution. Two stages are
therefore necessary to complete the first approximation to the scattered field, and
the fact that no magnetic field problem as such has to be considered is a direct
consequence of the symmetry between the expressions for the scattered electric
and magnetic fields in terms of the wave functions Me n and ge mn
On the other hand, if only the first term in ch expansionofor £(6, ) is
required, it may be more convenient to replace the second stage by the first stage
of the corresponding magnetic dipole analysis, since this may prove to be a some-
what easier calculation (particularly for bodies other than the simple homogeneous
sphere). In this case, the whole analysis can be expressed more concisely.
Taking first the electric dipole problem, the first stage is to match
B
e

1 gell to the unit vector ® at the surface r =a using the boundary condition

fAE +EY) =0
and since

Q= sin 6 cos pT + cos 6 cos P 8 - sin[bﬁ,
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consideration of the tangential components of Eell shows that

_ -1
o 0]

For the magnetic dipole problem the corresponding stage is to match i A011 N

. 3
Bell ~ ip for small p.

oll
to the unit vector 3? using the boundary condition
fe@+ud) - o

and in like manner this gives

A =7 ~ - 'l—p3 for small p .

RN (o) 2

p 1

This completes the analysis for the two near-static problems. The electric

dipole makes a direct contribution to the scattered electric field, and according to

the first of eqns (2-35) we have
E ~ ip3 E N.. . (3-13)

Similarly, the magnetic dipole contributes directly to the scattered magnetic field

and from the second of eqns (2-35)

s ,_ L1 ip3H

H 5 (3-14)

0 Iiell ’

from which the electric field contribution can be found by using Maxwell's

equations. The importance of this derivation lies in the fact that both (3-13) and
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(3-14) can be obtained by appealing only to statics.
In practice however, the last step (use of Maxwell's equations) can be
directly into the first of

avoided by substituting the expressions for A0 and Be

11 11

eqn (2-35). We then have

S .3 1 .
E ~ip B 0Ny * g 1M ),

which represents the combined contribution due to the electric and magnetic dipoles,
and the corresponding far field expansion is

ikr

P (;— + cos 6) cos § 5 - (1+—12— cos 6) sin Qﬁ . (3-15)

3.3 A Dielectric-Coated Sphere

As an example of how the above method is used in a non-trivial problem, we
shall here derive the leading term in the Rayleigh solution for a coated sphere
(see section 2.2).

Consider a perfectly conducting sphere of radius a which is covered with a
layer of dielectric of thickness d. The permittivity and permeability of the
dielectric are € and u respectively; the conductivity, however, is zero (otherwise
the Rayleigh solution is the same, to the first term, as for a perfectly conducting
sphere of radius a + d). The whole is immersed in a homogeneous isotropic medium

which, for simplicity, will be regarded as free space.
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FIGURE 3-1

To determine the Rayleigh solution it is sufficient to solve two static
problems and then match these results to expressions involving spherical vector

wave functions. In the first static problem the incident field is merely

E - EO’)? (3-16)

and the task is to obtain the scattered (electrostatic) field which this excites. The

second problem is analogous in that the incident field is here
H =-HF, (3-17)

so that a magnetostatic field is now involved.

The most general solutions of Laplace's equation are of the form

M n_m cos
é = r P (cosh) , mp

n sin
e mn
0
(1)

—n—
=r p™" (cos Q)C?S m f

e mn n sin
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and if i is regarded as a static potential, the corresponding field can be found by
taking the gradient. In the region outside the sphere the scattered field must be
expressible in terms of % izinn alone, but in the dielectric coating both types of
potential will occur. °

Let us take first the electrostatic problem in which the incident field is given

by eqn (3-16). Since

o)
E - E v@ . (3-18)
ell

If E is the total electrostatic field in free space, so that E = Ei + ES, and if ]_3_'
similarly denotes the field in the layer, the boundary conditions at the dielectric
interface (r = a+d) are

AAE =R AE

and

At the surface (r=a) of the perfectly conducting sphere the only condition is
AAE =0.

In view of the 6 and @ dependence implicit in the expression(?qn (3-18))for
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the incident field, it is apparent that the boundary conditions can be satisfied by

choosing the following expressions for the secondary field:

()
(3-19)

ell
(2) (1)

e -8v§ +cvg
Tell ell

(3-20)

=
i

where A, B and C are constants as yet undetermined. The boundary conditions now

give

E_+ AS - ¢+ —2 T
°  (a+d) (a+d)
€ EO— 2 3 A = e¢4C- 2 3 B 7,
° (a+d) (at+d)

B

C+— =0,
a

from which we obtain
€
b3+2 a3 - =2 (b3—a3)

A=-ED5D
° b3+2a3+2

(3-21)

€
€
-g‘ (b3 - a3)

where b = atd. If d <<a so that powers of d/a higher than the first can be

neglected, the expression for A becomes

3 o 4
A= -E_(atd) (1-3 = T >, (3-22)
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which differs from the result for a perfectly conducting sphere of radius a+d only
€
in the presence of the multiplying factor <1— 3 ?0- %)

From eqns (3-19) and (3-22), the field which is scattered into free space is

€

5 _ 3 o d
E - _Eo(a+d) (1—3 € a>v§

(2)
?

ell

and the next step is to match this to the limit of a non-static solution at low

frequencies. Since

1 A A A
V@ =~ 1-2sinfcos T +cosOcosfO-sinppp >
consideration of the vector wave functions M and N shows that for A»> r,
—gmn —e mn

(2)

v ~- HEN
=ell ~’
ell

and hence, in the near-static limit

€
ES - iE K (atd) (1-3 o —d—) N . (3-23)
= o) € a/ —ell

The far field is now obtained by inserting the first terms of the asymptotic expan-
sions of the radial Hankel functions for large|kr, and this gives,

3  d A A
E ~E o k (a+d)3(1—3 > ;) (cosBcos@ 6-sin @) . (3-24)
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Eqn (3-24) represents the k3 contribution to the far field arising from the
electric dipole, but it is not the only contribution of this order. There is in addi-
tion a term produced by the magnetic dipole and this is most conveniently obtained
by considering a second static problem.

The incident (magnetostatic) field is now

i A
H =-H
d oY

)

which can be written as

R E— L

0 oll (3-25)

and the task is to find the scattered field subject to the boundary conditions

p A -H=ph-H

o
1
AAIE fAH
at r = atd, and
1
f-H =0

at r=a. The form of eqn(3-25) leads us to adopt the following expressions for the

fields:
s _~ (2)
WAV,
1 & (2) |~ (1)
H 'Bv§011 +qu)ou ’

where A, B, and C are constants as yet undetermined, and the boundary conditions
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then give ~ }

Solving for K, we have

3,3 o M
Hb3 2b " +a _2N (b"-a")
A-_—2 ° (3-26)
2 3 3 u 3 3 ;

2b " +a +u—o(b -a")

where b=at+d, and if d<< a,

H

~ 0 3 b d
A= - 5 (at+d) (1-3 u a). (3-27)

This differs from the result for a perfectly conducting sphere of radius a+d only
. . M d
in the presence of the multiplying factor {1-3 lo a) -

The field which is scattered into free space is now

(2)

H
S_ 0 3 M d
_I-_I - (a+d) (].'3 Ko 3.) V QOU. )

2

and by matching to the vector wave functions for A »> r, we have in the near-

static limit
Hy 3

s_. o 3 M d
1% 52 K (atd) (1-3 i3 N (3-28)
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The corresponding electric vector is, by using Maxwell's equations

E

ES - =2 13(avd)’ (1-3 ud

and in the far field this becomes

ikr 3 3
s e k" (atd) ( 13 gi_) A A
E ~EO o 5 1-3 Uy a (cos ¢ B-cos 6 cos @ @). (3-30)

The complete first term in the Rayleigh expansion for the scattered
electric field is obtained by adding the contributions represented by eqns (3-24)
and (3-30). The required solution is therefore

ikr

s_n e 3 3Y|L( ok d o d_) A
E"=E_ krk(a+d) [2(1—3“0 a)+<1—3 < a cosG] cos@ 6

-[( 1-3 %0 g) + %(1-3 ',;—LB %) cos 9] sin 8 ; (3-31)

from which the scattering function can be determined if so desired.

3.4 Convergence

As previously remarked, the Rayleigh series is a convergent representation
for sufficiently small values of k£, and in any application of the above results the
actual radius of convergence is then a matter of some importance.

