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ABSTRACT

This final report describes the results of extensive analysis and measurement of
antenna coupling factors. The purpose of these studies is to supply information essential to
the adequate prediction of the interference between one electronic communication system and
one or more other electronic communication systems. All antennas involved in these studies,
with two exceptions, are flush mounted antennas such as would often be utilized on aerospace
vehicles of either manned or unmanned types. One exception is the study of the quarter wave
monopole erected perpendicularly to a common grounding surface. The coupling of a given
type of antenna to a quarter wave monopole supplies all of the information necessary to give
the power coupling from one antenna to another antenna of the same type. In this way infor-
mation was obtained for spiral-to-spiral coupling. This information can also be used to
obtain the coupling between two antennas of unlike types. The flexibility of this general
approach is worthwhile in the consideration of the many combinations possible. The second
nonflush mounted antenna type studied has been the dielectric rod. These studies are dis-
cussed later.

The report is divided into several sections according to types of antennas. In
some of these sections intensive analysis is given as well as experimental data. In other
sections the coverage is limited to analysis. The most complete coverage is given to the
coupling from one rectangular slot to another. This coverage includes slots arranged in a
cylindrical or spherical surface. The rectangular slot studies are representative of resonant
antenna coupling.

Additional extended coverage is given to the coupling of one Archimedean spiral
to another. The Archimedean spiral is considered to be a good example of a traveling wave
antenna widely used for aero-space vehicles.

An analysis is given for the square spiral based upon the premises of a uniform

phase constant and stepped attenuation. These assumptions are confirmed experimentally.
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In the selection of examples for power coupling, both resonant and traveling
wave antennas are used. It is interesting to note that these antennas yield different types of
polarization. In the case of the resonant slot, linear polarization is involved. In the case of
either the circular or square Archimedean spiral, circular polarization is involved. It is

apparent that an idealized Archimedean spiral is not available. Two spirals, presumably of
identical manufacture do not have the same radiation properties. During the course of the
work on the Archimedean spirals, attempts were made to remove the causes of any observed

anomalies. This has not always been possible to do. Of course, a pure axial mode is often

desired from a circular Archimedean spiral; however, there is always some contribution

from a second mode. Also, reflections and feed radiation cause additional contributions
making the antenna depart from a pure traveling wave structure.

A theoretical analysis is presented for horn antennas. The influence of the dis-
tribution of effective aperture current is described by a series of curves. The radiation
characteristics of horns in a ground plane are similar to those of horns in free space, and
use a comparable analytical approach. Further extensions of the coupling studies described
in this report would most certainly include experimental work on the coupling of rectangular
horns as well as analytical and experimental work on circular horns.

The coupling between two dielectric cylindrical rod radiating elements is ascer-
tained by simplified analysis yielding consistent results for spacings as close as two free
space wavelengths for radiators two wavelengths long and six wavelengths long. No experi-
mental confirmation has been attempted. The analytical approach can be used for a variety

of other cases. Extension of the dielectric rod studies is not contemplated at present.
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1. ASPECTS OF COUPLING AND INTERFERENCE

The antennas of a system play a key role in radio-frequency interference (RFI).
Interference may come from within a system, between systems, or from distant transmitters.
Even though design frequencies of neighboring antennas are spread apart, the proximity may
cause interference from well down on the pass-band of a device. Harmonics and spurious
oscillations may also cause interference. A great deal can be accomplished by filters, once
the system configuration and specifications are known. An awareness of the behavior of
antennas can give the system designer an added powerful tool for reducing RFI. By the
proper choice of the antenna type, orientation, and location in a system, many cases of RFI
can be avoided. Unfortunately, the detailed information necessary is not usually available
due to the volume of data needed, and the variance among antennas which are supposedly
identical. Also, since antenna radiation is greatly affected by its environment, laboratory
patterns can be misleading.

In order to describe the situation adequately, the following data should be avail-
able:

1. Radiation patterns, system power levels, and polarization information for the
transmitting and receiving antennas over an appreciable frequency band,
including harmonics.

2. VSWR and efficiency of all antennas over a wide frequency range.

3. Effects of reflections and skin curvature on the vehavior of these antennas.

4, Propagation path perturbations.

