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ABSTRACT

Several theoretical and experimental problems were studied during this
period. The study of diffraction of a plane wave by a ferrite sphere was
extended to include a small lossy inner sphere enclosed within and concentric
with the original ferrite sphere. Computer results show that the total
power absorbed by the inner sphere rises to peak values of about 500 times
the power incident upon a cross-section area equal to that of the large fer-
rite sphere. A summary of the mathematical results has been compiled for
the theoretical study of the diffraction of an incident plane wave by a
long ferrite cylinder. The total power passing through the cylinder has
been evaluated on the computer and compared with the power incident upon a
cross-section area equal to that of the cylinder in free space. The ratio
rises to peaks greater than ten.

A study of the scattering of a plane wave by a ferrite spheroid was
initiated, but, because of the need for more experimental activi£y in other
areas, temporarily discontinued. The basic analytical steps are outlined.
The radiation from a material-filled rectangular waveguide H plane sectoral
horn has been analyzed. Computer results will be given in the next quar-
terly report.

The problem of the radiation from a ferrite-filled double taper horn

fed by a rectangular waveguide has been analyzed mathematically.



1. REPORTS, TRAVEL, AND VISITORS

During this period no reports were issued and no one visited the project.
A trip was made to Wright-Patterson Air Force Base on September 5 to discuss
project matters. CEL personnel present were CEL Director B.F. Barton, Pro-
fessor John A.M. Lyon, A.T. Adams, R.M. Kalafus, and J.C. Palais. A number
of VHF and microwave antenna problems of interest to the Aeronautical Sys-

tems Division were discussed in connection with possible extensions of the

contract.

2. FACTUAL DATA

2.1 PLANE WAVE INCIDENT ON A MATERIAL SPHERE IN WHICH IS IMBEDDED A LOSSY

INNER-SPHERE

2.1.1 General Discussion.—The sphere problem has been further modified

to include an inner material sphere of complex u and €. There are two reasons
for solving this problem. First, the integration of the Poynting vector over
the inner sphere will yield the power absorbed by it. This can be compared
to the amount of power incident upon an area in free space equal to the cross-
sgction area of the large sphere, or to the power absorbed by the same inner
sphere in free space. The second reason is the following: in an actual an-
tenna the energy is carried away from the antenna into the receiver through
the feed; the waves are not reflected exactly as they would be if the antenna

were shorted at the terminals. By postulating a loss over the volume of the



inner, poorly conducting sphere, one can approximate the feed power by a
distributed heat loss. This then yields information about the effect of the
feed on the field distributions in and around the sphere.

The mathematics of the derivation is given in the section entitled
"Methematical Anolysis.” The interior field oefficients are given in Figs.
1 and 2 as a function of outer radius with an inrer radius of .0l Ao = .1 ..

A lossy conductor will have the parameters u = ug, € = e'-j(e" + &9.‘If
the propagation constant (k = u>vﬂI:) is allowed r0 be complex. the radial
functions must be likewise complex, so that there is a net real part of the
power expression greater than zero. The problem was programmed for the IBM-
704 computer using the MAD compiler. The expression ror the rati. of power
absorbed to the power incident (ne2 x the incident pover density) is plotted
as a function of normalized radius in Fig. 3. This shows that the power ab-
sorbed can be as much as 500 times the power which would pass through the
large circular area in free space. Thus the energy must be concentrated to-
ward the sphere near these resonant points,

It is felt that the approach used here mey help solve meny antenna prob-
lems: 1investigation of the energy distribution of the scattered field can
be used to interpret antenna problems and provide some design criteria. The
results will be extended and a more complete discussion and interpretation

glven later.

2.1,2 Mathematical Analysis.-—A concentric sphere interior to the orig-

inal material sphere is postulated, and specified to be of a lossy material.

As with an inner lossless metallic sphere, the field solutions in the inter-
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Fig. 3.

1000 T T T T T T T | T
100
10
INNER BOUNDARY AT
O 10 J*
- \
< \
@ \
\
5 \ /
= \
- N\
& 0.l \\ J
(@) N
o oS
P~ - b2 .
— \\
.01 / .

ABSORPTION RATIO =

POWER ABSORBED IN DISSIPATING SPHERE

INCIDENT WAVE POWER DENSITY X

.001 ma?
INNER SPHERE ' s |
€]
INTERMEDIATE REGION: i = 10
€ = 10
.0001 . [
O/Xm_.



mediate medium must be composed of Bessel and Neumann functions of half order.
The inner sphere has only terms involving Bessel functions. This gives rise
to eight simultaneous equations, allowing solution of any set of coefficients.
The losses in the inner sphere can be treated by allowing . and € to become
complex. One can then integrate the Poynting vector over the sphere to find
the power absorbed.

The intermediate medium fields can be expressed by the same set of equa-

tions as for an inner conducting sphere.

et 5 2 )+ o) - wintd - sinl]

E =

v n=l ( +1) L

= [e Jot w o _2ndl t(2) | otg(l) L ts(2)

By = ﬁ Foe n§1 n(n+1) * dpMeln * JepNo1n + JepNoin )
where:

the superscript (2) denotes Bessel functions of the second kind.

The interior fields are represented by the coefficients a.fl and bé.

Eped®t n§l 3t ?nfl' [Moln - !_c(eﬂ;]

(=2]]
~
]

H '1’ Eoe ed* Z i 2nl th(eln + Ja,éﬁg%);] (2)

n=1 n(n+l)

2l
~
[}

where:
€2 and pp are the complex permittivity and permeability of the inner
sphere, There are eight equations resulting from equating the tan-

gential E and H vectors at r = a and r = b.



abs, (ki) + clen(kia) - KriaSR(D) (kea) = KiSp(kee)
afsh(ine) + clea(kie) - 1alRi(®) (kea) = iSA(koR)

Ko85Sn(kyb) + KeckCp(kib)

L[}

KyafSp(kob)

n18A8h(kzb) h2ais(kyb) + uaCECﬁ(klb) (3)

biSn(kia) + afCn(inm) - uibBR(?) (koe) = wiSn(kom)

2)

bis(k,e) + alca(ioe) - KpdSRA(D) (ko) = KiSp(ikom)

p1biSy(kab) = pobiSy(kyb) + padbCy(k;b)

Kibish(kab) = KobiSp(kib) + KadbCh(kyb) (4)

