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INTRODUCTION

This is the third in a series of summary reports on the general subject of
electromagnetic and acoustical scattering by certain bodies of simple shape. The
choice of the spheroid as next in line after the sphere and cone is suggested by
several considerations. The ellipsoid, of which the spheroid is a specialization, is
the only remaining finite body for which 'exact' analytical solutions of boundary
value problems involving the vector and scalar wave equations are at all feasible,
and for the general ellipsoid these are of such complexity and tedium that few in-
vestigators have had the requisite combination of motivation and temerity to attack
them. The attractions which the spheroid holds for the analyst are thus evident.
Not only does it afford a generalization of all the existing work on the sphere, but
the presence of an additional independent parameter offers a means of developing
entirely new approximate techniques. Furthermore, the wide range of forms which
can be approximated reasonably well by a spheroid includes many which are of vital
interest in various fields.

The two types of spheroid, prolate and oblate, are from an exact analytical
standpoint nearly identical, to the extent that, given an exact solution for one body,
the corresponding solution for the other is almost trivially obtainable, at least in

terms of a corresponding set of special functions. However, the prolate form
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scems to predominate in the literature, partly because its limiting configuration is

2 thin finite rod, which is the most elementary form for an antenna. The advent of
radar and the essentially prolate form of many aerodynamically efficient shapes
naturally provided strong motivation for the development of this branch of the family.
In the extremes of eccentricity the two forms are entirely distinct, as are the
associated physical phenomena and appropriate analytical approaches, so that the
oblate spheroid has a sufficiently separate entity to warrant individual consideration
in o later report.

Perhaps the first problem which presents itself in the construction of a report of
this nature is that of how much or what to include. In the cases treated previously
the volume of literature was such that a serious problem of selection and emphasis
was incurred. In the present case the volume is not so overwhelming, and this
produces the initial dilemma of whether or not to try to include everything, at least
in some degree of coverage. (One is reminded of the Englishman of a bygone era
who purportedly remarked of the turkey that it was a most inconvenient sized bird—
a little too much for one man and not quite enough for two.) The somewhat inordinate
length of what follows is the result of a leaning toward the positive horn. Some sort
of compromise is, however, inevitable and an element of arbitrariness is bound to
enter at some points. Thus we will limit our consideration in general to problems
of diffraction or scattering where the source of energy is exterior to the scatterer

(one exception is the case of a point dipole located at the tip of a spheroid, which is
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immediately obtainable from a more general form). Even under this restriction the
problems of accumulation and editing are non-trivial, and it is quite possible, not to
say probable, that due to imperfect information or inadvertent bias some pertinent
and significant work has been slighted. If such be the case, all due apologies are
hereby offered and amendments invited.

Another question which must be faced at the outset is the nature of the objectives
of a compendium of this type. Certainly it cannot be expected to supplant the
original sources completely, and as a mere catalog of these its purpose might best
be served by brevity and reduction to concise statements of conditions and results.
On the other hand, in the emergence and analysis of new problems, conditions and
results of the old are often of little utility, and the primary interest centers on
principles and techniques. It thus appears necessary to discuss these at sufficient
length to give a fairly comprehensive picture of the state of the art. At any rate, the
question of the optimum degree of detail to present is an cternal and rather delicate
one, and in a treatise of this length the maintenance of consistency in this respect
is not easy. It is hoped that whatever its limitations, the account which follows will
serve as a reasonably complete and convenient guide to existing solutions and as a
catalyst in the development of new ones.

An adequate historical survey of the spheroid problem, complete to the date of
its publication, is contained in Flammer's treatise on Spheroidal Wave Functions

(1957). Since then several important advances have been made, notably in the
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approximate or asymptotic theories for high and low frequencies. In the former
range are the geometrical approach of Levy and Keller (1959) and the asymptotic
solutions of Kazarinoff and Ritt (1959) for the not-too-thin body, and of Goodrich and
Kazarinoff (1963) for the thin one. In the latter range is the work of Senior (1964),
who has also given a comprehensive discussion of the convergence properties of the
low-frequency series in general (Senior, 1961). Also of interest are the vector
solutions for 'weak'scatterers given by Shatilov (1960) and Ikeda (1963), which might
be considered extensions of the scalar solution of Montroll and Hart (1951). Despite
these contributions, however, there is much to be done before the spheroid problem
can be deemed as well understood as that of the sphere. Since the work of Schultz
(1950) and the computations based on this by Siegel et al (1956), virtually noprogress
has been made in the solution of the vector problem in the resonance region. All
existing techniques either break down completely or become prohibitively difficult
or tedious in this region, and the need for a totally new approach bhecomes more and
more apparent. Asymptotic solutions which hold for all eccentricities are still
lacking, though it seems possible that the methods already developed might be ex-
tended or modified to cover the entire range. Experimental data are also strangely
scarce, not only in the resonance region but at all frequencies, The few curves and
points which have been assembled here are the meager fruit of an intensive litera-

ture search, and include some unpublished data as well, e.g. certain data obtained
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at the Ohio State University Antenna Laboratory and at Cornell Aeronautical
Laboratory.

One of the principal headaches involved in the general speroid problem is the
necessity of dealing with a distinctive set of special functions, known logically enoughf
as spheroidal functions. These have investigated quite thoroughly by several authors
and are now fairly extensively tabulated, but since their properties depend on an
additional parameter as compared with the spherical functions, and since there are
no usable recurrence relations, the manipulation and computation of these functions
is inevitably a nuisance. The first section of the next chapter deals at some length
with these functions in an effort (perhaps futile) to make them appear less formidable
to the uninitiated and thus facilitate the absorption of the accounts which follow. A
catalog of the existing numerical tables, listing the parameter ranges and indices
covered, is given in the Appendix. Another source of grief and frustration is the
wide variety of notations rampant in the literature. Little can be done at this stage
to standardize the notation in long-since-published works, but at least we can give
a complete account and comparison of two of the most common systems and refer
the reader to a fairly adequate table of these and the rest which appears in Flam-
mer (1957). The remainder of this report is, as far as possible, consistent in the
use of one of the systems detailed.

The body of the report consists of three distinct components, the first and most

extensive consisting of a largely verbal discussion of the methods and principles
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employed in the various solutions, the second being a tabulation of the most essential
results (here again a subjective judgement is implied), and the third containing the
graphical representations of these and the experimental findings. This arrangement
was chosen in the hope that it might increase the overall legibility and maximize the
convenience for the occasional user. The admitted disadvantages are perhaps
mitigated by numerous cross-references.

The author is indebted to a number of colleagues for substantial contributions
and support in the production of this report. In particular the sections containing the
graphical results are almost entirely the work of Dr. R. E. Kleinman, whose con-
stant advice and ample assistance were also instrumental in the completion of the
remainder of the work, It is a pleasure also to acknowledge the faithful service
of Miss K. R. Pushpamala, John Asvestas, and Soonsung Hong in the accumulation
and preparation of the material, and the patient labor of Miss Mary Jane Jahnke,

who typed the difficult manuscript.
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II
WAVE-FUNCTION SOLUTIONS
2.1 MATHEMATICAL BACKGROUND

2.1.1 Spheroidal Geometry

The geometry of the prolate spheroidal coordinate system, which is vital
to the analytical treatment of the problems we are to consider, is given in detail in
many standard sources. Unfortunately there is no uniformity of notation and the
many systems in use represent a major obstacle in the assimilation of material from
the different sources. We will present here a fairly detailed account of two of the
most widely used systems in the hope of providing at least an adequate basis for
deciphering the others. The diagram in Fig. 1 shows a cross section in the
Cartesian xz-plane, and the cylindrical symmetry about the z-axis completes the
specification. The surfaces £ = cosh p =const., 1 = cos 6 = const., ¢ = const. are
respectively confocal prolate spheroids of major axis 2a=2F£=2F cosh y and minor
axis 2b:2F/§’_2—_1=2F sinhy, two-sheeted hyperboloids (actually one sheet
corresponds to a positive 7, the other to a negative), and azimuthal planes
originating in the z-axis.

The two representations of spheroidal variables, (£, n, #) and (u, 6, §),

are both prevalent in the literature. While the (£, n, ¢) notation is convenient in
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FIG. 1; THE PROLATE SPHEROIDAL COORDINATE
SYSTEM.
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one respect, in that a single symbol represents the arguments of the prolate
spheroidal functions, the (u, 6, ¢) notation is convenient in another respect,
giving rise to a right-handed system of coordinate vectors as opposed to the left-
handed system associated with (§, n, §). In treating scalar problems the (£, n, )
system is, perhaps, preferable. It is certainly widely used and will be in the
present work. Vector problems involving spheroids are so complicated that the use
of the (u, A, P) system may be desirable in order to avoid a left-handed system,
but most of the literature employs the (§, n, §) variables, and the present account
will do likewise.

The essential relations between these coordinates and the Cartesian

system may he specified by the following forms:

x = F (8 -1)(1-n?) cos = F sinh u sin 6 cos §

y=F {(E-1)(1 - ) sin f = F sinh p sin 9 sin §
z=FEn=Fcosh ucosb
where ranges are 1 { £ o, -1 ng 1, 0 P2m, or 0 pgw, 06 (K,
0g P 2.

Thus, in the (£, n, §) system,

p—

0E _ £ Y(E 1)1~ n?)

ot £ (22 - 1)(1-n?) 9E n (2 -1
ox F (82 -m2) cos §,

oy F (1) sin . 8z F(E -7

~——

on _ -1 J(E2 -1)(1 -12) on_-n V(2 -)(l -n?) . . on_£(1-n?)
x T @ -y cosh oy F @ Snh TRl

op __ sin § , 98 cos § Qﬂ:o
FlEz-1-7) Y rlE -na-) 97

0X
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and unit coordinate vectors are related as follows:

- 2 _
/i\x=§21—?’)2 Scosﬂli\g— 2 _ng ncosjb/i\n—sinp/i\p
1- 2 2 _
/i\y: g,‘_‘?)ﬁ'&sinpq‘g- /E—Z%T)siny)?n+cos¢/i\¢
A [E-1 A 1-n% A
= + ,
L o et ot
i A, Li-n? -1 A
andlg— Ecos P71 + Esinfi + nt
JEZ _nZ EZ _n2 y gz _nZ
1’2-1 42_ Jl_2
to=- j——ncosﬂ/l\ - —g;lnsmfb/l\ + L eh
y £2 - n? ng -n? £2 - n? z
. AN
= - +
g smplx cos P 1
A LA A A A LA A
Note thatT. AT =-1,,1 Al1,=-1_, i, A1_=-1_,
3 p poepE

2_p2 2 _ .2
he = F %ﬁ h, = F 51_772 by = FLE 1)1 -n?).

In the (u, 6, f) system

oy _ coshy sinf cos ou _ coshpsinf sinf ou _ __sinhp cos 6

ox  F(cosh®p -cos?)’ dy  F(cosh®p-cos?8) ’ 9z F(cosh? u - cos? )

206 - sinh u cos 6 cos §, 00 _ sinhucos6 sin § 90 . -cosh u sinf
ox  F(cosh®p -cos?0) oy F(cosh?u -cos? 6)’ 9z F(cosh? u - cos? 6)

op _ - sin § , 0f . cos f _'d_Q:O

ax F sinhu sin 6 o0y Fsinhusin6’ jz

"As in the preceding reports of this series, a unit vector will always be denoted by
a caret, all other vectors by underlined symbols. Also the vector product will be
denoted by a caret, viz. A A B, and the scalar product by a dot, viz. A+ B.

10
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and the unit coordinate vectors are related as follows:

AL coshusinecos¢/i\ N sinh p cos 6 cos P A
X M

.4 N
- sinf iy

{coshzu -cos? 6 Jcosh2 u -cos®6

AL cosh y sin @ sin § Ay sinh u cos 6 sin ¢/1\ + cos /l\’ZS
{coshz u - cos? 6 H lcosh2 u - cos? 6
/i\ - sinh u cos 6 /1\ _ cosh i sin 6 /1\
g Jcosh2 u - cos® 6 H Jcosh2 p - cos?f
and

A AL coshu sin6 cosﬁ/i\ 4 coshy sing sin § Ay sinh u cos 6 A
# Icoshzu - cos® 6 X {coshzu -cos? 6 y {cosh2 [T cos? 6
A A sinh u cos 6 cos § Ay sinh u cos 6 sinp/i\ _ _coshpsin 6 A
6

Jcosh2 U -cos® @ X Jcosh2 U -cos? 6 y Jcosh2 U -cos? 0

A~ . A A
i, =-sin i + cos i
4 P / y

Note that ’i\“/\ A o=h /i\e/\/i\ =4 andD AR

6 P

The metric coefficients are

hu =F Jcoshzu—coszé), h9= F /coshz;u-cos2 6, h[b = F sinh u sin6.

The vector operations, gradient, divergence and curl, may be expressed in

terms of the metric coefficiegts as follows:

If ¢ is a scalar function of position then
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If ¢ is a vector function of position, i.e.,

s A + A AL A\ N ’7-,/\
gi—y/€1§+ n1n+g/¢1¢ g[/u1u+g[/9 6+y¢1¢

then
V. = l:—(h 0+ (h b, 0 )+ (b, b )
4 on "€ P N op € NP

’é’ n¢
— h

0 Ny ) 5 by 91 5 g )

and

1 1

ro—1 |9 _9 A A
- 2
+huh6 (h Vo)~ 55 (b ¢ :l 1y -

Note the deliberate omission of the expression for YAy in terms of the
(€, n, P) system. This is done because, while it is true that the expressions for
¢ and V - ¢ are invariant under a change of coordinate definition, the expression
for VA i// given above is not identical with that obtained by replacing (u, 6, ) with

(¢, n, §). That is, using §& = cosh u, n=cos 6, /i\g = /i\u (which implies

wg = ¢’u) , and in = —16 (which implies wn = —l,be) together with the definitions of the

metric coefficients, it is easily demonstrable that the expressions foryy andv- ¢
in the two systems are identical. However, if we use these facts to rewrite in the

(§, n, ) system the expression for v A ¥ given above we find that

12
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N

S S I Y :
(i o g 55 Ons)] B he by e o5 o)

N
) [Snn'(’é’g):lIW

Had we calculated ¥ A EZ. directly in the €, 7, ¢) system using the general ex-
pressions relating orthogonal coordinate systems (e.g. Magnus and Oberhettinger
p. 145) we would obtain the negative of the above expression. The reversal of
sense is a manifestation of the left handedness of the (§, n, ¢) system. While there
is nothing inherently incorrect in the consistent use of a left handed system, there
is an increased probability of error when results expressed in a left handed

system are compared with or transformed into right handed expressions.

2.1.2 Spheroidal Functions

The scalar Helmholtz equation V2 ¥ + k% ¢ =0 written explicitly in

the (£, n, P) coordinate system becomes

Dz 2y 2300, & -n h zz_]_

where we have set kF=27F/x=c, X being the wavelength. The separation of this
equation is accomplished in the usual way by setting
v(E, n, P)=UE) V(D)W ()

and the resulting ordinary differential equations may be written

a2 30 _ 2 g, :l ;
dg[(g 1) d&’] [}mn c“ & +§2 T 1 U=0 (2.2)
A, 2 QY] |: 2.2 _mi_] i}
L ) g | e 7 o2 VO (2.3)
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and
e mw=o (2.4)

where m and Amn are the two separation constants. The functions W(f) are thus
the expected trigonometric or exponential functions, and the necessity of a single-
valued representation for the field dictates that m be an integer. Specification of
the Amn is more complicated and will be dealt with presently.

The theory of the spheroidal functions, which are the eigenfunctions of the
second order linear ordinary differential equations (2.2), (2.3), is now fairly com-
prehensive, and it is not the function of this report to elucidate this in its entirety.
The reader is referred to Stratton et al (1956), Meixner and Schafke (1954), and
Flammer (1957) for more detailed accounts. We will limit the present treatment
to a short account of the general properties which relate these functions to the other
principal families of special functions and which are needed in the applications that
follow.

The hierarchy of second order differential equations to which that of the
spheroidal functions most properly belongs (it is clear that the two equations (2. 2),
(2. 3) arc essentially the same, the only difference being in the range of the inde-
pendent variable), is headed by Hill's equation, which is written

d2
EZ% +p(z)u=0 (2.5)

14




THE UNIVERSITY OF MICHIGAN
3648-6-T

where p(z) is any real periodic function of z which can be expanded in & convergent
Fourier series. If this is specialized by setting

plz) = c te (sn z)? + ¢, k* (sn ) (2.6)
the result is a form of the Lame wave equation, which results from the separation
of the Helmholtz equation in general ellipsoidal coordinates. Here sn z is a
Jacobian elliptic function and if its modulus becomes unity, corresponding to de-
formation of the elliptic system into a prolate spheroidal one, then sn z— tanh z,
and the transformation

tanh® z = 1 - %2

reduces (2. 5) to the form (2.2). One may note that in the static limit, i.e. as
k—> 0, equation (2. 5) with p(z) as in (2. 6) still retains its ellipsoidal character, and
its solutions, when properly restricted, are the Lam¢ functions, or ellipsoidal
harmonics. On the other hand, in the same limit equations (2. 2), (2.3) become
essentially the equation of Legendre so that the spheroidal harmonics are ex-
pressible directly in terms of Legendre functions.

One further specialization might be mentioned. The constants cl, Cz’ C s in
(2.6) for the ellipsoidal system are such that if the modulus of sn z approaches zero
then (:3——->0, and if Cz’ which depends on both this modulus and k, remains con-
stant, the result is a form of Mathieu's equation, which governs the wave functions

of the elliptic cylinder. Another form of this equation is obtainable from the

15
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spheroidal equations (2.2), (2. 3) if the separation constant m? is set equal to 1/ 4.
The complete theory of Mathieu functions can thus be derived as a special case of
the general theory of spheroidal functions.

The general properties of the spheroidal functions themselves are best dis-
cussed in terms of the singularities of the differential equation (2.2), which will be
taken as the prototype for all the functions required. The singularities are regular
ones at £ =+ 1, each with indices + %1, and an irregular one at £ =c0. In any region
excluding these points, the solutions of (2.2) are analytic functions of the four
(uantities &, Kmn’ 02, mz, and of order no higher than l/ 2 in terms of the last
three. As noted above, the necessity for single-valuedness of the functions W(f)
restricts the values of m to the integers, and for each m a fundamental system of
solutions is easily established in the neighborhood of each singularity based on
some prescribed initial conditions at an arbitrary regular point. In the work of

Meixner and Schafke (1954) the use of Floquet's theory in the neighborhood of

leads to the establishment of a fundamental system U1 (€), Uz(’é’) such that

u (geiﬂ) . eiv WUI(E’), Uz(SeiW) - e—i(y +1)7

) Uz(S), for certain values of v, and

the general solution then has the property U(E em) ¢!V 7rU(%’) . The quantity v is
called the characteristic exponent, and its permissible values are determined by

the condition that

sinv w= '21—1 I:Ul (Soei"r) -U; (So e“ﬂ

16
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where &O is an arbitrary point where the initial values are specified, so that for each
set of values ¢ and m there is a denumerably infinite set of allowable values of v,
and a corresponding set of eigenvalues Amy . The eigenfunctions we have to deal
with are thus a doubly infinite set with indices m and v, the former indicating the
order and the latter the degree. For most of the applications which follow, it is
required that the functions be finite at the singularities of the differential equation

£ =1 1, and by analogy with the Legendre functions, to which the spheroidal functions
must reduce in the static limit, the index v must be an interger > m. (An ex-
ception to this, however, will be noted in the next chapter.)

No legitimate recurrence relations (i.e., formulas which relate two or
more contiguous functions in terms of coefficients which do not involve other
spheroidal functions) are as yet known, and the nature of the differential equation
(2.2) precludes their establishment by the usual techniques. However, the ex-
pansion of the functions in terms of other known eigenfunctions of simpler equations,
e. g., Bessel, Gegenbauer, Legendre, etc., yields three-term recurrence re-
lations for the expansion coefficients, and these form the basis of most numerical
treatments of the functions. The coefficients necessarily involve the eigenvalue
Amn’ and convergence of the series implies the convergence of a certain continued
fraction, or equivalently the vanishing of an infinite determinant, which furnishes a
transcendental equation that may be used to determine Amn explicitly. A more

detailed account of the procedure follows presently.

17
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It is apparent that the functions of interest must be either even or odd

about the origin. This follows from the fact that since the indices at the singulari-

ties & =+ 1 are +

]

no two solutions which are finite at both these points can be

t\3|§

b

linearly independent, and the continuity of the function and its derivative at the origin
then requires that U(-§)=t U(£).

The convergent representation of the solutions of (2. 2) over the entire
infinite range of the independent variable requires at least two distinct expansions.
For the range ]S | < 1, for which equation (2, 3) is the appropriate form, an ex-
pansion in the Legendre functions P;n (n) is indicated, and since the range is that of
the angular variable n, the corresponding solutions are called angle functions and
will be denoted hereafter by the symbol Smn (c,n). The angle functions are actually
of two kinds, those which are finite at n=+ 1 and those which become infinite there;
the latter are of no utility in the physical problems to he considered, and we limit
our discussion to the former, remarking only that there are analogous expressions
for the latter involving the Legendre functions Q;n(n).

We write then

® /
mn m
S (c,n) = E , d (c)P (n) (2.7)
mn r m+r
r=0,1
where the prime indicates, as always hereafter, that the summation index runs over

the even or odd integers according as n-m is even or odd. Substitution of this

cxpansion in the differential equation (2. 3), followed by application of the

18
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differential equation and recurrence relations for the Legendre functions ,

mn
gives the following recurrence formula for the expansion cocfficients dr (c):

Cm+r+2)2m+r+1)c? mn [
+ + +r+1)- ) +
2m+2r+3)2m+2r+5) dr+2 (c) (m+r)(m+r+l) }Lmn(()

(2.8)

2mtr)mtr+l)-2m? -1 ,] mn r(r-1)c? mn ) N
(2m+2r)(2m+2r+3) C] dr (c)+ d (c)=0, (r > 0),

2m+2r-3)2m+2r-1) r-2
There are two non-trivial solutions, i.e. sets of coefficients which satisfyv this
family of equations, only one of which, however, yields a convergent series in (2. 7),

and in this one the ratio d;nn/ d;nil approaches zero as -c? /4r°, Rewriting (2. 8)

2
in terms of this ratio, iterating for the requisite range of values of r, and applying
the above condition as r—> o and the fact that d;nn = 0 for 1‘<07: yields finally the
transcendental equation for hmn(c) mentioned earlier. Once this quantity is de-
termined, the expansion coefficients may be computed in terms of an arbitrary
initial value and the resulting series (2. 7) will converge abhsolutely for all finite
values of n. In practice the solution of the transcendental equation for )\mn(c) is
usually accomplished by an iterative procedure using a first approximation given by

a power series representation in the variable ¢?, the first few coefficients of which

are given in the standard literature, e.g. Flammer (1957). The arbitrary value

"The analogous treatment of the functions of the second kind requires the definition
of non-vanishing coefficients dr_ri}l with 0 < r <2m (see Flammer, 1957). No
ambiguity results, however.

19
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mentioned above determines the normalization of the functions, and this will be

fixed in the present work, as in that of Flammer and others, by the stipulation that

S (c,0 = Pm(O) forn-m even and—d- S (c, 0) 4 P (0) for n-m odd, with
mn n dn dn

the result that

r n-m

i'(—l)z(rJer)! dfm -1) % (@rm)

. = for (n-m) even (2.9)
- r(ry (rt2m), ,n-m(n-m), (n+m),

=0 2(2)-(2 ) ) )

r-1 n-m-1

i'(—l)2(r+2m+l)! ™ cy % (rm)

r -
-1 oFf )y &r+2m+l) ) oi-m 1) <n+ +)f0rn m odd.  (2.10)

The general Sturm-Liouville theory provides that the functions Smn(c, n) for fixed

=

m are orthogonal over the interval -1 < n <1 and the normalization factor Nrnn is

easily found to be

1

(r+2m)l (dmn)z
= E r
Nmn j;[s (e, 77) dn=2 20,1 (2r+2m+1)r! (2.11)

The index m is in general positive, but if the exponential form of the § - dependence
is used, it may assume negative values also, and the corresponding angle functions

are related to those with m >0 by the form

s e B (o) (2.12)
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Useful representations for the range § > 1, i.e., for solutions of
equation (2.2), can be obtained now from the form (2. 7) by utilizing the fact that any
solution of the Helmholtz equation forms a suitable kernel for an integral repre-
sentation of one of the separated solutions in terms of another (cf. Morse and

Feshbach, 1953, p. 636). If we choose as the kernel the function

m

K, m=" [ (@ '”‘“”ZH : :

multiply this by Smn(c, 1) and integrate between limits such that the bilinear con-
comitant vanishes at both, the result is a solution of equation (2.2) with independent
variable £, which is called a radial function and will be denoted hereafter by
Rmn(c, £). Examination of the bilinear concomitant shows that there are three
possible sets of limits, namely -1 and 1, i o and 1, -1 and i co. Substitution of the
expansion (2. 7) for Smn (c, n) followed by use of the differential definition of the
associated Legendre function Prrln (n) and an r - fold integration by parts leaves us
with integrals of the form

‘tf 1™ T

a
and when a2 and b are replaced by the above three sets of limits, these integrals
can be evaluated in terms of spherical Bessel functions. We are thus led to the

expansions
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™
2 1
(&2 )™/
(&) -fmll______ mn r (2m+r)! ({)
Rmn(c,g) T (gm E d i T zm+r(c'g°) (2.13)
r=0,1

(1)

{
where z( ) is one of the four spherical Bessel functions j , n , h "=j +in ,
n nn n n n n

(2)

h =j -in , accordingly asf =1,2,3,4. The normalization factor P N is arbitrary,
n n m

and following Flammer (1957), we specify it as

-1
.m0 m 'dmn (2m+r)}
mn r r!
r=0,

(2.14)

which gives the radial functions the same asymptotic behavior as the corresponding

spherical functions for large argument, i.e.

R(l)
mn

(c, &) 5—_—30 E}g cos [c'g“— é(n+l7ri], etc* (2.15)

With this normalization the Wronskian of the first two types is easily found to be

A(1,2) = (2.16)

.
c(&2-1) °

If the region of definition of either the angle function Smn or the radial function

)

R . is extended, with proper adjustment of the phase of any radical involved, it
becomes apparent that for some ., the two functions must be linearly dependent.

With the definitions established above, we can thus write

(1) () g

(c, z) (2. 17)
mn mn

S (c,z)=k
mn

>'<The statement prevalent in the literature that this limit obtains as cf=>m is not
correct, For€ 3 1 and c—> o the behavior is otherwise (see Silbiger, 1961),
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with a similar expression relating the second type of angle function mentioned
2 1
earlier to Rinzl (c, z). The constants of proportionality or joining factors kinzl(c)

may be found in terms of the coefficients d;nn by comparing the functions or their
derivatives at z=0. For the functions of the second type, a Laurent series may be
developed in the region 1 < z < w and the coefficients of like powers of the variable
equated. The forms thus obtained are given in the standard literature and will be
deferred here until required.

Many other representations, characterizations, approximate forms, etc.,
are known for the spheroidal functions, but it is doubtful whether our present pur-
poses would be served by dwelling on them at this point. The reader is referred to
the sources mentioned above and to others cited in later sections. We close this
section with a few general remarks which may contribute to the overall perspective.

To date it has not proved possible to find any elementary integral ex-
pressions for the spheroidal functions, i.e. expressions of the individual functions
in terms of definite integrals involving only elementary, or even only simpler func-
tions. They can however be characterized as solutions of linear homogeneous in-
tegral equations of the form

f(z) = )\JK(Z, z")f(z')dz' (2.18)
where the kernel K(z, z') involves only more elementary functions, as illustrated

above in the derivation of the expansion for the radial functions. Other permissible
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kernels, most of them involving Bessel functions, are given in the references al-
ready cited. Use of kernels involving spheroidal functions has yielded a number of
definite integrals of products of these functions, see for example Chako (1955).

Other useful representations which are developed at length in the
literature include power series expansions about the origin and about the singulari-
ties + 1. In the appropriate ranges of the independent variables, these are more
convenient for computation than the expansions given above. For the regions of low
frequency or small eccentricity, certain expansions in powers of the parameter c
have been derived, though the range of convergence of these is in general quite
limited. This question has been examined by Senior (1961). Asymptotic forms valid
for large c are also available and can be used to advantage in the high frequency
ranges. These are in general based on the parabolic cylinder or Whittaker functions,
whose equation the spheroidal equations resemble in the limit of large c. However,
there are still regions in the frequency-eccentricity space, which cannot be treated
conveniently by any of the representations known at present. These will be dis-
cussed in a later section.

The lack of legitimate recurrence relations for the spheroidal functions
was mentioned earlier. A number of so-called recurrence relations of the Whit-
taker type are indeed known, but the coefficients which multiply the neighboring
functions contain integrals involving other spheroidal functions, which are in general

intractable, and the formulas have so far been of little utility.
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The theory outlined in this section has been based exclusively on the so-
lution of the scalar Helmholtz equation. The treatment of vector problems of
course requires numerous additional concepts and derivations in most of which,
however, the scalar solutions are intimately involved. The vector solution will
form a separate section of this chapter.