5. Instantaneous pass-band of receiver circuits, as well as nonlinearities.

6. Harmonic power levels of transmitters.

Most of the attention of this contract has centered on the first considerations.

The second is less critical and is usually provided by the manufacturer, or can be adequately
estimated. Some attention has been given to curvature effects, since they occur frequently

in aerospace applications. Reflections are properly a scattering problem and in many cases



can be estimated using scattering cross-section information for simple geometries. The
last three are beyond the scope of this project but are fundamental to the RFI problem, and
are listed for completeness.

Some attempts at computer simulation of the problem have been attempted (for

example, see Ref. 1), but all are hampered by lack of data. This contract has attempted to

give useful information on a few important antenna types, which may prove helpful for esti-
mating coupling for other antennas in these classes. First, some simple models are
described, and their use on some practical antennas is demonstrated. A more technical and
detailed analysis is then given for several low-to- medium gain types, along with consider-

able experimental data.



2. SIMPLE MODELS FOR COUPLING OF LOW-GAIN ANTENNAS

Interference between neighboring antennas generally takes place through the
sidelobes, and is thus sensitive to changes in frequency and environment. It is often useful
to use approximate models for a given antenna, especially when detailed information on the
pattern is not known over an appreciable band. To facilitate such estimates, several models
are worked out which may be useful to a system designer. Two distinct situations arise:
Interference between antennas in the common (convex) skin, such as the fuselage of an air-
plane, and between isolated antennas. A helpful viewpoint is to consider the major propaga-
tion path: If it follows a surface, then the first case applies; if not, the second. Thus the
coupling between an antenna in the tail of an airplane and one in a wing, for example, would

fall in the second category.

2.1 First Case-- Common Ground Plane

The far-field coupling between two antennas on a common conducting ground

plane may be calculated as follows:

Ground Plane

Fig. 1. Coupling geometry for antennas in a common ground plane.



Referring to Fig. 1, it can be seen that the expression for power density at R due to the

transmitting antenna T is given by

where

=
"

t input power to antenna

o,
I}

radial distance from transmitting to receiving antenna

=)
-t
—
e
—_
V
I

normalized pattern factor of the antenna and is given by

IE(o)1®

Doy = om

1 , /2 = 2
Hjo {) IE(8],9;)1% sin 6] d6; do;

where

E = electric field in the radiating half- space.

When losses are ignored, the power received at the receiving antenna R is

n

w

r = Pldg) A(p)

W, D (¢ ) D8,
__t7Trr Tt (2.2)
64m%(d/x)?
where
Ar(¢r) = aperture of receiving antenna
Dr(¢r) = normalized pattern factor, defined like Dt(¢t)'
The coupling between antennas is the ratio of power received to power transmitted
W, D(0,)Dy9)
C = ST (2.3)

t 64n%(d/)?

The factor 64 is used where all energy is confined to geometric half-space as for two »frlush
mounted antennas in a common ground plane. Alternatively, the D factors could have been
redefined. The factor 16 is used for two antennas wholly in free space.

The effect of losses in the antennas is considered by multiplying the coupling C



by the appropriate efficiency factors a, and 2, where 0 < @ < 1. The coupling is related
to mutual impedance by (see Appendix A)
| 2

IZ12

4Ry Ry

where
Z12 = mutual impedance
R11 = real part of input impedance to transmitter

R

n

99 real part of input impedance to receiver.

This formula also applies in the near-field and in free space.

For low-gain antennas, the far-field approximations apply for spacings as close

as one wavelength. The relative alignment is automatically taken into account by the ground
plane patterns, since the presence of the skin dictates a negligible tangential electric field;
only a vertical electric field is involved.

In general, the skin of aerospace vehicles has appreciable curvature, so that
coupling takes place via the surface wave along the skin. The effect of curvature of the skin

can be readily calculated for a great number of cases (see Section 5).

2.2 Coupling Between Idealized Antenna Models-- Common Surface

Several models are considered:

L. Semi-isotropic (isotropic above the plane, zero below) -- [D(g) = 2 (3 db)]

2. Short monopole -- [D(¢) = 3.0 (4.76 db)]

3. Thin quarter-wave monopole -- [D(¢) = 3. 28 (5. 15 db)]

4. An antenna circularly polarized on the 8 = 0 axis, such that E ¢/ E g = CoS 0,

and E9(9,¢) = 1-- [D(g) = 0.37 (-4.35 db)] .