Here pj, pz are the relative permeabilities and Ky = ki/ko- The solutions

for the six interior coefficients are:

aé - JuauoK Ko
wineKive - pikeVp - p2Kive + piKiKovg
bé - Juik2Ka Ko (5)

niKiKavg - pokivy - n¥Ko¥o + panoKivg



[Kiu2Sn(kab) Ch(kyb) - KopySh(keb)Cph(kyb) ]

st = a

uaKo
TR [u1KoSn(kob) Ch(kyb) - poKySh(keb)Cp(kyb) ]
n = bn

uzKo

t _ ot [KinoSn(kab)Sp(kib) - KeuySh(keb)Sp(kid) ]

naka
t 2 [(u1KaSn(kzb) SA(kyb) - p2KiSh(keb) Sp(kib) ]
dn = bp (6)
1F3.C)
where:
va = Ra(® (kge) 8y(kab) [C(kiD) 8y(ka8) - 83(kyb)Cyliye) ]
Vp = Rﬁ(e)(ko&)sﬁ(kab)[Cn(klb)Sn(kla) - 8,(k1b) Cy(k;8) ]
Ve = B2 (kom)sq(kab) [Ch(kyb) Sh(ksa) - Sh(kyb) CalK,8) ]
va = K2 (ko) s(iat) [ey(ia)sy(ies) - Sp(id)Caling) ] (7)
It can be shown from the propagation equetion
k2 = e - Joou (8)

that losses due to dipole friction in a dielectric (which can be represented
by the imaginary part of a complex permittivity) have the same effect on the
propagation constant as conductive losses at & given frequency. Thus con-
ductive losses can be simulated by allowing ¢ to become complex; one can then

allow the inner sphere to be a lossy conducting surface by letting ¢ = e'-€".



Then k2 =(DNG;RZFTEQFT; One can then integrate over the inner surface and
find the total power absorbed.

This can be calculated by integrating the normal component of the Poynt-
ing vector o&er the surface. Let I' denote the surface of the sphere. The

Poynting vector is defined by B = 1/2 Re (E x H*}; the surface integration is

/[8-Ada = b2 [T f2" (3 .1)sin ededs (9)
r =0 @=0
where:
5.0 = 1/2 Re {Ex H*¥). 8 = - 1/2 Re {Egﬂz - EggHg) (10)

where the asterisk denotes the complex conjugate quantity.

Substituting the fleld equations,

(EgH})da = _Vf—— ) y ¥ 2o+l  _2mtl

n-l m=l n(n+l) m(m+l)

2 Sp(k2b) .Sﬁ(kgb)* fﬂ Pi(cos ©)Pi(cos )

= s de (11)
2 K2 0=0 sin ©

o et

*
S!'(ksb) S (ksb pl e opl 0
- b . Sl | Sy(keb)” x 3Ph(cos & dpy(eos O sinede}

n *
kob kob 0=0 Je )
The terms involving ag and bE have an integration involving 4?“ sin ¢ cos

pdp = 0, so that these cross-terms do not contribute.

y T _2n#l | 2ml
n=1 m=1 n(n+l) m(m+l)

/] (EgHg)de = JW/EZ- Ean



[_ abj2. Salkd) | Splkeb)r 7 3
L kob kob* 0=0 P 9
S (kob kob) * 1 1 !
N |b§ 2 5 (kab) . Sy (k2b) fﬂ Pi(cos O)Péécos %) de? (12)
kob kob*  g=0 sin © X
The Legendre functions have orthogonality properties which greatly
simplify the expressions (Ref. 1, p. 417).
1 1 Ppipi \ 2
" (EEB . %P, _Bfé_\ oin odo = 2m(mtl)] , m=n
0 \® 0 sin2¢/ 2n+l
(13)

= 0, m#n

Thus
b2 [T Izﬂ Re(EgHj - EgHg)sin ededg

8=0 $=0

[/ (8 .n)da

£ Tor 2 (2n+1) [-|at| "5y (keb) 83(1kab) *

M2 |kp|® nel
+[b% | ®s(k2b) Sn(kzb) *]

(14)

The power in the incident wave over an area na? corresponds to the power

passing through the area of the larger sphere if both spherical regions were

composed of free space. The reference power is found by integrating the in-

cident wave power density over a circular area ne2.

1 = .
+ na® + Re(E; x ﬁ;} . ay

P = 3
w2 (€

= - = E (15)
Mo

2

If we let the inner medium be a lossy conductor, ez/eo = e'-Je", p2 = o

the ratio of the sbsorbed power to the reference power 1is

10



J“/__E_'ié.e_ T (2nw) [[bf]®s! (kob) Sy(kob) * - et %5, (kab) 8 (k) *] (16)
|kpa|® n=1

2.2 SCATTERING OF A PLANE WAVE BY A LONG FERRITE CYLINDER

2.2.1 Mathematical Annlysis.-—The basic solution of this problem was

outlined in Quarterly Report No. 4. Since then, the expressions for the
Poynting vector inside and outside the cylinder, for TM and TE cases, have
been formulated. In addition, expressions have been derived for the total
power passing through a unit length of the cylinder. The fields and Panting
vector at the center of the cylinder have been evaluated on the IBM-704 and
resonances noted for u = € = 10, The total power through the cylinder has
been evalueted on the IBM-704 and resonances noted for several different

values of u and €. The basic formulation of the problem is as follows.

TM Case (Fig. L)

In addition to the expressions for the fields derived in Quarterly Pro-
gress Report No. 4, repeated below for convenience, expressions were derived

for the Poynping vector and total power through the cylinder.

Fields (Ref. 1, p. 360)

Fields Inside Cylinder

d ine
E, = k¥ L bpe " dp(kr)

N==00
k2 & in@
Hr = — L nbpe  Jp(kr) (17)
HOT n=-00
ik3 3 ;
Hy = — L bpel™gp(kr)
HW  N==0

11



Fields Outside Cylinder

0

> ine (1 in®
B, = k2 nZ ae Hr(l) (kor) + Ag L Jy(kor)e
==C0 Nn=-=
k2 o i -
H, = —2> L n&nelng H‘I(ll) (k,r) + A —Q cos © Z J (kor)elng
MW n=-cw Mo n=-o
ik & ing (1) S . 5 in@
Hy = —2 L age BV (kor) - Ago=2 sin@ L Jy(kr)e (18)
“o‘b N=-00 \}“O Nn=-0w0
Poynting Vectors
Pr Inside Cylinder at Point (r,6)
l
Pr = - = ke(Ey x Hy)
2 ine N I ik3 ? ime
P, = -—Rek ) bhe'™ I (kr) xl-—— L opge” ™ 3 (kr)
i D=-e - MO n=-o
' R - i(n-m)e ]
= = Re — '
. e " nz.m m=§» b bpe Jn(kr) 3 ( kr)J

k> :
= - m nE,oo m-ao J (kr) Jr;x(kr) ﬁbnrbmr+ b, ;Pgi) sin(n-m)e +

|-

(bniPmr - bprbpi) qos(n—m) (19)

L-®_J

Py Inside Cylinder at Point (r,o)

l el 00 . I 2
P = I Re(BpxHY) - %Re ralib) bnelneJn(kr;l = 7 ke 0 (kr-)\
n=-0 | 1MOr m=-c e

_ Ll Lz mbnb;ei(n-m)eJn(kr)Jm(kr;g

HOT f oo m=-co i

N |-

k5 [¢¢] 00
= ——x L X mJy (kr) Iy (kr) {(byybpr + bpibpi) cos(n-m)6 -

2“,(.0( kr) Nn=-«c0 MmM==00

(byiPpy = bprPyi) sin( n-m)j@l (20)
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Total Power Passing Through Unit Length of Cylinder