To see how the convergence arises, let us write the scattered electric

field in the form

E = f; a kD)t (r,0,0) (3-32)
- (0] 0= n n
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where in(r, 6, @) is a vector function of the coordinates. The series on the right
hand side is absolutely convergent for all values of kZ, the functions f_n(r, 0, )
being bounded as functions of n. Each ozn(k[) can be expanded in a series of posi-
tive powers of kZ ina neighborhood of the origin of the complex 94 plane, and is
therefore an analytic function of k/ within this region. By rearranging the terms
in eqn (3-32) we then have a representation for ES as an expansion in powers of
k{4, which expansion converges within the least circle of convergence of the
individual a .

If the functions an are now identified with the coefficients A0 and Bel

In n

in the vector wave function expansion for a perfectly conducting sphere, it is a
simple task to determine the appropriate radius of convergence. From eqn (2-25)

it is apparent that the only singularities of the Aoln and Be o are poles at the

1
zeros of the spherical Hankel function or its derivative, and the location of these

zeros is such that the singularity nearest to the origin is provided by one of the

smaller values of n. For n = 1 we have

eip i
hy(p)= - S (1+7)
ip .
1 ! e i 1
=1|ph )]=—i —(+=--F
showing that Aoll has a pole at p = -i and Bell has poles at p= - -;—(li if37).

Accordingly, both Aoll and Bell are infinite on the unit circle and since all
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the higher coefficients are regular inside, the entire Rayleigh series must con-
verge for |p|<1. The fact that a singularity exists for which |p| = 1 implies
that the series does not converge outside this region, and consequently the Rayleigh
series for the perfectly conducting sphere converges only for
ka <1. (3-33)
From the above discussion it is obvious that the convergence is determined
, and any change in these by, for example,

solely by the coefficients A . and B
oln e

1 In

a modification of the boundary condition may affect the overall convergence of the
Rayleigh series. To illustrate this point, let us consider the case in which the
boundary condition

E-(A-E)i=nzh H (3-34)

la)

is imposed at the surface of the sphere. Here A is a unit vector normal drawn
outwards from the sphere, 7 is the reciprocal of the complex refractive index of
the material of the sphere relative to free space, and Z is the intrinsic impedance
of free space.

Eqn (3-34) is the usual impedance boundary condition and is only accurate
to the first order in . The physical situation therefore requires that n be assumed
small (n=0 for infinite conductivity), though there are circumstances under which a
physical significance can be attached to eqn (3-34) even when n is not small com-

pared with unity. On the other hand, if the problem is merely regarded as a
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mathematical one, it is a trivial matter to show that the boundary condition is

precisely satisfied by a scattered field of the form (eqn (2-2 6) ) with coefficients

= Q i B =iQ i 3-35
Aoln n(P, in), otn” | n(P, i/n) ( )

where

1 !
. sivify;
n 2n+l Jn(p) D’p p]n(p)J

n(n+1) 1 '
h (7 [phn(pﬂ

Qn(P, i7)= -(-i) (3-36)
For a fixed value of 7, Qn(p, i?) is a function of p and can be expanded
in a convergent power series within some neighborhood of the origin p=0. The
circle of convergence depends on n and as in the case of a perfectly conducting
sphere the least circle is provided by Aoll and Bell’ that is, by Q,(p,i7). The

denominator in the expression for 2,(p,i7) is

ip
e . Y
_(1—7)——p3 <p2+1p+ ERY

ey 4 1437
e (2)

i L +3 7Y
P=Pa==y 1- 7

These are two genuine zeros except when? =0, in which case the second zero must

which vanishes when

be discounted. If this case is, for the moment, excluded, it follows that the

Rayleigh expansion for ES converges only for
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ka<min([ pll ) I pzl)
When 7 is a general complex constant an explicit form for | py|or{ps]is

difficult to write down. If| ¥ |)71 or J)’ |(<1, however, the equations for p; and

p, simplify considerably, leading to a more compact statement of the convergence

region. Thus, for[‘}’ |>>1,

p1~—'i2—{1+i\/§ ( 1+ —327)}
p2~-i§ {1-1\/'5 <1+ 3—27,—)} ,

py~-i (1+1)

and for| 7 [«<1,

py~i?.
Accordingly, for small n the convergence region is specified by the zero py for
the coefficient A011 (Y replaced by n) and is
ka< | nl<<1;
similarly, for large n the convergence is determined by the zero py for the

coefficient Bell (7 replaced by 1/n) and is

ka < <L,

1
[n]

In both cases the region of convergence is appreciably reduced in comparison with

that for a perfectly conducting sphere, and can become infinitesimally small. We
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observe, however, that for n =0 the zero which is dictating the convergence
disappears. The zero p; then becomes important and leads to the result given
in eqn(3-33).

If 1) is neither large nor small compared with unity, the boundary condition
is of doubtful validity, but it is still of interest to examine the convergence of the
Rayleigh expansion when n=0(1). Both p; and p,»0 as 71 and, indeed, for
7 =n=1, p; and p, are infinite. This can be confirmed by looking at the expres-
sion for ©4(p,i). In this particular circumstance, however, Q4(p, ) imposes a
finite radius of convergence which now becomes the important one, and from an
examination of £24(p, i) we find that the Rayleigh expansion converges only for ka <2,
On the other hand, note that n=1 corresponds to a sphere whose impedance is that
of free space, and this is certainly a body for which the impedance boundary con-
dition may be expected to fail. Nevertheless, the result does suggest that if the
exact boundary conditions were used, the radius of convergence may be greater
than unity in the case of a very diffuse sphere, and a study of the coefficients

A 0 and Be in Stratton [1941, p. 565] gives additional confirmation of this.

ol 1n

Returning now to the previous example in which n is large or small, the
fact that a marked reduction in the radius of convergence of the Rayleigh expansion
accompanies the introduction of even a slight impedance into the sphere is,

physically, rather surprising, and suggests that the usefulness of the Rayleigh
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approximation is limited to perfectly conducting, or highly transparent, bodies.
The discontinuous change in convergence between the cases n=0 and 7 7& 0 is
due to the fact that there is no expansion for Aoln or Beln which is uniform in
n. Essentially each coefficient involves a factor of the form p/p—n, and for

n # 0 this can only be expanded in a series of positive powers of p when

| o |<In] . Accordingly, any attempt to approximate the expressions for the

coefficients by neglecting terms of 0(n?) will be limited by this same condition,

even though the final result may somewhat disguise the fact.
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v
THE WATSON TRANSFORM AND CREEPING WAVES

The problem of the diffraction of electromagnetic energy by a perfectly
reflecting sphere for which ka is sizeable was made tractable by Watson [1918,
1919] . Watson found a transformation of the Mie series - the Watson transform -
which resulted in a much more rapidly convergent representation of the solution.
Much later Fock [1945, 1946] and Franz [1951%] initiated a further analysis and gen-
eralization which indicated that the functional form of the Watson solution was
applicable to problems involving other convex shapes. The mathematical counter-
part of the extensions of Fock and Franz is found in the work of Langer [1932] and his
followers which was essentially completed for this application in the 1930's. The
more general approach has led to the presentation of the results in terms of certain
"universal functions' which have been extensively computed and tabulated under the
direction of N. A. Logan [1959_‘] . In our development we follow the approach of Logan
and his co-workers [1961] .

4.1 The Field on the Surface

We now compute the magnetic fields induced on the surface of a perfectly
conducting sphere by plane electromagnetic waves. If the incident electric field is

given by

(4-1)
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the magnetic field on the surface is
-1
. ® P = (cos 6)
Hosin p ~in "2 1 n
HO: = (2n+1)e D
n=1 Kn (ka) 06
-1
i Pn (cos 0)
+
C(l)'(ka ) sin 6
n
(4-2)
-1
H_cos fp @ -inﬂ/2 1 8Pn (cos 6)
H¢ = i (2n+l)e D
-1 ¢ (ka) 26
-1
i P ~ (cos 6)
n
1 sin 6
¢ (ka)
n
where we have made use of the results of Section II, the relation
- 1
P! (cos ) = - pl (cos 6) (4-3)
n nn+1) 1

1.2) (x) =x hg’ 2)(x), lpn(x) =x jn(x). For convenience we also

and the notation §n

make the substitution

06— =r-0
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which results in

-1 -1
P (cos 0)= )n+1 P (cos a)

sin 6 sin o
(4-4)
BP_I(cos 6) aP_l(cos Q)
_n_ (— )n_L__
20 ou
Using equation (4-4), equation (4-2) becomes
H sin P &= nTR g 1 QPI_ll(cos a)
HG = @ (2n+l) e (—) . I
n=1 Cn (ka) o
P_l(cos Q)
_ n
g(l)'(ka) sin o
n (4-5)
H P 2 7 aPnl(cos Q)
cos -in T/9 1
Hy= Oka Z(2n+1) e (=" o -
n=1 ¢ (ka) 9
P_l(cos Q)
i n
¥ (1) in @
¢ (ka) °
n
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We now rewrite the sums over the integers in eqn. (4-5) as sums over the

odd half-integers, lettingn =72/ - % s

HOSin ¢ _i(y_ 1/2 ) 7T/2 Y- 1/2
H9 = Z , 2V e (= .
ka

v=5,..
-1 -
1 apv_l/z (cos @) . 1;_1 5 (cos @)
(1) (1) .
ST (ka) o g 2}_l/z(ka) sin
(4-6)
H cos §§ -iw-Y2) Mo V- Yy
Hy= °ka 2Ve (=
=32
_.]_ —1
1 ) P, _1/2 (cos @) N i Py _1/2(cos Q)
(1) da (1) sin
¢ 1, (ka) ¢ (ka)
:U— /2 v - /2
For later use we note that since
P; (x)z 0

the terms for v = 1/ 2 could have been included in these sums.