2.2 SCALAR SOLUTIONS

2.2.1 Scalar Green's Functions

We turn now to the solution of a certain class of problems which might
be interpreted physically as the scattering or radiation of time-harmonic sound
waves in a homogeneous, isotropic, non-dissipative medium, by a closed prolate
spheroidal surface with various types of boundary condition. The technique used is
the straightforward (if sometimes tedious) method of formally expanding the
requisite field quantities in series of the appropriate eigenfunctions (in this case the
spheroidal functions discussed in the previous section), and determining the ex-
pansion coefficients by application of the boundary conditions at the surface and
(if necessary) at infinity. The resulting solutions will be referred to as 'exact',
primarily to distinguish them from the various approximate results to be taken up
later on. It is understood, of course, that since these 'exact' solutions contain
infinite series, their exactitude depends on the convergence properties of these
series and in any practical sense, i.e. in the absence of a virtually infinite com-

putational capacity, the achievable accuracy, particularly in the optics region, may

be far less than that given by a suitable approximate technique.
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Because of the orthogonality of the angular functions of hoth the 1 and
]D variables, the procedures required here are no more complicated than those used
in the case of the sphere, and the forms of the resulting solutions are directly
analogous. The completeness of the angle functions, which was not specified in the
previous section, follows from that of the spherical harmonics by a fairly simple
argument (cf. Siegel et al 1953).

For problems of scattering or diffraction in which the energy is supplied by
a source exterior to the spheroid the discussion will be limited to the case of an
elementary point source at an arbitrary location. This includes the plane wave with
arbitrary direction of propagation as a limiting form. The more complicated case
of a dipole source will be considered later in this section when certain electro-
magnetic problems which are essentially of a scalar nature are taken up. The
boundary condition for the scalar problem is in general the vanishing of a linear
combination of the field quantity, which is usually the sound pressure or velocity
potential, and its normal derivative on the scattering surface. The particular
cases of the Dirichlet condition (where the function itself vanishes and the surface is
_|termed 'soft') and the Neumann condition (where the normal derivative vanishes
and the surface is called 'hard') are both obtainable by specializing the coefficients
in this linear combination.

The solution for an elementary source with any of these boundary con-

ditions is properly termed a Green's function, and its derivation follows the standard
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procedures given in any text on mathematical physics. In terms of the spheroidal
coordinates specified in the previous section, the field strength at the point }‘_(E,T),¢)

due to the unit source at the pointr, (€;,n;,0;),i.e. the free-space Green's function™ is

ik|r-r |
() =G (r, 1 )= =—— - (2.19)
o= =1 47r|r—r I '
- =1
This is then the solution of the inhomogeneous wave equation
v2G+k®G= 6(;-51) (2.20)

where the right hand side is the Dirac delta function, which vanishes except at

r=r . and whose volume integral over the entire space is unity. At large distances
from the source, ¥ represents a spherically diverging wave, in accordance with the
well-known Sommerfeld radiation condition, which is one of the boundary conditions
necessary to determine the solution of any such problem uniquely. Since the quantity
G (r, r 1) is symmetrical inr andr ) and satisfies the homogeneous wave equation

o

at all points exceptr = r Y the standard theory for such equations permits us to write

almost immediately the formal expansion (cf. for example, Morse and Feshbach,

1953)

G (r, 11) =G_ (€ n, p; Sl, n, ¢1)

(2.21)
_ E : (1) (3)
= Amn Smn(c, T))Smn(c, n ) cos m(f - ¢1 )Rmn (c, §<)Rmn(c, §’>)

m, n

& ! -iwt
The harmonic time dependence, e w , is assumed, and this factor is deleted from
all field quantities.
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where
<
E< = § for § El
§ £ <€
1
and conversely for §>.
(3) (4)

The occurrence of R' ' rather than R' " is a direct consequence of the form of

radiation condition dictated by the choice of time dependence, rl_i’mo0 r[%% —ik% =0.

By integrating both sides of equation (2.21) over a vanishingly small
interval in £ about the point El and making use of the orthogonality of the functions
of nand f, the coefficients Arnn are found to be

ike

- m
mn 27N
m

n
where Em is the Neumann number, defined as

€ =1form=0
m

€ =2form=1, 2, 3. ¢4 0¢ 0
m
and Nmn is the normalization integral given in equation (2. 11).
The analogous form for the total field exterior to a spheroidal boundary
to which the source is also exterior can be obtained from (2.21) by simply adding a
symmetric function of the source and observation points such that the total field
satisfies the boundary condition specified on the spheroid. We consider here a

linear homogeneous mixed boundary condition of the form
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Eyw 8 —,LJ =0 (2.22)
on
S=§O

where ¢ is the total field due to the point source in the presence of the spheroid

1l 2
E= S and :—n is the normal derivative, — ——. The Green's function satisfying the

hE of °

condition (2.22) is then written

€
ik
Gr,r )= = Z = Smn(c, n)Smn(c, nl)cos m(f —¢1)

m, n
(a) (1) (3) ]

R (e §’>) R (c.€)-C R (c,€ )

and constant Crnn is found by subjecting G (or more specifically, the quantity in the

brackets in G) to the conditions in (2.22). Thus, we obtain

ik
G(rgl)“él‘;r' N S _(c,mS__(c,ny)cosm(¢-¢,)
m,n mn
(1) (1)
S)+B (c,E)
(3) (1) mn mn 20" _(3)
R~ (c,& )R “(c,E )~ R (c, &)
mn > | mn < (3)( E) B (3) C,Eo)' mn <

(2.23)
The solutions for Dirichlet and Neumann boundary conditions follow immediately on

setting 8 and a respectively equal to zero.

The solution for plane wave incidence is also obtainable from (2. 23) by

letting the source point recede to infinity in some arbitrary direction specified
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by the spherical coordinates 61, ¢1 . The resulting behavior of the affected

quantities in (2. 23) is as follows;

771 —> cos 91, where 91 is the polar angle,

. L .

i(c § -(n+t1) =) ikr
2 1

(3) e _e ~.,..ntl
él——>oo, Rmn(c,'é’l)—> E] = ) (-i)

CSI—> kr1 where r, is the distance of the source from the origin.
The expression for the total field must be renormalized, i.e. multiplied by the
factor rle_ikrl in accordance with the usual plane wave representation, and the
final result, which is no longer properly termed a Green's function, hut which in
consideration of its similarity to the previously derived expressions we might denote

by the symbol ch)’ is the form

G (& P56, ¢>2Z Z(

mn(c, n)Smn(c, cos 91) cosm(¢-¢,)

m=o0 n=
(1) (1)
g R(l) (c, &) - aRmn(c’ Eo)+B an (C’S) (3)
mn ( ) 3) 0 (c, &) . (2.24)
( E)+/3 m S )

One further specialization is worth noting here. If the source is re-
stricted to the axis of symmetry of the scatterer, then n1 =1 and ¢1 disappears.
From the representation (2. 7) of the angle functions and the well known properties

of the Legendre functions, it follows that Smn(c, 1)=0for m > 0. One of the
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summations in ( 2.21) thus disappears along with the f) -dependence and the resulting

and the same modifications obtain in the expressions for G and Goo . If the obser-

(3)

vation point is in the far zone, the asymptotic forms for R(nllzl(c,g ) or Rmn (c,€)
may be used in (2. 25) and further simplication will result. The specific forms are
presented in section 4,1,

The standard problems of radiation from a spheroid can be handled in
similar fashion. Here the incident field is absent and the boundary condition is
inhomogeneous. A mixed linear boundary condition similar to (2.22) is generally
enough to include most problems of practical interest and we outline the procedure
briefly, deferring specific cases for later treatment

Suppose that

[}wﬁgﬂ = F(n, ) (2.26)
£=8

where F is sufficiently well-behaved so that it can be expanded in a double series

of the surface wave functions Smn(c, n) cos m P. Then we write

F(n, p)= Z Amnsmn (c,n) cos m § (2.27)
m, n
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and from the orthogonality of the angle functions, the coefficients Arnn are given by

1
A (c)= L F(n, ¢)Smn(c, n)cos mP dndp (2.28)

mn N (L+6 M
mn om

-1

The radiated field v(§, n, ¢) is expanded in the same manner as before,

v(E, n, P)= Z anR(s) (C,E)Smn(c, n)cos m @ (2.29)

mn
m, n

and subjected to the boundary condition (2. 26), and since the angle functions are
linearly independent we can immediately equate the coefficients of the functions

Smn(c, n)cosm to give

or®?)

5 _(3) -
B _=A 0 (c, SO)+B on Pon (c, EOE] (2.30)

mn mn
The obvious specializations of this result may be carried out as in the previous
forms.

2.2.2 Pseudo-Scalar Problems

The formulas developed in the preceding paragraphs are sufficient
for most problems involving the scattering or radiation of a time-harmonic scalar
field by a spheroid of fairly arbitrary surface characteristics or behavior. We now
wish to show how they can also be used to solve a limited class of vector problems
in which the vector field is essentially characterized by a single scalar quantity. As

will be seen, the scalar problems involved are of interest only in connection
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with the vector problem from which they are derived. Hence, the designation
"pseudo-scalar' will be used to distinguish them from scalar physical problems.
The general vector problem is that of finding the electric and magnetic
field vectors, E and H, external to a prolate spheroid in the presence of any of
various incident or primary fields. Our attention will be largely restricted to
hodies which are either perfect dielectrics or perfect conductors, imhedded in
homogeneous, isotropic, perfectly dielectric media of permeability u and per-
mittivity €. In MKS units the homogeneous Maxwell equations which govern the

behavior of the field quantities at all ordinary points in space, are written

VAE-iwpH=0
VAH+tiweE = 0 (2.31)
V- E=V- H= 0.

The expression of Maxwell's equations or the concomitant vector wave
equations in the spheroidal coordinate system results in a set of three partial
differential equations in the components of either the electric or the magnetic field
vector, each of which contains all three components (cf. Page, 1944), and the
simultaneous solution of these is in general impractical. The solution of the general
vector problem must accordingly be attacked by means of a different technique,
which will be described in the next section. In certain special cases, however,

notably those in which the entire system is symmetric about the axis of rotation of

33




THE UNIVERSITY OF MICHIGAN
3648-6-T

the spheroid, the equations degenerate, and the entire field representation can bhe
obtained in terms of a single scalar quantity which satisfies the scalar wave
equation with the ¢—dependence removed.+ Page also points out that, as in the
spherical coordinate system, the component equations separate in cases where hoth
the electric and magnetic fields are normal to the radius vector at every point, i.e.
the propagation vector is radial at every point, which is the so-called TEM mode.
It should be noted, however, that this restriction is so stringent as to exclude
practically all radiation or scattering problems of real interest.

The separability in the axially symmetric spheroid problem was first
exploited by Abraham (1898) to find the characteristic frequencies and decay rates
in a dielectric medium surrounding a conducting spheroid, and has since been used
by various authors for related problems, as outlined below.

From an analytical standpoint, there are two possible types of axially
symmetric field, one in which the E vector is in the meridian plane at every point
and the H vector is normal to this plane, and the other in which the roles are inter-
changed. We limit our discussion to the former case. That is, the magnetic field
is assumed to be given by

}_I=@\H¢=—/i\xsin¢H¢+/i\ycos¢H¢ (2.32)

+
Actually this holds not only in the spheroidal case but in any reasonably well-
defined orthogonal coordinate system.
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where H ?) is independent of ﬁ) Since Maxwell's equations (2.31) imply that the
rectangular field components satisfv the scalar wave equation, i,e.,

5 5, sin N
N4 +k)cosjl)Hyﬁ 0,

and since this equation is separable (see Sec. 2.1.2) it follows that Hﬁ) is pro-
portional to the product Rln(c, 3 )Sln(c, n). Note the appearance here of the
spheroidal functions of order one, in contrast to the scalar case where an axially
symmetric field entails only the zero order.

The mechanism is thus established for the determination of the character-
istic electrical oscillations of the conducting spheroid in a dielectric medium and
the solution of related boundary value problems involving axially symmetric ex-
citation. For the former, we can apply the appropriate boundary condition to each
harmonic, i.e. for each value of n, individually. On the surface of a perfect con-
ductor the tangential electric field must vanish identically, and in our case this is
simply the condition En =Qaté€ = SO. From the second equation of (2. 31) and the

representation of H ¢ specified above, this is equivalent to
0
—_— Vz—l , =0at €= 2.33
Y [E Rln(C SE] at € 50 ( )

which is an implicit equation in the quantity c=kF. The roots of this equation will,
in general, be complex. The proof of this will not be given here, but an analogy can
be drawn with the spherical Bessel functions and the essential argument is as

follows. If the radiation condition is to be satisfied for large £, then the radial
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1 : 1
function must be of the third type, R(g) =R( ) + iR(z). R( ) and R(Z) are both real,

and as in the case of Bessel functions, neither they nor their respective derivatives
have any common zeros. If the root of (2. 33) with least absolute value is called c s
then the characteristic wavelength of the nth harmonic is

A =27rF/Rec
n n

and the logarithmic decrement, which determines the time rate of decay of the
field, is

§ =-2rImc [Rec..
n n n

This is essentially the procedure used by Abraham (1898), Page and
Adams (1938), Page (1944), and Ryder (1942) to investigate the resonance
phenomena associated with thin conducting spheroids in general, and in particular
with the limiting case of a thin finite wire (SO%I). The roots of (2.33) are found
by expanding the radial functions and their derivatives in power series and then
using a successive-approximation scheme to solve for c The same techniques
can be used for the case where there is an axially symmetric applied field. This
field is assumed to consist of a known component of each harmonic, and the
boundary condition is applied to each harmonic of the total electric field, i.e. the
sum of the applied and radiated fields. In this way the above authors gained con-
siderahle guantitative and qualitative information about the resonant frequencies and

decay factors of thin spheroids, as well as the antenna currents and impedances of
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these bodies when stimulated by time harmonic uniform fields or plane waves of low
frequency with electric vectors in the axial direction. A thorough discussion of their
results in beyond the scope of this report, but certain ones of particular interest
will be mentioned in a later section.

The general axially symmetric vector scattering problem can be solved in
much the same way as the acoustical problem. Given the completeness of the
spheroidal functions in the established ranges of the variables, the applied (or
incident) and the radiated (or scattered) fields can both be expressed in terms of
scalar quantities satisfying the Helmholtz equation, and these can be expanded in
terms of the appropriate spheroidal functions. The known and unknown coefficients
can be related as before by using the boundary conditions at the surface and the
orthogonality properties of the angular functions. In this way the problem of an
axial dipole located at the tip of a conducting spheroid has been solved for several
eccentricities and frequencies by Hatcher and Leitner (1954), and that of the same
source located at an arbitrary point on the axis for a somewhat larger range of fre-
quencies and eccentricities by Belkina (1957). The procedure is as follows.

If a point electric dipole is oriented parallel to the axis of symmetry of the
chosen coordinate system and located in this axis, then the associated scattering
problems involving symmetrical bodies can be solved in terms of the single magnetic
field component H 9 The first step in the spheroid problem is to expand this com-

ponent of the dipole field alone in series of spheroidal functions. If the dipole
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moment is p /1'\2 and its location is at the point (Sl, 1) the field component at the point

(€, n) at a distance R from (Sl, 1), is (see, for example, Stratton 1941)

wk eikR 1
Hy =—47rp - é—ikR> sin @ (2. 34)

where

R = FYE2+7 -L+E: g €€ 1

and @ is the angle between the vector R and the dipole axis, i.e.

FIE2-1)(1-n2)

R

sin @ =

As in the previous cases of electromagnetic oscillations, the appropriate spheroidal
functions are those of order 1, and in terms of the undetermined coefficients

arn('g"1 ), we write, for & > 51,

(KR . @ )
R ( ‘ﬁ) sin @ = Z an('é’ 1)Rln (c, E)Sln(c, n) (2.35)
n=0

The determination of the an(Sl) is facilitated by letting & become very large, under
which circumstance
R—>F(§-£ cos ), cos 0—>n
and the left side of (2. 35) approaches
ic§

k e -ic€ . cos 6
e 1
c§

sin 6 -

Furthermore, as specified in the preceding section,

38




THE UNIVERSITY OF MICHIGAN

3648-6-T
icg
3 +1
R (e8)—> ()" L &,
ln 3
and using these limits in (2. 35) gives the form
@
-i 1 +1
. 1c‘§1 cos 6 sinf = — E : a () - (-i)rl S. (c, cosf)" (2.36)
k o 0 1 In

Differentiating the well-known expansion

®
e—icg’lcos 6 . Z (-i)™2n+1) jn(c'é’1 )Pn(cos 6)

n=0

1
with respect to 6 and using the fact that 2 Pn(cos 0) =Pn (cos 6) we can write

a0
00]
- 1 1
e 1(:'51(3089 sing =—— E (—i)n(2n+l)j (cE. )P (cosB)
ic n "1 n
1
n=0
®
1 .nt+1
= E an(§1 )(-i) Sln(cose) (2.37)
n=0
Multiplying this equation by Slr (cos 6) sin 6 and integrating from 0 to 7 gives
T
[00)
RS k . i 1 .
a (§ N-i) N, =— (-1) (2n+1)j (cE.) | P (cosB)S, (cosh)sinhd®.
r-l 1r c'é’l n 1 n 1r
n=0 0

The integral on the right is easily dealt with by means of the expansion (2. 7) for

the angular function Slr’ and the result is
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©
ar(Sl)( i) N, * cE| E (-i) " dn Jn+1(0'§’l).
n=o,1l

The sum on the right is now precisely equivalent to that appearing in the expansion

1
(2. 13) of the radial function Rin; (CSl) for m =1, and the final result is therefore
+1 1
2 (" Rt et )
1r 1
AN :
N P18 -

so that the desired expansion of H g is

(00

___wiklp )" () (3)
o Z R (e, )R] (c,8)8) () (2.39)

H
¢ 2T \}521"1 n=0 plann

and the boundary condition (2. 33) is applied to the total field, i.e. the sum of (2. 38)

and (2. 39), with the radial functions interchanged in the latter, yielding at once

9
AD_(3) —(r— (1)
~(-i) Rln (c,g‘l) oF ||[g2 -1 Rln(c, S))

p, N 9 (2 (3)
In" 1n 88<JE -1 Rln (c, E» -
0

A (E)= (2. 40)
n1

which, in conjunction with (2.39), gives the scattered field of the conducting
spheroid excited by an electric dipole located in its axis of symmetry.
If the dipole is located in the surface of the spheroid, i.e. at the pole,

then & 1 = 0 and the expression for the Wronskian of the radial functions of firstand
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third types, which is i times the quantity given in (2. 16), reduces the expression for

the total field to

T ) "h)kz (_1) R (C S)S (Ca n)
Hy ‘m(gz -1) Z

P1n 1n[8§ (‘[_1 Rm )L

o

T (3)

(2.41)

The far zone radiation pattern is obtained as usual by inserting the asymptotic form
of the radial function in the numerator of the above and dividing by the quantity
1kr /r.

We close this section with some general remarks on the relations between
scalar problems and axially symmetric vector problems involving the spheroid.
In Kleinman and Senior (1963) it was shown how the vector solution for an infinite
cone excited by a radial electric or magnetic dipole can be obtained by applying a
vector operator to the solution of a physically meaningful scalar problem involving
a point source and a simple (Dirichlet or Neumann) boundary condition satisfied by
the total field on the conical surface. The problem is formulated there in terms of
a pair of Debye potentials, which are independent solutions of the scalar wave
equation, and the result just stated derives from the fact that in the particular
coordinate system appropriate to the cone problem, the electromagnetic boundary
condition can be satisfied if one of these Debye potentials vanishes identically and

the other satisfies one of the above-named scalar boundary conditions on the cone.
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Unfortunately in the spheroidal coordinate system this situation does not prevail.
The general electromagnetic field can still be represented in terms of a pair of
Debye potentials, but even if the corresponding scalar source is located in the axis

of symmetry, the resulting expression for the tangential electric field component En

contains one or the other of the potentials as well as its derivatives with respect to
both § andn, so that no simple scalar boundary condition on either potential can
make this component vanish. Thus it appears that, while the axially symmetric
vector problem can still be solved in terms of a single scalar quantity, the cor-
responding scalar boundary value problem cannot be reduced directly to one of the
standard forms previously derived, and probably has no physical interest in and of
itself.
2.3 VECTOR PROBLEMS

In the preceding section it was shown how the solutions of certain electromag-
netic problems involving spheroids could be obtained directly in terms of a single
quantity which satisfies the wave equation and certain boundary conditions of a
rather complicated form. The requirement of complete axial symmetry stipulated
there is of course a stringent one, and rules out the important cases of arbitrary or
transverse dipole sources, as well as the limiting case of a plane wave. Con-
sideration of the latter, which is our next objective, requires a much more

elaborate analytical apparatus, which we proceed to develop briefly.

42




THE UNIVERSITY OF MICHIGAN
3648-6-T

In the preceding report of this series (Kleinman and Senior, 1963) a general
formulation was given for the solution of an electromagnetic scattering problem in
terms of a pair of Debye potentials or their associated Hertz vectors. This
formulation could be applied to the spheroid problem, and the solution could pre-
sumably be carried out in some manner though not in the same sense that solutions
to the cone and sphere problems have been. That is to say, the solution would not
be obtained in closed form or even in terms of explicit expressions for the
coefficients in an infinite series. The difficulty which arises is primarily con-
cerned with the boundary conditions, and in order to bring this out more clearly,
and also to follow existing literature on the problem, we present here a somewhat
different (though essentially equivalent) formulation in terms of a set of vector wave
functions analogous to those developed for the sphere problem by Hansen (cf.
Stratton, 1941, p. 393).

The construction of these functions is perhaps best motivated by a brief dis-
cussion of the import of the term separability as applied to a vector problem. If a
general vector solution of the wave equation.

V2F+k? F = VV*' F- VAWAF +k? F=0 (2.42)
is resolved into components parallel to the coordinate axes, three scalar partial
differential equations for the components result, each of which, except in

rectangular Cartesian coordinates, involves more than one component, so that the
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simultaneous solution of the system is prohibitively difficult. As pointed out in the
preceding section, if the field is axially symmetric, the system degenerates for a
suitable coordinate system, and the solution is easily found in terms of a single
scalar wave function or potential. In the absence of such symmetry a more subtle
resolution of the vector function inquestion is required. For most physical
problems of the sort considered here it is advantageous to split the vector into two
parts, one of which is the gradient of a scalar function and is called the longitudinal
component, and the other of which is the curl of a vector and is called transverse.
The scalar functions involved must then be solutions of the scalar wave equation and
must satisfy boundary conditions which, at least in a system where this equation
separates, are easily determined from the original vector ones. Thus, we write the
longitudinal component as L =V ﬁ, where ﬁ is a solution of the scalar wave equation.
Being a gradient, however, the longitudinal vector component will in general have
non-zero divergence, and accordingly will not be suitable for representation of a
source-free electromagnetic field, so that our primary interest here is in the
transverse component, which is divergence-free by virtue of its definition as a curl.
This condition ensures that only two independent scalars are required to specify the
vector quantity completely, and these should be chosen in such a way as to facilitate
the satisfaction of the boundary conditions. In general it would be desirable to re-

solve the transverse field into two component solutions, one of which is tangential
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to the scattering surface and the other normal to it. Unfortunately this is not
possible in most coordinate systems, but for certain ones of importance namely
those in which one of the scale factors is unity and the ratio of the other two is
independent of the coordinate corresponding to the first, something approaching this
objective can be achieved (cf. Morse and Feshbach, 1953 p. 1764). The tangential
component is expressed as the vector

M=vA B, oE) D),

where £ 1 is the variablewhose scale factor is unity, a is the corresponding unit

2
coordinate vector, w (§ 1) is such that %gf%‘l =0, and ¢ is a solution of the scalar wave
1

equation. The third component cannot always be constructed normal to the first
coordinate surface, but at least its curl can be made tangential to it if the vector

function is defined as

N= V/\VA(ale)

with w as before and © a solution of the scalar wave equation (which may or may not
be identical to ﬂ ory, as suits our purposes). The possibility of resolving a general
vector solution into three components as described above, where the scalar
quantities involved separate in the usual way, is perhaps the most practical
definition of separability of a vector equation.

For the spherical coordinate system, this process has been carried out com-

pletely, (cf. Stratton, 1941), and one application is the well-known solution for
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electromagnetic scattering by a sphere, in which explicit expressions are obtained
for the coefficients in an expansion of the field in series of the Mand N vectors over
the indices of the common set of scalar solutions from which they are formed. In
the spheroidal coordinate system, however, the vector wave equation is not com-
pletely separable in the above sense. The scale factors are such that the transverse
field cannot be resolved into components which permit the satisfaction of boundary
conditions by the individual members of the series, and the best that can be done is
to obtain an infinite system of equations for the infinite set of coefficients, which
can be solved approximately by truncation.

In the above forms, the vector 2. was specified as a unit coordinate vector.

1

Actually solutions to (2.42) are obtained if % is any constant vector, or even the

1
radius vector r. This permits considerable freedom in the choice of a particular
set of vector functions for a given problem, and the determination of the optimum
choice, i.e. the set which minimizes the labor or complication, is not easy. To
the best of our knowledge, the question has not been absolutely settled for the
spheroid problem, and we limit the present account to an outline of the solution
which exists in the literature and which was given by Schultz (1950). This assumes
a plane electromagnetic wave incident on a perfectly conducting spheroid and

propagating in the direction of the major axis. The generalization to the case of

arbitrary incident direction adds little of analytical interest.
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i
If a is an arbitrary constant vector and d/e(m)n is a separated solution of the
0
scalar wave equation, where the index i=1,2, 3, 4 denotes the type of the radial

function involved (the angle function is always of the first type), then application

of the forms given above yields the various sets of vector functions

(i) (i)
Lempn =V Ve
0
a(i) ()
Mgmn =V gbgmn/\ a (2.43)
a(i) a(i)
Nemp = . VA Mepyy,
o 0

where the e and o subscripts denote even and odd ¢ - dependence, as before. In
these we must first specify the vector a and then select whichever sets of functions
are best suited for representing the fields we are dealing with. As noted previously
the L functions will be of no use for the present problem since their divergence does
not vanish. Actually, in contrast to the classical sphere solution, the spheroid
solution of Schultz does not employ the N vectors either. Instead, three distinct
sets of M vectors are generated by substituting for a the three Cartesian co-
ordinate vectors /i\x, /i\y, /i\z. The completeness of these sets follows, by a simple
argument, from that of the set of scalar wave functions (cf. Siegel et al,1953) so
that the possibility of expanding any solution to the given boundary value problem in

a convergent series of these functions is assured. In the particular case considered
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here only certain of the M vectors are required, and in the interest of economy we
will list below only those to be used. Detailed expressions for the rest appear in
Flammer (1957).

If the incident plane wave is assumed to propagate in the negative z-direction
with electric and magnetic vectors in the positive y- and x-directions respectively,
then a brief examination of the forms given above indicates that its electric vector
should have an expansion of the form

00]
Eleg' e ¥ =1 g ZA <) (2.44)
= y k n
(The choice of the even functions here is obvious with the assumed polarization, and
since it develops that only even functions are needed throughout the solution, we can
drop the e subscript with the understanding that all wave functions are even in f
unless otherwise stated.) From the expansion of the exponential in spheroidal wave
functions (equation 2. 36), and the definition (2.43) of the M functions, it is easily

determined that
n
A=2i8 ()/N . (2.45)
n on on

If the spheroid § =EO is perfectly conducting and if the total electric field is

represented as
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where ES represents the scattered field, then the boundary condition at the surface

can be written

iI.AE =0 or E; +E =0=E1¢+E; (2.46)
£g o=, g=¢

(6]

Now since the M vectors form a complete set, we can assume an expansion of the

scattered field of the form

Z‘ ( w¥ B aY Y9, MZ(’)) (2.47)
mn —Tnn mn — mn mn—mn

The third type of function is dictated by the radiation condition at infinity. Each of
the three sets of M vectors has its own characteristic ) -dependence which is ex-
pressed in terms of ordinary trigonometric functions, and since the boundary con-
ditions (2.46) must hold for all , the orthogonality of these functions may be in-
voked to reduce drastically the variety of M vectors appearing in the series (2.47)
for the scattered wave. It develops immediately on substituting the expansion of
the M vectors in (2.47) and applying (2.46) that the only sets of vectors whose
x(3 ) z(3)

coefficients do not vanish are M ndMln ,» andwe canrewrite (2. 47) accordingly

* S ~ X (3) z (3)
E = Z An M)(()n +An MZln) . (2.48)

n=0

The essential problem now facing us is the determination of the coefficients

Z
Az and An in (2.48), to which end we must make whatever use we can of the
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boundary conditions. In order to see the exact nature of the difficulties we first ex-
press the M vectors in terms of the spheroidal coordinates using (2.43) and the
transformation of coordinate vectors given at the beginning of this chapter. Thus we

have
i ds
x(W & [1-n7 Pon (1)
1 = i 2.4
M W oy ROn sin @ (2.49)

A

1

n)_ (82 -1 . d (1) .
+ F(‘ 52—772 SondS Ron sin }

A
+_%{n(€2-1)s A ) g ELoY) d <1)COS¢}

(82-12) dn “on on

A B
w:? - L = s, R sin } + L { - s, R?) sin}l
F n ln F J n

~in (1-n2)(E2-n?)