1 i .
Total power = [ fﬂaPrdel =a [ P 30 (radius of cylinder = a)
00 o)

0 (o] =

-k%a .«
; é n-zb m=§x (bprbpy + bpibpi) sin(n-m)e + (bpyiby,. - bnrbmi)cos(n-m)?J
e = |

Ip(kr) 3 (kr) x de

5 ped n
. LK T T g (ke) gy (ke) me.bmr + bpibyy) [ sin(n-m)ede
Epw N==00 M==00 0

+ (bp1bmr - Pnrbmi) fg cos(n-m)ed;}

CE.. = _.\n-m _ |
. .Fe 3oy 3, (ke) 31 (ke) (b + boybry) x | LB L] (contribution
2l == M=o L“ 0-m | only when n+m
1s odd)

Changing Summation to (O to «)

for m even, n odd)

o n € bnrbmr+bnibmi)n
= o B Z% €on€om Jn(ka) (ka)( nrbmr+bnibmi) (

D o n2 - m2
(23)
5 & bprbyr+bnib
. 8y ¥ Sonfom (ka) J}.(ka) (bnrbmr+bnibmi)m (for n even, m odd)
up OO n m n2 - m2 ’
Power through same area in free space
2 [€o
= A |2xa (2k)

Dividing Eq. (23) by (24) gives the ratio of power through the cylinder to the

power through the same cross-sectional area.

1 (n =0)

= 2(n#0)

15



In the above, apy, ani, bnr, bni for the TM case are defined as follows:

8y, = 8np + i8pi = - %o X [0Jn(ka) Jh(koa) - Jn(koa) Jh(ke) ]
n nr ni Eg [aHh(l)(koa)Jn(ka)-Hgl)(koa) Jﬁ(ka)]
(25)
bp = bpp + ibpi = @ [Hﬂ(l)(koa)Jn(koa) - Hgl)(koa)Jﬁ(koa)]
[aHr'l( 1 (ko8) Jn(ka) - Hgl) (koa) Iy (ka) ]
where
e~
a = —\Ii_o'g) ko = WNUp€Q) k = u)x/:e-
Hﬁ(l)(koa)Jn(koa) - Hﬁu(koa)Jﬁ(ko&) = ii (by Wronskian relationship).
b1¢.%%:

Primes denote differentiation with respect to argument.

Ao x [adp(ka) Jf(koa) - Jn(kes) Jp(ka) ) [awh(kea) Jn(ke) - Jp(kes) Jh(ke) ]

nr = Eg >
Ao [adn(ke) Jh(kea) - Jn(kea) Jh(ke) ] [oN)(kea) Jy(ka) - Np(koa)Jp(ke) ]
ni = - Eg -
n
2ah, (N,(koe) Jp(ka) - oNj(kqa) Iy (ke) |
by = - — X
k koa Dn
2 1 - 1
by = - Oho  [on(kce) Jh(ka) - alh(kom) In(ke) ] -

ﬂkakoa Dn
where D, (TM case)

= [ag)(koa) Jy(ka) - Jp(k.a)Jp(ke) 2

jol

+ [olN} (ko) Jy(ka) - Nn(koa)Jﬁ(ka)]“

16
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Fig. 4. Plane wave incident on cylinder, electric field parallel to
cylinder axis.
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TE Case (Fig. 5)

As in the TM case, expressions were derived for fields, Poynting vector,

and total power through the cylinder.

Fields (Ref. 1, p. 360)

Fields Inside Cylinder

- in@
Hy = k2 L bpe  dp(kr)
Nn=-=00
» o ine
Er = - %— n=gmnbne Jn(kr) (27)
By = - luw 5 bpe "Op(kr)

N==00

Fields Outside Cylinder

Hy = kg n=§m aneingﬂgl)(koa) ¥ AO_J§§’n=§m inan(kor)
E. = E%Q n=§& naneingﬂﬁl)(koa) + Ay cos © n=§¥ e#nan(kor) (28)
By = - tkopw L o e m (Y (k a) - A, sin 0 ngw ™7 (k1)

Poynting Vectors

Pr Inside Cylinder at Point (r,e)

P, = = Re(Eg x ) % Re Eikpw T bge inQJn(kr] [m__w p*e ] (kr:I

Nn==00

-

- ReE 1k3u0 ToT bybom o1(n-m) 9Jr'l(kr) Jm(kr_)\

N==00 MmM==00

- —Jﬂ‘ﬁ 5 % [(byebyr + bpibpy)sin(n-me

N==00 M==00

+ (bpibpr - bm.bmi)cos(n-m)a x Jp(kr) J4(kr) (29)
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Total Power Passing Through Unit Length of Cylinder

1. . ‘ :
Total power = é é aPy d6d/ (a = radius of cylinder)

(o] (o]

LTt % Zw Im(ke) J4(ka)

2 N==0 N==

(

]

=1

n
byrbmy + bpibmi) fo sin(n-m)ede

[

+ (bpibmr - bnrbmi) foTr cos(n-m) Odg

Ko 2 (-1
= < ng.m m=§w Im(ka) 34 (ke) (bprbpy + bnibmi)T (contribution only

when n+m odd)

Changing Summetion to Q to ﬂ

Total power

k3w § E (bnrbmr+bnibmi)n
= - == Jp(ka) Jy(ka €on€ for m even, n odd
2 n=0 m=0 n( ) m.( ) n2 _ m2 ontom ( 1] )
k3 2 (onrbmr+bnibmi)m
- —23-@ L L Jy(ka)Jy(ke) mur D ond U €on€om (for n even, m odd)
n=0 m=0 n2 - m? (33)

Power through same area in free space
2 _[=2
= A i X @ _ (3%2)

Dividing Eq. (33) by (33%a) gives the ratio of power through cylinder to the
power through the same area in free space.

In the above, any, agr, bnr, bni for the TE case are defined as follows:
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Fig. 5. Plane wave incident on cylinder, electric field perpendicular
to cylinder axis.
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2.2.2 Computer Results—Interpretation of the Resonance Properties

Shown by the Total Power Flow Through a Unit Length of Cylindrical Ferrite

and Dielectric Material (TM Case).—The results of a computer study show-

ing the normalized power flowing through a unit length of a lossless ferrite
or dielectric cylinder with an incident plane wave appear in Figs. 6-9. The
normalized power is defined as the rapio of the power flowing through the
front surface of the cylinder (subtending an arc of 180° at the center of
the circular cross section) with the material medium present to the power
that would pass through the sam cross-sectional area in free space, There-
fore, whenever the magnitude of the normalized power level exceeds one,
there is more energy flowing into or out of a unit length of the cylinder
than would pass through the same area in free space.