The summands in eqn. (4-6) are regular functions of 7V in a strip along the

real axis so that we can write the sum as a contour integral about the positive real
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axis

1 dv -Z’—1/2
—_ — 7 (— ‘ ummand 4-1
2ri COoSs VU ( ) S J ( )

C

since cos ¥7 has simple poles at the odd half-integers. Specifically the eqns. (4-6)

become
. . 1 7r/
H sin § vdy  -i(v-/2)7/2
H =i e 0 ()
6 ka cos Um
C
(4-8)
_ Hgeos f 24V - Yoy Tl
H, =- e ¢ )
¢ ka cos Uw
C
We have written the terms in square brackets in eqn. (4-6) as @ and @
-iv /o
We examine the terms e 0(¥) and note that these are even functions

of 2. Because the remainder of the integrand is odd the integrand is an odd function

of . We consider the contour C in Figure 4-1 and note that the lower path gives

7 -plane

FIGURE 4-1: THE CONTOUR C
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an integral of the form

oo-ie

I = / dv 0(v) (4-9)

0-ie

where we write 0(v) for the odd functions of v . If we reflect the contour in the

origin we find

-ootie
1 - / dv 0(v) (4-10)
O+ie
However, interchanging the limits
OHie
I, = f dv 0(V) (4-11)
-00+ie
and adding the contribution of the upper path the total integral is
ootie
I= / dv 0(») (4-12)
-ootie

In the sequel we will suppress the i€ in the limit with the understanding that the path

is to run just above the real axis.
To evaluate the integrals of the form of eqn. (4-12) we need to examine the

integrand in some detail. The first thing we note is that the integrands have simple

1 1
poles at the zeros of 5(1)1/2 (ka) and C; )1 / (ka) and these lie in the first quadrant.

V- 9
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This analytic behavior suggests that if the contour (-0, ) can be closed by a semi-
circle in the upper half-plane we can evaluate the integral in terms of these poles.
This is indeed the case under certain circumstances as we will show below. In the
contrary case we will evaluate the integral by the method of stationary phase.

As a preliminary to our examination of the integrand we define, after Logan

) (%, 6) and E(z)

[1961] , the functions Em m (7, 6) by
(—)™ 2Py—_li; (cos 6) = E(lei (v, 0)+ El(n2)(1/, 6) (4-13)
2

where these functions have the asymptotic behavior

L2, .1 ’_e_ (1,2) )
E",0) g P H Y 0) (4-14)

for || =0 and 0< 6< 7 . Explicitly

1
PO it Y el
m 7T T (2+1) 7 sing <

. 16
-ie

(4-15)

1 1
-— + — . .
2F1( 5 T m, 5 Tm; Y+ 1;

2 sin 6
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[ (@-m+ o) T
@) 5 -i(ze-lg-m Ty)
E (2,0)= e
m \—I(V"‘l) T sin 6
. (4-15)
, -if
1 1 ie cont.
CoF (ot m, o -mp Yt
27112 2 2 sin 6
We have remarked that the contour runs above the real axis so that
Im v >0
hence, we can make the convergent expansion
©
sec Yrw = ZeIVﬂ Z (—-)! e27r ivd (4-16)
£4=0
From the form of E(rlr; 2)in eqn. (4-15) we make the following observations:
T
- +( "o + mr)
E?,a)-e Ve 2 £V, 1-a), (4-17)
m m
il 1
e EPwa)-EY (v, attn). (4-18)
m m

where eqn. (4-18) is derived from the fact that the hypergeometric functions are
1
periodic in @ with the period 7 so that the continuation of the E(Izl in the a-variable

to angles o > 27 is determined by the exponentialalone, provided we take the radical

2 o
(sin v) to be |sin vl Putting these results together
- 1
secVYT P 11 (cos a) == (——)l {E(ll)(v, 21 (£ +1)- 6) —iEi )(1/, 21 4 +6)}
V-1 (4-19)
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where we have returned to the variable 6 = 7 -a.

The operations 9/96 or 1/sin 6 on P—ll/
V-Tg

behavior of P_ll/ as a function of ¥ for ||>>1, Im ¥ >0. Hence we have from the
V=72

asymptotic form of the Eil)(v, ) that the dominant term of eqn. (4-19) is of the form

do not essentially affect the

. . _T
elM9 so that the dominant term of the integrand will be euj(e / 2). Therefore, for
Im? > 0 the integrand will be a decreasing exponential in 2/ provided § > T/2.

For this case the contour can be closed, the semicircle contribution vanishes , and

!
the integral is given by the residues of the zeros of Cj(jl) and §(1)1 y provided the
- 2- 9

'

rest of the integrand remains bounded. This is indeed the case except on the locus

1 1)
of the zeros of ¢ ( )1 (ka) and ¢ M (ka). It can be shown, however, that a path can

o -, 1) 1"
be found between any two zeros on which the functions 1/ ¢ and 1 / ¢ remain
V-Y, V-1,
bounded.
The terms other than the dominant one in eqn. (4-19) satisfy the convergence
condition on the semicircle for all values of 6. It is this behavior under the decom-
position [eqn. (4-19);1 that was the basis for the ""creeping wave" analysis of Franz

(1954 .

We consider the behavior of an integral of the form

7y gUy,
- / vdve a (4-20)
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1 (1)

where we write f for either ¢ or ¢

. Now from the remarks above we
V-1 V1)

have for ¢ > 7/2 that

® —ivn 4 2 W
n El (yn’ V)
I1=27i (4-21)
o
oV
7)n

where £( 7/n) =0. Since the first zeros of f, in either case, occur for || ~ ka for

ka large we can use the asymptotic forms

(ka) =-1i ml/z {wl(t) - 5'15 m—2t2 Wi t)+.. }

¢
-1,

¢ (ka)=m {w'@) - w2 [ 0w o-aew 1) +} (4-22)

where we write

m = (ka/ 2)1/ 3
(4-23)
t=21 (v-ka)
m
and wl(t) is the Airy function
w () = {7 (Bi(x)+iAi(x) ) (4-24)

Now we make a further approximation in the integrand of eqn. (4-20). We
give all slowly varying functions of 2’ their values at 2/ =ka and remove them from

the integral. This we do since for ¥ 3 7/2 , and ka and hence lvnl large enough
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the residue series [eqn. (4-21) ] converges with sufficient rapidity. Again using the

(1)

asymptotic form for El (#,¢) under the condition |V|siny >>1, we have in this

approximation two integrals which we write as

© i€t
1 e
f(§) = = dt
-0 (4"25)
@
i&t
g(g) = —* € dt
\r7r— w'(t)
-® 1
where we put
E=m(y-7).
We now approximate the fields on the surface for 6 > 7/2, ka sin 6 >> 1
by
®
e 11 1 { ikaiy _.ikawi ,
Hp = 1Hosm§25m P (=) {e f(gx) ie f(S})
4=0
w (4-26)
~ 1 ikall.’! . 1kaw‘; 1
H i H  cos @ — (—)‘Q {e g(EK )-ie g(%})
‘ £=0
where

€!=m(2771_ +6-72T—)=mw! s

SJQ' =m(27 + 52 - 0) =myj
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and, as above,
m = (ka/2)" .

The next region on the surface we consider is 6 < 7/2. Here we need to
further decompose the region since the transition from § ~ 0 to the shadow boundary
6 ~ 7/2, is accomplished by means of two different representations. First near
6 = 0 we evaluate the fields given by the integral representations of the form of eqn.
(4-20) by a saddle point method for the first term in the expansion [eqn. (4—19)_] .