Coupling as a function of center-to- center spacing is shown in Fig. 2 for several
transmitter-receiver combinations. Monopoles show higher coupling than semi-isotropic
antennas; the circularly-polarized antenna coupling is lower due to the energy involved in
the ¢-component. Coupling may be obtained for any antennas in a common ground plane by
considering the coupling between two semi-isotropic antennas. If this quantity is called Cs’

the coupling between antennas T and R is given by



where

S (4rd/)?

The usefulness of this treatment is now evident. The éoupling between two
antennas on a ground plane can be found by considering the lower curve of Fig. 2, and multi-
plying the value obtained there by the appropriate pattern factors of the two antennas.
Actually, efficiency and VSWR should be considered as well.

Slots can be treated from these curves. A comparison of a short, thin slot with
a short monopole shows that the coupling must be the same for slots broadside-to-broadside.
To extend this to other orientations, it is necessary only to consider the relative orientations;

thus with reference to Fig. 3,

— 2 2
Cslots ~ Cmonopoles CoS™ 9 coS” 9,

This applies as well to thin resonant slots, where the curve for quarter-wave monopoles is
used. The error involved in using this form with resonant slots having length-to-width ratios
of only 2 to 1 (therefore, not thin) is less than 1. 1 db per antenna. This breaks down at the
null of the far-field pattern. Slots are treated in more detail in Section 3. 1 of this report.

The fourth model listed above is useful for radiators that are circularly polarized
along the 6 = 0 axis (out in front), such as spirals. The skin dictates that the tangential E
field be zero along the ground plane, and thus that the wave there is linearly polarized.

This cross-polarized model can be extended to more highly-directional cases by
considering §-variations of the field of the form cos(a sin §), as would be the case in a two-
dipole array. This is similar in form to the spiral antenna, and can be used for approximat-

ing it. Assuming ¢- symmetry let S be defined by

Ee(w/z)
T TE,0)

i.e., the ratio of ground-plane E-field to axial E-field. Also, let E  be related to E‘G by

¢
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Fig. 3. Coupling geometry for two thin, short slots.

E¢ = Egcosé).

Figure 4 shows a set of curves for several values of S expressed in decibels. These curves
represent the coupling vs. spacing between such a cross-polarized antenna and a quarter-

wave monopole. Fresnel-zone effects are ignored, which is adequate for low-gain antennas.

2.3 Second Case: No Common Surface

In the case where coupling takes place via a ray not bound to a surface, the usual

formulas apply. The far-field coupling between two antennas is given by

D (6

(6.,6)D(6,9) A(T,R)

167%(d/x)?

where the normalized pattern factor D is given by

|E(6,0)!°

D(8,9) =

4

1 2nm )
/] 1E(@,97)17 sind’ do' dg"
[0} )

and

A = alignment factor, depending on the relative polarization.

Table I below is given for convenience. Elliptical polarization effects can be estimated

from this table. The low values, such as -25 db, are not to be considered exact but indica-

tive.
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Antenna Alignment Factors

Polarization Horizontal Vertical Diagonal Cil‘Rcililar CirLc;l{lar
Horizontal 0 (db) -25 -3 -3 -3
Vertical -25 0 -3 -3 -3
Diagonal -3 -3 -3 -3 -3
Circular RH -3 -3 -3 0 -25
Circular LH -3 -3 -3 -25 0

Table I

The coupling between two "'parallel” isotropic antennas is

1

C. = —— .
(4m d/r)?

1

The pattern factor D is defined relative to isotropic, so that

C = C,D6,,9,) D,(6

0.,9.) A(T,R)

as before. In fact, the same figure (Fig. 2) may be used, if "isotropic" is substituted for

"semi-isotropic, " and "'dipole' for "'monopole".