Before the graphs are described in detail, some remarks on their gen-
eral behavior might be in order. The expectation entertained before any
numerical computations were performed was that the cylinder should exhibit
transverse model resonances at well-defined frequencies, depending on the
propagation characteristics. Since, in the building of any practical an-
tenna structure utilizing the energy densities available inside the cyl-
inder, it will be important to know the total energy flow into the cylinder
rather than that computed on the basis of a few modes, it was decided to
compute several final plots for the total normalized power flow into the
cylinder. It was hoped that these plots of power flow would still show an
improvement or resonance condition even though taking the integral over the

front surface of the cylinder involves an averaging process which should

2k
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cut down the resonance peaks considerably. In addition to this averaging,
there is a large amount of mismatch that will confront the incoming plane
wave whenever the characteristic impedance of the cylinder is very much dif-
ferent from that of the surrounding free space, i.e., WhenﬂJ;7z is much d4if-
ferent from 377 ohms. In two figures, Figs. 6 and 7, Zy is that of free
space. In Figs. 8 and 9 Z, is 37.7 and 3770 ohms, respectively. Both of
these impedances would give rise to a reflection coefficient of + .8 for a
plane wave meeting a plane boundary. While the effect for a curved boundary
is harder to predict, it is safe to say that this change of characteristic
impedance will introduce a mismatch in fields at the boundary leading to a
loss in the energy densities penetrating inside the body.

Because of the difference in characteristic impedance it is natural to
discuss the four graphs in two groups. Figures 6 and 7, for u = ¢ = 3 and

€ = 10, respectively, have Zy = 1. Figures 8 and 9, p = 1, ¢ = 100, and

=
]

100, € = 1, have Zg = .1 and Zy = 10, respectively.

=
I

In the first two figures it can be observed that the value of the per-
meability and the permittivity has a profound influence upon the shape of the
power resonance curve. In the first place, the low frequency value of the
total power in the cylinder, i.e., the value for a thin cylinder, reaches .5
for Fig. 6 (p = € = 3) and .2 for Fig. 7 (u = € = 10).

In case I the first resonance is reached at approximately a = .25Aperpiter
All the resonances evident, up to £he one at a = 1.6Ap occur spaced .21-.2k
ferrite wavelengths apart. This is quite an amazing regularity, considering

that terms from which the coefficients of the separate modes are derived

29



exhibit resonances due to the difference in the denominator of properly
weighted products of Bessel and Hankel functions. Therefore, for the indi-
vidual modes we would certainly not expect this regularity evident in the
average power flow into the cylinder. All the resonances occurring are fairly
broad, reaching bandwidths between 26% (at .5Af) and 12% (at 1.1Af) of the
center frequency. For all the following discussion, bandwidth will be defined
as that region of frequency over which the absolute value of the normalized
power flow into the cylinder reaches a value larger than one. This bandwidth
is indicated for each peak on the graphs. All the resonances which occur

are of moderate height, with the highest peak reached equal to 1.8. A fea-
ture which distinguishes case I from all the other cases is quite significant.
For p = € = 3, the only resonances obtained are positive values, i.e., the
normalized power oscillates about the +1 line, never reaching -1 (or any neg-
ative value). This is significant because it means that, up to a radius a =
2\r (at least), power always flows into the front half of the cylinder; never
does power flow out of it. For all the other computed cases there occur both
plus and minus resonances, signifying that there is a net power flow both
into and out of the front half of the cylinder.

Figure 7, u = € = 10, presents quite a different picture. Note the

change of scale which was necessary to portray accurately the shape of each

of the four graphs. This is the only case in which there is not a large

amount of periodicity in the resonance peaks. One phenomenon typical of Figs.
8 and 9 is demonstrated by the twin resonance at .53 and .56\s (of magnitude

3 and 5, respectively). Between these two points, with a 6% change in fre-
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quency, the flow of power is reversed in direction. This change in the direc-
tion of power flow could be used in an antenna system to obtain some quite
selective filtering of two slightly different frequencies., For this case peaks
of magnitude 2 and bandwidths of over 10% are reached several times (at .78\
and l.OEAf). Narrower twin resonances occur in the neighborhood of .55Af and
1.27Af. A narrow resonance of 3% bandwidth and peek value of 12 is found at
1.5Anr. This is the highest power concentration found in the entire graph,
and oddly enough it does not have minus resonance point associated with it.

Figure 8 depicts the case uy = 1, ¢ = 100, The first impression the
viewer gets from this graph is one of resonance peaks rising at quite regular
intervals. Indeed, all the resonances from .62\p on up occur &t .25-wave-
length intervals. These resonances are quite narrow (2-5%), reaching peaks
between 1.5 and 2.3, All peaks are positive. The lower frequency behavior
is quite interesting. At .36 and .38 a narrow twin resonance occurs, 6% and
12% in bandwidth, with the positive peak reaching up to 9. At the very low
frequency end, it is seen that, in this particular case, there is resonance
right from the lowest frequency until the radius of the rod reaches .12\f.
The concentration of power is not very outstanding; however, both bandwidth
of operation and the physical shape of the setup (we require only a thin rod,
instead of the heavier ones needed for higher-order resonances) are quite
attractive.

For Fig. 9, p = 100, and € = 1, the computer increments in a/xf were not
small enough. Even though a computation was made for every .02 increment

in a/xf, it is apparent that most of the resonance peaks were missed. The
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neighborhood of the resonances which appear will have to be explored with more
care. Even though there is only one actual computed point which definitely
shows resonance (at a = .60As), it still can be seen that there are other
resonances also. All of them appear quite narrow, with bandwidths of 2% or
less. Without any computer points of high value, it is of course impossible
to say how high the peak values of the resonance curves are. Once more,
several of these resonances are spaced sbout .25\ apart. One disadvantage
of this high permeability case would be presented by its low-frequency be-
havior; for thin cylinders up to about «3Af in radius, the normalized power
is much less than one. From a practical standpoint, then, this configura-
tion would be less desirable than case III since a much bulkier cylinder
would be required to obtain resonance. In all the graphs shown, the peaks
have not been examined in detail and could conceivably rise to higher values

than those shown on the graphs.

2.3 SCATTERING OF A PLANE WAVE BY A FERRITE PROLATE SPHEROID

An investigation of plane-wave scattering by a prolate spheroid was ini-
tiated. This study was planned as an extension of the ferrite-cylinder and
ferrite-sphere problems currently under investigation. Farly in the study,
it became apparent that the problem, although solvable in theory, was quite
complex. The results expected as an extension of the sphere and cylinder
problems seem desirable. However, great urgency of other parts of the project
has deferred work in this area. Accordingly, only the first step of the solu-
tion was carried out and the method of solution indicated. But work will con-

tinue on the related problem of the radiation properties of a constant cur-
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rent antenna embedded in a ferrite prolate spheroid.

Assume an incident plane wave propagating‘in the negative z direction.
The electric vector has a magnitude Ey and points in the positive y direc-
tion; the magnetic vector points in the positive x direction. The ferrite
prolate spheroid is located at the origin. The orientation of the spheroid
and the incident wave striking nose-on are shown in Figs. 10 and 11.