The result for this leading term is

2 .4
-ika cos 6 i sin2 ) 5 sin 6- sin'0
1+ 3 + 5
2ka cos”f 2(ka)

ng= -H 2 cos 6 sin ffe

+...
00569

(4-27)

. 2 .4
op -ika cos 6 i sin2 0 9 sin "6 - sin 6
H,=-H 2cos f e - - =5
g o 2ka cos°0 2(ka)2 cos® 6

Here we remark that the leading terms in eqn. (4-27) are just the geometric optics
fields.

To bridge the gap between the shadow boundary and the optics fields in eqn.
(4-27) we note that asymptotically as £-» - the functions f(€) and g(&) in eqn.
(4-25) go to the correct leading term of the optics field in eqn. (4-27). We can then
use eqn. (4-26) provided we make a substitution in the argument so that we get the

correct phase. This is simply to let

EO= m(6 - 7-r2-)—>§0 =m sin (6 - 7)) (4-28)

NVRE]
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in the leading terms of eqn. (4-26) for 6 < 7/2 and 6 >90>0. Here the choice of
00 is somewhat arbitrary. To make the choice of 90 specific is not meaningful so
we specify the range [__300, 600] so that the regions of eqns. (4-27) and (4-26)
overlap.

In either of the cases we also remark that the terms in eqn. (4-26) for
A =1, 2, .... will also appear just as before. However the terms near the caustic
in the lit region diverge as 1/{sin 6 as §—»0. We will find a bounded represen-
tation for these when we treat with the same behavior at the caustic in the shadow
region, 6 =7,

We will now find a representation for the fields in the region near the caustic
in the shadow where ka(7-60) is small. After Logan [1961] we make the physical
argument that the terms in eqns. (4-26) of the form g(SI )eikaw/\Jsi_ng describe
waves which diverge from 6 = 7 while terms of the form g('g“!; )eikaw'/\(m describe
waves which converge toward 6 = 7. This suggests that on the surface these waves
can be represented by Hankel functions which represent converging and diverging

waves in a cylindrical geometry. This behavior is also suggested by the represen-

(L, 2)

m

tation of the functions E (7, 6) in eqn. (4-14).

We consider the term of eqns. (4-26)

3
ika (27+6-75) tka(erl+ 7 -0)
. .

e _ e ! _
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This is a valid representation away from the caustic, for ka(r-6)>>1, and is
suggestive of the asymptotic form of the Hankel functions. We will find such a
Hankel function representation and then continue eqn. (4-29) to the caustic region.

From the asymptotic behavior of the Hankel functions

37
+i(z - °74)
H'(l: 2)(Z) =4 &_ e (4-30)
1 - %‘ TZ
we have that

Jka(erf+0 -T2) _ -ni/a j—k_;_; ika(27 4+ 72 )
ie 9 €

,’sin 6 (4-31)
7T-9 (2)1
'\i sin 6 Hl [ka(w—eﬂ
. 3T
ika(27{ + 5 -6)

. T
e - 311/4! ka7 1ka(27rJl+ /é)
=-1€ _2_' e

and

\lsin 6
(4-32)
_ !
79 Hil) (ka(w—e)]
sin 6
If now we substitute eqns. (4-31) and (4-32) in (4-29) we get
. . T
e—m/4 Ka T elka(2712+ /2) o
2 sin 6
(4-33)

-{H‘f)' [katr-0)] g il (katr-0)) gty >}
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Now if we let 6 approach 7 we have

g(& 1) o g(sk) (4-34)

and (4-33) becomes

_ ika(27d + T )
e in /4 Jkar/2 e C 27 (ka (7-6) )g(&) (4-35)

which is finite.
In the above treatment we have performed the continuation into the shadow
caustic using the g(£) as an example. Of course, the same will hold using f(£).
Using our new representations, eqn. (4-33), and the analogous one for the

f(€)'s eqns., (4-26) become

R = ika(2rd+ "2y o
=H sing o " ,,g—m—e PIEE {Hfz’ (ke (r-6) )

1 a (r-0)) 1) >}
(4-36)
3rif4 4 ~ . Ty ){1_1(2)'1{3l »
By-H cospe  m /2{;,;71511_%2'(_)2 Jka(er+ | Gkalr-6))g(g))
+ 1 (kalr-6) ) g(E1) }
m = (ka/2)1/3,
g =m2rl+0-7)
m(27 f + §27_r - 9),

where as above,

Sj:

and 6>r/2.
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A similar representation can be found for the higher order terms near the

caustic 6 =0, We give the results without repeating the analysis.

00)
. 37r/
ew . ri/4 5 E g ika(erl+ 7/2)
H6 —H0s1n¢e JﬂszinG I=O(_) ©

Q) (2) '
{HI (kao) f(§,€+l) + H1 (kaB) f(Sk )}
(4-37)
2 37
cw —i71’/4 3/2 ) 2 1ka(27r,e+ /2)
H, =H cosfe m 7 = (e
) 0 sin 6
£=0
DI (2)' '
{ H (ka o) g(Sg +1) +H (kag) 8(& )}
where 6 < 7/2 and ka sin 6 < 1.
4.2 The Scattered Field
Again with the field
E-= E, % ¢ Ik (4-38)

incident on a perfectly reflecting sphere of radius a, the scattered field to order 1/r

is from eqns. (2-16), (2-17) and (2-25)
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®
5 E i ¢eikr E '( )n ot Y n(ka) dP, (cos 6) l/,n(ka) Pn(cos )
] s kr - t+1 ! - sin 6
C 2 ™ ha)

(4-39

lkr Z n 2nt+l Y (ka) aPn(cos 6) ) ¢n(ka) Pn(cos 6)
E¢ =-E i s1n¢

n(n+1) 6 1) sin 6
D) ¢ ka)
We make the substitutions of section 4. 1
0—a=71-60
n—?=n+ %
and use the relationships of eqn. (4-4) of section 4. 1 and write
i ' 1, (ka) -1 v 1 (ka) P 1, ( )
s . elkr %_1/2 31;)_1/2((303 a) v- /2 1/—1/2 cos o
E,=E icosff =—— 27 + :
6 "o kr 35 1y 1) (ka) sin a
V=§ CERRIRS : (ka) oa %_1/
V- /2 2
(4-40)
v . (ka) -1 J
ka) P
kT - 1/2 oP AN (cos @) ¥ . 1/2( ) 1/_1/2(cos a)
¢—E 1s1n¢ 2V 0 :
22 _‘V— /2 Y- /2
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We now restrict our detailed treatment to the first of eqns. (4-40) and con-

sider the sum
1

-1
(ka) JdP 7, (cos @) -1
o TS B e oo

’ ka preY ka sina
’y %-1/2( ) 1/2< )

(4-41)
-

Eqn. (4-41)has the contour integral representation

1 -1 1
k
s [ 2V b aPv-l/z(COS " + bt Pv_l/z(Cos K
0= .
1+ o2V §(1)lv (ka) Sa C(I) (a) sina
- /2 2/—1/2 (4-42)

where the contour C encircles the positive real axis in a clockwise direction as in

figure 4-2. As before we note that the contribution

Zplane
P
——t
FIGURE 4-2

of the poles at #/=1/2 vanishes.
1, ()

Since 2, = ¢ o tE y e (4-42) can be written as the sum of two terms.

The first we consider is
aPn](cos Q) Pn](cos a)]

+
0« sin o |

Vdy 8P1;'1_1/2(cos Q)
b7 o2 12

1+

c
(4-43)
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But 0]
E 15l 1. .
(n+2)Pn (cos a)= 2cot2 s (4-44)
n=o
hence, cot a
d 1 o 1 2
= — (= = - —= = (4-45)
I1 do (200t2)+2 sin o

From this result[eqn. (4—45)] we confine our attention to

(2) -1 ( )
/ 2dv (1)/ (ka) 913”_1/2 (cos @) , 1/2 (ka) p~ 1/ (cos @)
o= 2vr ' (ka) da (1) sin o
1+ ¢ a
c ° ‘V-l/2 71_1/2 (ka)
(4-46)

Since the integrand in eqn. (4-46) is an odd function of VY we can reflect the

lower part of ¢ in the origin and get

(2) -1

aotie € 1, (ka) dP ~. (cos ) (2) (ka) 1 (cos a)
oS- yay_ | VP2 v '1/2 Vb
1+e2VTi C(l)' (ka) da g(l)l (ka) sin o
-ootie V'l/z it 2

(4-47)
where € >0 is a small parameter. In the sequel we drop the € in the limits of inte-
gration with the understanding that the contour is to run just above the real axis.