10



3. DETAILED STUDIES AND EXPERIMENTAL RESULTS

3.1 Coupling Between Rectangular Slots

3.1.1 Introduction. From the simple models of Section 2, the coupling between

two broadside slots would be approximately that between two quarter-wave monopoles. For
configurations other than broadside, these results must be modified by the gain factors of
each slot. With ¢ and ¢, defined in Fig. 3, the gain factors Gt(a, b, ¢t) and Gr(a, b, ¢r) are

expressed by:

cos (1—;5 cos ¢) sin(—l;—b sin ¢)

G(a,b,9) = . (3.1)
ka . (kb
[1— (—ﬂ— cos ¢) ]sm (T)
The far-field coupling formula from Section 2. 3 is then:
C(db) = -17.7db + 20 log10 Gt + 20 loglo Gr - 20 loglo(d/k) . (3.2)

Experimentally, a more accurate expression is:

C(db) = -19.7 db + 20 log o G, + 20 log o G, - 20 log,, (d/A)

which differs from Eq. 3.2 by 2.0 db. The discrepancy is primarily due to the approxi-
mation to a thin slot. The more accurate formulation of Section 3. 1 gives close agreement
with experiment. This formula satisfactorily predicts coupling even for moderately close
spacings. In the present report a formulation is given which considers near-field terms and
yields useful improvement at close spacings. The far-field expression is entirely inadequate,
however, for predicting the coupling between slots where one or both lies on the axis of the
other. Some interesting results are presented here for this case.

3. 1.2 Discussion of Near- Field Formulation and Comparison with Experimental

Results. The transmitting slot sets up a field in space which gives rise to a tangential

magnetic field ﬁo on the ground plane. When a second slot is cut, the displacement current

11



thus induced will produce a tangential field E in the receiving aperture. However, the field
E must be consistent with the receiving waveguide boundary conditions as well as with ﬁo'
It is reasonable to assume a principal mode distribution in the aperture. The received

power is then proportional to the Fourier coefficient of ﬁo ,

<

WR ~ |ffHocos% dydxl?‘

By also assuming a dominant mode configuration in the transmitting guide, one can calculate
ﬁo' Upon substitution of this ﬁo in the above expression for WR’ the coupling can be found
without making far-field approximations. The resulting quadruple integral can be reduced
to a double integral for computer evaluation. The mathematical calculations are outlined in

Appendix B. The coupling magnitude for the broadside-to-broadside case is given by:

7(d+b)
a
_ ka a 1 b md
e SR
(-5.) 1T 7(d-b)
1 k%22 a

m ,”z 1r2
f - (m-v)cosv + | 1+ sin v
0 k®a’® k%a?

exp [—j% f\/u2+v2]} . i
v

2 2
u +v

and a, b, and d are defined in Fig. 3. The coupling falls away from the simple 1/d behavior
in the manner shown in Fig. 5. Theoretical and experimental results show close agreement.
The coupling is changed merely by the pattern factors of the slots as one or both is rotated,
at least until a null is reached on one of the two patterns (see Fig. 6).

When one antenna lies along the axis of the other (i.e., on a pattern null), the
far-field terms vanish, and the coupling falls off as 1/ d? instead of 1/d. Figure 2 shows this
trend even up to close spacings, for slots placed end-to-end. Interesting behavior is exhibited

when one slot is rotated away from the end-to-end configuration. Rather than increasing,

12
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Fig. 5. Coupling vs. spacing for two slots

the coupling decreases since the far-field has an H-field in the ¢-direction except along the
axis, so that a slot oriented with its length parallel to the transmitted H-field has the strong-
est TE 10 excitation. When it is perpendicular, the slot has no H-field along its length. The
transmitting field attempts to set up a mode with its E-field across the length of the slot.

On the other hand, in the end-to-end configuration the H- field, while belonging to the near-
field, is still in the proper direction to excite the TE

10 mode. The coupling at the end- to-

broadside configuration is below the range of the apparatus, i.e., more than -90 db.

3.2 Spiral Antennas

3.2.1 Introduction and Summary of Spiral Properties. The widespread use of

flush broadband antennas on aircraft and missiles, both singly and in arrays, has motivated
a detailed study of the ground plane fields. The Archimedean spiral is representative of
this class, and was thus chosen for further study. It provides a practical way of producing

circularly polarized radiation over a wide band of frequencies. It is usually mounted in a

13
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CAVITY

COPPER SPIRAL

EPOXY GLASS BOARD

Fig. 7. Spiral face configuration.

conducting ground plane and backed by a cavity.