Expanding the incident plane wave in spheroidal vector wave functions2

“jot
= o d(kz-at)  -JEoe (1)
.E.i = aykoe - k ﬂE'O Aogﬁioz
- e-dut @ 1
where
1 L =,
foy = 2§1) L (a)
=0y n=0,1
o, )
N, = & —2_(a%h (37)

_Oﬁ

The prime on the summation indicates that the summation is to be over even
values of n if £ is even, and over odd values of n if £/ is odd. The symbols
dﬁl are numerical coefficients tabulated by Stratton, Morse, Chu, and Hutner.5
The expressions for the incident wave have the property that they are finite

at all points in space.

2.3.1 Scattered Field.-—At least eight sets of vector functions are a-

vailable, the individual terms of each set satisfying the vector Helmholtz equa-

tion and having zero divergence.2
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Fig. 11.

2

DIRECTION OF
PROPAGATION

Incident electromagnetic wave.
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In choosing two of the eight sets bf vector functions to represent the
scattered wave, it is highly desirable to choose functions of each of the
three components of which vary with 4 in the same way as do the corresponding
components of the incident wave. The vector functions which have the proper
variation with ¢ are: xl\_d(()li; s MEJE , yNglig), ryg}) , and rﬂz). Of these xh_igz) ,
Zygj) were chosen for reasons of simplicity. However, the order (4) was

2nr

i - -
chosen since M( ) tends to Se J(—Xf const. ) as ¢ tends to w, as is the

case for the scattered wave. Now the expressions for the scattered wave are:

“jot o«
-JEqe x. (L) z (4)
Pty N
s K 420 Oy )/ 1p =1
‘”Eoe-Jwt % s xN(h) s z gh)
ES = }J.k2 120 Oz =0y + Blz 1_\] y) (38)

where agz, Biz are unknown coefficients to be determined from the boundary
conditions. The expressions for M, N are given in Ref. 2,

The expressions for the transmitted field are:

_ ~jot
E = ——————JEOE %, (;Eﬂ x_(j) + BJiz ZM%—)]
1 L __J

£=0
“jwt e T —
wEqe t t i
e T (39

z (1
where ngt), Mgz) were chosen since they are regular (no singularity) along
the line ¢ = 1 (which is the degenerate spheroid), and since each of the com-
ponents varies with ¢ in the same way as do the corresponding components of

the incident wave.
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2.3.2 Boundary Conditions.,—

1 x (B + B

i x (B + Ey)

i x B
¢ at & = &, (40)

1, x H

This results in four equations in the four unknowns agz, agz, Bgz, and Biﬂ.

These equations are:

o [%, .8 % % k 8 K,
Y |=> ey Br, - 81,01, + Qa,Dr, - = E, O = = ) F
oo & PPy 7 Pl * 0oyt it Bolyl = kT % o
0 | 00
ky, .8 t t ki s k
-—-l - -'l = -_l
P [k Prylry * Brjfry = %opl, * % O‘OzJLg} p ,Eo K,

8 t 8
- Big B?.g aOE aoz 1 ®
£=0 {pk™ L piky upky 4 . 4

- t
= | By By Goy %, -

which are four infinite simultaneous equations. However, the constants BLg'
CLz""WIw are not simple expressions, ZFEach one of these constants is an

infinite series containing very complicated integrels.
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In Eq. (41) both £, L go from zero to infinity. The prime on R and S
indicates differentiation with respect to the argument.

The procedure ‘used to evaluate the above integrals is to express S&%)(n)
and its derivatives in terms of P$+n(n) and its derivatives.

The difficulty in solving this problem comes from the fact that the vec-
tor wave functions in spheroidal coordinates are not orthogonal as in spherical
and cylindrical coordinates. In spherical or cylindrical coordinates, the

vector wave functions, under certain conditions, satisfy

and

[[ V- Tds = 0
s

This orthogonality mékes it possible in the sphere and cylinder to get four
equations only. Unfortunately, these relations do not hold in the spheroidal
case, but they do for the scalar wave functions from which the vector wave
functions are derived,5

The four infinite simultaneous equations can be solved by taking a
finite number of terms (for example, two terms), and then solving the result-
ing equations
2 I RADIATION FROM A MATERIAL-FILLED RECTANGULAR-WAVEGUIDE H-PLANE SECTORAL
HORN

The H-plane sectoral horn, shown in Fig 12, has been evaluated the-
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oretically. The horn and waveguide are assumed to be filled with a material
of relative permeability p, and relative permittivity €r. The derivation for
the radiated fields is similar to that done by Silver6 for an air-filled
horn. Huygens' principle is used and the source replaced by the fields in
the aperture. To simplify the solution, the current distribution over the
exterior surface of the waveguide is neglected. It is also assumed that only
the TE; mode exists in the fectangular waveguide feed and that only one mode
propagates in the sectoral guide due to the dimensions of the horn throat
and the excitation.

Referring to Fig. 12, the only fields present in the horn are Ey, He, and
Hy, because these fields match with the TE,y components in the rectangular
waveguide feed.

To determine the space dependence of the fields in the horn, Maxwell's
equations are solved in cylindrical coordinates. By applying the boundary con-

ditions and solving, the following fields are obtained.

Ey, cos pG{%ée)(klr) + aHél)(klfﬂ

P sin po [(2) (1) (4 p
Hp = —— (ki) +a (kyr) (4k)
-
By = 51_%25_29 H'(g)(klr) + aHﬁ(l)(ker
Jou P
where:
Hée)(klr) = the Hankel function of order two, representing
an outward traveling wave,
Hél)(klr) = the Hankel function of order one, representing

an inward traveling wave,

L2



—3—, usually not an integer
0

the flare angle

reflection coefficient from the horn to free space.

Primes represent derivatives with respect to k r.

ky

wNpe
permeability of the material inside the horn
permittivity of the material inside the horn

frequency of operation.

To determine the radiated fields, the aperture diffraction method is used.

The sources are replaced by the fields at the aperture of the horn and the

far-field pattern is derived from this distribution.

As shown by Silver (Ref. 6, p. 16l), the radiated far field is given by:

Ep =

where:

- iﬁ; e-JkRFo X faperture E%_x £ *—Jgg—ﬁo x (T x ﬁ; ejka Ro ds (45)
ﬁo = & unit vector from the origin to the field point
n = outward normal to the aperture, in this case the cylin-
drical T unit vector,
E,H = the fields at the aperture of the horn, r = rp
k = wvVpgeyg = free space propagation factor
Hos€o = Dpermeability and permittivity of free space
© = vector from the origin to the element ds of the
aperture area
R = spherical coordinate of the field point.
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Carrying out the calculations, the following fields are found:

(a) for the yZ-plane, or E-plane, ¢ = 9C°

kVp -JkR /b 50 ejk(Vg cos ©cos © + y sin 8)
LnR 0 190

Eos OE, - 7/59 cos GH% dedy (L6)
€o

(b) for the xZ-plane, or H-plane, ¢ = 0°

Fo = 1o

: -JkR
.  Jkrae J fb feo Jkro(sin @sin © + cos ©cos 0)
= iy — e
8 $ T LR o le,

Eos(@-@)Ey - % Hgldgdy (47)

where:
ie = unit vector in 6 direction

unit vector in § direction

14
Ey
Hg

Then, substituting Egs. (1) and (3) into Egs. (5) and (6), the far fields are

from Eq. (1) with r = rp

from Eq. (3) with r = ro.