As in the previous discussion of the fields on the surface of the sphere we
would like to close the contour in eqn. (4-47) by a large semi-circle in the upper half

plane. To this end we decompose the Legendre function as in eqn. (4-13),

-1 () (2)
- 21; —1/2(cos a) = E ¥, o) + E (v, ) (4-48)
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(v,a)~ ... € is the dominant term in the

2 -iv
and require 0. Since E(l) Ve

Legendre function in the upper-half #-plane,

1

9
. =1 - ———1-?;— =1+0(e””7), (4-49)
14+ e21 T 1+ e ivaw
and since in parts of this half plane
2)
C(ﬂ-l/z(ka)
—_— =0(1) (4-50)
(1)
¢ (ka)
v-Y,

we have that the terms of the integrand of eqn. (4-47) are exponentially small for

|7|>> 1 except for

> §(2)' (ka) §(2) (ka) E(2)( )
R 1 V-1 3 (2 V-Yo L ”
= V4 E (v, + :
2 ¢ (ka) oa (1) sin «
1 ¢ . (ka)
- V="l 1/_1/2
(4-51)
The remainder is
o0 !
glej (ka) aEq)(v,a) 1 aE<122u,a> 1
- [ fya L2 — - :
’ §(1)’ (ka) 9 1+62‘Vﬂ'1 [ 1+e-2v7r1
~-® 1}_12
(4-52)
(2)
: _1/2(ka) E(ll) (¥,0) 1 E<12 ) (v,a) 1
' g(l) (ka) sin 1+ ezyﬂri sin & 1+ -2vri
1
V-
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Eqn. (4-52) can be determined by closing the contour and evaluating by means

of the residues at the zero of t(l)l (ka) and C,il)l'/ (ka) . If we designate the zeros of
V- /2 =72
5(1)1 (ka) by v
) .
(1)
¢ (ka) =0
ﬂn_l/z
and those of C(l)' (ka) by 7/
v -1 ) Y Um
D a0,
‘Um- 2
then
(2) 1)
§ E '(7,0)
. Z _Vn_l/z(ka) 1 1
I =71 Y2 : 2V 7i
n [_é_ (1)1 (ka)] sin o e n”
n PYRE %,
2 !
E<2) V._,a) §’( ) (ka)

1 n’ 1 vm-l/z
- __—._—-——- -ZZJn7ri + i 1/ (1)
sine g 2 "2

(1)

BEI

(v " Q)

-
o e mT da l+e

(4-53)
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M and its derivative vanish at the poles we can replace §(2) in eqn. (4-52)

Since ¢
W-]/Z 2/-1/2
1
by 2¢ . Also, since the zeros of C(D and §(1) start at [l ~ ka for ka suffic-
7-1o vy vl
iently large we can use the representations
1 1 -
PRI R B PR v(t)}}
7“1/2 60
(4-54)
1 1 -
e :—im/2 {wl(t)- - mz[tzwi(t)+4twl(t)]} ...
where
1
- L (vka), m = (kaj2)/?
m
and v(t) and wl(t) are the Airy functions
vit) = 7 A0,
(4-55)
w)(t) = '3 [Bi(t) +1i Ai(t)]
Since Im ¢ >0 there are the convergent expansions
®
1 ) 4 2rivd
Ty (—) e
1+e T 1:0
(4-56)
a
1 2riv i
_ 2l (__),? 827r1’11.(7
-2riv
1+e 2=0
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From equations (4-17 and (4-18)
©
E{D (7, a)
e - 2 ' 2V 0, e tm)
l_|_e27r17/ 70
(4-57)
®
Eiz) (¥, a)
. 1.1
=1 (=" E (v, 27ru+1] -a)
-27iv 1
1+e
£=0

and

1
[ (- 5)

i(V a - 37T/4 )
E(;)(v, Q0 & ——— 2 e (4-58)
l_'(v+ 1) 7 Sin o

So on substituting eqns. (4-54), (4-57), and (4-58) in eqn. (4-52)

®
3ri/4 . :
c _,. 2 1 E NN i),
I =(ka) m1/2 e ~ (—) [q(SI ) e +1q(§1 Je ] (4-59)

where we write, noting that this is a different notation than the previous for &,

5] =@2rf + 1 -9)m=m¢/j

§;=(27r1+7r+9)m=m¢/2

a1 [P g VO

q=—= e dt
't wi(t)
-00
Here we use the caret notation not to designate a unit vector but to be consistent

with the notation of Logan [1 959] .

(4-60)
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We return to eqn. (4-51) and make a saddle point evaluation. The stationary

point occurs at
V=ka cosa/2 or  V=kasin6/2 (4.61)

So by the standard methods

. -2ika 6/2
IR=§kae ta cos (4-62)
Finally we have the expression for the fields
ikr ) ~2ika cos 92 (ka)2 3mi/4
ESZ E jcos f < “ka e + e
6 0 kr 2 m172
© 1
§ iy iy
: (__),Q [ﬁ(ﬁk Je +1q(§l Je ]
£=0
(4-63)
ikr | o 0, (k) 34
S _ NP - i ~2ika cos 2 Tl
E¢—- E0151n¢ - {2 ka e +—;I7ge
(03]
1
1y iy,
: Z  (bepre +hepe ] }
£=0

where E g is evaluated analogously to ES and thke function p('r;-’ ) is given by

Et v(t)
1
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Near the forward direction, a~7 , it is necessary to modify our treatment
. L2
because of the singular behavior of the functions E(1 )(7/, o). We will start with

the integral representation of eqn. (4-42) but retain the Legendre functions,

1

-1
¥ 1, (ka) 9P (cosa) g
®s= 2v.d1j 7)—/2 —1/2 + 1)—1/2
e 22T | L (ka) o (1) sin o

ka
c -l v-1 e

where c is a clockwise contour about the positive real axis. On reflection of the

() B} /. (c0s )

odd part of the lower contour this becomes

ka §(2)' -1 (2)

ka)
. ) 1h (ka) al:}_l/z(cos ) 51-1/2( 1;_1/2(cos @)
<) vd? (1)' + ()
(ka) da sin
ka -1 -1
1/2 ka)  5p 1}_1/2(cos ) %_1 /2(ka) 13)_1/2(cos a)
+ 2vdv +
/ o Ya O sin @
ka
ka -y, () o
_1 _
ka oP (cos a) P ., (cos a)
V- R
+ vav +
/ Jo sin o
0
ootie ( ) -1 ( ) -1
- ka
+/‘ ydv 1} 1/2( ) 3113_1/2 (cos a) . 1/ (ka) P /(cos @)
=2riv| (1) 1) ]
“ootie e .U_l/z(ka) o 3 /(ka) sin @

(continued
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0 gp_l (cos @) P_1 (cos @)
/ vdy { v-/g -,/_1/2 :\
¥ 271D :
14Tt e sin o
0o-i€
ooti€e -1
vdy [ v, (cos a) PV_l/z(cos Q) }
0 1+e—27ri1) o« sin &
(4-65)

The first two terms in eqn. (4-65) are evaluated using the Bessel function

representation of the Legendre function

P (cos @) = .}% Jl(VOZ) (4-66)
V-1
2
for l‘l}l large and @ small. The result is for the first two terms
(2) -1
ka g ka) P , (cosa) o 2 (ka) p (cos a)
1 - -1 1
11=/ m/z vl 4 yay / m b 2 vay
sin o i
o & (ka) ¢ (ka) sin@
TR V-l
Jl(aka) "
= 27 i {ika p(0)+mp " (0)+ } (4-67)
where we write 0 o
w,(t) .
it 2 1 gt v(t)
R S —L —_ — d 4-68
p(E) = 5; J_ = e t  (4-68)
-0
dp(€)
p(l)(E) =
0§
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and p(l) (&) = j&% p(§) . Similarly,
(2) -1 ! -1
ka %_1/2(1‘3) 9%_1/2(005 @) ® djjj_l/z(ka) 35_1/2(005 )
L / —r S vdy + S 2vdy
-0 7/“1/2 ka 1/—1/2
=9 J_— ! . 1)
=2{7 3} (ko) m [ika o(0) + m qP(0) + ] (4-69)
where the q's are the functions
0 . ®
1 e W(1) cee V()
q(§) = 2‘1 — elgt ,2 dt + = elgt,ﬁ— dt
ﬁ Wl(t) ‘FT— w,(t)
-0 0 1
(4-170)
N L\
q (§) = 3E

The third term of eqn. (4-65) is evaluated by using the small angle expansion,

1
W3- 2 )? - % )sin* &
P (cosa) =1 —(vz— 1 )sin2 2, ’ + (4-71)
" 2 2
2
We find
_1 _
ka P 1 (COS 0!) aP 1 (COS a)
y 2 v-12 a2l 45 o 94
vd sine T 3a = (ka) “(Z(ka) - g(ka) )sin 3
0
1 6 9 4 3 2) 4o
+(24 (ka) - 35 (ka) +64 (ka)” ) sin 2+ ..... (4-72)