+

A
iQ_ -€ 4(52_1)(1-772) (3) +n{(§2 ‘1)(1-7')2)(1_‘ 3)
& -7 Cin dg fIn (€ -n%)  dnln 1n°%®

The third set, MX(S? is of course identical to Mx< exceptthat the radial function R(B)
—on —on on

(1)

appears throughout in place of Ron . Substitution of these in the field expansions (2,44)

and (2.48), followed by application of the boundary equations (2.46) yields the two equa-

tions
i 4.6
~E nZ:(:)An\,( s (0|5 (g’] ZA (£ -Ls () SR (s]
3
0
L, 2 (3)
- Al ==5 MR () (2.50)
— n 2 1n In 7o
n=o 1-n
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i (e8]
i 2 - dyp @ a2y 4 (1)
m ; (€7 l)nson(n)LgR (S)] FE(L-n®) S8 (R )
§

0]

(3)

e

X 2 d (3 ooy d
A n('go—l)son (n) p R (s)] +:~;O(1 n )dn son(n)Ron(go) (2.51)
n=o
[0}
Q0
_ Z 2 (3) _ 2 _ Y _d_ (3)
;An e &@-Da-)s, ()= x (] €2 D77 55, (R e )
:
(0}

The essential complication of the spheroidal geometry now hecomes apparent.
In the corresponding equations for the sphere, the angular dependence is such that
the orthogonality of the angle functions can be applied directly to give two simple

X . Z
expressions relating the known coefficient An and the two unknown ones An s An

with the same index n, and the scattered field is thus expressed in terms of the
series (2.48), all of whose coefficients are easily written down. TFor the spheroid,
however, this is not possible. The appearance of the scale factors and of angle
functions with two different values of the index m makes it impossible to relate the
known and unknown coefficients with the same, or even with a finite number of dis-
tinct indices n. Since there are no recurrence relations for the spheroidal
functions, there seems to be no easy way around this difficulty, and the best one can
do is to obtain an infinite system of simultaneous equations for the unknowns and re-

sort to a large scale computing program for its solution.

51




THE UNIVERSITY OF MICHIGAN
3648-6-T

Such a system was constructed by Schultz in the following manner. Equations
(2.50) and (2.51) are multiplied by a function Sor (n), with r ranging from 0 to o,
and integrated over the range -1 <n< 1. The result is a doubly infinite system of

. . .. X z . .
equations in the unknown coefficients An’ An’ which can be written

- X z i @

Z(c AY+D A )=E a > B (2.52)
r$m n m n rn

n=o n=o

(0 0] . Q
Z (v A% +w AZ> =E a Z U (2.53)
rT$m n rm n T rm

n=o
where r=0, 1, 2. . . o, and the known quantities are

iA dR (1) :
=_1n VEZ -1 _on_ SS S dn

0 d€

JIE)
c. =21 —= S S, S, O (2. 54)
3

l (1) dSon
5?75 S dntE R _(E) S(l-nz) S dn

on or o on O dn or
-1 -1
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& |} ) ¢ ds
v o=(?-1) =2 ns S dn+E R (1-n2) =235 dn
rn o} d€ £ on or 0 on dn or
o -1 -1
(3) 1 .
dR 1 ds
= 2 _1 ln h_ 2 dn+ 2 -1 (3) , _ 2 1n
Wrn E’o go d€ £ S 1 Slnsor " So Rln (%) ml-n dn Sordn
o -1 -1

1
With the exception j Sonsor dn, which is of course equal to Nor 6 o’ the above
-1

integrals cannot be evaluated in closed form. They can, however, be expressed in
series of spheroidal coefficients by simply expanding each Smn in series of Legendre
functions and using the orthogonality properties of the latter. The actual ex-
pressions are given in Chapter IV.

The convergence of the above system of equations could presumably be demon-
strated rigorously by straightforward methods, but this seems hardly worthwhile at
this point in view of the reasonableness of the results and the simple physical argu-
ments which support it. As noted previously, the system can be solved approxi-
mately by truncation, i.e., by taking only the first N equations of each set and
solving for the first N pairs of unknowns. The number N depends, of course, on
the size (and eccentricity) of the body and on the accuracy desired. The fact that
over half the terms in the system vanish identically is of some small benefit in the

computation task, though this gain is rather overbalanced by the circumstance that
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the remaining ones are complex. Details of extensive computations based on this
solution and done on a large scale digital machine are given by Siegel et al (1953)
and Ritter (1956).

An expression for the scattered field in the far zone is of primary interest in
radar problems and can be obtained from (2. 48) by substituting the asymptotic forms
(2.15) of the radial functions into the expressions (2.49) for the M vectors. Thus at

large distances r from the spheroidﬁ\, the scattered field is

. @
elkr n /A X
ES ¥ =— 2 i {3 [-A S (n) sin ¢]
- r n<o n n on

(2.55)
+?¢ [Az nSon(T)) -1 Arzl A-n? Sln(n)] cos ﬁ)} :

In the generalization of this solution to the case of arbitrary direction of in-
cidence (Reitlinger, 1957) the field must be expanded ina double series,with the in-
dex m running from zero to infinity. The proper choice of the M vectors becomes
even more difficult, and the matching of terms in the boundary equations by means
of the § - dependence is not so trivial. The n-dependence is also more complicated,

so that the matching procedure used above produces not only the 1 integrals en-

countered there but also numerous others of similar form, and leads to an infinite

“The criteria for the validity of these forms are that (c & 2 >> Amn and

(cE)?(E2-1)>m?.
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set of infinite systems of equations for the expansion coefficients. The mere
transcription of these is a rather formidable task, and it is hoped that the reader
will never be faced with the necessity of using them.

Another extension of the wave-function solution might be discussed briefly at
this point. This deals with the case of a dielectric scatterer. A radiation problem
of this type was treated by Weeks (1958). The case considered is that of a
homogeneous dielectric spheroid covered by a spheroidal shell of another dielectric
and excited by a transverse slot at each of several locations. This type of ex-
citation is strictly outside the range of the present report, and the details of the
solution will not be given here, but certain of the results are included in another
section. The general technique, i.e., method of representation of the fields, is the
same as in the case of the perfect conductor, but here, of course, the field interior
to the body must also be considered. The problem of matching the fields at the
boundaries is even further complicated by the fact that two different values of the
wave number k are involved, and since this appears as a parameter in all the
spheroidal functions, the orthogonality relations are further restricted. Instead
of multiplying the boundary equations by a spheroidal function and then integrating,
as in the solution of Schultz, it is necessary to expand each angle function appearing

there is series of Legendre functions and then employ the orthogonality properties
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of the latter*. The result is again an infinite system of equations in the infinite set
of unknown expansion coefficients for the radiated field, numerical treatment of
which requires a large scale computing facility., The convergence properties of
this system would presumably be similar, though not necessarily identical,to those
of the system constructed by Schultz. This question has not been thoroughly‘in-

vestigated, however,

e
b3

A variation on this procedure has been given more recently by Yeh (1963} who
published a formal solution of the same problem, presumably being unaware of the
existence of Weeks' earlier and more extensive work. In this paper the angular
functions pertaining to one medium are expanded directly in terms of those of the
other, the coefficients being expressed as series involving the two sets of dmn,

The two solutions are essentially equivalent, and it is not immediately clear which
form is preferable, In an earlier report by Johnson (1955) the problem of the
dielectric spheroid was attacked by means of a set of approximate vector wave func-
tions, which satisfy the wave equation only in the far-zone limit, The procedure
used in determining the expansion coefficients of the reflected and transmitted waves,
namely that of applying the boundary conditions to the various series in terms of
these functions, would seem to be of very doubtful validity except in the case of a
nearly spherical scatterer, The solution should thus perhaps be classified with the
eccentricity-restricted approximations, but the region of validity might be difficult
to determine,
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III
APPROXIMATE SOLUTIONS

3.1 FREQUENCY-RESTRICTED APPROXIMATIONS

The wave-function solutions detailed in the preceding chapter have been called
exact because it is theoretically possible to carry them out to any desired degree of
accuracy. In practice, however, this presents serious difficulties. So far little has
been said about the convergence of the series involved, but it is not hard to show
that this becomes slower as the frequency increases, and as in the case of the
sphere, for a given frequency, the summation indices must reach a value consider-
ably in excess of ka in order to yield any reasonable accuracy. For the scalar
problem with symmetric excitation, the exact solution has been carried out to a high
degree of accuracy for certain spheroids at frequencies ranging up to a value of
ka=<4. For the vector case, however, even with plane wave incidence in the axis of
symmetry the few existing computations are accurate only out to ka=<3, and for
other directions of incidence, no computations have even been attempted, to the best
of our knowledge. The need for approximate solutions which offer reasonable
accuracy at tolerable expense is thus obvious, and several of these have been
developed. None, of course, is useful over the entire ranges of interest in all the
parameters, and the natural basis of classification is the parameter or parameters

restricted and the ranges of validity.

2
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Perhaps the most important parameters in this respect are wavelength
(relative to characteristic dimension) and eccentricity. The material properties of
the scatterer may also require consideration, and several investigators have
developed solutions based on the perturbations of these properties with reference to
the surrounding medium; these will be discussed presently. By far the greater part
of the existing approximate theory, however, depends primarily on the aforemen-
tioned geometric parameters. We will deal first with the matter of wavelength or
frequency, and begin at the low-frequency end of the spectrum, which is generally
referred to as the Rayleigh region, after the author who provided the first systemat-
ic treatment of low-frequency scattering (Rayleigh,1897).

3.1.1 Low Frequency Approximations

When the wavelength of the energy incident on a body is large com-
pared to the characteristic dimension of the body, then ka is small, and this im-
mediately suggests a series representation for the scattered field in powers of this
quantity. This series is usually referred to as the Rayleigh series, despite the fact
that Rayleigh's original contribution only yielded the first term. In general itaffords
the easiest and most universally practical way of obtaining the scattered field of an
object in the region of the spectrum where the first few terms provide sufficient
accuracy. Its use at higher frequencies is limited absolutely by the finite radius of
convergence of the series, and practically, of course, by the difficulty of obtaining

the coefficients for the higher order terms, especially in the vector case. Besides
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the obvious advantage that once the coefficients are known, the scattered field is
immediately obtainable for any wavelength within the region of effective convergence,
this solution has the further merit that the cases of arbitrary incident direction and
shape and material parameters present no essential difficulty. It is thus the most
general solution known, the only important restriction being that of large wavelength.
To date, the coefficients in the Rayleigh series have not been obtained
explicitly beyond the third, or in certain cases the fourth (non-vanishing) term in
the far-field expansion. There are perhaps two principal reasons for this, the first
being the fact that the majority of the methods presently available either break down
completely or have not been developed sufficiently to yield more terms, or would
involve a prohibitive amount of algebra, and the second, the fact that the limited
region and non-uniform manner of convergence of the series (cf. Senior, 1961)
seriously restricts the advantages to be gained. The first extensions of Rayleigh's
work were produced almost simultaneously by Tai (1952), and Stevenson (1953 a),
who developed quite distinct methods for obtaining the next non-vanishing term

4 % 3
(which is proportional to k in the far field series , the term in k vanishing

ikr
sk

The term "far field" is used here to denote the coefficient of eT in the scattered
field expression, in contrast to the treatment below, where the coefficient of

ikr

e . .
—— is considered.
kr
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identically for a body with a center of symmetry). The two derivations have been
discussed and compared by Justice (1956) and will be outlined below. The third non-
vanishing term, proportional to k5, was derived by Senior (1960) for the scalar
problem with nose-on incidence and either Dirichlet or Neumann boundary conditions,
and by the same author (1964) for the vector problem with a perfectly conducting
spheroid. (In the latter work only the coefficients in the power series expansions of
the wave-function coefficients are given explicitly, but from these the Rayleigh
coefficients are easily obtainable.) Additional power series coefficients in the scalar
problem are also given by Senior (1961), but ‘these are not sufficient to extend the
Rayleigh series for the far field beyond the term mentioned above.

For the scalar problem, the Rayleigh series is obtainable in a straight-
forward manner from the exact solution by sir;lply substituting power series ex-
pansions for all quantities which depend on k and then rearranging terms and
collecting coefficients of like powers of k. Logically, of course, this procedure
might be termed reverse, presupposing, as it does, a knowledge of the exact solu-
tion and of the functions in terms of which the latter is naturally expressed, and
yielding only an approximate form with a more restricted range of validity. How-

ever, the method is easily justified on practical grounds, since in the cases where it

*It should be noted that the statement of Sleator (1960)(also in Crispin et al, 1963),
that the coefficient of k5 vanishes for the hard (scalar) spheroid, is in error, as is
the value given for the coefficient of k6, The corrected curve of cross sectionvska is
shown in Fig, 14,
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is applicable it offers the easiest access to the above-mentioned advantages of the
power series representation for the scattered field. Accordingly we defer any dis-
cussion of Rayleigh's original derivation until the consideration of the vector problem|
where the exact solution is not known in such generality and the advantages of
Rayleigh's methods are thus more evident.

The exact solution for the scalar problem with incident plane wave and
linear homogeneous boundary condition was given in equation (2.24). For the sake
of convenience we now restrict the incident direction to the axis of symmetry and
consider the limiting cases of the hard and soft spheroids (¢/ B = 0, o, respectively)
separately, with the observation that the general impedance solution can be easily
reconstructed from these. Following Senior (1960) we can write the far field

amplitude for the soft body as

© S (c, -1) R c,
fs(n)=2iz = (3)( 5 _(c,) (3.1)
n=o on ( E)

where fs(n) is defined by the relation that if v° is the scattered field in the far zone,
then
=t (n)gil-{—R -
S kR
(Note that this definition of f differs slightly from that used elsewhere by virtue of

the k in the denominator of the expression for VS.) When the spheroidal functions
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appearing in (3. 1) are expanded in Legendre functions (cf. equations (2.7) and (2. 17))

their dependence on c is contained entirely in the coefficients, which are either the

di‘nn of equation (2. 7) or are directly obtainable from them, and by using the

mn
recurrence relation and normalizing equation which serve to define the dr , the
expansion of these in powers of c¢ is easily accomplished, at least to a reasonable
number of terms, (see Senior (1960) for details.) If we then write the Rayleigh

series for fs as

(03]
n
£ (m=-c Zo u (n)-ic), (3.2)
the functions un(n) are found by collecting the coefficients of like powers of ¢ in the
completely expanded form of fs. The expression analogous to (3. 1) for the hard
spheroid is identical to it except that the radial functions are replaced by their de-
rivatives with respect to £, so that the requisite expansions of these are in terms of
the derivatives of the Legendre functions. The same procedure described above
applies here, and the functions vn(n) in the Rayleigh expansion for the far field
amplitude
< n
[ (m=-c HZO v (m)(-ic) (3.3)

are thus determined. 'There are substantial differences in the two results, in that

the functions Vo Vi and Vs for the hard body vanish identically, whereas none of

62




THE UNIVERSITY OF MICHIGAN e
3648-6-T

the first six u functions in the soft case vanishes. The complete forms for the two sets
of functions are listed for n = 0------ 9o in Sec. 4.1,

The radius and manner of convergence of the series (3.2) and (3. 3) are dis-
cussed at length by Senior (1961), and the details are too involved to be treated fully
in the present work. In general the radius of convergence can be determined by con-
sidering the coefficients in the wave-function (exact) solution as functions of the
complex variable p==ka and locating the pole of least amplitude among all the poles
of all the coefficients. For the sphere, this minimum amplitude is unity for both
the soft and hard cases, and the Rayleigh series accordingly converges only out to
the value ka =1, If the sphere is elongated in the direction of incidence, so that a
is the semi-major axis of the resulting prolate spheroid then the radius of conver-
gence increases for both hard and soft bodies, though in a different manner for each,
approaching the value ka==4,1 in both cases as the spheroid becomes an infinitely
thin rod. For all values of the eccentricity between zero and one, the radius of
convergence for the hard body exceeds that for the soft, the greatest difference
occurring when the axis ratio is around .03, where its magnitude is approxi-
mately 2,0, The above discussion applies only for the Dirichlet and Neumann
fpoundary conditions, For the general linear homogeneous boundary condition (2. 22)
[the situation is much more complicated and the convergence radius can be expected

[to decrease as the ratio o/ 8 departs from the values 0 or .
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For the vector or electromagnetic problem, the derivation of the Rayleigh
series is predictably more involved, and several methods have been used for the
determination of the first three terms in the power series for the scattered field,
Two of these are the previously mentioned solutions of Stevenson (1953 a, b) and

Tai (1952) which have since been elucidated and compared in a report by Justice
(1956), To date no further terms have been derived for the vector case, nor has the
convergence question been discussed adequately, and the predictable accuracy of the
solution rests primarily on a comparison of particular results with those given by the
exact solution, as presented in a later section of this report.

In view of the difficulties inherent in the derivation of the complete Rayleigh
series, and as a matter of historical interest, it seems appropriate to discuss
briefly Rayleigh's original derivation of the first term, which he accomplished by
means of a quite general and remarkably simple line of argument. The derivation
assumes the existence of a region where the distance from the scatterer is large
compared to its dimensions but small compared to the wavelength of the incident
field. Here the solution is basically that of a static problem, and once this is known,
the field at a larger distance can be immediately found from the known properties
of spherical harmonics., The method is essentially the same for both scalar and
vector problems, and the material properties of the scatterer are easily taken into

account, We consider here only the electromagnetic problemfor a homogeneous
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ellipsoid of permeability u' and dielectric constant €' in a medium of corresponding
constants 4, € struck by a plane wave propagating parallel to the major axis. In the
interest of readability and consistency, we will modify Rayleigh's notation to agree
with our previous usage wherever possible, and accordingly we denote the major
axis by 2F§o andlet it coincide with the z-axis, The electric and magnetic vectors of
the incident wave in the region exterior to the spheroid are then represented as

i i -ikz A
€ 1
y

-— u X

where El, the amplitude of the incident wave,may be normalized to unity. In the

(3.4)

neighborhood of the obstacle, under the assumption that ka is small so that

-ikz
e 21, the incident electric and magnetic fields are derivable from two scalar

potentials, i.e.

E=E v ¢; P =y

H‘ c (3.5)
_ € i i

- = J:; E v¢m, pm =X

Within this region the scattered field is also derived from potentials, which

can in general be expanded in series of spherical harmonics in the form

® n
s e, m/j ijp -n-1
¢e,m I; Z Anj Pn(cosf))e r

j==n
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Since there are no sources present, the term with n =0 must vanish, Further-
more in the region of interest, F& << r << A,the terms withn> 1 are
0

negligible, and the potentials reduce to

1
s e,m_j ijp -2
¢e,m j:E_lAlj Pl(cose)e r o,

which may be rewritten in terms of three new constants as

S e,m e, m e,m 3
= ? + £l + E) >
¢e,m Qx X Ay yta' oz [t

If we consider these constants as the rectangular components of constant vectors

e, m : .
A", then the above potentials can be written

PAREERILIN

and the 'scattered' electric and magnetic fields in this intermediate range

2
(1/r>> 1/r", kr<< 1) become

. e
Es=-E1 v(v-é—>
T
€ i m
Hs=_F El V(V'A——-> .
- u r

These expressions are not adequate to represent the far field, for when kr is

(3.6)

appreciable the magnetic potential contributes to the electric field and vice versa.
To deal with this region we use a Hertz vector representation, noting that any

field may be written in terms of electric and magnetic Hertz vectors as follows
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(see, for example, Kleinman and Senior, 1963):

E = VAVA 7 tiwpVAar =V (V- r)- vig + ik J’% VAT (3.7)
—e “m —e ~e —m

HS= UAVA ©* -iwe VAR =V(V*'r7 )-V2 g -ik [EV/\Ee
= ~m e ~m —m K
If the vectors T o and 7 m are specified as dipoles located at the origin, then

eil«:r eikr
x =—C, xr = C (3.8)
—-e T e - m T ~m

where C_ and C  are constant vectors (i.e. dipole moments.) Furthermore

in the range where kr == 0, we have

¢ [
r~— and T o — (3.9)
- T “m T
so that (3. 7) becomes
C
s ~e
E =v(v-£e)"—’v(v'—r-) (3.10)
s 9m
H =v (ver )xv(ve —).
m r
Identifying (3. 6) and (3.10) we obtain the expressions
c =-E4A%5 C=-/ EA", (3.11)

and the far field is then given by (3.6) , (3.8) and (3.11). This approximation to the
field is thus completely defined once the constant vectors ée and Am are

specified. These are obtained by considering the static problem for the spheroid.
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Rayleigh gives the solution to the static problem in the following form, If the

impressed field potentials ¢; o have the form

L]

i
) =ux+ vy + wz
m

e, m
for some constants u, v, w, then the vectors A’ have components

uVK vVK wVK
Ae,m=_ e, m Ae,m= _ e,m, ,em__ e, m
X 1+K L’y 1+K M z 1+K N
e, em €,

where V is the volume of the spheroid,
K, = (e'/e-1)/4m

K_=@'/p-1)/4

E(E2-1) E+1
L =M=21r{§§-020 log,g.,o_1
0
Eo Eo-1
and N =41r(§?)—1) 2—log €o+1-1 .

.

In the present case (3. 5), ¢; =y, i.e. u=w=0, v=1, and thus

e _.e_ e__ V(e' - €)
AX'-Az =0, Ay = £ (82 -1) £0+1

. 2 _
4re+2m(€' -€) go 5 log Eo_l
and;b1 =x, i.e, v=w=0, u=1, so that
m
V(u'-
AT =AM =0, AT - o o)
y z X

, Eo(’é’z-l) §, 11
41#'*'2”(11"#) gO- 2 log go_l
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In the case of perfect conductivity, €'—o and u'->0 and the expressions

become
e -V m v
9 .
AT 2 g(82-1) &+l » Ay 2 @D Al (3.12)
g -— log 50 ] 4z -27 ‘g‘o— 5 10550_ .

With these constants thus defined, the scattered field of a plane wave incident along

the axis of symmetry may be written explicitly as

S if e eikr m eikr
E =-E {A V/\V/\<—’i\>+ikA V/\<——’i‘
= y r vy X r x

s € i m Tkr e eikr/\
H = - J: E {A V/\VAG—/i\> - ika| V/\<—i>}
= [ X r x V4 r 'y

or alternatively

(3.13)

s if,e; aeikr eikr m ikr A
-E (A G7——+k2 E-A +ikA v &= A

E =
= y\oy r r y X
S € i m 0 eikr eikr e eikr A
H = - J: E {A (v— + k2 /i\>-ikA V—NAT ).
= u X X T r X y r y

to

S if. e i 1 m /ik eikz
E =-E {A <7-52-+k§ -A (2—+ kz) }T i
x=y =0 y y y
. . ikz
B = -/E ?(%—-%2+k9-Ae(?+kz)}-e—'1\
x:y:O u y ' z X
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and the back scattering cross section

2 2
o =M 2 = 4y it (Ae -Am) . (3.14)
Z> y X

It I'mm

If the spheroid is reduced to a sphere, i.e. if we let F—> 0 and Eo —>

while FEO remains fixed, then

2 _ 0 0 2
% 2 BT 173
o
and A° —9-3—V, Am-—>§Y
y 4w X 8r

and the expression (3, 14) for the cross section thus reduces to the well-known
Rayleigh cross section of a sphere,
cop v ()

Before proceeding with the derivation of subsequent terms in the series, we
note a simple argument given by Siegel (1959) which leads to an approximation to
the Rayleigh coefficient obtainable with very little effort, This is based on the con-
sideration that when the wavelength is much larger than the body dimensions, the
details of form are not distinguishable and the principal effect of the body depends
only on its size, i.e. volume., The dominant term in the scattered field should
thus be expressible in terms of the volume plus a correction factor indicative of the

general shape. This is verified in the following manner for the case of a plane wave

incident on a perfectly conducting surface along the axis of symmetry,
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The general multipole expansion of the scattered or radiated field shows that
for the Rayleigh region a good approximation to the far-zone field is given by the
dipole term alone. This in turn can be found by integrating the field strength
multiplied by the moment axis over the surface, if the former is known. If the

observation point is on the axis of symmetry, the integral reduces at once to the

£
j 7p? a(z) dz
o

where p, z are cylindrical coordinates of the surface, £ is the length, and a(z) is _

form

the amplitude of the field on the surface. (The electric and magnetic fields are
treated in identical fashion and contribute equally to the scattering cross section),
If Prax << 1, i.e. if the body is elongated, then a(z) is slowly varying over the
range of integration and may be approximated by a constant which, in analogy with
the case of a plane surface, we may take to be twice the amplitude of the incident

field, Under these assumptions the far-field amplitude of the electric vector, which

is the sum of the contributions of the electric and magnetic dipoles, becomes
1 i
E== k¥ E V
g
where E1 is the incident amplitude and V is the volume, For a general spheroid,

prolate or oblate, the correction factor can be ascertained by comparison with the

exact Rayleigh result, This is given by Siegel in the form
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b -a/b
1+—e
Ta

where a is the axis of symmetry and b is the transverse axis. The agreement
with the true Rayleigh coefficient is within one percent for any eccentricity, The

nose-on backscattering cross section is then

- 2
TN vz@% a/b) :
(o) xa

It is not at once apparent how Rayleigh's formulation could be used to derive
subsequent terms in the low frequency expansion, The problem becomes surprising-
ly involved as soon as the dynamic terms are introduced, and the details of the
existing solutions are too voluminous to be included here in their entirety, We will
limit ourselves to a general description of two independent extensions of Rayleigh's
result, which more or less parallels the account given by Justice (1956).,

The two methods to be described are those of Tai (1952) and Stevenson (1953)
and following Justice we will refer to them as the vector mode function method and
the potential function method respectively, Both solutions are based on the assump-

tion of power series representations for incident and scattered fields of the form

. Q0 .
E].a S = Z E:‘.l, S(ik)n

n=o
(3.15)q
i, s @ i, s n
DR
n=o

and the applicability of the results is naturally limited to cases where these

representations are valid. Since the power series representation is unique
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provided it exists, the two methods must produce equivalent results in the region
where both are applicable., They differ, however, in generality and range of
applicability. The potential function method is superior in these respects and can
theoretically be applied to any body for which the requisite potential problems can be
solved, with arbitrary incident field and material characteristics, and it can be
carried out to any order desired. The solution is given in detail by Stevenson (1953b)
for a general ellipsoid of arbitrary material with plane wave incident in any direc-
tion, carried out to the third order (the second order term vanishing as in the scalar
case.) The vector mode function method becomes extremely complicated for off-
axis incidence and is apparently not applicable for terms beyond the third. It was
originally applied by Tai to a perfectly conducting oblate spheroid with symmetrical
incidence, and subsequently to a prolate one with the same excitation by Justice.
To facilitate the description and comparison of the methods, we will consider here
only the latter problem, The more general results of Stevenson are tabulated in the
appropriate section below.

If the material constants of the media are incorporated in the metrics of the
field vectors (i.e. if Gaussian units are used), then Maxwell's equations can be

written in the form

(3.16)
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Also if 7! is the unit normal to the scattering surface, then for a perfect conductor,

the boundary conditions take the form
ﬂ/\gsh’ﬁ/\gl,ﬁ-gl:-ﬁ-gs (3.17ﬂ
Equations (3. 16) and (3.17), along with the radiation condition on the scattered wave,

constitute the mathematical statement of the problem, and on combining them with

(3.15) and equating coefficients of like powers of k, there results the set

i,S - l,S - i,S lls
VAE S~ =VAH ~=V+E" =V-H' =0
everywhere (3.18)
VAE]-:S - Hi,S , V/\Hl’s-:-El,s
n =n-1 ~n =n-1
a /\ES=-'ﬁ/\El,ﬁ° H°=-4+ H  on the surface. (3.19
=n =n =n =n

Furthermore, by the divergence theorem,

Jﬁ. " ds =Slx}' H*® ds =0 (3.20]

where the integration is over the surface of the scatterer.

These equations form the basis of both methods of solution, and despite
their apparent simplicity, it develops that the procedures required and the forms
evolved in either method rapidly become highly complex and voluminous for the
higher order terms, so that we must limit ourselves here to a general description andj

refer the reader to the above-mentioned sources for the details of the methods.
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In the vector mode function method, the next step is the repeated application of
the curl operator to certain of the equations (3. 18), to yield at once the vector
differential equations

S S _

VAVAE = VAVAH =0

(3.21)
S:

. VAVAVAQQ=0

VAV AVA E

The problem then is essentially that of representing the incident and scattered fields
in terms of solutions of these equations and the first of (3. 18) which have the proper
types of radial dependence and which permit the satisfaction of the boundary con-
ditions on the scatterer. Considering the limited available knowledge of general so-
lutions of these types of equation, this process is necessarily more inductive than
deductive, and it is easily inferred that a thorough study of the intimate character-
istics of the spheroidal system must have been required for its completion. The
process starts with the formation of two sets of spheroidal harmonics, ¢:)’ ® and

1/ (i)’s whose gradients satisfy the boundary conditions on _14_3(1;’ ® and Lli’ S re-
spectively. These gradients automatically satisfy the vector equations given above
as well, and from them more vector solutions can be formed in a manner similar to
the construction of Hansen's vector wave functions. The spheroidal harmonics, as
pointed out in Section 2,1, are easily constructed from Legendre and trigonometric

functions, Specifically, we can write
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m
P (§) cos m
p__= p:‘ (m{ (3.22)
Qn (£) sin m §

with the choice of P or Q functions determined by the desired behavior as E—> o,
and that of cos or sin by the required f -dependence. The gradients of the first two

sets of these potential functions are required to satisfy the boundary conditions (. 19)

i, s i, s
onE’ andH”’
0 0

, and the additional vector solutions necessary for the representa-
tion of the higher order terms in the field expansions are expressed as linear com-
binations of certain of these harmonic functions and their gradients, multiplied in
the appropriate manner by certain rectangular or spherical coordinate vectors. The
choice of an adequate set of such functions for the representation of the incident and
scattered fields and the proper construction of this representation is an inductive
process too complicated to be described here in detail, In general it entails the e);-
pression of the first three terms in the incident field expansion in terms of five dis-
tinct vector mode functions, chosen on the basis of their angular dependence, and
several arbitrary constants not uniquely determined by the incident field alone,
Each of these five functions is associated with a corresponding function in the
scattered field, and the boundary conditions, including the radiation condition on the
scattered field, are applied to each mode individually, If the various functions and
combinations have been properly chosen this process determines uniquely all the

constants appearing, and the solution of the problem is complete out to the third
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term in the power series expansion, It should be noted that aside from the tre-
mendous increase in complication which would result from consideration of terms of
still higher order, the method would apparently break down completely, since it has
been shown by Stevenson that the terms beyond the third in the scattered field do not
satisfy the radiation condition individually, but only collectively, and without this
condition on each mode it is impossible, by the present method at least, to deter-
mine all the unknown constants involved. Some of the explicit forms evolved in this
solution are tabulated in the appropriate section below.