found to be:

(a) E-plane, $ = 90°

. krpe KR 4 g o4p 6o Jjkro(cos 6cos ©)
By = ig) ————— [0 ¢ gycly [ e 2
lH[R S '90

~

J

o
{cos 6cos ph Eﬁz)(klvg) + aﬂél)(klvéﬂ -TJEQ cos © ky

:

o) Jou

cos pGlHp

5@ 72+ on D (g | o (48)

[

o



(b) H-plane, ¢ = 0°

B - nge_JkR fb feo ejkrg(sin ©sin © + cos 6cos ©)
b ! LxR 0 6o

| —_ - .
4cos(9—@) cos pG{f%(g)(klvg) + aHé(l)(klr?H -,jEQ Ky

i
v

-
cos (0 Hé(e)(leQ) + aﬂg(l)(leQU * dedy (49)

The integrals in Egs. (7) and (8) can be evaluated easily using numerical
integration on a computer. A program has been written, and results of the
calculations will be given in the next Quarterly.

2.5 RADIATION FROM HORNS FLARED IN TWO DIMENSIONS AND FILLED WITH FERRITE
MATERIAL

The procedure followed is to solve the vector wave equation in spherical
coordinates such that the boundary conditions are satisfied on the surface of
the horn. Then, assuming that the horn supports only one mode, which cor-
responds to the TE,, mode of the exciting rectangular guide, the fields at
the aperture are evaluated and used in the modified Kirchoff formula to obtain
the radiation field.

The horn is defined by the cones 6 = 6, 6 = n - ©;, the planes é = 0,

¢ = $, and the spheres r = r; r = rp as shown in Fig. 13.

The vector wave equation 7ZC+T = 0 has two solutions M, ¥ which have
zero divergence. These two solutions could be obtained from the solution

of the scalar wave equation V2w+k2W = 0. The general solution of the scalar

wave equation in spherical coordinates is



Fig. 13.

Double-taper ferrite-filled horn.
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Ygn = (Ap cos mp + By sin mf) Cnm (cos ©) + Dy Pp(-cos 9] !;nhﬁll)(kr)

+ 2 (kr ; (50)

(1) (2

hy, ", hy °~ have been taken to represent traveling and reflected waves. n,m
are not integers because the region 8 = 0, © = x is excluded and there are

boundaries in the p-direction.

Ml = 0

1N
Ye sinoaﬁ

(- mAy sin mf + mBy cos mg) Cmﬂ(cos @) + DpyPp(-cos Oﬂ

[

sin ©
B D (kr) + Ep{? (kxq
Mg = - X

o)
o anl(cos 9) aPﬁ(cos o) |

= - (Ap cos mp + By sin mf) Cpp —————— + Dy ——————
B o) ¥
P )+ 72 )(krﬂ (51)
no- ey

. o) ::l) (Ay cos mé + By sin mf) Enm?g(cos ) + DpyPp(-cos 0] Enh.gl)(kr) + Fnhsz)(kr)dl

N = L (k)
2 kr drde

= (Am cos mg + By sin mp) Enm 3Fg(cos O) aP’n(-cos 9)] { [ (1)(1(:‘)"

+ Fp 8 (2)(kr]}

® 7 r sin 0 ard

= in 5 (-mA, sin mf + mBy cos mg) E}um(cos o) + Dum(-coa 0] {En [ (l)(kr:)]

+ Py a hﬁ”(kr]} (52)
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=l
I
™
—~
DZ
+
o
5
=
b\/

n,m

— k _ —

B = — L (Ny + byMp) (53)
Joy n,m

Now the boundary conditions to be satisfied are:

[}
o
e
O~
1
O~
n

E, = B = 0 on ¢

E, = Eg = 0 on ©

|
O
[
-
O
I
b
]
[+ »)
[

where:

the subscripts 1, 2, 3 refer to r, © and é components, respectively.

Ey, = L by n(n+l) (A, cos mf + By sin mﬁ){;;mPﬁ(cos 8) + DppPp(-cos é)

n,m kr
iEnhgl)(kr) . Fnhg2)(k£ﬂ

= 0 at$=0, p=4po

The only way to satisfy this condition and the others is to take by = O.

Therefore
E, = 0
From the condition on Ep we get
B, = 0, mpy = Im, L = 1,2,3, ... (54)
From the conditions on E; we get
BPﬁ(cos 01) bPﬁ(-cos 01)
9 %9,
m
3Pn(-cos 6,) 3Pp(cos 6,)
Com ————— + Dog— o = O
09, 09,



Therefore

FSPﬁ(cos 01) 2 | OPp(-cos ©,) 2
| % i ®

Therefore

dPA(cos 6;) - dPA(- cos ©,) (55)
30, 30,

the characteristic Eq. (55) determines n. If { is taken to be 1, then the

field components will be

Ey

%o

Eg

%

0
- ; Fo"_ sin ié éfgi%gi-gi)—l’%(-cos e) - BPm(;;os 22 e Pn(cos %ﬂ
1sin © 1 . . '

Eﬁf) (kr) + ypnll) (kr]

Bocos zé [:fm(cos 61) (-cos ©) dPR(-cos ©,) dPn(cos 9;‘

36, %, s S
Eﬁﬁ’(kr) + yanbt ’(kr]

n -
Eokn(n+l) cos z_ an(;:i gl)Pﬁ (-cos ) - éEQié%%i_gil Pﬁ (cos éﬂ

( ) (1)
hy (kr) hy~ (kr)
[ L S - ]

Eok B dPh(cos ©1) OPR(-cos ©)  dPp(-cos ©,) dPp(cos 9?}

Jay b1 00 » 0, 30

% é; n{?) (kr)J " Zli— g?[fhr(ll) (krﬂ}

__Eﬂ_ sin Eé M?_S__Q}_) PIIX;(-COS e) - M PIIIII(COS 9)
Joy $isin @ $1 d0, 90,

22 o] 3 ]
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where:

m o= Z
1
n is given by the characteristic Eq. (55).

If ¢, is taken to be 30)° then m = 6.