103




e THE UNIVERSITY OF MICHIGAN
3648-1-T

The fourth term is evaluated using the Bessel function representation of the

Py
Legendre function and expanding the denominator (1+e 2 m). Again we remark that

2
integrals of this form can be evaluated by residues and hence we can replace §( )1

)
by 2¢ so as to keep the form standard. Performing these operations and keeping
V-f2
the higher order terms
& f(zi' (ka) (cos ) §(2)1 (ka) P_1 (cos @)
vdv V- / 2 V-2 V-
- +
-2riv () sin «
Lo e ) aa ., j
V=g 2
®
Z" . J. (kaa)

¥ _2ka|7 m (—)J2 elk‘?L 2W(!+1){Ji(kaa) a[m(f+1)27r] + Laa f’[fn(il-l-l)z }

£=0

where, as before
[s¢)
_ __1_ igt  v(t)
-0
(4-13)
[04)
1 ; v'(t)
e o8 —— at
{7 W) (t)
-

The last two terms of eqn. (4-65) are equal and can be evaluated using the

expansion in eqn. (4-71). We get
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0 LS rap—ll (cosa) p -t (cos @)
1 1 V-2 V-1
271 (| Y T sna
e 1+e_27”j1 o
® - i€ 0 J R
0 9P—1 1, (cos ) P—1 (cos @)
, ydy iy-72 ) iy-h
1+e27ry Y] sin &
0
1 3. .2 g 185,767 . 4 ¢o
== 2L 24 299, 167 e -
2 "0 S g 4,193,280 2 T .- (4-14

The fields are given by

ikr
s _ . e 2_[1 4 5 2J 20
E0 EO icos g -~ {(ka) 1 (ka) g(ka) sin” S +...

Jl(ozka)

+2{;F m[ikap(0)+mp(1)(0)+...J

aka

+2r 3 (eka) m [ika q(0) +m ¢ (o) + J
(00}

21 ({+1)ka
-2ka{r m (—)! e <Ji(kaoz) 4 [m 27r(2+1)]

Jl(kaa)
+ ko 3 [m 27r(p+l)J>+ .. } (4-75)
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ikr
S _ . e 2 (1, 4 5,2 .2¢
E¢— E01s1n¢ = {(ka) —[_4(ka) ——8—(ka)] sin” 5+ ...
J (oka)
rofr = m ikaq(0)+mq(1)(0)+...J
aka

(1)

+21 Ji(aka)m ika p(0) + m p (0)+...]

®
- 9%ka {r m 2 (—)'Q e27r(9+1)ka <Ji(aka)’p\[m27r(f+l)]
£=0

J 1(a/ka)

— a[mzw(!ﬂ)D} (4-76)

4.3 The Formulas of Sections 4.1 and 4. 2.

+

For a plane electromagnetic wave

. _ikz
E' -EXe (4-77)

incident on a perfectly conducting sphere of radius a we present the formulas of the

previous subsections along with a brief comment on the physical interpretation and

the methods of calculation.

4.3.1 The field on the surface

In the lit region including the caustic we have found the field to consist of two

106



THE UNIVERSITY OF MICHIGAN
3648-1-T

terms. The first is that due to direct illumination. This is characterized by the
fact that (1) it reduces to geometric optics in the limit ka—>c0 and (2) it carries
the phase of the incident field. Under the somewhat arbitrary condition 0 <6 <60°

we have the direct field

2 . 2 . 4
- igin“@ OSsin 6 -sin'6
ng=-2H cosesinyljelkacos6 1+ o+ — s b
° 2ka cos 6 2(ka)” cos 6
(4-78)
. .2 9 si 29 . 49
op -ikacos 0 isin 6 sin 6- sin
H . =-2H cosfe 1- . _ St ...
p ° 2ka cos 6 2(ka)” cos" 6

The second contribution in this region arises from waves that have crept
around the back of the sphere and hence, is characterized by having the phases
ka(27 4+ 3_27r ) for 8 =0, The form we give for this contribution depends upon the
value of ka sin 6 although we impose the restriction § <7 /2.

For 6< /2 the creeping wave contribution is for ka sin 6 > 1,

00}
ikay) ikay)
oW . 11 Jj s I . L
HG =—1Hosm¢m =in el-o (=) {-e f(E,Hl) 1e f(sf)

(4-179)

!

m .
cw 1 { ikaw!ﬂ . kavy
H¢ =-Hocos¢ (e 2 (=) {-e g(§l+l)-16 g('é'l)
=0
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and for ka sin < 1

4 I” E 27r,€+ T12)
H(;W e17r/ H sm¢ﬁ_ﬁ-1 -~y (— )1)

(1)' (2)
{ (kad) £(€ 1 AR (kaf) £(€, J )}
(4-80)
-ir /4 OOZ' ika(2r {+ °7/2)
H, =e H cos m3/2j?.—fo—— (-—)( e
g o sin 6 470
) (2) '
{Hl (kaf) g(& 1 Lt (kad) g(€, )}

and for 6 =0

ot 3

ir /4 E ' ika(2r{+°"/2)
Hcew= 2 H sin ¢ em/ {rm (—)1 e1 " / 9 (kaf) f(Sl +1)
£ (4-81)

-ir /4 ka(27 f+
IAERTE ol 3/2J_£‘:()£1 4T 1, (kad) (€, )

In eqns. (4-80) and (4-81) the function f(E) and g(&) appear. These have been

computed and tabulated by N.A. Logan [1959] .

In the transition region 300é. 6 _<_.900 there are again two contributions. The

first is the continuation of the shadow currents, the second is the creeping wave
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contribution, These are

f(-m cos 60)

1 1
He-—lH s1n¢m rl—

ika
{ M ng, ) -te ff(&,}}

[ -ika cos 6

(4-82)

-ika cos 9
. f(-m cos 6)

¢= -H cosfb

smG
ikay, ikayy
{ ey, - e ’g(&;)}

Here we have made the substitution

§O=m(9—7r —-»go=m sin(G—%)

N |

=-m cos

in the first term so that this term has the phase of the incident wave. The subsequent

terms are just the creeping wave contributions recognized from their phases.

In the shadow region away from the caustic, 6 > /2, ka sin 6 > 1.

109




THE UNIVERSITY OF MICHIGAN
3648-1-T

o !
o ) _]-— 1 1 ikal[{( . ikal,[/! .
He' "].HO Sln¢ m \[—sm Xé (_) [e f(SI )-le f(E/)
=

(4-83)

w'
—-H cos¢\[———2'(—)1[ g(%’() 1e 2 g('é’:()]

These are purely creeping wave terms again characterized by their phases.

Finally near the shadow caustic we have for ka sin 6 <1, 8 >m/2.

. -0 ika@rd+2)( (on
o g A o e
£=0

+ H(}" [ka(r—@):\ f(g) )}

(4-84)
Q0
. 3rifa 32 __[7-6 Z g ikal 2r +"2)
H¢ COS¢H°e moT sinef o
=0
1 1 t
dat 6=
e snifd E" ika(2r {+72)
H = 2H sinfle mi/ (—)! e Iy [ka(n-e)] f(}éé)

(4-85)

0 M
2 i/a Z ika(2rd+72) |
H¢= 2H0 cos ¢ e 7"1/ m3/2 ﬁj (_)1 e Jl[ka(ﬂ-e)}g(EL)
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4.3.2 The Far Field

In the far field there are essentially just two regions. The first is the large

region for which 0=6<«7. The second is the forward scattered region for which

O ~ 7 and ka sin 6< 1,

For 0£6 <7 the dominant contribution will arise from the terms

s eikr ka -2ika cos 6/2 i
E, ) -E cosf 52 e It ———
6 op 0 kr 6

2ka cos 2
2
20
7 sin” —
sin 5 )
4(ka)2cossg

(4-86)

. 6
sin” —
4(ka) cos 5

which in the limit ka—s reduce to the geometric optics fields. The additional

s\ . . eikr ka —2ika cos 9/2 cos 6
E, )2 -E sinf > e i——3¢
p op ° kr 2ka cos” =
2
2

terms correspond to the creeping wave contribution and are
0

kr 2 . i,
(ka)” 37i/4 Erre e ) 1
< ) o2 ¢ e ([ g ]

(4-87)

e !