In the potential function method developed by Stevenson the first steps are the
same as in the previous method, It is a trivial matter to find potential functions

¢(i), (l/j whose gradients match the first terms of the incident field expansions, and
the first equations of (3, 18) and (3.19), together with the required behavior at
infinity, then define standard Dirichlet and Neumann problems for the potentials

¢s, ws , respectively, such that E° = v ¢S, H = sz. The next stage, how-
oo ) 0 ~o o
rever, cannot be reduced to potential problems alone, since Ei » and Lli are not

irrotational vectors. The procedure is to write each of these as the sum of an

irrotational and a solenoidal component, The electric vector, for example, is

[written
S S
= F + .
E =F+V ¢i (3.23)
where F . has zero divergence, vanishes at infinity, and satisfies the equation

1
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vn E; =1_{i (3.24)
and ¢f is therefore an external harmonic function which must satisfy the boundary
condition

fngp) =-t [El+5i1] (3. 25)
Determination of ¢T is thus again a standard potential problem, once the particular

solution F_ of (3.24) having required properties is found. If the right hand side of

1
an equation of the form (3.24) vanishes at infinity at least to order r-3 and if its

divergence is zero as well as the integral of its normal component over the scattering

surface, then we can write an integral expression for the solution which, since LI(S)
satisfies these conditions, in this case has the form

1 s 1
- — o - d .
E VA41r_SIj'o i (3.26)
where dv is the volume element, r is the distance between observation and inte-
gration points and the integration covers the entire space, including the interior of
the scatterer, In order to complete the definition of this integral, thatof _}13 must be ex-

tended to cover the interior of the body, Since gi satisfies the latter equation of (3,20)

this canbe done by finding an internal harmonic function wcs)i such that
ﬁ'V¢S=ﬁ'Hs=ﬁ'V¢/z (3.27)

on the surface, which is an ordinary Neumann potential problem, By making use of

the form
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s 1 _ s L
VAjHo(r) dv-jgoAv (r) dv

we can write finally
1
gS =L wS/\v<—) av+ | vy AV (l) av|+vgS  (3.29)
=1l 4x o r oi r 1
E I
where the first integral covers the exterior of the scatterer and the second the

interior, and ¢f is the potential satisfying (3.25) with El given by (3.26)., The

magnetic vector LIT is constructed in analogous fashion and can be written
g =i vps AV (l> dv+ | vp°. AV <l> dv [+Vy°  (3.29)
=l 4 ) r oi r 1

E I

with ¢(s), ¢§i, xl/is defined by standard potential problems as before.

The procedure for finding the next term in each series is similar to the above,

S S

but here the situation is complicated by the fact that H, and E 1 vanish at infinity

-2
only to order r , and the integrals corresponding to (3.26) are accordingly

divergent, This difficulty can be overcome by constructing another pair of external

f and gs on

s s
harmonics ¢1 o’ !//1 o Whose normal derivatives match those of E 1

some surrounding surface 51 exterior to the scatterer, which can be arbitrarily
large. We can then write for the electric field

S
E =

F
=9 =

S
otV ¢2 (3. 30)

with F 9 given in the region So < 3 <& 1 by the form
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22- S B_I/\V(r)dv+ S v wli/\v(r)dv+ S v wle/\V(r)dv
§,<E<E, §<E, §>8,

(3.31)

(Here wie is an internal harmonic whose normal derivative matches that of wi on Eo,)
For & > & 1’ however, this expression is of no use, since here it yields

VA l‘z = ng?e # I_ii , and thus the function ¢; is not yet determinable as an
external harmonic. We are forced to resort to using another type of expression for

the field vectors consisting of surface integrals, of the form

E”S - ikgﬁ AH"SP ds+ VA jﬂ AE’®pds -v S\ﬁ cE'%pds  (3.32)

ikr
e
where p = m ,T is the distance from apointonthe surface to the field point, and

the integration covers the scattering surface in each term. When the field ex-
pressions (3. 15) and the standard exponential series are substituted here and
coefficients of like powers of k are collected, there results a set of equations in the
i, s

components ES’ s, En , of which the pertinent one for E: is

S

41rES= L/gx/\H ds+V/\-1-§/\_E_sds+lV/\ rg/\Est
=2 \r =1 r 2 2 ~o

1A S A S
-VSI, £ o E, ds - V—S;E E ds (3.33)

(The remaining terms which apparently enter can easily be shown to vanish.) The

N |-

i

5 by virtue of the

second term can be written in terms of the known functions E
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boundary condition (3. 19), and substituting (3. 30) in the fourth term, we can

write
S s'
Ey=E,+V §, (3.34)
. 1 a S 1A i
with 4r F'. =\ = & AH ds-VA \= £EA E_ ds
- r =1 r =2

2
1 1 A
+5 VA rg AE ds-=V\rE- E° ds
2 =0 2 =0

A
vl £+ F,_ds (3.35)
r =2 .

and

s' 1A s

==y \= £ . 3.36
v, vjr £+ Vv, ds (3.36)

The value (3.31) for F o €an now be used in the last term of (3.35) and F' 5
is thus completely determined, and furthermore it is easily shown that both E; and

1
E'z vanish at infinity, so that ¢2S is an external harmonic function and is thus de-

terminable by means of the boundary condition given by (3. 19), (3.34), and (3. 35).

S ]

The determination of Ez is now complete, and that of le is perfectly analogous.

Stevenson makes the statement that the general method described here can be
carried out to any order desired. However, the success of the method with higher
order terms depends on the ability to find particular functions F 0 to represent the
solenoidal components of each term, and furthermore the fact that the field com-

S

ponents E

E > LIISI do not vanish at infinity for n > 2 renders the problem of finding
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the irrotational components V¥ ¢Isl more difficult, The details of how these diffi-
culties might be overcome have not been published.

Another difficulty with this representation arises when the far field is
considered. The behavior of the higher order terms indicates that the given series
becomes useless as r increases without limit. A new representation, however,
which is valid everywhere outside a large sphere surrounding the scatterer, can be
derived in a manner similar to that used by Rayleigh to obtain the far field repre-
sentation from that of the near field. In the paper of Stevenson that is accomplished
by writing the general expressions for the components of an exterior E (or TM)
wave and an H(or TE) wave in terms of spherical wave functions and expanding the
radial components in double power series in k and R. Each coefficient in the radial
component of the near-field series determined earlier is then expanded in powers of
R and the two expansions thus obtained are compared, term by term, yielding a
general relation between the individual surface harmonics involved in the expression
of the far field and those of the near field, Once the latter are obtained from the
previous analysis, the far-field expressions are easily written down. It develops
also that no accuracy is lost in passing from the near to the far field, i.e.,
knowledge of N terms in the near-field series gives at once N terms of the far-field
series, The explicit expressions for the far field are given in Section 4.1,

Still another method of deriving the vector Rayleigh series is described

by Senior (1964), This is perhaps more straightforward and schematically simple
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than either of the above methods, and there are no analytical difficulties in carrying
it out to any arbitrary degree; however, again the quantity of labor involved rapidly
approaches a prohibitive level as the number of terms increases, and to date the
forms have been worked out only as far as those in the previous solutions, and only
for a conducting spheroid with plane wave incident nose-on.,

The first step in this procedure is to expand the incident and scattered
fields in terms of appropriate sets of Hansen's vector wave functions. The question
of optimum choice of these sets is still more or less open, but for reasons of
simplicity and generality the ones chosen were based on the radius vector r , and
with this basis and with the assumed incident field, the only sets of vector functions
resulting are the Mg 1n and Ne, , as defined in (2, 43) with r replacinga . In

)

particular the scattered electric field has the representation

£
E = (An MOln * BnN—eln) (3.37)

with the coefficients An’ Bn as yet undetermined, The vector functions may be
expressed in terms of the prolate spheroidal coordinates by formulas analogous to
those of (2.49), and using these forms and the explicit expression for the incident

electric field, which is

. 2 _ 3 -
B dn s o Teosp A hmp, oo

the boundary conditions on the surface (2.46) become, after some manipulation,
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0 1
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2 n-1
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n(n-1)!

and (3.39)

a0
B
“n (3) gggz 1) (3)" \ (3 ]
né: { S Eln(cm)R1n (e, )+ 752 5 e MR (e, 8) (Ez )Sln(c,n)Rln)(c,E)

2 _ _ 1
. EEoLen?) lzés' (c,n)R( ) e,8)-15, (c, n)R( )(c,E)]

n-1
+(-i)“'”ﬁ(55’1_’17 [(€2 1)1 -n7) }=o

where £ is the coordinate of the scattering surface and the primes indicate differ-
entiation with respect to £ or n. All quantities appearing here which depend on ¢
are now expanded in power series. These include the coefficients An and Bn’ the
eigenvalue Kln’ and the spheroidal functions, which must be expressed in terms
of the corresponding sets of spherical ones. The magnitude of the task now be-
comes apparent. It is not hard to show, however, that once these expansions are

inserted and the coefficients of like powers of ¢ collected, the result is an
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essentially triangular system of equations in the coefficients in the power series ex-
pansions of An and Bn’ so that these can be determined| sequentially out to any order
desired. Again, the explicit forms will be tabulated later.

One more attack on the scalar problem might be discussed briefly here, .
though from the standpoint of generality and rate of convergence it might equally
well be classed as an exact solution, This is the Schwinger variational technique*
for the solution of an integral equation, as applied to the problem of a hard spheroid
with nose-on plane wave incidence by Sleator (1960), The formulation of the integral
equation for the velocity potential of the total field is standard procedure, and the
equation may be written

¢(r)=e_ikz —Zl; J ¢(r,):;(§ (r, r') da! (3. 40)
S
where r is the field point, r' the source point, E%(;—'—r'-)- is the normal derivative
of the free space Green's function, and the integral covers the scattering surface S.
Direct application of the boundary condition

-0 (3.41)

9_
on ¢(r) S

to (3. 40) gives

0 -ikz
on €

“ 5¢(r') ik G(r, r')da’ (3.42)
g 4r 3 onon' ! *

*
It has been shown by Jones (1956) that this technique is in general equivalent to a
method developed earlier by Galerkin (1915) for the solution of certain types of
integral equations.
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(The formal differentiation under the integral is not obviously legitimate, since the
resulting integral is apparently divergent. This difficulty, however, can be over-
come by proper treatment of the ensuing forms, and a slightly more complicated but
equivalent formulation would obviate it completely.) The Schwinger technique is to
define next the quantity

§ . 8%G (r,r)f () da da’
S plx )anan'

3[p]== [g”‘ i }2 , (3.43)

and it can be shown that the potential #(r) is then the solution of the variational

problem 6J [¢] = 0, It also follows that the total backscattering cross section is

given by the formula
-2
o=4r | | (3.44)

where J0 is the stationary value of J [ ¢:| . It might be noted here that the usual
procedure with this mechanism is to assume a simple trial function for the surface
potential @(r'), for which the integrals are more or less manageable, Since the
error in the result is proportional to the square of that in the trial function, the
calculated function should be more accurate than the original one, and the process
can be iterated if necessary. In certain cases of separable geometries, however,
the iterative scheme can be replaced by an expansion process. Specifically, if the

unknown function f(r) is expanded in terms of an appropriate set of angle functions
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with coefficients which, in a symmetrical problem, are functions only of the radial
variable, application of the stationary condition to J [ ¢J yields at once an infinite
system of equations for these coefficients, whose solution, if it exists, gives an
exact representation of the unknown function §(r). As a matter of fact, if the basis
functions used are the standard orthogonal eigenfunctions of the problem in question
and if the Green's function is similarly expanded, then the integrals are all tractable,
the infinite system is diagonal, and the solution immediately reduces to the standard
wave function solution discussed previously.

In the work of Sleator, however, the spheroidal functions, which are the
natural basis for the expansions, are by-passed in an effort to simplify the numerical
treatment, and the potential is expanded directly in Legendre functions,

pe.n =) A ©P ), (3.45) |

Substitution into (3, 43) and application of the stationary condition

od_ _
5A =0 for all u
U
yields the infinite system
f A C =47B v =0,1, 2--- (3. 46)
e v
where
2
c = SP () 19 R , (3.47)
pv ) Y G(r.r)Pv(n)dada
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B = gpv(n) ain e X% ga, (3.48)
If a Fourier integral representation is used for the Green's function in (3. 47),
then by rearranging the 7-fold integral that results, it is possible to carry out all
but one of the integrations in closed form. The last integration, however, is
apparently best handled by numerical or graphical techniques. The system (3. 46)
can be proved convergent and can therefore be solved in truncated form to any order
desired. The integral in (3.48) is immediately obtainable from known forms.

It is thus possible to obtain an exact solution to the spheroidal scattering
problem without resorting to the sphefoidal wave function, but the amount of labor
involved in evaluating the integrals (3.47) and solving the system (3. 46) make it
questionable whether this method is preferable to the one previously described. At
any rate, the number of terms required in the series (3.45) increases with the fre-
quency in the same manner as in the wave-function solution, and the quantity of
labor involved rises much more rapidly, so that for practical purposes the vari-
ational solution is perhaps justly classified as a low-frequency approximation.

An analogous formulation of the vector problem is much more complicated
and leads to integrals which appear prohibitively difficult to evaluate.

3.1,2 High Frequency Approximations

As indicated in the previous section, the extension of low-frequency approxi-

mations and techniques to cover the regions where the body dimensions exceed or
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even approach the wavelength of the incident radiation is fraught with difficulties of
several kinds, principal of which are the inordinate amount of labor required in de-
riving the successive terms in the field expansions and the limited range of con-
vergence of the results. One might hope for better luck at the other end of the spec-
trum, and indeed the situation does turn out to be more favorable there. Various
methods based on optical laws have been developed in considerable generality, and
when applied to the spheroid problem some of these produce reasonably good
approximations which, under certain circumstances at least, extend well into the
resonance region. These circumstances usually involve limitations on some other
parameter, however, so that it cannot be said that the problem is completely solved.
Before going into these combined restrictions, we will mention briefly the limiting
forms of the exact solution when the frequency increases indefinitely. In the
interest of simplicity, we consider first only bodies which are perfect conductors.
The modifications of the theory required to cover dielectric bodies will be

developed later,

3.1.2.1 Geometric and Physical Optics

The ultimate form of any scattering phenomenon as the wavelength de-
creases (which form can of course be termed the first approximation for small but
finite wavelength) is completely describable in terms of the laws of geometric optics.

In this limit the scattered field of any smooth convex conducting body is determined
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at any exterior point entirely by the curvature of the body at the specular point, i.e.
that point on the surface where an incident ray and a reflected ray through the obser -
vation point are coplanar with the surface normal and make equal angles with it, It

is not hard to show that if R, and R_ are the principal radii of curvature at this

1 2
point, then the scattering cross section o is given by the expression
og.o. =7 Rl R2.

At the tip of a prolate spheroid, the principal radii are of course equal and have the
value b? [ a, so that for nose-on backscattering we can write

o =71 b'/a?
g.o.

and this is customarily used as a normalization factor for values of ¢ obtained
otherwise. These results are also derivable in terms of a limit for vanishing wave-
length of a more general, frequency dependent result (see, for example, Siegel et al
1955), which is considered below. Also it is shown by Crispin et al (1959) that in
this limit for sufficiently smooth bodies, the geometric optics cross section with
transmitter and receiver separated by an angle B is equal to that observed if both
are located on the bisector of this angle. In the former reference an expression is
derived for the geometric optics cross section as a function of the separation angle
B with transmitter located in the axis of symmetry. For the range B <= this is

o (B) =4x b a?[a%(1+cos B)+b3(1 - cos B)]—z, (3.49)
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By the above theorem, this expression also gives the monostatic cross section if
transmitter and receiver are both located at an angle /2 with respect to the major
axis of the spheroid.

The question of the accuracy of these results and the lower limit of the
frequency range in which they can reasonably be applied is not easily answered.
Undoubtedly this depends on the eccentricity of the body and also on the directions of
incidence and observation. Some indication of this is furnished by the fact that the
geometric optics result for nose-on backscattering from a paraboloid, which is one
limiting form of a spheroid as the eccentricity approaches unity, is indeed exact.
The scarcity of data, either theoretical or experimental, at hilgh frequencies makes
it difficult to establish in general where the optical laws become dominant., Recent
work on the scalar problem for a spheroid of axis ratio 10: 1 (Goodrich and
Kazarinoff ,1962 ) indicates that there are resonance phenomena occurring even in
the range ka =100 for this body, and it is clear that in general the geometric optics
result is of limited value in most practical problems. The underlying principles,
however, form the basis of a more refined geometric approach which will be dis-
cussed presently and which has proved both physically illuminating and practically
useful,

Before dealing with the latter, we will consider a somewhat simpler but
still sometimes useful approach based on Huygen's principle (otherwise known as

Kirchhoff theory.) This is the well-known physical optics solution, which is
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discussed at length for the sphere problem in the first report of this series. The
qualitative aspects of the spheroid solution are generally similar to those of the
sphere though the specific forms are of course more complicated and, to the best
of our knowledge, have not been worked out in as great detail. Accordingly we here
content ourselves with a rather brief formulation and listing of the available results.

The essentials of the Kirchhoff theory can be embodied in the formula

B == |AAHAY @) ds (3.50)
= 4r = R
S

where H is the total magnetic field on the surface, (here the tangential component
may be used since the normal component is eliminated by the vector product, )
f is the unit normal out of S, and R is, as usual, the distance from a point on the
surface to the field point. The integration covers the surface, and if the true value
of His employed, the expression is exact. The physical optics approximation,
however, which represents the principal utility of the form, is based on the sub-
stitution of an approximate value of H, specifically the value given by the geometric
theory for a locally plane surface, which is twice the tangential component of the
incident magnetic field in the illuminated region and zero in the shadow region,
Even with this approximation, the evaluation of the integration (3.50) is not trivial
in general, since except in the case of symmetrical incidence, the shadow curve,

which bounds the region of integration, involves both angular coordinates, and the
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quantity R is itself a complicated expression, If we consider only the far-field
scattering cross section, however, some simplification is possible, and if the
incident field is required to be a plane wave propagating along the axis of
symmetry, a simple result is easily obtained for the backscattering cross section.

Consider first the case where the transmitter is located in the axis of
symmetry, which we take to be the z-axis, emitting a plane wave of unit amplitude
with magnetic vector

. AN
i A -iki -r
=i e 'z =

H
= X

(3.51)
and the receiver is at a large distance from the scatterer, separated from the z-
axisbyananglef, Ifr =r ? is the position vector of the observation point and '

that of the integration point, then the gradient in (3. 50) can be approximated by the

form

e ~ikT « 1!
VIE—|= S — (-ikD)e L
R r

and using this and the approximation specified above for the field H on the surface,

we can write the scattered field, after some rearrangement, as

ik eikr A
Pl Q@ gt 9) (3.52)
Y 8 r X X
with
-1 1, A A
f = Sﬁe ikrte (3,01 gy (3.53)
S'
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S' being the illuminated region of the surface. For the case of backscattering, i.e.

? =’i\z, the second term in the bracket in (3. 52) disappears and the far field

ikr
amplitude, which is the coefficient of —iX e_r__ in (3.52), can be written

. .
F(0)= = Sn o2k oo (3.54)
A z

gt
where n, is the z component of the outward normal and z'is the z coordinate of
the integration point,

When the above formulas are applied to the prolate spheroid, the resulting
expression for the nose-on backscattering cross section is easily found to be

-4 2
b sin 2ka Gin ka)
= 1 - + .
o) 5 ]: Ka ka :] (3.55)

a

The function in brackets is plotted for a 10; 1 spheroid, over a limited range of ka m
Fig. 24, along with various other solutions. The expected discrepancies in the re-
gions of large wavelength are apparent at once, For larger ka, the oscillation
about the geometric optics value seems reasonable, but a close comparison of the
analogous form for the sphere with the exact (wave-function) solution (see Crispin
et al, 1959) indicates that there is little correlation in either phase or amplitude, at
least until the oscillations in both solutions become very small, Also the above-
noted results of Goodrich and Kazarinoff on resonance phenomena indicate that this

may occur only at extremely large values of ka, at least for thin spheroids. It is
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thus difficult to say in general what or where are the advantages of the physical optics
result over that of geometrical optics.

For more general angles of incidence and observation the integral in (3, 50)
is not so tractable and few results are available. Application of the stationary phase
principle yields only the geometric optics form (3.49) (see Siegel et al, 1955), For
any given direction of incidence, however, there is one observation direction in
which the integral can be evaluated exactly. This is the direction for which the nor-
mal to the plane of the shadow curve bisects the angle between transmitter and

receiver, this occurs when

B\ _a%?-p
tan (2 7 sin Bl cos Bl

where [ is the angular separation between transmitter and receiver, Bl is the
angle between the axis of symmetry of the spheroid and the plane of the shadow

curve, and

p? =a? cos? Bl + b? sin? Bl

Letting M = kp cos (g) , one obtains the cross section in the form

2 4 . .
o ='a4£b [: _Sml\iM él;“sz . (3.56)

p

Here again it is difficult to judge the accuracy of this form in general on the basis

of any available information,
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There are two principal sources of error in the general physical optics
procedure, one being the approximate evaluation of the integrals and the other the
discrepancy between the assumed values of the field on the body and the true values.
The former is essentially a computational problem, with which we will not concern
ourselves at present. Rather we will consider certain modifications or refinements
of the assumptions on the surface fields and the resulting corrections to the geomet-
ric or physical optics scattering coefficients., One such refinement is due to Jones
(1957). In this article only the total scattering coefficient (total energy flux in the
scattered wave divided by the energy flux in the incident wave striking the obstacle)
is considered, and it is observed that in this regard, and in the optics region, the
different regions of the surface contribute independently, The main weakness of the
physical optics assumption on the surface current is in the region of the penumbra,
i.e. the neighborhood of the shadow curve, where it is assumed to be discontinuous,
in violation of the actual boundary condition. Jones accordingly assumes a different
distribution in the penumbra region and determines its effect on the total scattering
coefficient, For a smooth convex body the field in the penumbra is taken to be locally
that of a cylinder whose generator is tangent to the shadow curve and whose radius of
curvature is that of the given body in a plane normal to this tangent. The total con-
tribution of the penumbra region to the scattering coefficient is then formed by in-

tegrating along the entire shadow curve.
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Consider first the scalar problem and assume a plane incident wave with
unit energy per unit area normal to its propagation direction. Then the total scatter-
ing coefficient arising from the illuminated region proper has the value 2, and if a
cylinder of radius R is oriented so that its axis makes an angle ;L— B with the

incident direction, it can be shown by means of the exact solution that the energy

scattered per unit length by the penumbra region is

b R cosBl/3
o k2

where bo is a coefficient which incorporates the effect of the boundary condition,
and whose values for the usual cases are given in the table of results hereafter.

Applying this local analysis to a three-dimensional (convex) body, with the stipulation|
that the quantity, kR cos B must always be large, it follows that if D is the shadow .1
curve, with differential arc length ds, and So the projected area of the body on

a plane normal to the incident direction, then the total scattering coefficient is given

by the formula

cosl/3 B ds (3.57)

which, for a prolate spheroid with nose-on incidence, reduces immediately to

2/3

~7 a
=9+ —— .
0 F2+2 b0<kb2> (3.58)
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For broadside incidence the integral is slightly more complicated, due to the

variation of R, and yields a hypergeometric function, so that

2b
~ 0 2 1 b2
o =2+ F -z, L 1-=% (3.59)
T 2/3 271 <3’ 2’ " T a

(kb)/ .

The treatment of the electromagnetic problem for a conducting body is
somewhat more complicated. The contribution of the penumbra region of a cylinder
must first be ascertained, making use of the proposition that if the incident plane
wave is independent of the axial coordinate, then the total field can be decomposed
into two parts, for one of which the electric vector is parallel to the axis and satis-
fies a Dirichlet boundary condition, and for the other the magnetic vector is in this
direction and satisfies a Neumann condition. These components can accordingly be
derived from the solutions of the standard scalar problems, as indicated in Kleinman
and Senior (1963), In the present case if we write the scattering coefficient for the

scalar Dirichlet problem with incident direction normal to the cylinder axis as
~ -2/3
=924
°h bD (kR)
and that for the Neumann problem as

-2/3
~ 2+
oy = bN(kR)

(i.e. let bD and bN be the specific values of the coefficient b0 referred to above)

then it develops that the contribution of the penumbra region on one side in the
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electromagnetic case, with incident direction making an angle 127. - B with the cylinder

axis and electric vector an angle 7, is

(ﬁ.‘i_ﬁ) E) +(bD-bN)sec2 Bcos? w:] ,

and accordingly the total electromagnetic scattering coefficient for a three-
dimensional object, with the angles now referred to the tangent to the shadow curve

in place of the cylinder axis, becomes

cT-‘! 2+ 2/3 \ﬂjb +Q0 -b sec2 B cos? v|(R cos B)l/sds. (3.60)

For any solid of revolution with symmetric incidence and radius b of

the shadow boundary this reduces at once to

1/3
b.tb
o ==2+ ( N) (3.61)

2/3
T 2N
which is the average of the coefficients for the two scalar problems, and for the

prolate spheroid, since R =a? /b, it becomes

T= 2+<bD+bN) (kb ) (3.62)

The two coefficients for broadside incidence (i. e. electric vector parallel or per-
pendicular to axis of symmetry) are expressible in terms of hypergeometric func-

tions, as in the scalar case, and the explicit forms are tabulated later.
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3.1.2,2 Modified Geometrical Theory

The simplicity of the above development is of course due in a large part to
the fact that it is concerned only with the total scattering coefficient, The problem of
refining the optical techniques to give significant improvements in the differential
scattering or radiation pattern results is considerably more complicated. Perhaps
the most notable contributions in this direction are the theories developed by Fock
(1946) (see also Goodrich, 1959) and Keller (cf. Levy and Keller, 1959). Both of
these become rather involved for three-dimensional problems and depend more on
physical arguments than on mathematical techniques. Both lead directly to the so-
called creeping wave theory, which is also supported by the more mathematical de-
rivation based on asymptotic expansions and the Watson transform to be discussed
later, and all of these, at least in regions where they are applicable, produce
essentially identical results, certain of which are presented in the appropriate sec-
tion below. It is beyond the scope of the present effort to give the detailed deriva-
tions of these results, but we present here a brief account of the principal arguments
and assumptions on which they are based. We will concern ourselves primarily with
Keller's formulation since this has been worked out more explicitly and compre-
hensively than the others and thus appears to have a wider range of applicability., Thel
theory has been developed in general terms for both vector and scalar problems in-
volving smooth convex bodies of more or less arbitrary shape and material proper-

ties, and the particular results for the scalar spheroid problem with symmetrical
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excitation and either Dirichlet or Neumann boundary condition have been given by
Levy and Keller (1959), who also give the nose-on backscattered electric field, which|
in the optical limit is easily obtainable in terms of the scalar results. In addition,
the case of a dielectric spheroid has been treated with similar methods by Thomas
(1962).

The principal restriction in the theory in question, aside from the require-
ment of sufficiently small wavelength, is that the media involved should be individ-
ually homogeneous and isotropic, so that the radiant energy travels in straight lines
normal to the wave front, except on the boundaries of the media, where it follows
the geodesics in accordance with Fermat's principle. At each point of such a tra-
jectory, or ray, the field has a well defined (vector or scalar) amplitude and phase.
The latter is assumed to vary continuously and uniformly with the distance along the '
ray except at a focal point, where it suffers a drop of /2. The amplitude is de-
termined by the source of the ray and by the energy conservation law as applied to
the various phenomena which it may encounter., For a vector field, the direction of
the amplitude must be normal to the ray, and it is assumed to remain constant ex-
cept at a boundary, where it is governed by the usual laws of reflection and trans-
mission, At any point in space, the total field is the sum of the fields on all rays
passing through the point, These can be classified in one of four categories accord-
ing to what befalls them between source point and field point; incident, if no inter-

ruption occurs; reflected, if an optical reflection occurs; refracted, if the ray
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[passes through more than one distinct medium; diffracted, if it follows a boundary
for a finite distance., For a convex scatterer there is no overlapping of these
|categories unless the body is penetrable, in which case a refracted ray may also be
reflected internally. The laws governing the behavior of the first three kinds of rays
Jare familiar enough, but the fourth requires further comment. A diffracted ray is
produced wherever an incident ray is tangent to a boundary surface. From such a
jpoint the ray follows a geodesic, at each point of which it splits and originates a new
ray which leaves the surface tangentially at that point. Thus a diffracted ray from
fthe source to a given field point consists in general of two straight line segments
ngent to the obstacle plus a geodesic arc connecting the points of tangency and
ftangent to both lines.