Then:
-t ' m/2 -
o - 00m e ™ o ma a1, me1, K2 (Ret. 7, p. 428)
7 m 2
27 (2-m) !m!
where:
F is hypergeometric function.
Therefore
P(cos §;) = (-) (y+m) !sin"6, Fm -y, m+y+1,m+1, 1-cos 91)
7 m ) ) 2
27 (y-m) !m!
1- e
F(m'7:m+7+l:m+l;—£§_‘];> = F
0 - \
1 m! F (meytt) H(miyti+) ¢ (1-cos gl>“1
(m-y-l).‘(m+7).' 1=0 13(m+]_+[).’ N2
P2 (cos 6 )™y ! -
oPyleos &) () (ytm): sin"6, 9+ meos 0, sin™ lelF%
08 2m(7-m)!m! 091
OF 1 @ : /- N\
OF m!sin 6, v (mey+t) ! (mby+140) ! (Hl)c-cos e,)
B1  2(mey-1)i(my) ! =0 4i(mil+)! | 2

after getting the corresponding expression for F, substituting in Eq. (55) and

menipulating, we get:

5 (m-7+1):(m+7+1+z)1 (2+1)sin“64 <i-cos 9{)
£=0 2! (m+l+g) ! 2 2 \ (57)
l+cos © L 1 e e 1l+c se\ 1
+ _——E___%> + m cos Oy (L:Egé——%> F (:——g—-—l) = 0
L AN /
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Before specific values for O, are taken, the dimensions of the feeding guide

should be considered.

the dimensions of the guide must be

Therefore

Therefore

for

therefore

therefore

a<A<?2a 2b<A\

b<a
a = 2r; sin 6; sin él
b = 2r; sin (A - 26,)

Sin(ﬂ'EGJ) < sin @, sin él
ﬁ
cos O, = gi

¢

30°

cos 9; < 0.1295

$y > 82.5°

Assuming the rectengular guide supports only TE,o mode,

therefore the angle of the cone is less than 15°, and we notice from Eq. (58)

that, as $, increases, the minimum value of the angle of the horn in the 6-

direction increases.

Equation (10) is solved approximately by taking the first ten terms, for

example, instead of the infinite summation, calculating the value of the sum-

mation for different values of y, y = 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, plotting



the summation vs. y, and then taking the value of y for which the summation

is zero. To evaluate negative factorials, the definitions (-x)! = ul

(x-l)!sinnx’
(-%)! =7 are used. In solving Eq. (57) there may be more than one value

of y satisfying the equation, the lowest value which satisfies thevcondition

y >m is taken. Then this value is substituted in the field equations (56)

to get the lowest mode in the horn, which corresponds to the TE;, in the rec-

tangular waveguide.

2.5.1 Radiation Field of the Hbrn.6’8-—The field at the point P is given

by

- - - — JkiP.R
, - -%;ejklRRleA*ﬁxE-(%{)%Rlx(ﬁxH)\leJ Poftag (59)

The origin is the center of the sphere of which the horn is a part; rz, ©, é
define a point on the aperture; R, ©', é' define the field point; R, is a unit
vector in direction of R; p is the vector from the origin to the element ds on

the surface of the aperture; T is the outward normal to the aperture.

sl
>
=
I

arx [Egag + Eé’%] = Ega¢ E,{ég

HgBg - Hfse

rosin © cos ¢&, + rosin © sin + rocos 98z
T

sl
s
e

= ar x [Hp8y + Hgg + HfE4]

ol
]

R, = sin ©' cos ¢'8} + sin 6' sin '8} + cos 0'8} (60)

From Fig. 13 it is seen that

5 -5
gy = - sin gl Bx + cos gl ay (61)
&8, = cos gl By + sin gl Ey
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Note that the field point is defined with respect to the axes x', y', z'; the
axis z' passes by the center of the aperture, while the x axis passes by the
the center of the boundary ¢ = O, as shown in Fig. 13.

From Eqs. (60) and (61) we get

5-R, = =-rosin @ cos § sin @' cos §' sin gl + rpsin © cos p cos ' cos gl
+ rpsin © sin @ sin ©' cos #' cos gl + rpsin © sin @ cos ©' sin gl
+ rocos © sin @' sin @' (62)

For the plane ¢' = g, Eq. (62) reduces to

5+R = rosin © cos p cos @' cos gl + rpsin @ sin @ cos @' sin gl + rocos ©
sin o'
= ro[sin © cos ©' cos(p - gl) + cos © sin 6'] (63)
Also Eq. (60) reduces to
Ry = sin ©'8} + cos '8} (64)
Therefore Eq. (59) reduces to
-jk,R
E(e) = - &%R——-— Ru x fflf;‘;el @95,5 - Effg) - (t:%)é Ry x (Hgay -
H¢§éﬂ ejklrg[Sin ® cos ©' cos(p - gl) + cos © sin g']sin sdoas
(65)
Now let us put the integrand in terms of x', y' and z' components.
Referring to Fig. 13,
a4 = - sin fa, + cos pay,
8g = - sin @&, + cos © cos fay + cos 6 sin fay (66)
8, = cos 68, + sin 6 cos ga, + sin 6 sin éﬁy
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Ry x (Egay - Egg)
(sin @'’ + cos 0'a) x [Bg(- sin fay + cos gay)

E4(- sin 68z + cos 6 cos $ay + cos © sin gﬁy)] (67)

and let us express 8y, &y, 8y in terms of ay, ay, ay:

NSM
19

By - sin gl B} + cos g.l 8} (68)

<§|
e
Pl
&
s
o

Substituting from Eq. (68) in Eq. (67),

Therefore

Ry x (EgBy - Egso)
= (sin 6'8y + cos 0'a)) x EEe(sin $ sin g—l 8} - sin g cos gg a)
+ cos ¢ cosglgj'( + cos ¢ singl'é_;:) - sin 68} - cos 6 cos ¢ sin%
a); + cos @ cos $ cos gg'éé + cos © sinyﬁcosgg'é)'( + cos © sinyﬁsin
I,
5 8z
= Amy + Bay + CEy (69)
where: :
A = sin @' —Egsin(gl -¢) - Egcos © cos(? - yﬁ)’\
- E¢§ cos ©' sin © |
B = cos @' [Egcos(gl - §) + Egcos © sin(g-l - é—):| (70)
n 6" Eacos(£2 in(b2
C = - sine@' iEGCOS(22 - g) + E4cos @ sin(52 - ;5]
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R, x [R; x (Hoag - Hiag) |
- (sin '8j + cos ©'8Y) x (A'By + B'E} + C'8})

where A', B', and C' are obtained from A, B, and C, respectively, by putting
H instead of E.

Therefore

Ry x [Ry x (Hoag - HfEp) ]

ay(sin €'C' - cos ©'B')

+ ' cos O'A'

8y(-sin 0'A’") (71)

<+

Substituting from Egs. (70) and (71) into Eq. (65), we get for the plane §' =

n/2
2 -
E;{(gf) = - AIE% e'JklR ffl fglel [Sin o' [Egsin(gl - ¢)

e
- Efcos © cos(é_ )1 - cos ©' sin OE4 + )2 [Hgcos( gl )

+ Hjcos @ sin(gl - ¢){} X exp{éklrg[sin © cos ©' cos(gl - 4)

+ cos © sin 9'] si?j9d9¢ (72)

E}l](gl) - - %ﬁ; e"JklR fo¢l fg;GI {COS o' [Egcos(g-l - 55)
+ Eésin(gi - #)cos 8] - (%%)é sin @' cos 9'[Hgsin(gl - 4)
1
- Hjcos © cos(gi - 4] + (%i)z cos®9' sin OH%}

exp{;klrz sin © cos ©' cos(g - é— + cos © sin Oi} x sin ededd
(73)
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k1R -6 F
Ey(6') = Q%iig e 't f¢1fﬂ ol | -sin @' [Egcos( g— - 4)

"S-

+ Egcos © sin(&* - §) + (%%)

N

- Hjcos © cos(gl -4 - (%%) sin ©' cos ©' sin 9E¢§

, L . : _h 0
expi9k1r2[51n 6 cos ©' cos(p 5 ) + cos © sin © ]}51n9d9d¢
: (74)

Equations (72), (73), and (74) give the radiation field as a function of @' in
terms of the field at the aperture Eg and E4 which are obtained from Eq. (56)
by putting r = ro.