X (ka)’  3ri/4 N Uae, Y . 1Y
<¢ B sinp €~ ey re " +pepe ')
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where m = (ka/ 2)1/ 3
£ =27+ 7-6) m = my

2 =274+ 7+6) m =mw'é

and ®
Ay = L gt vit)
p(§) \'? / e Wl(t) dt
-0
®
A 1 ; v'(t)
()= = igt
-0

are functions which have been extensively tabulated by Logan [1959}. The creeping
wave contributions are a very small correction except for cases in which there is a
phase correlation between the primed and unprimed terms in the brackets. This
occurs for (,Dl =¢j mod 7 or Y

V

correlation approach can be used to predict the relative maxima and minima in the

=z///(; mod 27. In fact for 6 =0, backscattering, this

backscattering cross section as a function of ka.
In the case of forward scattering there are also two distinct contributions. The

first can be recognized if we recall the cross section theorem which states that

_ A4rm
O k2 Im f(7)

where O is the total cross section and f(6) is the complex field amplitude. Since in
the limit of geometrical optics

o =4ra
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we have in this limit that

Im f(7) = (ka)z.

Recalling the form of the forward scattered field we have the optics contribution

r
S 2 (1, 45, 2] .
<E9 >op_ {(ka) '[z (ka) - = (ka) ] smz(a/2)+,,,} (4-88)

and(ES) is the same expression with cos @ replaced by sin §§
op

ikr

<E;> = iEo sin @ ekr {(ka)z— & (ka)4— % (ka)2] sinz(oz/2)+ . } (4-89)
op

The remaining terms in the forward scattered field are those that arise

directly from the shadow boundary

< >1Ecos¢—(2f‘m

J (ozka)

[ika p(0) + mp(l)(O) +.. ]

+ J (o ka) [1ka q(0) + mq( (O)]}

(4-90)

J. (o ka) M

(z Jr m)

[ika 4(0) + mg

<E;>SB_ iE sin ¢

(0>+...]

+ Ji (a ka) [ika p(0) + mp(l)(O)] }
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and those which creep around the sphere one or more times

()%

27r(1+1)ka
_) e

J.(ka @)

{J; (ka @) §(2rm(@+1)) + p (2rm(f+1) )]

(4-91)

ir

(E?) =1E s1n¢ 2ka\["m E( [21(1+1)ka
cw

J.(ka @)

[J'l (ka ) 6(27rm(g +1) ) + (27rm (1+1) )]

In the above 0
pe)-o L [ i dt + 5t V)
% i r w ()
- 1
0 0

. (1) )
11 gt "2 1 et
a€) = o7 = . dt + dt.
21 1 / ¢ wl(t) ‘el / ° wi(t)
0

which have also been extensively computed and tabulated by Logan [1959].
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\Y
THE PHYSICAL OPTICS APPROACH

Perhaps the best known technique for obtaining approximate solutions of
high frequency diffraction problems is the method of physical optics. The key
feature is an assumption about the current distribution on the surface of the scat-
tering object, and in this section the method is applied to the case of a perfectly
conducting sphere of radius a. The degree of approximation involved is examined
by comparison with the exact Mie series, and a numerical example is treated which
lends support to the use of physical optics, particular where the main purpose is to
obtain general estimates of the scattering behavior.

5.1 Physical Optics for the Sphere.

The scattered magnetic field is given in terms of the current J induced in

the surface of the sphere by the equation

H =-7; (Rag)ds (5-1)

A
where R is a unit vector from the receiver to a variable point (a, 6', ¢') on the
sphere, the distance between these points being denoted by R. If Jwere accurately
known, the above equation would provide an exact expression for the scattered field

and the basis of the physical optics approach is an approximation to the true value

of J.
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According to ray theory there exists a sharply-defined shadow region behind

the sphere in which the total field is zero, and since

J=0AH,
where 7 is a unit vector normal, the current distribution over the shadow area must
be identically zero. For the illuminated portion of the sphere J is obtained on the
assumption that the field is reflected at every point as though an infinite plane wave

were incident on an infinite tangent plane, and this gives

J=ohAl (5-2)
that is, twice the tangential component of the incident magnetic field. The current
distribution is now completely specified by choosing the incident field as that given

in eqn. (2-1), and hence, at a point (a, 6', #') on the illuminated side of the sphere,

_'k !
J=(cos 0' % - sin 6" cos @' 2) 2 He tka cos 0" (5-3)

Moreover, the fact that r is large compared with the radius of the sphere means

A
that R is effectively directed toward the origin and

R~r-acos 6 cos 6 -asin 6 sin 6' cos (f - §')

from which it follows that
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H® =0,
r
/2 27
s _ ik 9 & KT -ikaf
= = 3 in 6! ! ! !
Hp= 5 H a =~ sing e sin 6' cos 6' do' dg' ,
0 0
/2 27
. ikr By
pe=-dk o a2& o 9/ / e kaf sin6" cos f' do' dg
¢ 2r o r
0 0
/2 27

. ikr y
(kg 2e cos 9 cos ¢/ / o 1kah sinf'cos 0' do' d¢',
2r o r
0 0

B =(cos 6+ 1) cos 0" + sin 6 sin 0' cos (g-g").

where

Of more direct interest, however, are the components of the electric vector

in the scattered field and by using the equation

i7
ES = £ v /\Hs
= k =
we have
'ka2 eikr
s i .
= = + -
E =5, E o {Il sin 6+ I,, cos 6 cos ﬁ)} (5-4)
s ika2 eikr
% " ar By o L s (-5
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/2 27
with -i
I = / / e tkaP sin20" cos gr dg' do'
0 0
and
/2 2

_'lm
L, = / / e g sin 6' cos 0' df' do'.
0 0

The component E: is of the order 1/ r2 and therefore negligible by comparison,
The above integrals can only be evaluated exactly in certain special cases

and for arbitrary values of 6 and f it is necessary to rely upon approximate tech-

niques based upon the (assumed) large value of ka. These techniques can be

illustrated by reference to 11. Here the f-integral is
2m

) . . 1 -
/ . ika sinf sing' cos(@-@ )cos g dgr

0
27 -

» . . '
= o 1k sinf sing" cos § (cos ficos ' - sinf sin') df".
and since the term involving sin @' contributes nothing, the integration being over a

complete period, we are left with
21 -
- : 3 1 1
cos f / o lka sin 6 sind' cos f cos ' df' = -271i cos P Jy(ka sin 6 sin 6')

-#
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and hence . /2

e—ika(cos 6+1)cos 6

I=-27i cos f§ J,(ka sin 6 sin 6') sin’6' do'.

1
0

If it is now assumed that ka sin 6 sin 6' is large compared with unity* the Bessel

function can be replaced by its asymptotic expansion to give

T/2
-1 1
L~ _21‘ 27 cos § e ika(cos 6+1)cos 0 cos(ka sinf sinf'- % )sin%()'de‘
1 kasinf
0
and by writing cos (ka sin 6 sing' - ?;_r ) in exponential form it can be verified that

the only saddle point for which 0 £6 <7 and 0= 6'612 is 6' =0/2. This is equivalent]
to substituting
% exp 1[3—1 - ka sin 6 sin 6']

for the cosine factor and gives

)
r_ 6
. 2 2 6
ir/4 | 2n -2ika cos 5 cos ' 3/2 6
~ --+? !
I1 e kasinecos¢ e sin (2 6') do
-6/2
/ ka co 9 (71 -0
{' 52 ‘272
i7T/4 -93 Q 12
~e [l:;r-a tangcosfbe 2ika cos 3 el .

* The failure of this condition at the lower limit of integration clearly indicates
that even if the subsequent evaluation of I1 and I_ were performed exactly the

results would at best be approximate. 2
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Providing 6 #0, 7 (cases already excluded by the requirement that ka sin 8 sin '

be large), the limits of integration can be replaced by + oo and since

@® 2
/ eit dt =‘/?ei7r/4
-0
we finally obtain
_dm 6 -2ika cosg
11 " tan 5 cos Pe
An analogous treatment applied to the integral I2 leads to the result

I = ir e—Zika cos g
2 ka

and I_ are inserted into eqns. (5-4) and (5-5), the

and if these expressions for I1 5

scattered field takes the form

ikr . 6
S a e -2ika cos bl
=- = cos e s (5-6)
EB 2 Eo y
ikr . )
-2ika 5
E; - % E, _er sinfe HC®2 (5-7)
The corresponding scattering cross sections are
oy = ra’ cos’ ) (5-8)
and
o = ra’ sin’ p. (5-9)
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The above results have been obtained by an approximate evaluation of I1
and 12, the basis of which is the assumption that ka sin 6 is large compared with
unity. The smaller the value of sin 6, the larger must ka be in order to fulfill
this requirement (see footnote p. 119 ) and in the limiting cases for which sin 6-0
the method is not longer valid. It is fortunate that these cases are the very ones
for which I1 and 12 can be treated exactly.

9 =71 corresponds to forward scatter and since (3 is then zero

and [ =
g =T
giving
E>=- tka” E G cos f§
6 2 o r
and 2 ikr

gs - ika_ Eo_eT sin .