The number of rays connecting a simple source with a given field point is in"
general finite and for simple configurations quite small, but there are exceptional
fregions, lines or surfaces, called caustics, which are envelopes or accumulation re-
gions of families of rays from the source (they may alternatively be defined as the
ﬁoci of centers of curvature of the wave fronts), For field points in the neighborhood
of one of these, the sum referred to above apparently becomes infinite, and the
kheory must be modified in a manner to be noted below, The diffracting surface is
Jitself a caustic, and in rotationally symmetric problems, the axis of symmetry is

plso one. For reflected rays the caustics are more complicated,
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On the basis of the above, expressions are derived fairly easily for the field
at a given point in terms of that at some preceding point on a ray connecting it to the
source. In consideration of the fact that the energy flux through every cross section
of a tube of rays is constant, it develops that if the amplitude and phase of the field
at a point Po are Ao’ ¢0, then the field at the point P, a distance s further along
the ray can be written

1
2

aP)=A [ P1 Py (P +s) (3.63)
° (p1+s)(p2+S)

where p 1’ p2 are the principal radii of curvature of the wave front at Po.
(As noted above, if P0 and P lie on opposite sides of a caustic, there is an addi-
tional factor of e—i 2_,) If P lies on a reflected ray, the point of reflection is
taken as the reference point P0 and it ié assumed that the field there is proportion-
al to the incident field, the proportionality factor being the reflection coefficient,
which is determined by the surface characteristics at the point, (If the field u is
a vector field, then A is a vector and the reflection coefficient is a matrix.) At
any field point P, then, the incident and reflected fields will have the general form
(3.63), and the sum of these is referred to as the geometric field ug.

The determination of the diffracted field is somewhat more difficult, The

reference point for a surface ray is the point of tangency of the incident ray which
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generates it, and here we assume that the field is proportional to the incident field,
i.e. since the phase varies continuously the diffracted amplitude is written

Ad(PO) = D(Po)Ai(Po) (3.64)

with Ai the incident amplitude and D the diffraction coefficient, which is yet to be
determined, Also, in accordance with the above assumptions, at each point on a
surface ray, energy is being radiated into space at a rate which is assumed pro-
portional to the square of the amplitude at the point times the elementary area, with
proportionality factor @ . This yields a differential equation in the amplitude as a
function of distance s along the surface ray, whose solution is found immediately to

be

Io g
Ad(sl) =Ad(0) -a?o exp| - S a(s)ds | . (3.65)
0

Here do o is the width of an elementary strip containing the ray at the initial point

s=0and do its width at s,, and the derivative notation signifies the limit of the

1
ratio as the quantities approach zero. The decay coefficient @(s) must also be de-
termined independently, The form (3,65) can be combined with (3. 63) and (3. 64)

to give the field at any point on the surface ray in terms of that at a point Q on the
incident ray (see Fig. 2) and the result can be applied to the point P1 where a

tangential ray through the field point P leaves the surface.
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P 5 Pl A difficulty arises in applying
s (3.63) to find the field at P
in terms of that of Pl’ since the
latter is on a caustic and one of
the radii of curvature of the wave
FIG. 2 front, say p2, vanishes there.
This necessitates the assumption
that the amplitude A0 becomes
infinite in such a way that the

1/2
product A0 p2 / is proportional to the amplitude at P. computed from the pre-

1
vious formulas. The reciprocity principle dictates that the proportionality factor is
the same function of the physical parameters as the diffraction coefficient D

appearing in (3,64). The complete expression for the field at P in terms of that

at PO is finally written

do(Po) Py
ud(P)=Ai(PO)D(PO)D(P1) do(Pl) . 52(p1+sz) exp {1k[¢i(Po)+ s + Sz:l

S

1
- S a(s) ds} . (3.66)
0

A further modification must be made in (3. 66) for surfaces on which the field

is required to vanish, In this case, since the surface is a caustic, there must exist
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a sort of boundary layer in the neighborhood of the surface, in which the field is
much stronger than in the more distant regions, and which will in general consist of
a number of different modes, each with its own amplitude and diffraction and decay

|

coefficients, so that the product D(PO)D(Pl) exp |- S a(s) ds| will be replaced
0

[by a sum of such products, and the amplitudes appearing will be those at some point
slightly separated from the surface.

Since the diffraction and decay coefficients depend primarily on the local
|geometry of the surface, their essential characteristics should be determinable from
the solutions of certain canonical problems, and the values so obtained should hold
for a reasonably large class of scatterers. The method used to determine these
coefficients in the canonical cases (the circular cylinder and the sphere are
sufficiently representative for most purposes) is to expand the exact (wave function)
solutions in asymptotic series for small wavelength and compare the dominant terms
FOf these expansions with the forms obtained by means of the above theory, a process
which is too lengthy to be treated in detail here. In all cases examined so far the
fessential forms of these terms are in perfect agreement, and it is a simple matter
[to isolate the diffraction and decay coefficients., For bodies other than the cylinder
fand sphere, of course, the problem of determining the exact solution and its
fsymptotic form is by no means simple, and the latter objective for the prolate

spheroid will be discussed presently.
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Before we proceed to this, however, there are several considerations in the
geometric theory which require further comment. As remarked above, the ex-
pressions derived so far become infinite, in general, in the neighborhood of the
diffracting body. The modification required to permit their use there can be inferreci
from the behavior of the exact solutions of the cylinder and sphere problems. In ob-
taining the asymptotic forms of these for a general field point, the Debye expansion
is used for the Hankel functions which appear. For a point on or near the surface,
however, the arguments of these functions become approximately equal to the index
of the dominant one, and the Debye expansion is no longer suitable, but should be
replaced by the Hankel expansion, which is valid for this region and remains finite.
Since the diffraction coefficients to be used in the geometrical solutions to general
problems are proportional to these factors, it follows that to make these solutions
hold in the region of the surface, they should be multiplied by the ratio of the two
expansions specified. The correction factor for an axial caustic can be handled in a
similar, but simpler, manner by writing the exact expression for a general wave
function possessing an axial caustic and comparing this with its asymptotic form,
which becomes infinite on the axis. The corrected expression for the surface field
of the hard spheroid is given along with the general field expressions in the section
on results,

The above theory can, with comparative ease, be adapted to vector problems,

For the geometric field (i.e. incident and reflected rays) the forms are identical to
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those for the scalar case except that the amplitudes are now vectors and the reflec-
tion coefficients matrices. For surface rays, each field quantity is resolved into
components parallel to the normal and binormal, and these components are assumed
to propagate independently according to the same laws which govern a scalar field,
each having its own diffraction and decay coefficients. Those of the normal com-
ponent (which is also normal to the surface) are taken to be the same as for a

scalar field which satisfies a Neumann boundary condition, and those of the binormal
(which is tangent to the surface) are taken from the scalar Dirichlet case. For an
axially symmetric problem, i,e. backscattering from a solid of revolution with
incident direction along the axis, this yields a particularly simple expression for the

scattered (vector) field in terms of the two scalar solutions, namely (for the electric

field)
g5t (08 -8 )E (3.67)
- 2 D N/= *
where uls) and u; are the scattered scalar fields of the Dirichlet and Neumann

problems, respectively., (Compare this with the relation (3, 61) for the total
scattering coefficients), The complete radiation pattern for the vector spheroid
has, to the best of our knowledge, not yet been worked out,

The details of the geometrical theory as it applies to homogeneous, non-
absorptive dielectric bodies are discussed at length in the report of Thomas (1962),

Here the situation is quite different, in that the diffracted rays are no longer
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significant, and instead there are refracted and internally reflected rays to be con-
sidered. Since the reflecting surfaces are no longer all convex, the possibility of
multiple reflections exists, and the geometry of the wave fronts becomes much more
complicated. For certain wave fonts one radius of curvature becomes infinite,
with the result that expressions of the form (3.63) are no longer applicable, and the
principles of physical optics and stationary phase must be employed instead. A
general discussion of these is given in Silver (1959). The number and variety of
rays which pass through any given exterior point depend on the relative permittivity
of the body as well as its geometry, and a general discussion of the problem will
not be attempted here. The backscattering echo area of a particular spheroid of
particular permittivity has been computed by Thomas and compared with experimen-
tal valuesT One important characteristic of this type of problem is that there is no
longer a well defined resonance region, since there are no appreciable surface
waves, whose interference effects are responsible for the large-scale oscillations in
the return from conducting bodies when the wavelength is comparable to the body
dimension. As a result the optical approach discussed here gives good results over
a frequency range extending down virtually to the Rayleigh region.

In the preceding account of the geometrical theory for conducting or rigid
bodies, little emphasis has been placed on restrictions in the shape of the scatterer.

A more careful consideration, however, reveals at once that since the radii of

curvature of the surface are intimately involved in the development and must satisfy

* An attempt to check the numerical results has not succeeded to date, and the in-
vestigation is still in progress. The curve is therefore omitted here, but the exper-
imental results are given on p. 208.
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certain criteria in terms of the wavelength, any restriction placed on the latter im-
plies some limitation on the shape. In the case of a spheroid, this expresses itself
in terms of the eccentricity or axial ratio, Thus in the Keller solution described
above the use of diffraction and decay coefficients obtained from the sphere problem,
where the radius must be large compared to the wavelength, will result in significant
error unless the local radii of curvature of the spheroid meet the same requirement
everywhere, i.e. unless the eccentricity is sufficiently small, This is borne out by
the analytical results to be considered next. In contrast to the situation at low fre-
quencies, where the form of the scatterer is of minimal importance, nearly all of
the high-frequency approximations developed here actually involve a combined re-
striction on frequency and eccentricity.

Another such method which entails a lower bound on the radius of curvature
at each point on the surface is that of Fock (1946), We limit ourselves here to a
brief description of this theory, since, as noted above, it yields results which are
in general equivalent to those produced by the geometrical theory, and since the
particular forms for the spheroid problem have apparently not been worked out.
Furthermore the immediate answers provided are limited to the surface current or
field distribution in the shadow region, from which it is no trivial task to obtain the
scattering pattern or cross section,

The basis of Fock's method is the local approximation of the surface in the

region of the shadow boundary by a paraboloid (or in two dimension, a parabolic
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cylinder.) I the incident field is a plane harmonic wave and the surface is a perfect
conductor (or either perfectly hard or perfectly soft in the scalar case) then the so-
lution is characterized in either vector or scalar problems by a scalar wave function
which satisfies a Dirichlet or Neumann boundary condition. Let the incident wave
propagate in the z direction and write the field quantity ¢ which satisfies this
boundary condition and the scalar wave equation as

_‘k
¢/=ele.

Then it is physically reasonable that in the vicinity of the shadow curve and for
small enough wavelength, the quantity U should vary much more rapidly in the
direction normal to the surface than in any tangential direction, Application of
these two approximations leads to a parabolic equation in U, whose solutions are
essentially Airy integrals, and the field is finally expressed in term of these func-
tions.

As originally formulated, the theory is essentially two dimensional and
applies only in the immediate vicinity of the shadow boundary. However, it has
been modified and extended (cf. Goodrich, 1959) to apply to three-dimensional con-
vex bodies and to cover the entire shadow region. The modifications entail a factor
which accounts for the increase in energy density of the surface field due to the re-
duction in area as the rear of the body is approached, i.e. the convergence of the
geodesic paths, and a continuous comparison of the normal and tangential field com-

ponents over the shadow region,
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3.1.2.3 Asymptotic Theories

The remainder of this section deals with an analytical approach which in-
volves the work of a number of authors and which leans heavily on the asymptotic
theory of the solutions of differential equations involving a parameter, Again a
complete account is impossible here, but we will give a general outline of the scheme
as a whole and the various contributions of the principal investigators, and present
the available results for the spheroid problem in their proper context hereafter.

The general approach can be characterized as a refinement and extension of the
Watson transform methods which were developed originally in connection with the
sphere problem and which have been described in detail in the first report of this
series. The basis of the original technique was the observation that since the terms
in the Mie series are entire functions of the summation index v in a strip about the
real axis, the sum can be rewritten as a contour integral in the complex v -plane,
whose integrand is the general term of the series with an additional factor to provide
poles at the proper points on this axis, such that the residues are the terms of the
original series. This integrand has a second set of poles, however, which are the
zeroes of a Hankel function appearing in the denominator, and all of which lie in the
first quadrant of the v -plane, When the path of integration is deformed so as to en-
close these poles instead of those on the real axis, the resulting residue series is
found to converge much more rapidly than the original one at high frequencies. One

modification of the procedure was given by Sommerfeld (1949), who obtained the
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analogous result in the scalar sphere problem by subjecting each radial eigenfunction
in the wave-function series to the given boundary condition, thus determining the
complex indices directly. A similar procedure was applied to the scalar spheroid
problem by Levy and Keller (1959). In this case the summation indices remain
integers but the eigenvalues )\mn(c) become complex, with distinct sets obtaining
in the soft and hard cases. In both spherical and spheroidal geometries, the
representation thus derived has a logarithmic singularity which obtains everywhere
on one half of the polar axis. The asymptotic theory referred to above is em-
ployed in the evaluation of the terms of the new series in the limit of small wave-
length., The first term of this asymptotic series is precisely the solution given by
the geometric theory in all cases for which the two have been compared, and it is
generally conceded that this will always be true.

The Watson transform method was exploited in the cylinder and sphere
problems by Deppermann and Franz (1952, 1954) and Franz (1954), In these articles
it was shown that the resulting asymptotic series for the field in the shaded region
of the surface could be written in a form such that each term might represent the
amplitude of a creeping wave launched at the shadow boundary and traversing the
surface, The series apparently diverges in the illuminated region, but this
difficulty is resolved by splitting off a series whose sum represents the geometric
optics contribution, leaving a convergent series which is again interpretable in

terms of creeping waves. Furthermore it was found that the analytical solutions

thus developed were in good agreement with certain experimental data.
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The general method has been formalized by Kazarinoff and Ritt (1959) with
the aidofthe complex resolvent theory of Sims(1957) and Phillips (1952). It is shown
that in any scalar problem in which the scatterer is a level surface in a coordinate
system in which the wave equation separates, the field distribution on the surface
can be represented by a contour integral, which can then be evaluated in terms of its
residues, at least in the shadow region, by means of Langer's asymptotic theory of
solutions of differential equations with turning points (see Langer, 1935), If the
problem is axially symmetric, the integrand involves only the product of the radial
and angular resolvent Green's functions, each of which has its own set of poles. In
the usual type of problem these two sets of poles are separated by the contour, which
can in general be closed in such a way as to include either set, at least for a certain
range of the angular coordinate of the observation point. Inclusion of the poles of
the angular Green's function produces the Mie series (or its non-spherical analog),
which converges very slowly at high frequencies, On the other hand those of the
radial Green's function yield the rapidly convergent series referred to above, This
is the series derived by Kazarinoff and Ritt for the case of a rigid, not-too-thin
prolate spheroid struck by a plane scalar wave in the axis of symmetry, Under the
given restriction on eccentricity (EO =1+ € € > 0), the asymptotic theory of
Langer is applicable and the residues are expressed in terms of Airy integrals or
related functions. The results are valid over the entire shadow region of the sur-

face, and a suitable rearrangement of the series permits an interpretation in terms
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of creeping waves and a comparison with the results of the geometric theory of Levy
and Keller. The first two terms of the residue series are in agreement with this
theory, and the third term exhibits a dependence on the radius of curvature at the
tip which indicates that the geometric theory is not accurate if this quantity is too
small, The details of the analysis are, needless to say, rather involved, and only
the final results are presented in the present work,

If the spheroid is long and thin, i.e. ka >> 1 and kb? /a << 1, the initial
part of the above procedure is still valid. The field distribution on the surface can
still be expressed as a contour integral which is evaluated in terms of the residues
at the poles of the radial Green's function. The previous asymptotic developments,
however, are no longer applicable, and an alternative theory must be used in com-
puting the residues. The solution has been worked out for symmetrical point-
source excitation and either standard boundary condition by Goodrich and Kazarinoff
(1963). The asymptotic theory employed was developed by McKelvey (1959) and
involves Whittaker (or parabolic cylinder) functions in place of the Airy function of
the previous solution, This ultimately yields expressions for the surface distribu-
tion of the field or its normal derivative in the form of double series, with distinct
forms applying in the regions of the shadow boundary and the shaded tip for each
boundary condition (see Sec. 4.1.8). Each term in any of these series can be
interpreted as a wave whose phase is associated with a certain geodesic path length

on the surface and whose amplitude depends in a somewhat complicated manner on
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the shape of the surface and the number of times the wave has passed through a tip.
The general character of these waves lies somewhere between that of the creeping
waves exhibited by the fat spheroid or sphere and that of the traveling waves which
are associated with long thin bodies. This appears reasonable enough since with the
specified eccentricity and wavelength the spheroid is indeed a long thin body, i.e.
the curvature of the geodesic paths along the sides is relatively small and the tips
are correspondingly sharp. Accordingly the amplitude decay rate along the sides is
no longer an exponential but instead a slowly varying function of 7, while at each tip
there is either a reflection or transmission through the pole, characterized by the
usual phase shift predicted by the geometric theory,and a sharp drop in amplitude
due to radiation. The specific form of the decay rate along the sides suggests that
the waves are propagating as spherical waves originating at the tips rather than as
cylindrical surface waves. In the transition region between the neighborhoods of
the shadow boundary and the tip, the formulas become more complicated, and no
complete physical interpretation has been attempted.
3.2 ECCENTRICITY-RESTRICTED APPROXIMATIONS

We turn our attention next to certain approximate analytical results which
depend fundamentally on assumptions restricting the shape of the scatterer, i.e.
the eccentricity of the spheroid. We may divide these solutions into two rather
distinct classes. In the first the eccentricity restriction is applied to the forms

obtained via the exact (wave function) formulation and the resulting simplification
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provides considerable insight into physical phenomena which in the general case are
both inherently more complex and masked by the opacity of the representation, In
the second, the restriction on the shape of the body is used as a point of departure
and thus characterizes the whole solution implicitly., In either case the frequency
may not be completely arbitrary, since any of the basic techniques imposes at least
some practical limitation, but in each of these solutions the permissible range of
frequencies is much wider than that of the eccentricities.

3.2.,1 Large Eccentricity

The primordial example of a solution in the first class for a highly eccentric
spheroid is the previously cited work originated by Abraham (1898) and extended and
refined by Page and Adams (1938), Ryder (1942) and Page (1944), The method used
has been described earlier (Section 2,2) and we consider here only certain
qualitative features of the results. In addition to investigating the free oscillations
of the general prolate spheroid, these authors consider the case of a thin conducting
spheroid struck broadside by a wave with electric vector parallel to the major axis.
The incident field is assumed to be either instantaneously uniform or a spheroidal
function of the angular coordinate with arbitrary index. The plane wave is easily
expressed as a series of these functions, and the uniform field can be considered
as a degenerate form, i.e. function of index zero,

For the limiting case of the thin rod of length 2F, an incident wave consisting

of the nth "harmonic' alone produces a well defined resonance at a frequency such
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that c=kF =nw/ 2, for which the induced current in the rod is sinusoidal and much
larger than at neighboring frequencies. There are n+1 nodes, counting those at the
ends, and the current is exactly is phase with the incident field. As the eccentricity
is decreased, i.e. the rod is transformed into an increasingly thick spheroid, the
resonance becomes less well defined. The frequency at which the current is
maximum decreases as the thickness is increased, and the current leads the field
in phase by an increasing amount, The current at resonance is still sinusoidal,

but the rate at which it drops off as the frequency departs from the value at
resonance becomes lower. For a spheroid of given (large) eccentricity at a fre-
quency below the resonant value, the current still has a sinusoidal character but it
leads the field in phase by a substantial amount and the loops near the center of the
body are larger than those near the ends. As the frequency is increased above
resonance, the nodes move toward the center and the current becomes vanishingly
small in an ever-increasing region about each end, and the current lags behind the
field by an increasing phase angle.

The situation is of course much more complicated when the incident field
consists of something other than a single harmonic, but the general case can be
analyzed by means of the techniques used in these articles and the phenomenological
elements described should assist in the overall understanding of the problem, Ex-

pressions for the scattered fields under certain excitations are given in Sec, 4.1.9.
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Another approximate result which is useful for thin spheroids of sufficient
length at certain aspects is that afforded by traveling wave theory. The derivation
of this is now standard text-book material (e.g. Kraus, 1950) and since it is not
characterized by the precise form of the body, we will not dwell on it here. The re-
sulting formula for the cross section as a function of aspect is given by Siegel (1959)
and recorded in the Table. It is difficult to tell exactly how the accuracy of this re-
sult deteriorates as the length of the spheroid (in wavelengths) or its eccentricity is
decreased, but the data given by Siegel (Fig. 26) show good agreement with experi-
mental results in the region where the contribution is largest, which is in general
some 18-30o off nose, for a spheroid of axis ratio 10:1 and length 4, and it is
clear from the nature of the derivation that the results should be even better for
longer and thinner bodies.

3.2.2 Small Eccentricity

At the opposite extreme in the shape parameter range for the prolate
spheroid, the body is of course very like a sphere, and the obvious line of approach
to the determination of its scattering properties is via a shape perturbation applied
to the classical sphere solution, In this manner an approximate solution should be
obtainable,without the encumbrance of the spheroidal functions or even their natural
coordinates,which is restricted in frequency only in the sense that the Mie series is,
and whose accuracy must improve as the eccentricity becomes smaller. This type

of analysis has been carried out by Mushiake (1956) for the scattering of a plane
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electromagnetic wave by a conducting spheroid with arbitrary directions of incidence
and polarization, The corresponding forms for the scalar problem of a rigid
spheroid with symmetrical incidence are given in an unpublished Radiation Labor-
atory Memo by Sleator and Ullman (1959), The scalar solution for arbitrary in-
cidence should be easily derivable from the vector forms given by Mushiake, but

the explicit expressions have not been written out.

In any case the first step is to write the expansions of the incident and
scattered fields in series of spherical (vector or scalar) wave functions. In the vec-
tor problem, the spherical vector wave functions of Hansen are employed, and the
scattered field expansion has the same general form as in the sphere problem,
though the incident field expansion, since the direction of propagation can no longer
in full generality be restricted to the z-axis, is more complicated. We can, how-
ever, restrict the propagation vector to the xz-plane, so that its direction is
specified by a single angle @, and assuming the usual time dependence e_iwt, the
expansions of the incident and scattered electric fields for the two fundamental
polarizations (Ei perpendicular or parallel to the y axis) take the general forms

o ©
Ei,s . Z Z A s fL2), pis N(l,Z)} (3. 68)

omn=omn emn-emn
J_ m=0 n=0

. [09) [09) . .
El, s _ Z Al, ) 1\_/[(l, 2)+ Bl, S N(l, 2) (3.69)
—” 5 emn=—emn omn=—omn

m=0
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Here the M and N vectors are the standard spherical vector wave functions
described in the first report of this series, the superscripts 1 and 2 pertaining to
the incident and scattered fields respectively. The coefficients Ai and Bi which de-
fine the incident fields are found by the familiar procedure of expanding the vector
functions and utilizing the orthogonality of the angular functions involved. Deter-
mination of the scattered field coefficients AS, BS is somewhat harder, though the
scheme is fairly straightforward, The general surface of revolution symmetric
about the z-axis can be specified in spherical coordinates by giving the radius r as

a function of 6, and for a general spheroid the relation can be written

1
r=f(6)= al:l—v sin e] 2 (3.70)
where, for convenience, we have defined the quantity
v = (b? -a%)/p? (3.71)

with a and b as defined earlier. (It should be noted that for v <0 the spheroid is
prolate, and for v > 0 it is oblate,) The expression (3. 70) must now be inserted
in the two equations which obtain on the conducting surface and which in this case

have the form
1 df
= = R = .7
E¢ 0 EG a8 Eron r=1£0), (3.72)

Er’ E 0 E g being the components of the total electric field §=§1+ES, for either

polarization, which are obtained by using the explicit forms of the vector wave
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functions in (3.68) and (3.69). Needless to say, with the radial variable dependent
on the angular one, the orthogonality relations which simplify the solution in the
sphere problem are destroyed utterly, and it is no longer possible to obtain an ex-
plicit expression for each coefficient of the scattered field in terms of the corre-
sponding pair in the incident field expansion. The equations become manageable only]
if all the radial functions are replaced by approximate expressions correct to the
first order inv, viz,

v

~a(l+
r a(l2

sin? 9 ), j (kr)=zj (l«:a)+li ka j '(ka)sin®6, etc.
n n 2 n

and the validity of the subsequent forms is thus limited to cases where | v | 2«1,
which is the characteristic feature of the perturbation technique. The desired so-
lutions are finally obtained via a process of multiplying the boundary equations by
suitable angular functions, integrating over the interval 0 6 <7, and combining
the results in such a way as to yield expressions for each AS, Bs containing several
pairs of the Ai, Bi. The scattered fields are then given by (3.68) and (3. 69) in the
form of rather complicated double summations. The sphere solution can of course
be split off and the first order correction term due to the shape perturbation isolated,
Fortunately there is a considerable simplification inthe results for the special direc-
tions of incidence and observation. The essential results are tabulated hereafter,
and certain curves computed for particular cases are also reproduced (see Figs. 21,

22, 34). A complete discussion of the accuracy and applicability range has not been
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given, but a comparison with experimental data (Fig. 34) shows reasonably good
agreement for a spheroid of axis ratio b/a = .8 over a wide angular range.

The scalar problem is handled by means of the same general technique,
though the analysis is of course considerably simpler, especially as carried out in
the aforementioned memo under the restriction of symmetrical incidence. Here the
incident field is simply

) i=e-ikr cos 6 =Z(-i)n(2n+l)jn(kr)Pn(cos 6) (3.73)
n

and the scattered field has an expansion of the form

)

s _ (1
g '%: An hn (kr) Pn(cos 6). (3.74)

If the total field is p= ¢1 + ¢s, the boundary condition on the rigid surface specified

by r =£(8) is

2 @_l@:
f or f 50 0. (3.75)

When the field expansions (3, 73) and (3. 74) and the perturbation forms given above
are introduced in (3. 75), the angular dependence can be incorporated entirely in the
arguments of three Legendre polynomials with different indices, and the ortho-
gonality relation can then be used to find a finite and relatively simple expression
for the general coefficient An' Again the correctionterm is easily separated from
the sphere result, but as in the vector case the former is more difficult to compute

than the latter.
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It would presumably be possible in both the vector and scalar cases to in-
crease the accuracy of the solution, or extend the range of applicability with given
accuracy, by retaining all terms in v 2 throughout the derivations, For the case of
general incidence however, and particularly in the vector problem, the amount of
labor involved would be formidable, and even in the simpler cases it would not be
small,

3.3 APPROXIMATIONS FOR WEAK SCATTERERS

There remains to be considered one class of approximate solutions whose de-
rivations are based on assumptions restricting the properties of the media involved.
Technically speaking, of course, the case of a perfect conductor in a non-conducting
medium might fall into this class at least as a limiting form, but this case is at
once so distinctive and so important as to warrant the separate treatment given it, -
The problem we now deal with lies at the other extreme in the material parameter
range, i.e. where the propagation constant in the interior of the scatterer differs
very little from that in the surrounding medium, and the phase shift suffered by the
incident wave is thus relatively small, Under these conditions the scatterer is
termed weak and can be treated essentially as a perturbation of the medium.,

The natural representation of the scattered field in this type of problem is an
integral over the volume of the scatterer which is obtainable via Green's theorem
and whose integrand involves the Green's function and the internal field, This ex-

pression itself is rigorous but since the exact form of the internal field is not
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known in general, some approximation must be introduced, and this accordingly
characterizes the result. In the most elementary application of the method, the
internal field is taken to be exactly what the incident field would be in the absence of
the scatterer, This yields what is known as the Rayleigh-Gans-Born approximation,
which is of rather limited utility in the type of problem of interest here and which
we will not consider further, Instead we will deal with several refinements which
give considerably improved results over a wider range of the parameters.
3.3.1, Scalar Case

The first of these was dgveloped by Montroll and Hart (1951) and applied to
the scalar problem of a homogeneous spheroid of material properties not too differ-
ent from the surrounding medium, struck by a plane wave at an arbitrary angle of
incidence. The integral expression for the scattered field is obtained by consider- -
ing the entire space as a medium of variable propagation function k(r)., The scalar
wave equation is thus

[V2+K2(x)] v=0

where ¢ is the total field, equal to the sum gl/l + <//S of incident and scattered fields,
and if the spheroid occupies the volume V, the function k(r) is specified as

k(r) = ko at all points outside V

=k1 at all points inside V.
The boundary conditions to be satisfied are

a) continuity of ¢ and its first derivative at the boundary of the spheroid,
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b) boundedness of these quantities at infinity.