For the plane ¢' = 0 substitute in Eq. (62).

Therefore
5+R; = - rosin @ cos ¢ sin @' sin gl + rpsin © cos p cos ©' cos gl

+ rposin © sin ﬁ sin @' cos §i + rosin © sin g cos ©' sin gl

= rosin © cos(g - gl -9') (75)

R, = sin 9aj + cos 0'a} (76)
Therefore
-JkiR é i
= k,rae 1 -
= - 22loes

Ej(6') = J inr R, f f [E9a¢ - E¢ae) - e1)2 R,

(HgBg - HiBg) ] x exp{}klrgsin 0 cos(p - gl - O’i}sin ededg  (77)

L4

R; x (Eé§¢ - E&EQ) (sin ©'&} + cos 0'ay) x [Eg(-sin g8y + cos ﬁﬁy)

- Eﬁ(-éin 63y + cos © cos gax + cos 6 sin gay)]  (78)
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as before

Therefore

R, x (Eeaé - EéEg)

= (sin ©'a} + cos ©'8}) x

+ cos éEb(cos gl
(-sin él a)

2

= 8y(-cos @' sin OF

+ E4cos 6 sin(6' - b + gl

=0
'_J
»

8y

+ cos él al
2

4

[Ry x (Hé§¢ - H%EQ)]

(sin 6'a} + cos 0'ay) x (Fay + Gay + Hay)

[-sin pEg(-sin gl &} + cos gl ay)

+ sin gi ay) + sin GEﬁE& - cos © cos ¢E¢

z

Eecos é é—

)] +a} sin ©' sin )

) - cos © sin ¢E¢(cos gl 8% + sin él a}) ]

(80)

where F, G, H are the coefficients of 3y, &y, &;, respectively, in Eq. (80)

but E is replaced by H.
Therefore

R: x [R; x (Hoag -

- By(sin OHy)

Hiag) |

- 8y [Hgcos 8' cos(6' - § + él + Hjcos 6' cos 6 sin(

+ @y [Hgsin ©' cos(6' -¢ -

Substituting in Eq.

2

(77), we get for the plane ¢' =

57

—l + H¢s1n e' cos © 31n

Es-)

o gty



Therefore

1
B (6') = lefff;;___ félfe T;cos 6' sin 6E4 + (“1)2
559005 8' cos(6' - § - g— + Hgcos ©' cos © sin(e' - b+ g%h
exp{i?lrg x sin © cos(®' - ¢ + %ﬂj sin ededg (82)
2 -JkiR -0
lary Jk rae $1 ,m-61
o - - kel By eoner - 4 4 By,
é_ x
+cos 6 sin(e' - § + E2)Ey + (%1-)2 sin 6Hg]
”
exp | jklrgsin 6 cos(6' - 4 + glJ sin ededg (83)
E!(0') = QEL?——ﬁ{—l f’élf"'gl J:\sin e' sin OE4 - (El)%
z i bR oley | p - ey

ngsin o' cos(e' - ¢4 + gl) + Hysin @' cos @ sin(0' - p + é%]
P 2
exp Jjkirssin © cos( é + é%:[}x sin ededg (8k)

Equations (82), (83), and (8L4) give the radiation field in terms of the fields
Eé and E¢ at the aperture.

The integrations occurring in the radiation field expressions are of the
form:

Lfl sin gé sin (él - ¢)ejb cos(p - él)d¢

2

The integrand is a trigonomentric function multiplied by an exponential func-

tion. The integrals can be evaluated by computer methods.
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3. ACTIVITIES FOR THE NEXT PERIOD

Computer facilities will not be available until October 15 while the IBM-
704 is being replaced by an IBM-709 computer. Computer programs presently in
use can be used directly on the nex computer. As soon as the new computer is
in operation, the computer results will be obtained on the details of power
flow near resonance in the studies of sphere and cylinder diffraction. In ad-
dition, computer results will be obtained on the diffraction by a magnetized
ferrite cylinder.

Experimental work is presently being conducted on a biconical antenna,

a ferrite-filled cavity backed slot antenna, a ferrite-filled disk antenna,

a shielded ferrite-loaded balanced loop antenna, and a coaxial fed ferrite-
loaded disk antenna. 1In addition, a ridged ferrite-loaded cavity-backed slot
antenna is being constructed. Work on approximately half of these antennas
in nearing compléetion and will be summarized in the next quarterly report.

The computer results on the sectoral horn analysis are being studied at
present and will be giyen in the next quarterly report.

During the next périod several new theoretical studies will be initiated,
including a variational solution of the radiation from a ferrite-loaded cavity
backed slot antenna; a study of the radiation from a constant current antenna
surrounded by a ferrite prolate spheroid; and studies of antennas immersed in

ion plasmas.
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4, SUMMARY

The theoretical study of plane wave diffraction by a ferrite sphere has
been extended to treat a lossy sphere enclosed within the ferrite sphere. Com-
puter results show that the power absorbed by the lossy sphere rises to values
greater than 500 times the power incident upon & cross-sectional area in free
space equal to that of the large ferrite sphere.

Computer results have been obtained for the total power flow through a
long ferrite cylinder with an incident plane wave. The total power exhibits
resonances where the total power rises to values greater than ten times the
power that would pass through a cross-sectional area in free space equal to
that of the cylinder.

A study of plane wave diffraction by a ferrite prolate spheroid has been
initiated and the preliminary analytical steps have been carried out. Be-
cause of the urgencies of other parts of the project effort, the study has
been discontinued and will not be started again unless developments in other
areas indicate that the results would be significant. The radiation from a
material-filled rectangular waveguide sectoral horn has been analyzed and
computer results are being obtained. The radiation from a ferrite-filled
double taper horn fed by a rectangular waveguide has been analyzed mathe-
matically. This problem is also quite complex and, unless further develop-
ments indicate a significance, probably will not be evaluated on the computer.

Results are already being obtained on the single taper sectoral horn. The

¢o



efforts of project members are now being directed to practical antennas uti-
lizing ferrite materials and which are capable of relatively precise experi-
mental evaluation.

The bibliography has been omitted from this quarterly report in the
interest of conserving space., A new bibliography will be compiled and pub-

lished towards the end of the present contract.
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