) 2

The polarization is therefore identical to that of the incident field and the scattering

cross sections are

o, =T k%a* cos’ 9

6
and
4
o4=T k2a sin2¢ ,
g
implying 4r A2
=0 + (o} =
6 X
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2
where A =7a is the geometric cross sectional area of the sphere.

The other limiting case is 6 =0 and corresponds to back scatter. Since

B=2cos 6,
4 =0
and T/2
11 ! _o: 1 Y
I.=27 e 2ika cos sin ' cos 6'd6 =-j-7£—- e 21ka+_ (e 21ka_1)
2 ika 2ika
0
~ - T e"Zlka
ika
if ka is large. Hence
5__2a thr 2ika
a -2i
Ee =y E =7 cos fe
-2 e sin ¢ o2ika
¢ 2 o r

and these are in complete agreement with equations (5-6) and (5-7) notwithstanding
the fact that the approximate method of evaluating I.1 and I2 breaks down when 6-0.
In view of this continuity as 6 approaches 0 it is reasonable to put forward the
scattering cross sections given by equations (5-8) and (5-9) as valid for all 6 not
near to r and the implications of such a statement will now be considered.

5.2 A Comparison of Formulae

According to physical optics the scattered electric field at any point consists
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of two in-phase rectangular components in the aperture plane of a receiver directed
towards the center of the sphere. This is certainly in partial agreement with the
conclusions of the exact analysis.

As regards the nature of the scattered field and its dependence on §§, the
predictions of the physical optics method are correct, as may be seen from a
comparison of equations (5-6) and (5-7) with (2-37). But the approximate treat-
ment has produced components which are in phase for all 6 and moreover, has
destroyed most of the dependence on 6. Indeed if we exclude for the moment the

case of O near to 7 use of the physical optics method is equivalent to replacing

@ 1 BPl(cos 6)
5,(6) = 2 0™ A G N 5-10
1 n| sing n 06
na

and

1 1
@ oP
S_(6) ( ')n+l A - fcos & +iB Pn toos 0
= —]_ —_— _—
2 n 96 n  gin@
n=l

by I %a e-21ka cos3 respectively, where An and Bn are defined in eqn. (2-25).

(5-11)

In particular, for backscatter it replaces
00}
ntl nt 1 ka -2ika
- —_— +1i b -—=
E (-1) n( = )(AI1 1Bn) y 5 e
n=1

and for the exceptional case of forward scatter
© 2

§ ol n(n"LTl MA -iB) by (2—)

n=
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The degree of approximation which these imply has been examined for a selected
value of ka and the results are given in section 5. 3.

Such a comparison is not, however, a fair test of the physical optics method
in that additional approximations were made in order to evaluate the integrals I1 and
12. The basic assumptions as to the form of the currents can only be tested by a
study of the currents themselves and this will now be done.

At any point (a, 6, ) on the surface of the sphere the physical optics

approximations to the current can be obtained from eqn. (5-3) as

Jd =0 (5-12)
r
J =2H cosf ¢ lka cos § (5-13)
6 o]
and .
J¢ =-2 H_sin fcosBe ika cos 6 (5-14)

for 0 =6 =7 /2 (illuminated portion of sphere), with J. =J 0" J g =0 otherwise.

In contrast the exact current distribution is

J=1 A(}_{_i+gs) (5-15)
where I_{_land gs are given by eqns. (2-18),(2-22) and (2-25). When substituted into

eqn. (5-15) these expressions, together with the Wronskian relations
1
(ka i ()] i/ka

) = k) [len )] [ka 1, (1)
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and
 (ka .
[kaj (ka)}- el [kah(ka)]'=- fa
n h (ka) n h (ka)
n n
1
lead to the formulae 8Pn (cos 6)
< Pl( 6)
Ho Ln 2l n cos 96
J9= . cos (-i) m +1i
or) n(n ka b (ka) sin [ka hn(ka)J'
(5-16)
1
and oP " (cos 0)
2 P1 (cos 6) -
cos
3 5, in ¢ ( i)n—%-l 2nt1 n i %9
= — gin - - -
pola n(nt1) [ka h (ka)J ' sin @ ka h_(ka) '
n=1 n n
(5-17)
A comparison of equations (5-13)and (5-14) with (5-16)and (5-17) now shows
that the physical optics approximation to the current replaces
® ) 9P (cos 6)
] n 2n+l P (cos 6) %
T 0 D i [ !
nd ka hn(ka) sin 6 ka hn(ka)J
(5-18)
and
5 1
® 1 Pn(cos 6)
P (cos 6)
1 Akl 2nl n 06
T, =7 (-i) —_— -i
2 ka n(n+1) .
[ka h (ka)] ' sin 6 ka h (ka)
n= n n
(5-19)
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by

e—lka cos O and -2 cos 0 e—1ka cos 6

2
respectively for 0€ 6 €7 /2 and by zero for other values of 6.

It must be emphasized, however, that the usefulness of the physical optics
approach in scattering problems does not depend entirely upon the accuracy of the
current distribution which it predicts. The parameters of most practical impor-
tance are the far field amplitudes and the fact that these can be expressed as
stationary forms involving the currents (as in the variational formulation) suggests
that slight errors in these currents do not necessarily reveal themselves as errors
in the far field amplitudes. Ideally it would be desirable to carry out a direct com-
parison of eqns. (5-4) and (5-7) with (2-37) with no approximations made to I_1 and
12, but the labor involved in a numerical integration of these integrals prohibits
such an undertaking. The current distribution is the only alternative basis of
comparison not involving approximations additional to those of the physical optics

method itself.

5.3 A Particular Case

A significant test of the predictions of physical optics can be achieved by
confining attention to a single, judiciously-chosen value of ka. The case where
ka =10 is convenient for computational purposes and, in addition, leads to a back-
scattering cross section whose exact value (see, for example, Hey, Stewart, Pinson

and Prince, E%bi‘ ) differs from that of physical optics by (about) the local mean of
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these deviations as a function of ka. To this extent it is representative. Moreover,
it corresponds to a sphere of sufficient size for the results to be of practical use,
but small enough (a= 1. 6)) to give a stringent test of the physical optics method.

The basic assumption of physical optics is an approximation to the current
distribution which would seem to be justified if all dimensions of the body (including
the radii of curvature) are large compared with a wavelength. Nevertheless, the
method is known to give good results for a wide variety of bodies not excluding
those having point singularities or sharply curved surfaces, and indeed, a sphere of
radius 5\/7 falls into the latter category.

A comparison of the postulated currents with their exact counterparts for
such a sphere (see figures 5-1 and 5-2) reveals a remarkable amount of agreement
over the entire illuminated surface, the only real discrepancy being near to the
shadow edge in that current which is assumed to be discontinuous there. Over the
shadow area the currents are not zero, contrary to assumption, but the amplitudes
are appreciably less than for the other hemisphere, particularly in the case of the
'continuous' current J ¢ At 6 =7 the currents are identical, with their amplitudes
showing a marked increase as this point is approached.

The failure of the physical optics approximation to the current in the shadow
is not surprising since the currents here have to 'fit in' with the unnatural form

forced upon them in the other region. Moreover, the discrepancies are unlikely to
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have much effect on near-backscattering in view of the shielding action of the
illuminated hemisphere.

The fact that the overall agreement between the current distributions is
greater than had been supposed does suggest that the discrepancies which have
been found in physical optics values of scattering cross sections are not necessarily
attributable to errors in the currents themselves. It may well be that for bodies
having no surface singularities, and with a receiver in the illuminated half-space,
the major inaccuracies in the calculated scattering behavior are produced in the
(approximate) evaluation of the physical optics integrals. In the present case,
however, this approximate evaluation yields results which are quite acceptable
for many purposes. The qualitative agreement between the component echoing
areas is good (see figure 5-3) and indeed, the approximate values are in error by
no more than 10 per cent for a sphere of radius 5\/7 providing the receiver lies in
the half-space containing the incident field. Even if the bistatic angle exceeds 90°
the errors in using the optics formulae remain small, and for a = 5\/7 a permitted
error of 16 per cent would extend their validity to cases of scattering through angles
as large as 1200 .

in view of this agreement there seems every reason for putting forward the
physical optics scattering cross section for use in practical calculations involving

spheres of radius greater than 3\/2. Providing the receiver is directed at the
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illuminated portion of the sphere, the component scattering cross sections for a

linearly polarized incident plane wave are

2 2
o, =72 cOS )

and 2 2
o, =7a sin” §
p
where 6 and §§ are polar coordinates defined with reference to the directions of
incidence and of the incident magnetic vector. These results are sufficient to

define the apparent cross section applicable to any receiving system and for any

type of incident polarization.
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