Assuming unit amplitude, the incident wave can be written

. ik
¢/1 = e1 0/130

where T is the unit vector in the incident direction. The wave equation can be
0

written

S
[v2eie] v=0 -1y
0 0
and if we consider this as an inhomogeneous equation in the unknown function d/s, the
solution can be expressed in integral form, using the free space Green's function
(2.19), as
ik Ir r l

e

1
Rl R e E<2 -2 (r]/w(r Ydv',

|z-¢
where the integration covers the entire space. The bracketed quantity in the
integrand, however, vanishes at all points exterior to the spheroid, so that the ex-
pression can actually be written |

(kz kz) eikOIE‘_

w e
\Y

WSz r) = Y(x')dv',

or at large distance r from the scatterer,

2 _ 1
k ko) ikyr . lk/% £gl/(r')dv',

(r)~ (3.76)
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There remains the problem of ascertaining or approximating the field ¢ ( r)interior
to the scatterer. Here Montroll and Hart make the assumption that for a long thin
spheroid the interior field should be approximately equal to that in an infinite
cylinder of diameter equal to the minor axis of the spheroid and material properties
the same. The internal field of the cylinder can be determined rigorously under the
assumption of continuity of the normal particle velocity at the surface, which in-
volves the ratio of the densities of the two media as another essentially independent
parameter. The solution has the form of an infinite series of cylindrical functions,
however, and in view of the error already introduced by the assumption of the
cylindrical field for the spheroid problem, the use of the exact expression is hardly
warranted. Instead it is observed that if the coefficients in the cylinder result are
altered in a manner which, in the case where the interior and exterior densities and
propagation constants are nearly equal, changes their values very little, the series
can be summed, and when the resulting exponentials are substituted in the integrand
of (3. 76) the integrations can be carried out in closed form.

The approximate expression thus obtained for the far-zone field scattered by
a thin, tenuous spheroid (See Sec. 4.1.12 p.170) is not asymptotic to the exact so-
lution in any one parameter alone, since there are three essentially independent
approximations involved. As the density and propagation constant of the spheroid's

interior approach those of the surrounding medium, the approximate solution is
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asymptotic to the exact, at least in the sense that for both the scattered field
approaches zero, The accuracy of the approximation should improve, in some range
at least, as either of the ratios approaches unity, or as the axial ratio a/b of the
spheroid becomes larger, but the details of these variations are not given. It should

‘) noted that the frequency is not explicitly involved in any of the approximating
Lgmptions, except as it appears in the definition of the propagation constant, The
v:iiidity of the result should thus be relatively insensitive to the frequency, though
some variation is almost certainly present.

Another approximate scalar result for weak scatterers has been given by
Greenberg (1960). This is based on the Born series solution for the Schrddinger
equation under the condiéions that the range of the potential, i.e. dimension of the
scatterer, is large compared to the wavelength and the energy of the potential is
gmall compared to that of the incident field. If, in addition, the scattering angle is
'

"s'mall, then the Born series is easily summed and the scattered amplitude is given

in terms of a triple integral involving the potential (see Schiff, 1956). For a square
well complex potential of spheroidal form the integratioﬁs have been carried out by

G.reenberg to yield an expression for the total scattering cross section, which is

‘ proportional to the imaginary part of the forward scattering amplitude. The result

is listed in Sec., 4.1.12.
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2. Vector Case
Certain vector problems analogous to the scalar ones considered above are
also capable of formulation in terms of an integral equation, If the two media are

assumed to have the same permeability and the dielectric constants are € and eo

for the interior and exterior respectively, and if a plane wave with propagation
vector ko/IS and constant amplitude vector El (perpendicular to '}*O) strikes the
0

spheroid, the integral equation for the total electric field E(r ) can be written

-1 t
(suppressing the usual time dependence e H )
(e-€) el.kop ik ?63 ;
Er): —2vAVA |—Erd'+e °TE.  (3.77)
== A €, p == =
A

where p = I r- g‘l and the integration in the variable r' covers the interior of the
spheroid as before. The essential problem is again the choice or determination

of an approximation to the internal field E(r'). Two independent attacks on this
problem exist in the literature and will be outlined here. The first was carried out
by Shatilov (1960). His basic assumption is that the amplitude of the internal field
is just that which would be produced by a uniform external field, while the phase is
that of the incident field, The explicit form of the amplitude is obtained from (3, 77)
by taking the field point r inside V and letting ko = (0, i.e, taking only the first

term in the expansions of the exponentials, The amplitude is thus
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=1
n
1t

. (e-€) ; )

0}

+ VA Y, = av'

=io 4m € AVN|E J p v
\Y%

and the entire internal field is

E =E e °° (3.79)

This assumption yields in effect a refinement of the Rayleigh-Gans-Born approxi-
mation in the domain of the material parameters, but it introduces at the same time
a serious restriction on the frequency, so that the applicability of the results is
necessarily limited to the Rayleigh region, For the scattered field in the far zone,
the formula (3. 77) yields, after some manipulation, the expression

ikop

e
p

k2 (e-€ )
}_E:_S(_1;)= 0

PABAE) dv' (3. 80)

4 €
o}

\
with D= (r-r')/p. By virtue of (3.79) and the far-field condition this can be

further simplified to the form

oL ik $-% ) r'

k?(e-€)
0o 0 | e © av' (3. 81)

4r € Eio l_r_
0

<

(note that in this approximation the propagation constant k inside the spheroid is
the same as ko outside.) The integral can be evaluated explicitly for the

spheroidal scatterer with arbitrary directions of incidence and observation,
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If the geometry of the setup is as shown in Fig. 3, where the incident and observa-
tion directions are separated by an arbitrary angle [, and the symmetry axis of the
spheroid makes an angle a with the bisector of the complement of 3, the plane of the

angle a being unrestricted, the field can be written finally

(e-€) ik /r\ T
Er) = - E, = Ke °° L vi) (3.82)

where V is the volume of the spheroid & =EOE a/ J a2 -p?

-3
f(q)=3q (sin q-qcosq)

and % a
== ’g‘f)-sin2 @« sin B/ 2.

So
(Compare this expression for the scattered field with the form given by Siegel (1959),

p. 72 of this report, based on the dipole approximation.)
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The second attack on the weak-scattering problem is that of Ikeda (1963),
again based on the integral formulation (3. 77), but employing an expansion technique
which yields a more general result. Instead of the a priori assumption of the
interior field used by Shatilov, Ikeda assumes an expansion of the electric field at
the general point r in powers of the (small) quantity (eo-e) | €, i.e. a power
series in terms of eo about the value €, which is written

n

Q@
€ -€
5o =D (—‘;—) E (). (3.83)
n=0

Also the exterior propagation constant k0 is written in terms of the interior value

k as

k =k /e)l/2
(0} o}

and when these expressions are substituted in (3.77) and the coefficients of like
powers of the argument are equated, there results a set of equations which express
each vector gn( r ) explicitly in terms of the preceding ones and the incident field
vector Ei, and the expansion (3, 83) can thus, in principle at least, be carried out to
any degree desired. Since this expression is valid everywhere, it can be used for
the exterior field gi in (3. 80), and the scattered field is thus given explicitly as a
power series in 60.

This technique is used by Ikeda to determine the cross-polarization elements

of the scattering matrix to the first-order approximation. The remaining elements
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are determined to the zero-order approximation. The latter result, in which the
cross-polarization elements of the matrix vanish, is comparable to the Rayleigh-
Gans-Born approximation, offering a slight advantage in that here the true interior
propagation constant k appears in the internal field expression instead of the ex-
terior value ko. It should be noted that there is no absolute or implicit restriction
on either eccentricity or frequency involved in this method, though from the nature
of the forms involved, some of which are tabulated in the next section, it is to be
expected that results of a given accuracy will be more easily obtained at lower fre-

quencies.
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v
RESULTS

The foregoing discussion of the analytical solutions of the spheroid problem
has been kept reasonably free of detailed and specific formulas, on the theory that
the number and complexity of the pertinent forms would, if included, tend more to
obscure than to elucidate the reasoning involved. In the first part of the following
are tabulated the principal end results of the various analyses, together with refer-
ences to the sources and pertinent sections of the preceding text and any available in-
formation on accuracy, range of validity, etc. The second part is a compilation of
quantitative data including the majority of the curves or points, both theoretical and
experimental, obtained and published by the principal investigators of the problem to
date.
4,1 TABULATION OF FORMULAS

1. Exact Scalar Solutions (see Sec. 2.2.1, pp 25-31, also Spence and
Granger, 1961),

The specialized forms of the fundamental scalar solutions for source point in

the axis of symmetry are as follows:

Eq. (2.23) becomes

Q0
.S 1 (3) (1) (3)
Gy ) =5~ Z e CF O CE N Elon (,E)-C_R_(c, SQ]
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Eq. (2.24) becomes

n
- E:_l_ (1) ) (3)
G (& mm) -2n=0 N Son(c.l) SO [R(ﬁ(c, £) CnBon (& Eﬂ :

on
If these are further specialized by putting the observation point in the far zone, they

become respectively

a
ikr n
~_le E 1 (1) _ (3)
G(r, Il)-—- 2 LN Son(C.l) Son(c, cos 0)[Ron (c, & ! Confon (c,Slzl

i(kr ol T)

n+l -

andG (r,B;r)zz— Z —S (c,l)S (c, cos 6 cos(kr——1r)-C i 2
(04] kr N on

and in this case eq. (2.25) becomes
ikr @ n
e (=i) (1)
; £, 1) =— § 1 .
Go(r: 6; El: ) rrn 4 Non Son(c: )SOH(C, cos 6 ) ROH (C, El)

In these formulas the quantity Con is as given in (2,23), i.e,

‘ ( EHB—'R(I)( £ )
c = 2
on afR( )(c,S w2 g ’(c,e )
on O on on 0

with ¢, B as in (2.22).
In the case =0, B=1 (scattering of sound by a hard spheroid) a number of calcula-

tions of scattered far field have been carried out by Spence and Granger (1951)
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for plane wave incidence (GOO). Their results appear in Figs. 4- 8.* In addition
some nose-on back scattering cross sections have been computed by Siegel et al(1956)
and Crispin et al (1963). Their results appear in Fig. 9.

2. Axial Dipole Solution (see Sec. 2.2.2,p.32, also Hatcher and Leitner,
1954),

The asymptotic form of eq. (2.41), which gives the far zone radiation pattern

with the dipole at the tip of the spheroid is

(o) (-l)ns (c, cos 6)
1n

(slz 1) Z T (3)
Keg®- 9 ’ 2
°  n=0 plann[:E)’E(E TR (C’SN 3

H¢T<e)=

where, as in (2.41), p is the dipole strength and p In is the normalizing factor of the
radial functions, as defined in (2.14), Radiation patterns for a dipole on a spheroid
have been calculated by Hatcher and Leitner (1954). Their results appear in
Figures 10-12. Belkina (1957) has also calculated some radiation patterns of an
axially symmetric dipole located on the surface of a spheroid. Her results are pre-
sented in Figure 42,

3. General Vector Solution (See Sec. 2.3, p. 42, also Siegel et al, 1956).

The scattered electric field in the far zone produced by a conducting spheroidi

struck by a plane wave propagating parallel to the major axis is given by eq. (2.55)

*
Note that the scattering patterns as originally published omitted the units, i.e.
the ordinatesplotted are actually values of the quantity (6, )/ a,
lim

-ikr s .8
where (0, f)=re . y—>co ¥,y = scattered field) and a = semi-major axis.,
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as a function of the angular coordinates 7, § of the observation point, From this

the radar cross section is easily found to be

2
©
o(npP)= % sin? § E : i'nAz Son(c,n) +
e n=0
© 2
+0082¢ Z i" AXTIS (c,TI)-iAZil-n2 S, (e,n
T n on n 1n

and for backscattering this reduces to
(09) 2
47 n o x
o=l i An Son(c,l)
[ | =
The results of a numerical computation of electromagnetic backscattering cross

section (Siegel et al, 1956) are presented in Figure 24, Section 4.3. The

coefficients A:, AIZ1 are found as indicated in the text by solving the linear equa-

tions (2,52), (2.53). If these are truncated after the fourth term, as in the compu-
tations of Siegel et al (1956), the solutions may be written in determinantal form as

follows:

The Az have the forms

By O© Doy Do3
i Bog Coo Dy, Dyq
JX L2
o G UrotYe Voo Wi Vi3
+
Usptlss Vao Va1 W3
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and similar expressions obtain for the AZ. The denominators G and H are given by

the expressions

11

33

+
01 U03

+
U, 03

00
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30

11

0]

Vol

Va1

33
03

23

00
22
+
10
+
30

B

B33

+
UOl

U12

U,

32

UO3

U,,t0

21

23
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o0 0 Dot Dos
0 Caa Dy Dyg

G =
Vio Vis Vi1 Wis
V3o Vao Va1 Wag

4

i1 o Do Dy
0 Ca3 Dy Dss

H =
VoL Vos Yoo Ve
Va1 Vo3 Ya0 Voo

the elements B , C , - - - -W _ in the above are defined in eqs. (2.54). The
rn’ rn rn ‘

integrals which appear there can be expressed directly in terms of the spheroidal
coefficients (cf. Sec. 2.1.2)as follows using the Kronecker delta, 6rn’ and the parity
modulus, o which are defined respectively as

_[0 for r#n _[0 for r+n odd
6rn B > Ppn =

1 for r=n 1 for r+n even.
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1
on,2
Sonsor dn = 26 k=0 urk 2k+1 =Non

1

k+l 1n or
_/ll-n! S50 47772 ur(n+1)[§j P 2k+3 % el
1

@ 09}
or .ln
¥ - :l
;)j;1 P %
1
[00)
iy _ (ct1)  on or
[nsonsor dn = r(n+l) (2k+1)(2k+3) (dk dk+1+dk+1 k
..1 k=0
1
S @© k(k+1)dk
f o Z (2k-1)(2k+1)(2k+3) 2k+3)dk 2% l)dk+1
-1 k=o

1n .0

_(k+l) r
f‘ P 81,80 01 2um2<2k+1x2k+3)[dk 1 Gerg DY dk]

1

2 d
1- d =
fn -n? o Sin Y zurn
-1

§k+12 I:k""z)d]l{n or

(2k+ 1)(2k+3)

k

1n

In or| kik-1)
thd dk+1:| Z(2k+l) k1) %-2
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o o *
(3k% +5k+1) .In In or
I + .
ok+3) %k E E Mook & %
i=0 k=0

Accuracy of the 4-term result depends inversely on ka and in a more com-
piicated but not so critical manner on Eo. At a value ’g“o =1, 005(a/ b = 10) the re-
sult is correct to two significant figures out to ka=<3,

4, Rayleigh Series

a. Scalar Case (See Sec. 3.1.1, 61, also Senior, 1960a).

The coefficients un(n) and vn(n) in the series (3.2) and (3. 3) for the
far-field amplitude of a soft or hard spheroid struck by a plane scalar wave in the
axis of symmetry are given for n=0 - - = 5 in the following table. Except where
otherwise specified, the argumént of all Legendre functions appearing is SO. Primes

denote derivatives with respect to the argument,

*
Note thatdll(nn =0fork <0,
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TABLE I
un(n) (Soft Spheroid) vn(n) (Hard Spheroid)
(PO/ Q O)Po(n) 0
/)P (0 0
P P

1 o 1l o

3 2, P ( )+3Q1 Pl(n)+
P P 2 P P! P!

o 0 171 2 1 71 19
—ll=)-==+=| = —=0p =_<p
Q0KQ0> 3Q0+J PO(TI) 3 Q) 1(n) 5 Q:) 0(n)
2 2 2

P P P
1{ o 0 271 1
— |P (n)+<—) K—Q) -———+-JP(77) 0
§<:;0> 2 Q0 (o) 3Q0 30
P P
1l o 11
55 Q P4(T)) i P3(T7)
o 1
P P (/P 2 p P!
14 2 o) o) L_1_16 ,_(
9[45 Q2+Qo{<Qo) 3Q0+63}:|P2(n) = Q, P( ) ol 5Q, >\> (n)
P P. Q P P! P' Q'
17111 (3 73\ 1 o 4 1 1 3
+3Q1l:25 P1 Q‘>+6 Q1+25j|P1(n) 75Q'< '1 "9 +9P (n) +
2
Q 15Q, Q |\Q 27Q_ 6Q 675J 3 175Q 7Q ' 2Q' T
4 2
o) 40 2 gy
Q0 9 Q0 7% | o
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TABLE I(Cont.)

n un(n) (Soft Spheroid) vn(n) (Hard Spheroid)
2
1<P02 1Poz P022Pl 23 i P'12 1 (P
— — | \= | -—=IP = +—\| =
5 |525 Q P4E(n)+§<Q WETRE 2(n) 27\ Q! Pl(n) L \q' PO(T))
(o) (o) 0. (0} 0
2 2

The backscattering cross section of a hard spheroid of axis ratio 10:1 com-
puted from this series is plotted as a function of ka in Fig. 14. The dependence of
the accuracy on the axis ratio has not been thoroughly analyzed.

b. Vector Case (See Sec. 3.1.1, p. 64, also Justice, 1956)

The incident and scattered fields about the spheroid are assumed to
be representable as power series of the forms shown in (3.15), In the solution for
the conducting spheroid in terms of vector mode functions, the incident field is
assumed to propagate parallel to the z-axis with electric vector in the y direction.
The first three coefficients in the incident field expansions are then (in rectangular

coordinates)
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2
0 X 1 X =2 2 'x
. 2
1 1 i Z
H = 1, H = = — i
= v % Zly, 1;12 5 ly
and those of the scattered electric field are
P1
gS = - _% §(2)
e) e
Q 1
Pl Pl'
1 s_ 1 "2(2) 171 (.() (2)
FEICT 1S a1 B %Y,
Q. 12 °Q 11 00
2 1
Pl Pl'
2 s 2 "3 (2 1721.(2) (2) 3 (2)
PoE e 1% e, P T2
Q 13 QL2 o1 11
1.1 1 2 1
e, b _1_2_P1+Qo(2§o'1)'2i P1% 3
7512 1 1' 5 1 1 1 1 =¢
P, Q Q P9 3Q) 11
1 B 1.1
+
1h e @t 1%
= ~ 1 1
10 Q € €00 QO 75 36 p Ql
1 | 1 %2
3Q (282 - 1) - 6¢ ) Pl
+—0 0 o, T L\
P1 1 5 1
1 % 1%

Here, as in (a) above, the argument of all Legendre functions is EO and the primes

indicate differentiation, The previously undefined vector functions appearing
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are given by the expressions
(2) _ 4(2) ) __,(@)
R™=VP " Ans= =vp,
mn mn mn mn

Y = v¢f32) AY

e mn y
mn
LI(2) E£¢(2) -9 1‘2 v¢(2) +6/} ¢(2)
°11 €11 €11 X €0
v &=,

2 2
”i) -xvsbfa)

00 00

1
00 X

)

2
where the functions ¢f) are spheroidal harmonics of the forms given in (3. 22),
mn

written specifically
cos

_.m m
pe =P (n)Qn (&) Smm¢.

mn
(o)

Corresponding coefficients for the scattered magnetic field are expressible in
similar fashion. For explicit forms, see Justice (1956). (Note however an incon-

S
sistency in definitions of the coefficients E H

S . .
ELo 20 appearing there, viz, the

series are written in one place in powers of (ik) and in another in powers of (ikc),
¢ being the semi-focal length. )
The coefficients in the near-field series obtained via the potential function

method are also given in the above reference. These are extremely complicated
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and voluminous, however, and we list instead the results for the far field, which are
easily obtained from Stevenson's formulas for the general ellipsoid by specializing to
the case of a prolate spheroid (cf. Stevenson 1953, a,b ),

Assume a spheroid of major axis 2a, minor axis 2b, dielectric constant and
permeability € and u, respectively, immersed in a vaccum with major axis in the
z axis and struck by a plane wave with harmonic time dependence e_iwt, wavelength
A, and propagation, electric, and magnetic vectors specified respectively by the
three sets of direction cosines /, m, n; 11’ ml, nl; ,{’2, mz, n2. Without loss of

generality we can set m =0, Then the (spherical polar) components of the scattered

far fields are given by the expressions

S oy P
6 P \o6 sin6 9P/ R

E, =-H = —1—— Q-lz - Qi Sl_ki
) 6 \sin6 9p 06/ R
where, to order k4,

4
=k2 (K, e+ K B+K + + + +
P k(la 23 3'y) k Lla LZB L3'y

+ M 012+N[232+M3y2+1ql By+ N

1 'ya+N3a/B

2
1

o — + + 2 .2 2 R2 2 ZJ
30 (Kla K213 K3'Y)(a a“ +b* B +c* v*%)

and P is obtained from this by making the substitutions

146




THE UNIVERSITY OF MICHIGAN

3648-6-T

,n)—>(/, m, n)

(¢, m s n, 5 My My

(12: mza n2)~>"(,,1: ml, nl)

€S>,

Here «a, B, +, are direction cosines of the field point (R, 6, §#) and the quantities

K, L, M, N are defined as follows;

[\

1 ==(e-1)f (e)/

w

2
K, = g(e -1) f2(€)ml

[\

K, 5(6 l)f (G)n

15 LlEf (e){ -1)f [3 (5b% - a2) -(b%A%2 +a2 n EI -€ aznmz}

+|}l(e£] 211{(6 -1 ),:(6-2)1 +eb2 Ib ]+ eu (az+b2) }

R T ) @b
+f1(6)*‘51(”)“““2{“b Ia){:2 bt 45 32}" A )}

2 ’ a2 _p2
+[1y00] gy, -0 ek - en (@)

15 L,=f,(€) {(6-l)ml[§ (5b? -a?)-(a?n?+ b212ﬂ+ e(a2n12—b2£n2)}

2 4 2 2
el mfpenffennar -5 )
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€)g, W) (I - )[‘i(az +b? Nnf +An_)-nf a®-fn_b? (az'bz)(n/ ~fn_)

2 a Lo 27720 2 2]‘6“ b2 ,An,,
2 2 _p2

+[fz(€):] gz(ﬁl)(la -Ib)ml Ee—l)k2(u)+ eulen -2)(a—ab—2)

— 2
15 L3=f3(6){(€—l)nll:§'(3 a? -b%)«a?n? —b212):]+ €b? ,(m2}

2
+[f3(c_)] nl{(e-l) (€-2)I+€a? Ia -g—?—]+ ey 2; }

M, = 45Q [(e l)(I !/() b4(2 2+b2) (ZbZ,U’ -a’nn )]
=(c-1) 2¢€

M, = - 1)(1 U+I -———— (a®m +b2,(,()
2 45Q[ bb ™1 abX(2a 2 i ) ]

M3"=' 5 Q[(c "L A 2L )+ 4 = 5 (22%mn 'bz//)]

ab (2a +b )
_1
15 N/= 5(“ -l)fl(u)(az -b2)12+ nm, gl(E{g(aZerz) - az]
a2 _bz 5
-1, @g (04| u =P+ @ —1)kl(e>_]

= 1
15 N2— E(ﬂ ) ([1)(3 —bz)m +g (e)[ (a +b2)(n,{ +/(n )_a nl ‘bzin]

a2 -p2
« 1,00 g, (hm, [en O3 )-(u-l)k2(€£l

15 N35g3(€)/(ml(€-l)b2

* Note that in Stevenson's article the expression for N 1 Specialized to the case of a
perfectly conducting ellipsoid (Stevenson, 1953b, Sec. 6(3), p. 1148) contains a nu-
merical error consisting of the omission of a factor of 2 in the denominator of the
second term. The same error is carried over in the corresponding expression in
Sec. 6(5), p. 1150.
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=1

where f (w) =f (w) [:w 1) I + tz)z:]

-1
i 2
fylo) = l:(w'l )Lt

2
bbz

-1
2
g3(w) _Ed 1)+ 2n% 1 + ;F]

8,0 = g,) = (-D)a®+bt)

withw = u, €, and

= 1 Evm2r a2y 27 Ln2
kl(E) kz(e) (1 2)(b I -a Ia) 2(a I b Ia).

Also I= log

1= I =

a_ 2(a? -1b?)’ b~ 2(a? - b?)

I 2a% + 4b% - 3ab® I
ab 2ab%(a? - b?)?

_4a3-10 abz +3b4I
bb 8b(a —b)

I

and finally

4 €(e-1) a2 +2p2 4 €
U+ Tz It

Q=(e-1P?1 . (21 +1 )-—53
2 2
ab- "bb ‘ab ab ab6(2a+b)
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with J= 1 |:4a -18a%p? —16b4+ 15 ab 1:]
8ab (a® -b2

and Jr= [a3+26ab 3b?(4a® +b2)1:|

n gb? (a2 -b2)°

The convergence properties of the power series representation for the scalar
case are discussed at length by Senior (1961) (see Fig. 15), but the conclusions
reached there do not necessarily hold for vector problems. Results computed from
the first term of the power series for various polarizations and incident directions
have been obtained at the Raciiation Laboratory (Sleator, 1959) and appear in Figure

16 . Some idea of the accuracy of the two-term approximation in certain particu-
lar cases can be obtained from Figure 17.

The expansion of the scattered electric field of a conducting spheroid, with
plane wave incident nose-on, considered by Senior for the low frequency region is
given in eq. (3.37). The coefficients An' Bn which express the field in terms of

the vector wave functions _1\_/10 He are expanded in powers of c=KkF in the
1n, In

forms

>
n

[0}
cn+2 rn
- _5_ : (-ic) A
n b r
n r=0
cn+2 > r
-i § :(-ic) B"
n b r
n r=0

(o]
n
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1 1
_=\t -\

where b, =4 “a(n+ 1)

n
Explicit expressions for the coefficients Ar s BI; have been worked out for general

n and for r =0, 1 in the case of Arr1 andr=0, 1,2 for B:.

These values are sufficient to give the first two non-vanishing terms in the power
series expansion of the scattered field. Considerable excess information is con-
tained in these forms, in that the index n can take on any value, but without a
larger range of r, no more terms in the field expansion are completely known. The
available expressions are given in the following tables. As in the previous table,

all Legendre functions have argument ’§o.

I. Expressions for the AI;

r n even n odd
P1
1 1
0 0 -= =
[Dn 2 61,1;] 1
Q
P!
1)2i 1 2
- =l — + - -—
L 9{1 Dn 6 62,n}Q'2 0
2i (2n+1)(n+2) Pl
+ _D - 2 D —
7 n (2n+3)n n+l Q1
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) n
Il. Expressions for the Br
r n even n odd
0 0 0
. P
1 (2i 1 2
1 =] _= £
9{1{ Dn 662,n}Q2 0
. P!
2y entljnrz) o 17
# n (2n+3)n n+l Qi
2 0 P
1 [ 3 1 :] 3
—|D-=5, += — +
225 LPn"2%1,n"6 %3,n Q,
1 3 @n+l)n+2). |53
8i 2n+1)(n+ 2
+— = = -+
36 {Dn 2 61,n 7 (2n+ 3)n Dn+1}Q'2
3L 8n® + 14n + 9 D +2L
100 2(2n-1)%(2n+3)¥ "n  100061,n
P
_21 (2n+1)(n+2)D 1
r  (2n+3)n? n+l Ql
Ll 0t
5| n 2 1,n (Ql)2
Here 6 is the Kronecker delta and

2]

n-1i, &lv
0 (@n+l) ‘_2'5‘(2 )*

n-1

D
n

’ n(n+1) ’
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5, Variational Forms (See Sec. 3.1.1 p. 85, also Sleator, 1960)
The variational coefficients Cuv , Bv defined in eqs. (3.47), (3.48) are

written more explicitly as follows: For u v, u+v even,

T
r, (E L k’w)A (g Ll k' w)
c =-gr F4 §2 (€2 _1)3/2k3iu+3v +1 S p 02 21/ 0 sin g dy
uv o o 5/2
0 (g _-cos ¥)

where

2 1 2 2 1
[‘u(g,o, k,d/)’% [cost// PU'l (cos w)—EOPu (cos w_):l h,ft )(p)+(§’o -cos l,l/)Pu(cosw)lzf_l_)l(p)

- 2 2
AV(EO, k, )= % cosy Pv_l(cosw)-Eon(coswzl i, (p)+(%’5cos2¢/)Pv (cosxl/)jv+1 (p)

s EO being the coordinate of the scattering surface.

For v < u, the subscripts on M and Ashould be interchanged, and for u+v odd
the integral vanishes. Further,

d jy(ka)
d(ka)

= 2 2 _1y:Y
Bv 4t F EO 1)i k

The stationary value J o of the variational quantity J defined in eq. (3.43) can be
written

-1

= B

3 41(2 A, u)
7

where the quantities Au are the solution of the linear system (3.46). These have

been computed for a particular spheroid (a/b = 10) at a particular frequency
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(ka = 1,40) for the range i = 0 - 4 inclusive, The values are shown in the following

table;

7] Re A Im A
p u

-1 -3
0 6.92536° 10 -5. 4441510
1 -1,69158¢ 107 1.15989

-1 -4
2 -5,82917.10 9.176788°10

-4 -1
3 1.31725¢10 -1,70612:10

-2 -5
4 3,52111°10 -3. 00564 10

The resulting potential distribution over the surface of the hard spheroid struck by a

plane wave nose-on is plotted in Figs. 1-18. The normalized backscattering cross
2 -

sectiono =4 L. l Jol 2 computed for this case has a value 1,105, as compared to

4
b

the value 1,091 given by the ordinary wave-function series, (see Fig. 9).

6. Geometric and Physical Optics (See Sec. 3.1.2.1 p. 89)

The geometric optics cross section of a spheroid with transmitter on the
axis of symmetry and receiver separated from this axis by an angle B <ris
given in eq. (3.49) and plotted in Fig. 19. By the theorem quoted in this context,
the monostatic cross section is thus also given for values of the polar angle 6 =5/2.

The physical optics integral is given in (3,53) but cannot be evaluated exactly

except in certain special cases. Some numerical evaluations of cross section have
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been carried out (Siegel et al, 1955a) and are shown in Fig. 19. The bistatic cross
section at those angles where exact evaluation of the physical optics integral is
possible (see p. 95) is given in Fig. 20.

The total scalar scattering coefficient (cf. Jones,1957) of a prolate spheroid
with plane wave incident nose-on, as obtained via the physical optics approximations,
is given in eq. (3,58) as

. 2/3
oz2+2bo(kb7) , kb?/a>> 1,

The values of the coefficient bO are;

Hard spheroid (Neumann boundary condition): bN= - . 8640
Soft spheroid (Dirichlet boundary condition); bD =,9962,

For broadside incidence, the total scattering coefficient can be written
S 2+2bo(kb)_2/ ¢

where bo is as given above and the correction factor C depends on the axis
ratio as illustrated by the following table of values:
b/a= 1,0 .8 .6 .4 .2
C-= 1 . 874 . 761 .673 .608
For the electromagnetic problem with nose-on incidence, the total cross

section is given by eq. (3.62), viz,
2/3

a
~2+(b_+b )=
op 22+bytba e
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with bD and bN as above. For broadside incidence there are two distinct results,

one for parallel polarization (glll a) and the other for perpendicular (_E_:l_]_ a). These

can be written

d ,’-L-"-<2+(bD+bN)(kb)-2/3 . C

L1

where the correction factors C;,, C, are given for various axis ratios as follows:
1

b/a = 1.0 .9 .8 .6 .4 o2
C| = 1 2.1 3.09 5.08 6.68 8.11
C_L = 1 -0,21 -1,41 -3,66 -5,47 -6,93

7. Modified Geometrical Theory., (See Sec. 3.1.2.2 p. 100, also Levy and
Keller, 1959),

The scalar diffracted field at the point P(§, n) produced by a soft prolate

spheroid 80 with point source on the axis of symmetry at the point Q(§ P 1) is given

by the expression

T

i—
12 > 1/6
Vo e € & -1

1/4
2212 62 8 g0 [ ey -1y -npxe -]

u d(P) =

(0 0]

. Z fn(nz)-i fn(n3)

n=0 ;

(1) 2 82 — 3 1 2/3 1
E%'(Cln _;] 1+exp{-2ikF ’ 0 nz dn-'r(l) éo“go- dn
Pmmt e\ KF “1[(g2 (1 -1F)
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Here n 9 and n3 are coordinates of the points of tangency PZ’ Pl of rays through

P, (See Fig. 4 ). The function fn is defined as

1/4

g2 -n?
£ (n)= — + exp{ikF
n) [EU-Eonj)2+ <J(§2 -1X1-n?)+ {(’é’g -1)(1-17?))2J

[(sz -10E -82) 1/2
: Gn En)“(f('g‘z 1(1-7)+ {(’s"z 1M1 - -n? 2)
1

le /
2 3
i (1)
- de"-fn
n (

1

52 nZ)1-n?)

where j =2, 3 and the

,0
X (g , ' ,0)
k’é Y Ql(e‘o, ns 0)

ambiguous signs are

Qe 1)

fixed as follows:

-ifj=2oré n+§0>0

+if j=3 and ¢ n+§’o<0.

FIG. 4
1)__ -1/3 im/3 (1 1
f1)=6 /em/ q:1) (1)

h
Also 7 where q, is the nt zero of the Airy function

At) = ? cos(zS-tz) dz,i.e. A(q](ll)

) =0 for all n, and in the expression above for
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1 1
u d(P), A'(q( )) is the derivative of this function evaluated at qil ). The
n

corresponding result for the hard spheroid is obtained from the above by replacing

y ei7r/3q(2)
1 2 1 2 2 oo
7:1 )by Tfl) and{}v(qil ))] by S{ql(l) [:A( ( )ﬂ } , where TIE - 61/3 -

2
and qfl ) is defined by the relation A'(qf,z)) =0 for all n.
On the surface of the spheroid, which is a caustic of the diffracted rays,
these expressions must be modified (see p.107). The corrected expression for the

field on the surface of the hard spheroid, specialized for plane wave incidence, is

wSl/4 &L exp G (0, N-iexp|G (n, -1+G (-1, OH
u (P ) 1/42 . “(2) (;)
[:(Sz 2)1-n :l n=1 (L+exp 2Gn(-l, 1))qh A(qn )
where

(F o fofE 1Y
Gn(a, B)=-i kF SJ%-—TI dn+r < )

o

/(52 L ><1 n?)
At a point on the axis at large distance z from the scatterer in the direc-
tion of the source (i.e. backscattering direction) the leading term of the series for

the geometrical (reflected) field is

b2 ik(z*za)
u - + ———e-—_
g - 2 az

where a and b are, as usual, the major and minor semi-axes and the positive

sign holds for the hard spheroid, negative sign for the soft., The leading term of
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the total backscattered field u Fugtug is finally

1/3, 5/3 i
u=i eik(z—23) +1- (kF)
2az - q(12) A2( (125 1 3(52 1) 2/3

where the signs are as before, the quantity 6 is defined as

1 for the hard spheroid

2) 2
5= q(1 ) a (q(lz))
———— for the soft,
(1)
lz%'( )
and 1 1 gz_nZ
I = %’+4ka 2(3)(1<F)1/3 (£, 53-1)2/3 dn _2kF ° 4y
o (- -7

with j=1(2) for the soft (hard) case, and 7(1 )as defined above, Numerical values of

the constants are given by Levy and Keller as

= 3,372134 q(12)

q(ll) = 1,469354

(1), (2)

A'(ql -1, 059053 A(q ) =1.16680

Accuracy of this approximation has not been determined in general. It has
been shown (cf, Kazarinoff and Ritt,1959) that it is applicable only when the wave-

length is small relative to the radius of curvature at the tip of the spheroid.
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8. Asymptotic Solutions (see Sec. 3.1.2.3, p. 112)
a, Fat spheroid (cf. Kazarinoff and Ritt,1959 a)
The scalar field in the shadow region on the surface of a hard spheroid struck

by a plane wave nose-on is given by the series

u(§o ,N = ZRr

T T
3 + ] — 3 b3 - -
i din)+1i 1z/rd (n)-1i

e 4 + e in the vicinity of the shadow
Ar v L boundar
l+e T y
where R =J i, L[4
B { e — }inthe vicinity of the tip,
iv 1,
l1+e T

r
\
Here

-1
Ay ,% i{hrﬂf)<hr) [(2-neya-et n2)] 1/4} |

3

'/2_ i[dn 2] v v (d*(n)—L):]
3/§h H(z)(h )[1 -n?)1-€?n ]1/4
3

d(n) = b [8(-n) -5(0)]
@) = b [S(-n) + S(0)

2_2
S(n= -1 Sg t

J's"lr

1
n
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L = -4b S(0) = circumference of generating ellipse

oy i)

v = complex propagation const, ={ - is

- -
1 _2_ _1" 2

g2 -1\3 e _(7 SV
3 1
§ =€ +e ( ) 1+ @ (— +ord)
10(250)4/3(52 1)2/3 ) > Y

naand —

dfys, (2)
hr— rth zero of " (tz|
3

. L.
2b =minor axis and € =eccentricity = E— .
0

In the limit of zero eccentricity, the result for the field near the tip is

J_ [sm (-n)-] [F(Sm (-n)- ):I
SE vy H(z)(h PR o1 G n-5)

These results have significant accuracy only on condition that

g b?/a>>1, (cf. Kazarinoff and Ritt,1959 b),
b. Thin spheroid (cf. Goodrich and Kazarinoff, 1963)
2
For a thin spheroid (kR0 =k%- <<1) at high frequencies (ka >> 1) with

point source on the axis of symmetry at the point (§ T 1) the surface fields in the
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shadow region are given approximately by the following expressions:
Near the tip, where| c(1+n)| << 1:

For the Dirichlet problem

au(g 77) 16(5 +l)az c0S [:(1+n):]

) Z > S
2n - 1/2cn.b2[: e - 1]1/2

n=0 m=

For the Neumann problem

—1c(§ +1)

in! e cos [ce(l+n) ] (2)
u(’g" )= ; :Z 2n+1/2n (1- _ )(52 1]1/‘2 X

nOmO

Near the shadow boundary, where I c(l+n) I >> 1

For the Dirichlet problem

-ic(€ +-1)

ou(E n) Z Zz( 1)n+1 5 (1)
1/2 l m |
w2 [0 -n2xet -1)]
TH'1/2 2 +1/‘2 B
[1c(l+n) <‘1+n> (4111) 2(n+1) (11+—7;I7> . 1c(l+n{|
c

For the Neumann problem
n+l -ic(§_+1)

z }j (-1) L (2)
wE ,n= ‘ X e
© n=0 m= [i(l-nz)(gzl—l):l 1/27m

+
ie(1+n)( 1L i o A1) (o) -1) (at R ic(l#n) —1'§+ 1/2:]
e 1- ,4n 2n+1 9° 1+
C
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where c¢=kF

wes] oo

]= -41m[ ] -2m(2ntl) |, 4m ?m, (21,2

These results should hold when % = 10" (n=2,3,...) and 10 <ka< 102n—1‘
9, Uniform Field Result, Thin Spheroid (see Sec, 3.2.1, p. 117, also
Page and Adams,1938).
For a thin conducting spheroid in a time-harmonic, instantaneously uniform

electric field parallel to the major axis and given by the expression

i A g -iwt

in a medium of permittivity €, permeability u, the components of the scattered

field at the point (§,m) in the far zone can be written approximately as

2b 04
(n) - -1 u.(n) . T
5 Eo'é’olcz 5 “ 2 4 3 i(cE ~wt+=-4)

E~—" 325 o 7 e 2
n3 (27 4 2|2
£2 - of (5',(0 ) +(b I)J
2b1 c4
2 - —
2 SEAC sy El(”) 32, 4 S e “wtHs =)

=i

- €

VE
J Elc a)2+(bm)2:]

H¢—- 3

in which
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¢ =kF
and the remaining quantities are written as power series in ¢ which begin as

follows

1 ., + 187 4 26, 021 6

5 c - c+---
25 Bostit ohati g0l

2609 4 32, 593 6

- + c +---
9 C C
booas® st ? 0 phigthesd A

. T
517 3¢5 17

s, =1- 2 c4+ 8 c6+---

54-7 35 7

a, = PLE) - =5 P () & +[ PO+ 5 P;(EJ ot

35 3¢5 357

3

1 1 1 1 1 6
-[——532 PoE)+— P (B P7<§ﬂc oo
3¢5 7 11 3°5 T 13 3795¢T «+11+13

1 6 1 2 1 4 1 4 1
u, =P (§)+[ P, (5)-—= P ('s“il c? -[_P (8) -———Pp_(§)
3 737 g% 177 g3,7 7B stor 17 3057013 0

2 ¢T+11 13
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Accuracy of these forms has not been established, They should apply reasonably
well for the case of an incident plane wave with electric vector parallel to the major
axis provided the wavelength is large rcompared to the minor axis,
10. Traveling Wave Formula (see Sec. 3.2.1 p. 119, also Siegel, 1959)
The backscattering cross section of a long, thin, conducting body struck by
a plane electromagnetic wave with propagation vector P making an angle 6 with the

major axis, and electric vector in the plane of P and the axis can be written

4
o= %E(B)]

sin 6 .| KL
where f(6)-1 — sml;p (1 -p cos 6-)]

and

5 Cin E‘L(Hpil— Cinljlg-“(l-pﬂ

2 p p .

Qg_ 3 + 3 T
P P

L KL KL, _ KL (o [KL
+2p3 {(p-l)co{p (l+p):l+(p+l)cos[p (1 p£|+(p2 _1)p Sl[p (1+p]
kL ‘ >
-Qil =(1 - .
Sll:p (1-p) }

Here Si is the sine integral

Cin is the modified cosine integral

v = voltage reflection coefficient

*
This formula is in error in Siegel (1959) and Crispin et al (1959).
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p =relative phase velocity

L =length of body

A =wavelength .
The relative phase velocity p is determined by the actual path length along the sur-
face relative to the distance in the axial direction, The voltage reflection coefficient
depends largely on the angle 6 and on the shape of the body at the tips and must be
determined by analogy or experiment., The values used by Siegel for the 10:1 pro-

late spheroid in three distinct ranges of 6 are as follows

6 = 0-40° 40-60° 60-75"
v=.33 o7 1.0
The theory breaks down at § =0 and in the region about 7/2. Comparison with
experiment is illustrated for the 10:;1 spheroid in Fig. 26, p. 203.
11, Perturbation of Sphere Solution (see Sec. 3.2.2, p. 119)
a, Vector Case (cf. Mushiake, 1956)
The normalized backscattering cross section of a fat spheroid specified in

spherical polar coordinates by the expression
-1/2
r=a(l -ysin® 9) / withv =1 -az/bz,l v|<< 1
and struck by a plane wave whose propagation direction makes an angle o with the

axis of symmetry can be written for 6 polarization (El ” plane of incident direction

and axis) and § polarization (gl J_ said plane), respectively, as
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o (01) 0@(0’) 2
1ra2 I Mol » 72 - l g

where, to first order in v,

9 ¢ k i (- 1) (2n+1)oz (ka)é (ka)+y Tl' y

with

. j (ka)
e (ka) =2 (' (o) B [‘”(k]]
n 1 (ka)

z : _j_ : (cosa) mP Mcosa)
and smaf Br nr ——-—'—_ -

m=0n=m
m @
6 IZm dP (cosa):| dPn(cos Q) ‘ ,r[ om
s e— —_— Z :1 -ma I
da - r nr
r=m
m m
d
mPr (cos a)+i(B Ilm , 14m) Pn (cosa) :]
sin o r nr 'Yr nr d o

The corresponding expression for nb is obtained from this by making the sub-

stitutions
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m P (cos @) d P;n (cos @)
——-—<—->——— , S=n, T,
sin o do

and the quantities Br, 'yr are defined by the expressions

[E(a] (ka)]' ' E<a] (kal [[i{ah (ka:]jl'
Br(ka) ‘2— ™ J E(ah(l)(k {]

kaj (ka)|'
v o) 5 jr(ka)-[ ru)]
d Emhr (ka)

: h(l)(ka) .
r

The remaining quantities IISHEI_n , s=1,2,4, are essentially definite integrals of

products of Legendre functions defined as follows:
ar™ dap" Pm Pm
= ’_‘ mnr 4 _r + m2 —T— Sm3 6 do
0 de dé sin® 0

ap™ dPp
n

m m
+ in
mnr T Pr 30 Pn sin® 0 do

dp:ln "
P sin260 sinf df

§
0
n
I4tm = r‘mnr S
nr

0
with

R (2-5 (2n+1)n -m)! (2r+1)(r -m)!
mar = 2270%, m’ n(n+1)(n+m)! r(r+1)(r+m)
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where 6 o is the Kronecker delta.

0,

Results computed from these formulas for various values of v in the
neighborhood of unity are shown in Figs, 21,22, A comparison with experimental
data for a particular spheroid at a particular wavelength is shown in Fig. 34.

b. Scalar case, Neumann problem with symmetric incidence and arbitrary
observation direction (cf, Sleator and Ullman, 1959).

If the spheroid is specified as in the vector case above and the scattered

field ¢s(r, ) is expanded in spherical scalar wave functions

Q

¢s(r, ) =Z Anhfll)(kr)Pn(cose)

n=0

then the coefficints An can be written

o]

) ! n
o™
with a = i (2n+I)Bkalz(nzm-l)-nz(nﬂ)i-]
n s(Cwy, 1) [, ]
(2n+1)ka)" |h " (ka) h ' (ka)| (2n-1)20+3)

A =i 2n+1)
n

n(n l)l-__(ka)2 -(n- 2)(n+1)] (n+1)(n+2)|:(ka) n(n+3ﬂ .

2E1i132(kz£| (2n-1) I:“) (ka] (2n+3)

The backscattering cross section is given by the expression
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@
= ;:-l nz i A y
No results have been computed from these formulas as yet. Accuracy should
be comparable to the vector case.
12, Weak Scatterers (see Sec. 3.3, p. 124)
a, Scalar Case
The differential scattering cross section of a thin homogeneous spheroid of

interior propagation constant kl immersed in a medium of propagation constant ko

and struck by a plane wave propagating in the plane @ =0 at incident angle @

with the major axis (9 =0) is written approximately (see Montroll and Hart, 1951) as

2
2 2 2
2n (K, -k yma“b 3 )
a(6,p)= o 04 5 =T | LI | (u)-lh’e lv 2 J (v)
(1+m) E+7i +2K° cos 4akl] 2 3
where

-k
7()/= kl 0
kl +k

*
w = a?k %+al k"(’) sin? ¢+kf) b? (cos a -cos f)? -2a? k k. sin § cos 6
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w2 *
v = al kl+a2 ki sin? ;l§+kib2 (cos @ -cos ) +2a2kl k_ sin f cos 6 .

No quantitative data are available on accuracy of this result. Qualitative
remarks are made in the preceding text.

An approximate result which derives from the Schrodinger equation, under
the assumptions that a) the energy of the potential is small compared to that of the
incident wave, and b) its range is small compared to the wavelength, is given by
Greenberg (1960). If a plane scalar wave strikes a square-well potential of prolate
spheroidal form, represented by the expression

U=-Uo(l+i 6) inside
U =0 outside
at an angle a with respect to the axis of symmetry, the total scattering cross sec-

tion is given approximately by the formula

1 ib
=471b (a2 sin® o + b® 2 . = ~H +
o =41 (a® sin® @+ b® cos® a) * Re 2 e, eXp(le)

+(€':—)2 E-exp (ic %)J}

where a, b are major, minor semi-axes,
1/2

2
C=ab azsinzoz + bzcos a:|

Ub

and =-1f—(1+ia).
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b. Vector Case
The scattered electric field of a non-absorbing dielectric spheroid under the
assumptions detailed in Sec. 3.3.2 (Shatilov, 1960) is given in eq. (3.82). The time
average of the intensity of this field, which is termed the indicatrix, is given as a
function of the observation point by the form
ol

Kr)= ——

2
S
or k | E (1),

where w is the angular frequency. This function is plotted for certain particular
cases in Fig. 23. Limitations on range of applicability are discussed in the
text,

The scattering matrix of a non-conducting, isotropic spheroid (keda, 1963)
with index of refraction m relative to the surrounding medium is approximated for
values of m near unity by the following development.

Define the symbol J 2 as the ratio of the component of the scattered field

—>b
intensity specified by the index b to the intensity of the incident field polarized in
the direction specified by the index a. Let a and b take the forms .J.or “ to indicate
respectively the directions perpendicular or parallel to the plane of the observation

point and the major axis of the spheroid. In the zero-order approximation, where

the internal electric field is approximated by the term of order zero in the expansion

Q —€ n
E(r) =Z<—°€—> E (r).
n=0
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o A
ik1ie

i.e. E(r)=E (r)=e L
Er)=E (r

i
E
N
where €, 60 are respectively the interior and exterior dielectric constants, 1 is
the unit vector in the incident direction, and E ! is the incident field amplitude, the

. . oA A A »
quantities J.I.—>|| and J”__>_Lvan1sh, as does J”___>” if 1_Ls, where s is the

unit vector in the observation direction, To this order, the other quantities are

J =J —1 — (k?’loza)z(mz—1)2<j—l—(-5))2
‘L‘_>._l_ ”9“ (’1\.@)2 (kor)z (] K

where ko is the external propagation constant
r = distance to observation point from scatterer

a,b are semi-axes of spheroid
_ A 2 2. 2 2 1/2
K = | k1-k0§ (b? sin? Y+a? cos® ¥)

Y = angle between k’i\-kog and major axis

j. is a spherical Bessel function
i

k is the internal propagation constant,
In the first order approximation, where two terms of the above series are used for
the internal field, the quantities which vanish in the zero-order are given by the

form
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1 2002 1L 12 diy2 2
= - +
Ja b (kor)2 m“(m* -1) (kob a) (Xa Y )

—>b a—>b
@ 09]
E j ik s g (k')
m+1l o n+l
. . N N
with X b “m,n Z (2m+3)2n+3) e e
m=0 n=0 o
e — \dt ——j kt' kt') '
4 S z (kt')? ]IJ>( t)nu<( t') S dﬁ)TTm(cos Gs)Tn(cos 6;)
-1 5

1]

where pu o is the parity modulus defined on p. 139.

s'= | b8+ (a-b) s, Q,

it | i+ (a-b)i 2 l
2 = unit vector in direction of axis of spheroid
iz, sz, tZ = components of vectors /i\, Q, 1 to parallel to ?

A = unit vector || T

T =vector of integration point (dummy variable)
f T = cos_l tZ

' =[bt+ (a-b) tZ QI
py = 1:11:11 ff(:; r;1>>mn and conversely for u<

1
Tm (cos 6 S) is a Gegenbauer function
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Gi s = angle between A and/i\, 2

4]

A AA
/i\ _l_= @J. =—(ng = unit vector _L observation plane
(1-A. 8)°

A
3 l == ALY = unit vector in observation plane | 8

I PR

a _ GAGAS)

Ik

. . ) A
= unit vector in observation plane _|_ i

and finally
1 2T o
i(K) j(KO)
L . 1l s 1 1 A alda
Ya_>b = dtz d¢T o S (1\3 t)(/t\ sb)
K Ki
-1 0 S
where
O_.[.y_
Ki"kll—' t—'l
K° =|k s'-kt'l
s | o= -

i' = b3+ (a-b) iz'i
s' =b8+(a-b) 5,2
t = b/t\+(a-b) tzli

Comments on range of validity appear in the text.
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4,2 THEORETICAL CURVES
The following are the graphical representations of the principal numerical

results obtained to date from the analyses described in the preceding chapters.
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FIG. 10;: RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THE TIP OF A
PROLATE SPHEROID, k2,=1. 0 (Hatcher and Leitner, 1954),
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FIG.11: RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THE TIP
OF A PROLATE SPHEROZID, ka=2,0 (Hatcher and Leitner, 1954)
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FIG. 12: RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THE TIP
OF A PROLATE SPHEROID, ka=3,0 (Hatcher and Leitner, 1954),
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FIG. 13;: RADIATION PATTERN FOR AN AXIAL DIPOLE AT THE TIP OF
A PROLATE SPHEROID. (Belkina, 1957) (Broken lines correspond
to sphere of radius r = c¢/k.)
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(a) Exact Solution (Siegel et al, 1956)

(b) Power Series, 1 Term (Rayleigh, 1898)

(c) Power Series, 2 Terms (Stevenson, 1953)

(d) Power Series, 3 Terms (corrected, see footnote, p.60)

100
(b)
10
(d)
yA
/-
g
cIg o c)
0.1
0.01
0.001
0.1 0,2 0.4 0.6 0.8 0.1 1.2 1.4

ka

FIG.14: LOW FREQUENCY NOSE-ON BACK SCATTERED CROSS
SECTION FROM A HARD 10:1 PROLATE SPHEROID (Sleator, 1960)
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n
POTENTIAL DISTRIBUTION ON THE SURFACE OF A HARD
10;1 PROLATE SPHEROID WITH PLANE WAVE INCIDENT
NOSE-ON. § = e”1KZ + g8 (Sleator, 1960).
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FIG. 19: PHYSICAL OPTICS CROSS SECTION OF A PROLATE SPHEROID
AS A FUNCTION OF SEPARATION ANGLE B. (Siegel et al, 1955a)
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FIG. 20;: BISTATIC CROSS SECTION OF A PROLATE SPHEROID.

EXACT PHYSICAL OPTICS RESULT FOR a/b=10, ka=25,
(Siegel et al, 1955a)

194




THE UNIVERSITY OF MICHIGAN

10
Im no 1 ﬂ\
/\ o
0 /
\ | _/
-10
-1
Re o
Re
g = 2
0 1l ka—» 2 3
o 2,2 2
2, o 0-
Ta
4 1| |
1) b/a=.8
2) bja=1
6 n 3 2/ 3) bjla=1.2
\ 3 |
‘7 \W¥a
3 1 2
® 2 2
K = 3
< 2 4 Ol
Q
]
W l
0 1 ka—» 2 “
1) b/a=1.15 2) b/a=1.05
3) b/a= .95 4) b/a= .85 lka—= 2 3

3648-6-T

FIG. 21: NOSE-ON BACK SCATTERING CROSS SECTION OF SPHEROIDS
WITH SMALL ECCENTRICITY

(Mushiake, 1956).
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FIG. 22: BACK SCATTERED CROSS SECTION OF SPHEROIDS AS A FUNCTION
OF ANGLE OF INCIDENCE AND POLARIZATION FOR ka = 1
(Mushiake, 1956)
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4,3 EXPERIMENTAL RESULTS

In view of the fact that the prolate spheroid has been the object of a considerable
amount of theoretical investigation, it is rather surprising to find that spheroids
are not nearly so popular as objects of experimental study. This, in part, is a re-
sult of the difficulty incumbent upon measurements involving low cross section
shapes, in which category the prolate spheroid often falls, It would seem, however,
in view of the considerable interest in the scattering properties of spheroids and the
increased measurement capabilities of various laboratories, that a comprehensive
program of experimental measurements would be well justified at this point if one
has not already been begun.

At the present writing, the list of experimental studies on the prolate spheroid
is short and the available data are quite limited. As an illustration of the scarcity
of these data, Fig. 24 depicts all available back scattering data for that case
where data are most plentiful, i.e., nose-on back scattering from a conducting pro-
late spheroid with major to minor axis ratio of 10;:1, Also included in the figure are
available theoretical results, This assessment of experimental work is based on a
study of the published literature as well as private communications which are
enumerated below, Any omissions are inadvertent and it would be greatly appreci-
ated if such data were communicated to the Radiation Laboratory. All of the work

discussed in this section concerns the electromagnetic (vector) case.
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FIG. 24: NOSE-ON ELECTROMAGNETIC BACK SCATTERING CROSS SECTION
OF A 10:1 PROLATE SPHEROID
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Back scattering measurements of a 10: 1 perfectly conducting prolate
spheroid were carried out at The University of California, Berkeley, using the image{
plane technique (Honda, et al, 1959). The operating frequency was 9346 Mc and for
ka =29, 8, complete polar diagrams of the back scattered field were obtained in the
plane perpendicular to the incident electric field. The results for back scattered
cross section near broadside are plotted in Fig. 25 . Also included is the theoreti-
cal geometric optics cross secﬁon calculated from equation (3.49). At nose-on
incidence the cross section was measured as about 4 times (6 db) larger than that
predicted by geometric optics (see Fig.24 ). There was some doubt as to the
reliability of the measuremeﬁts for aspects near nose-on because the extremely
small values of the scattered field admitted the possibility that the measured return
was dominated by a spurious signal,

Subsequently an improved version of the same experimental setup was em-
ployed to measure the back scattering cross section of a set of five different con-
ducting prolate spheroids, all having a ratio of major to minor axis of 10: 1 (Olte and
Silver, 1959). Their results for broadside (E perpendicular to axis of symmetry)
and nose-on incidence are given in the following table. The nose-on values are plot-
ted in Fig. 24 and substantiate the results of Honda et al.

o IN db RELATIVE TO 6 IN, DIA, SPHERE
a 2,111  1.263 1,184

6.0 3.0
Nose-on -26.0 -48.0 -43.3 -40.6 -40.9
Broadside 2.4 0.5 -4,3 -12.7 -13.5
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Further corroboration of the nose-on back scattering cross section of a 10:1
prolate spheroid for ka = 29.8 is given by measurements made at the Radiation Lab-
oratory (Hiatt et al, 1960). The experiment was designed to measure the effect on
back and forward scattering of coating various parts of a conducting spheroid with
radar absorbing material. A perfectly conducting spheroid was also measured and
the back scattering cross section appears in Fig, 24.

J. Lotsof of the Cornell Aeronautical Laboratory also measured the back scat-
tering cross section of a 10:1 perfectly conducting prolate spheroid for various as-
pect angles. These data have not been published directly though they have appeared
in the literature (Crispin et al, 1959; Siegel, 1959)1. cited as a private communication]

The data were measured at ka = 12,56 for both horizontal and vertical polarization.
The results for horizontal polarization (EI parallel to the plane of rotation) are given
in Fig. 26 together with the theoretical result predicted by travelling wave theory

(see Sec. 4.1.10). The results for vertical polarization (Qi perpendicular to the
plane of rotation) are given in Fig. 27. The nose-on values in both cases have been
renormalized and plotted in Fig. 24.

Some bistatic measurements were carried out on a 2:1 conducting prolate
spheroid for incidence along the axis of symmetry by Rabinowitz (1956). Measure-
ments were made at bistatic angles between 90° and 180° for both horizontal and ver-
tical polarizations (Ei parallel and perpendicular to the plane of rotation) at a wave-
length such that ka = 103. Quantitative results were not given but the qualitative

scattered field behavior is evident in the results given in Fig. 28,

+
Note that the ordinate scales in the graphs of these data in these references are too
high by a factor of 104, Actually what is plotted is ¢ in cmz, not m?.
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6(A ) or 180°-9 (O)

FIG.26: BACK SCATTERING CROSS SECTION OF A 10:1 SPHEROID AS A

FUNCTION OF ANGLE FROM SYMMETRY AXIS
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A measured values O°< 6< 90° }
O measured values 90°< 6 < 180° Lotsof (unpubl. ) 4
= travelling wave theory, (Sec, IV, A. 10)
i
E A
P
_\
® A N °
/ \ A ka = 12.56 a/b = 10
.5
AT
4 A 4
o
o) (o]
o' 0
2
\ \ N
1 r
A ’ a
.05 g
! A 4\
A
A (o
.01 r
005
#A
* A
A
. 001 ]
0 10 20 30 40 50 60 70 80 920



THE UNIVERSITY OF MICHIGAN

3648-6-T
10
0 0
A measured values 0 <6 <90
O measured values 900< 6 < 180o
(Lotsof, unpublished data)
H' ka = 12.56
a/b = 10
P
1 6 L\
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FIG 27: BACK SCATTERING CROSS SECTION OF A 10:1 SPHEROID AS A’
FUNCTION OF ANGLE FROM SYMMETRY AXIS
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More extensive bistatic measurements were subsequently carried out at the
Ohio State University experimental facility (Eberle and St. Clair, 1960), For
. . Y . 0 0 0 0 (o] .
bistatic angles of 0 (back scattering), 30", 60, 90, 120 ,and 140, scattering
cross section was measured continuously as a function of aspect for both horizontal
and vertical polarization of transmitter and receiver. As indicated in Fig. 29 , the
experimental set-up involved fixing transmitter and receiver at a particular angular

separation J, and rotating the target in a plane containing the transmitter

B

Receiver

ﬁ“\- N \ i
Transmitter —» /@"\_ \
No ‘\/\\

FIG. 29

and receiver directions and the spheroid axis of symmetry., The system operated at
a wavelength of 3.2 c¢m and the spheroid (again perfectly conducting) had an axis
ratio of 2,178 with ka=9,13, In Fig. 30, the measured values of ¢ /X* in db are
plotted against aspect angle @, No attempt has been made to renormalize the data
since as originally presented, the scale is too small to be read with much accuracy.
The experimental facility at Ohio State University was also used to measure the
nose-on back scattering cross section of a dielectric spheroid (Thomas, 1962), For

spheroids of axis ratio 1,35:1 and relative permittivity 1.8 (index of refraction 1, 34)
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2.178 (Target aspect angle o and bistatic angle 8 depicted in Fig.29).

9.13, a/b

FIG. 30: BISTATIC CROSS SECTION OF PROLATE SPHEROID (Eberle and St. Clair, 1960).
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the cross section was measured for various values of ka, A theoretical curve based
on a modified geometric optics analysis was presented along with these results, but
there appear to be discrepancies in the numerical work which have not been resolved
at the date of this writing. The curve is therefore omitted here, but the experi-
mental results are given approximately (as read from the published graph) in the
following table, where b is the semi-minoraxis of the spheroid and the ratio o/ 7b?

is given in decibels,

b/x .38 .40 42 .76 .8l .85 .92 2,02

-6.7 -5.2 -2.7 -2.1 -2.3 -. 04 -2.1 -0.7

o [ xb?

More extensive measurements of scattering by dielectric spheroids have been
carried out at Rensselaer Polytechnic Institute (Greenberg et al, 1961; 1963a, b).
Measurements of scattering efficiency, Q =o T/ A, A= geometric cross sectional
area (see van de Hulst, 1957; Goodrich et al, 1961) were made on a spheroid of axis
ratio 2: 1 for a number of indices of refraction, n=m -i§, both real (6 =0) and com~-
plex (6 # 0). Differential scattering cross sections were measured but not re-
ported, and the total cross section was determined by measuring the forward
scattered field, Measurements were made for incidence nose-on and broadside, the
latter for both vertical and horizontal polarization, The results are given in Figs.
31-33.

A series of back scattering measurements on spheroids of small eccentricity

was undertaken at the Ohio State University in support of the theoretical work of
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Mushiake (1956), Only preliminary results were given, and these are shown in

Fig. 34 . There was some question regarding the reliability of these results since
the experiment was not readily reproducible. The refinement of the experiment was
to be the subject of future work; however, at the present writing, refined results

are still unavailable,
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nose-on incidence
= = = broadside incidence, E_l parallel to axis of symmetry
104 - = = broadside incidence, }_Il

parallel to axis of symmetry

-
-
-

N+
w
S

(@]

ka(n-1)

FIG. 31; TOTAL CROSS SECTION OF A DIELECTRIC SPHEROID
n=1.603, a/b=2 (Greenberg et al, 1961)
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APPENDIX
INDEX TO NUMERICAL TABLES

The following is a guide to the principal numerical tables which have been
computed in connection with the spheroid problem. Note that the terminology and
normalizations used in the various sources are not uniform. To reconcile the dif-
ferent systems of notation, see the precise definitions in each source and the Table
of Notations in Flammer (1957). The notation a(A)b in the third column below indi-
cates that a quantity ranges from a to b inclusive at intervals of A. Accuracy is

specified in significant figures.

Quantity Source Parameters, Arguments, Indices Accuracy
Eigenvalue | Stratton et al m=0(1)8; n=m(1)8 7
A (c) (1956)
mn
Flammer a) m=0(1)3; n=m(1)3; c=0,2)5.0 6-17
(1957) b) m=1; n=5(2)19; c=1,2, 7/2,2.0,
3r/4, 2.5, 2.8, 3.0, m, 3.2 10
Weeks m=1; n=1(1)27 - 80(depending on ¢, see 9-10
(1959) below)

c=r/2 7 3x/4 2x 12 4r 57 16
max.n = 28 39 48 44 45 80 62

U. of MRad., m=0,1; n=01)3; 15
Lab., c=,0935, ,1043, ,156, ,234, .260, ,312,
unpublished .35, 521, ,750, ,780, ,937, 1.251,1,560,
1,876, 2,085, 2,493, 3.120, 3.75, 4,69,
5,86, 6.24, 10,43

Spheroidal Stratton et al m=01)8; n=m(1)8; ¢=0(.1)1,0(,2)8.0 7
Coefficients (1956)
mn
dy (c)
Flammer a) m=01)3; n=m(1)3; c=0.2)5,0 >5
(1957) k = -2m(2) vanishing point
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Quantity Source Parameters, Arguments, Indices Accuracy
Spheroidal | Flammer b) m=1; n=5(2)13; c=1.2, /2, 2.0, 3r/4, >8
Coefficients (1957) 2,5, 2,8, 3.0, m, 3.2

d:m(c) k = -2(2)vanishing point
(cont. )
U, of M. Rad.{a) m=0,1; n=0(1)3; c=all values specified 15
Lab. above for eigenvalues; k =all necessary
unpublished values between -16 and +16,
b) m=0; n=0(1)8; ¢==,994, 1,391, 1,591,1.999, 8
2,086, 2,185, 2,238, 2,782, 2,981, 2,998,
3.581, 3.681, 3,780, 3. 80, 3.88, 4. 00, 4,28,
4,60
Angular Flammer m = 0(1)3i n=m(1)3; c¢=.5(.5)5.0 >4
Functions (1957) = cos™" n=0%5°)90°
S_ (c,n)
mn
Spence m=0(1)3; n=m(1)(3-m) 4
(1951) a) c=1(1)5; 6 = cos~1 n=0%(5°)90°
b) c=.5(.5)5.0; 6 =0°, 30°, 60°, 90°
Weeks m=1; n=1(1)20; c=n/2, 5, 8, 12
(1959) 6 = cos™ n=50(50)900 >9
Radial Flammer a)j=1; m=0(1)3; n=m(1)3; c=.5(.5)5.0 4
Functions (1957) £€=1;005, 1,020, 1,044, 1,077
(J) (c £) b)j=1,2; m= 1; n=1(2)13 >6
’ c=1,2 - 3,2 (9 values listed above)
and derlv— £€=1,01, 1,0001, 1,000001, 1,00000001
atives with ¢)j=2; m=0(1)3; n=m(1)3; c=1(1)5 4
respect to § €=1,005, 1,020, 1,044, 1,077
U. of M, Rad.{ j=1, 2; m=0,1; n=0(1)3, £=1,005 15
Lab,
unpublished
Mathur and j=1, 2, 4 m=0,1; n=0, 1, 2
Mueller c=.1, .2, .4, .6, .8 £=1,1, 1,2, 1,3 5
(1955)
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Quantity Source Parameters, Arguments, Indices Accuracy
Radial Weeks j=1,2; m=1; n=1(1)12-22 (see below) 3-9
Functions (1959) €=1,077, 1.100
\)] c=5 8 12
R
mn(c’ £ max.n =12 16 22
(cont,)
Normaliza- | Flammer m=01)3; n=m(1)3; ¢=.5(.5)5.0 4
tion constant | (1957)
N_ (c)
mn
Mathur and m=0;n=0,1,2; ¢c=.1, .2, .4, .6, .8 5
Mueller
(1955)
Joining Flammer a)j=1; m=01)3; n=0(1)3; c¢=1(1)5 4
Factor (1957) b)j=1; m=1; n=1(2)13; ¢c=1,2-3.2
(9 values listed above) 8
k9 (o) c)j=2 m=1; n=1(2)7; c¢=1.2-3,2
mn (9 values listed above) 6
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TABLE OF NOTATION
In a work of this sort, in which a large number of symbols are employed,
some duplication is inevitable, Many of the quantities however are adventitious and
are defined at the point of introduction and soon abandoned. Those in widespread or
repeated use are listed below, along with brief definitions and references to their

points of appearance in the text.

Symbol Name of Quantity Defined
On_Page
Alq) Airy function 157
a Semi-major axis of spheroid 7
b Semi-minor axis of spheroid 7
» B Field expansion coefficients 27
mn’  mn
c 1/2 xWave number x interfocal distance = kF 13
d:m(c) Spheroidal coefficient 18
gl’ 8 Incident, scattered electric fields 48
EE' ETI’ E g Components of electric field in spheroidal
coordinates 49
F 1/2 x interfocal distance 7
Go( r,r') Free-space Green's function 27
G(r, r') Green's function of particular body with point
source 29
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Symbol Name of Quantity Detined
o et On Page
G (g , r') Fundamental solution with plane wave 30
@ excitation
i, s . e
H Incident, scattered magnetic fields 48
H g H,H g Components of magnetic field in spheroidal
g coordinates 49
hg, h 7 h g Metric coefficients of spheroidal coordinates 10
(1,2) . . .
hn Spherical Hankel function of 1st, 2nd kind 22
K(&, n) Kernel function in integral representation 21
k(l) (c) Proportionality factor of radial and angular 22
mn functions
L gmn, Mgmn, Egmn Hansen's vector wave functions 47
f,m,n Direction cosines of vector identified by
L index 146
Nmn Normalization constant for angular functions 20
n Index of refraction 208
Pm Associated Legendre function of order m,
n degree n, first kind 18
P Poynting vector 189
p Dipole strength 38
Q:l Associated Legendre function, 2nd kind 18
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TABLE OF NOTATION(CONT.)
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Symbol

(1,2)

()
Rmn(c. £)

LH
L2 ]

S (c, n
mn

T1 (cos 6)
n

t

u(P)

XY 2z

(3)
n
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TABLE OF NOTATION (CONT.)

Name of Quantity

Zero of Airy function or its derivative

Radial spheroidal function

Distance between two points in space
Radius vector, magnitude of same

Angular spheroidal function, first kind

Distance along ray

Gegenbauer function of order 1

Time variable

Scalar field strength at point P
Volume of spheroid

Cartesian coordinates

General spherical Bessel function

Incident Angle

Separation angle between transmitter
and receiver

Wronskian determinant

Laplacian operator

219

Defined
On Page

157

21

38

27

18

103

174

27

103

68

22

120

90

22

13
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mn
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TABLE OF NOTATION (CONT. )

Name of Quantity

" Gradient operator c

Kronecker delta

Permittivity

1
Eccentricity of spheroid = T~

§

Neumann number

Angular spheroidal coordinate

Angle between vector R and dipole axis
Spherical or spheroidal polar angle
Wavelength

Eigenvalue of spheroidal equation

Permeability of medium

Parity modulus

Perturbation quantity
Radial spheroidal coordinate
Coordinate of scattering surface

Electric, magnetic Hertz potentials

Normalization factor for radial function

220

Defined

On Page

11

139
33
161

28

38

13

13

33

139

121

29

67

22
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TABLE OF NOTATION(CONT.)

Symbol Name of Quantity
o Scattering cross section

Geometrical optics scattering cross section

g+ 0.
# Azimuthal variable
¢ emn Spheroidal harmonic
Yy Wave function
W Angular frequency

221

Defined
On Page

70

90

76

21

27




THE UNIVERSITY OF MICHIGAN
3648-6-T

REFERENCES

Abraham, M, (1898) "Die electrischen Schwingungen um einen stabformigen, Leiter,
behandelt nach der Maxwell'schen Theorie." Annalen der Physik, 66.
pp 435-472,

Belkina, M. G. (1957) "Radiation Characteristics of an Elongated Rotary Ellipsoid, "
Diffraction of Electromagnetic Waves by Some Bodies of Revolution.
Published by Soviet Radio, Moscow, (Book in Russian),

Chako, N. (1955) "On Integral Relations Involving Products of Spheroidal Functions, 'Y
New York University Institute of the Mathematical Sciences, Research
Report No, EM-73,

Chertock, G, (1961) "Sound Radiation from Prolate Spheroids," Journal of the
Acoustical Society of America, 33, No. 7, pp 871-876.

Chu, L. J, and J. A. Stratton (1941) ""Steady State Solutions of Electromagnetic Field
Problems, Part IIL," Journal of Applied Physics, 12, pp 241-248,

Crispin, J,, R.F.Goodrich and K.M.Siegel (1959)"'A Theoretical Method for the Calcula-
tion of the Radar Cross Sections of Aircraft and Missiles, ' The University of
Michigan Radiation Laboratory Report No, 2591-1-H, AD-227695.

Crispin, J. W, jr., K. M. Siegel, and F. B. Sleator (1963) "The Resonance
Region, " Monograph on Radio Waves and Circuits, S. Silver, Editor,
Elsevier Publishing Co, pp 11-37,

Deppermann, K., and W, Franz (1954) "Theorie der Beugung an der Kugel unter
Berucksichtigung der Kriechwelle," Annalen der Physik, Folge 6, Band 14,
pp 253-264,

Eberle, J. W, and R. W, St. Clair (1960) "Echo Areas of Combinations of Cones,
Spheroids and Hemispheres as a Function of Bistatic Angle and Target
Aspect," The Ohio State University Antenna Laboratory Report No, 1073-1,

Einspruch, N, G., and G. A. Barlow, Jr. (1961) "Scattering of a Compressional
Wave by a Prolate Spheroid," Quarterly of Applied Math,, 19, No, 3,
pp 253-58.

Flammer, C, (1951) "Prolate Spheroidal Wave Functions," Stanford Research
Institute Technical Report No. 16,

222




THE UNIVERSITY OF MICHIGAN

3648-6-T

Flammer, C. (1957) Spheroidal Wave Functions, Stanford University Press.

Fock, V. (1946) "The Field of a Plane Wave Near the Surface of a Conducting Body, "
Journal of Physics, 10, No.,5, pp 399-409,

Franz, W, Z. (1954) "Uber dieGGreensche Funktionen des Zylinders und der Kugel,"
Z. furNaturforschung, 9a, pp 705-716,

Galerkin, B. G, (1915), Vestnik Inzhenerov i Tekhnikov.

Goodrich, R, F. (1959) " Fock Theory - An Appraisal and Exposition," IRE Trans.
AP-1, Special Supplement, pp S28-S36.

Goodrich, R, F., B. A, Harrison, R, E. Kleinman and T. B. A. Senior (1961)
""Studies in Radar Cross Sections XLVII-Diffraction and Scattering by Regu-
lar Bodies-I: The Sphere," The University of Michigan Radiation
Laboratory Report No, 3648-1-T,

Goodrich, R. F. and N, D. Kazarinoff (1963) '"Scalar Diffraction by Prolate
Sheroids whose Eccentricities are Almost One,'" Proc. Camb, Phil. Soc.,
59, pp 167-183.

Goodrich, R. F., N. D, Kazarinoff, and V. H. Weston, (1962) '"Scalar Diffraction
by a Thin Oblate Spheroid,'" URSI Symposium on Electromagnetic Theory and
Antennas, Copenhagen, Part I, E., C, Jordan, Editor, Pergamon Press,
pp 27-38.

Greenberg, J. M. (1960) "Scattering by Non-Spherical Particles," Journal of
Applied Physics, 31, No. 1, pp 82-84,

Greenberg, J. M., N, F. Pedersen, and J. C. Pedersen (1961) "Microwave Analog
to the Scattering of Light by Nonspherical Particles," Journal of Applied
Physics, 32, No. 2, pp 233-242,

Greenberg, J. M., A. C. Lind, R. T. Wang, and L. F. Libelo (1932 a) "The
Polarization of Starlight by Oriented Nonspherical Particles," Proceedings
of the Interdisciplinary Conference on Electromagnetic Scattering,

M. Kerker, Editor, Pergamon Press, pp 123-133.

Greenberg, J. M., L. F. Libelo, A. C. Lind, and R. T. Wang (1963b) 'Scattering
by Nonspherical Particles whose Size is of the Order of the Wavelength, "
URSI Symposium on Electromagnetic Theory and Antennas, Copenhagen,
Part I, E, C, Jordan, Editor, Pergamon Press, pp 81-92,

223




THE UNIVERSITY OF MICHIGAN
3648-6-T

Hatcher, E. C., and A, Leitner (1954) "Radiation from a Point Dipole Located at
the Tip of a Prolate Spheroid," Journal of Applied Physics, 25, pp 1250-
1253,

Hiatt, R. E., K. M. Siegel, and H, Weil (1960) " Forward Scattering by Coated
Objects Illuminated by Short Wavelength Radar," Proc. of the IRE, 48,
No. 9. pp 1630-1635,

Honda, J. S., S. Silver and F. D, Clapp (1959) ""Scattering of Microwaves by
Figures of Revolution," The University of California Electronics Research
Laboratory, Report No., 232, Issue 60,

Ikeda, Y, (1963) "Extension of the Rayleigh-Gans Theory," Proceedings of the
Interdisciplinary Conference on Electromagnetic Scattering, M, Kerker,
Editor, Pergamon Press, pp 47-53.

Islam, M, A, (1963)'"Mathematical Analysis of the Effect of a Prolate Spheroidal
Core in a Magnetic Dipole Field," Journal of Mathematical Physics, 4,
No. 9, pp 1206-1212,

Johnson, J, C. (1955) "Scattering from a Dielectric Prolate Spheroid," Tufts
College Research Laboratory of Physical Electronics, Scientific Report
No. 3.

Jones, D. S, (1956) "A Critique of the Variational Method in Scattering Problems,
IRE Trans. AP-4, No, 3. pp 297-301,

Jones, D, S. (1957) "High-Frequency Scattering of Electromagnetic Waves," Proc.
of Royal Society, A, 240, pp 206-213,

Justice, R. (1956) ""Scattering by a Small Conducting Prolate Spheroid," The
Ohio State University Antenna Laboratory, Report No, 678-2,

Kazarinoff, N. D, and R. K. Ritt (1959a) "On the Theory of Scalar Diffraction and
Its Application to the Prolate Spheroid," Annals of Physics, 6 No. 3,
pp 277-299,

Kazarinoff, N. D. and R. K, Ritt (1959b) ""Scalar Diffraction by an Elliptic Cylinder
IRE Trans. AP-7, pp 521-27,

224




THE UNIVERSITY OF MICHIGAN
3648-6-T

Kleinman, R, E. and T. B. A. Senior (1963) 'Studies in Radar Cross Section XLVIII
Diffraction and Scattering by Regular Bodies-I: The Cone, "The University
of Michigan Radiation Laboratory Report 3648-2-T.

Kraus, J. D. (1950) Antennas, McGraw-Hill Book Co., N. Y.

Kouyoumjian, R. G., L. Peters, Jr., and D, T. Thomas (1963) "A Modified
Geometric Optics Method for Scattering by Dielectric Bodies," IRE d'rans.
AP-11, No, 6, pp 690-703,

Langer, R. E. (1935) "On The Asymptotic Solutions of Ordinary Differential
Equations, with Reference to Stokes' Phenomenon about a Singular Point, "
Trans. American Math, Society 37, pp 397-416,

Levy, B. R. and J. B. Keller (1960) "Diffraction by a Spheroid, ' Canadian Journal
of Physics, 38, pp 128-144,

Mathur, P, M. and E, A. Mueller (1956) ""Radar Back-Scattering Cross Sections for
Non-Spherical Targets," IRE Trans., AP-4 , No. l,pp 51-53,

McKelvey, R. W, (1959) "Solution about a Singular Point of a Linear Differential
Equation Involving a Large Parameter," Trans. American Math, Society 91,
pp 410-424,

Meixner, J. and F. Schiafke (1954) Mathieusche Funktionen and Spharoidfunktionen,
Springer-Verlag, Berlin,

Montroll, E, W, and R, W. Hart (1951) "Scattering of Plane Waves by Soft
Obstacles II - Scattering by Cylinders, Spheroids, and Disks," Journal of
Applied Physics, 22, No, 10, pp 1278-1289,

Morse, P. M. and H. Feshbach (1953) Methods of Theoretical Physics, McGraw-
Hill Book Co., N. Y.

Mushiake, Y. (1956) "Backscattering for Arbitrary Angles of Incidence of a Plane
EM Wave on a Perfectly Conducting Spheroid with Small Eccentricity, "
Journal of Applied Physics, 27, pp 1549-1556,

Myers, H. A. (1956) "Radiation Patterns of Unsymmetrically Fed Prolate Spheroidal
Antennas, " IRE Trans. AP-4, no. 1 pp 58 - 64,

Olte, A. and S, Silver (1959) ""New Results on Back Scattering from Cones and
Spheroids,'" IRE Trans, AP-7, Special Supplement, pp S6l - S67

225




THE UNIVERSITY OF MICHIGAN —m—

3648-6-T

Page, L. and N. L. J. Adams (1938) "The Electrical Oscillations of a Prolate
Spheroid, Paper L " Physical Review, 53, pp 819-83l.

Page, L. (1944a) "The Electrical Oscillations of a Prolate Spheroid,Paper II,"
Physical Review, 65, pp 98-110,

Page, L. (1944b) '"The Electrical Oscillations of a Prolate Spheroid, Paper III, "
Physical Review, 65, pp 111-117,

Phillips, R. S. (1952) ""Linear Ordinary Differential Operators of the Second Order, "
New York University Institute of the Mathematical Sciences, Research Report
EM—42.

Rabinowitz, S. J. (1956) "On the Validity of Fock's Approximation for the Surface
Currents Induced by a Plane Wave," The Johns Hopkins University Radiation
Laboratory Report TR-32,

Rayleigh, J.W. S. (1897) "On the Incidence of Aerial and Electromagnetic Waves
on Small Obstacles," Phil, Magazine, 44, pp 28-52,

Reitlinger, N, (1957) ""Scattering of a Plane Wave Incident On a Prolate Spheroid at
an Arbitrary Angle, '"The University of Michigan Radiation Laboratory,
Unpublished Memo 2686-506-M.

Ritter, E. K. (1956) ""Solution of Problems in E-M Wave Theory on a High-Speed
Digital Calculating Machine," IRE Trans., AP-4, No. 3 pp 276-281.

Ryder, R. M. (1942) "The Electrical Oscillations of a Perfectly Conducting Prolate
Spheroid, " Journal of Applied Physics, 13, pp 327-343,

Schiff, L. L ( 1956) "Approximate Method for High-Energy Potential Scattering, "
Phys. Review, 103 No, 2, pp 443-453,

Schultz, F. V. (1950) "Scattering by a Prolate Spheroid," The University of Michigan|
Willow Run Research Center, Report No. UMM-42,

Senior, T. B. A, (1961) ""The Convergence of Low Frequency Expansions in Scalar
Scattering by Spheroids,' The University of Michigan Radiation Laboratory,
Report 3648-4-T,

Senior, T. B. A, (1964) "Low Frequency Scattering by a Spheroid," To be published,

226




THE UNIVERSITY OF MICHIGAN
3648-6-T

Shatilov, A.V. (1960a) ""On the Scattering of Light by Dielectric Ellipsoids Comparable
with the Wavelength-1," Optics and Spectroscopy, IX, No.l, pp. 44-47.

Shatilov, A.V. (1960b) "On the Scattering of Light by Dielectric Ellipsoids Comparable
with the Wavelength-II," Optics and Spectroscopy, IX, No,2, pp.123-127,

Siegel, K.M., B.H.Gere, I.Marx and F.B.Sleator (1953) ""The Numerical Determination
of the Radar Cross Section of a Prolate Spheroid,'" The University of Michigan
Willow Run Research Center Report No, UMM-126,

Siegel, K.M., H.A.Alperin,R.R.Bonkowski, J.W,Crispin, A.L.Maffett, C.E.Schensted
and I.V.Schensted (1955a) ""Bistatic Radar Cross Sections of Bodies of
Revolution," Journal of Applied Physics, 26, No. 3, pp.297-305.

Siegel,K.M., J.W.Crispin, and C.E. Schensted (1955b) '"Electromagnetic and Acous-
tical Scattering from a Semi-Infinite Cone,' Journal of Applied Physics, 26,
No. 3, pp. 309-313.

Siegel, K.M., F.V.Schultz, B.H.Gere and F.B.Sleator (1956) '"The Theoretical and
Numerical Determination of the Radar Cross Section of a Prolate Spheroid,"
IRE Trans,, AP-4, No, 3, pp.266-275.

Siegel,K.M. (1959) "Far Field Scattering from Bodies of Revolution,'" Applied
Scientific Research, Sec.B., 7, pp.293-328.

Silbiger, A. (1961) "Asymptotic Formulas and Computational Methods for Spheroidal
Wave Functions," Cambridge Acoustical Associates, Inc., Report No, U-123-48,

Silver, S. (1949) Microwave Antenna Theory and Design, McGraw-Hill Book Company,
New York,

Sims, A.R. (1957) "Secondary Conditions for Linear Differential Operators of the
Second Order,' Journal of Mathematics and Mechanics, 6, pp.247-285,

Sleator, F.B. and B.Ullman (1959) ""Scalar Scattering by a Rigid Spheroid of Small
Eccentricity with Symmetrical Incidence,' The University of Michigan Radia-
tion Laboratory unpublished memorandum No, 2952-501-M.

Sleator, F.B. (1959) ""Rayleigh Scattering by a 10:1 Prolate Spheroid,'" The University
of Michigan Radiation Laboratory unpublished memorandum No, 2952-502-M.

227




THE UNIVERSITY OF MICHIGAN

3648-6-T

Sleator, F., (1960) "A Variational Solution to the Problem of Scalar Scattering by a
Prolate Spheroid,' Journal of Mathematics and Physics, XXXIX, No. 2,
pp 105-120,

Sommerfeld, A. (1949) Partial Differential Equations in Physics, Academic Press.
N. Y.

Spence, R. D. (1951) "The Scattering of Sound from Prolate Spheroids, Final
Report,'" Contract NONR-02400,

Spence, R, D. and S, Granger (1951) "The Scattering of Sound from a Prolate
Spheroid," Journal of the Acoustical Soc, of America, 23, No, 6, pp 701-
706,

Stevenson, A, F, (1953a) ""Solution of Electromagnetic Scattering Problems as
Power Series in the Ratio (Dimension of Scatterer)/ Wavelength," Journal of

Applied Physics, 24, No. 9, pp 1134-1142,

Stevenson, A. F. (1953b) ""Electromagnetic Scattering by an Ellipsoid in the Third
Approximation, " Journal of Applied Physics, 24, No. 9, pp 1143-1151,

Stratton, J. A. (1941) Electromagnetic Theory, McGraw-Hill Book Co., N. Y.

Stratton, J. A., P.M. Morse, L. J. Chu and R, A. Hutner (1941) Elliptic Cylinder
and Spheroidal Wave Functions, John Wiley and Sons, N. Y.

Stratton, J, A., P, M. Morse, L. J, Chu, J. D, C. Little, and F. J. Corbatd(1956)
Spheroidal Wave Functions, The Technology Press, Cambridge, Mass.

Tai, C. T. (1952) "Electromagnetic Back-Scattering from Cylindrical Wires, "
Journal of Applied Physics, 23, pp 906-916.

Thomas, D. T. (1962) "Scattering by Plasma and Dielectric Bodies," The Ohio
State University Antenna Laboratory, Report No. 1116-20,

Van De Hulst (1957) Light Scattering by Small Particles, John Wiley and Sons. N.Y.

Weeks, W, L. (1958) "Dielectric Coated Spheroidal Radiators,'" The University of
Illinois EE Research Laboratory, Technical Report No., 34.

228




THE UNIVERSITY OF MICHIGAN

3648-6-T

Weeks, W, L. (1959) '"Prolate Spheroidal Wave Functions for Electromagnetic
Theory," The University of lllinois EE Research Laboratory, Technical
Report No, 38.

Yeh, C. W, H, (1963a) "The Diffraction of Waves by a Penetrable Ribbon," Journal
of Mathematical Physics, 4, No. 1, pp 65-71,

Yeh, C. W. H. (1963b) "On the Dielectric Coated Prolate Spheroidal Antenna, "
Journal of Mathematics and Physics, XLII No, 1, pp 68-77,

229