The square and circular spiral configurations are the most common types.
Figure 7 indicates a circular spiral assembly in a ground plane. The square spiral configura-,
tion may be seen in Fig. 41()of Appendix C. These spirals may be wound either clockwise
or counterclockwise depending on the sense of circular polarization desired. Spiral antennas
are usually fed out of phase, in order to effect maximum radiation out in front. A balun is

used to provide a balanced feed.

15



The operation of the spiral antenna has been explained qualitatively in a number
of papers. 2,3,4 A mathematical approach to the circular Archimedean spiral has been pre-
sented by W. L. Curtis. 4 The square spiral is analyzed mathematically in Section 4 of this
report. A summary of the operation of the spiral antenna is given here.

As shown in Fig. 7, the antenna can be thought of as a two-wire transmission
line which has been wrapped around the origin in such a way as to form a spiral. It is obvi-
ous that at any position along this line, the wire lengths differ. Furthermore, this difference
in lengths steadily increases for points further removed from the origin. If two out-of-phase
waves of current start at the center terminals and travel out along the transmission line,
they will eventually become in phase when the difference in the lengths of the line wires
becomes % . It may be shown that the distance from the origin at which this in-phase condi-
tion occurs is given approximately by r = ;—ﬂ =.159Xx . This value is the radius of a ring
one wavelength in circumference.

From considerations of this kind, it is generally assumed that most of the radia-
tion from the spiral originates in a region near the one wavelength ring where neighboring
current elements have small phase differences. For other regions of the antenna the fields

tend to cancel. It is also reasonable to assume that the currents are attenuated in the region
of the radiation ring due to radiation damping. If the ring is not too near the outer extremi-
ties of the antenna, the current magnitude may be reduced enough so that reflections from
the ends of the spiral arms can be neglected.

In a rough way, one can approximate a spiral at one frequency by a similarly
shaped loop which carries a traveling wave. Thus, for a circular spiral, consider a circu-
lar loop with a circumference of one wavelength. The separation of parallel elements is the
diameter d =2/7 = .318x. For a square spiral, this distance is d =/4 = .251.

This suggests a consideration of two parallel and equal current elements separ-
ated by a distance d (see Fig. 8).

This arrangement can be easily analyzed for the pattern, which is found to be proportional to

F(9) = cos[_"Td sin 9) . (3.4)
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Fig. 8. Two-element array geometry.
Let S(d) be defined by (see also Section 2. 3)

S(d) = F(m/2) _ 1rd. (3.5)

This gives the magnitude of the ground plane radiation relative to the on-axis field of such an

antenna. For a circular spiral,
S(d) ~ -6db.

A comparison of Figs. 9 and 10 show that the above theoretical results are in rough agree-
ment with observed behavior, particularly the difference, 3 db. In general, observed pat-
terns show more gain than predicted by this model due largely to the reflected energy from
the cavity, which tends to produce greatest reinforcement along the axis, and to produce less
reinforcement near the ground plane.

If dielectric is used extensively near the spiral, e.g., inthe cavity, the radiating
region will be reduced in size. The effective dielectric constant is not significantly altered
until a substantial amount of dielectric is used, in terms of wavelengths. When this occurs,
the effective spacing d decreases, which broadens the beam.

Thus the gain of a spiral antenna depends mainly on two factors:

1. The shape of the spira].

2. The effective dielectric constant surrounding the elements.

A square spiral will have a broader beam than a circular spiral, and thus less
gain. Similarly, the effective dielectric constant varies directly with the width of the beam.

Thus for maximum gain, a circular spiral should be utilized, using an air- filled cavity, as
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thin a printed circuit board as possible, and as low a dielectric constant as possible. The
above conclusions are borne out by the experimental data and a consideration of the resonant
circumference condition.

Interest to date has centered largely around the near-axis, far-field properties,
which can be obtained with rather crude approximations to current distribution. However,

the interference effects between antennas in a common ground plane depend upon ground plane
patterns, which require a more detailed knowledge of current distribution.

An interesting factor of spiral ground plane patterns (see Fig. 11) is their lack
of omnidirectionality. However, ¢-variatioﬁs are not due to imperfections in spiral construc-
tion. Even with a perfectly balanced feed (necessary for the axial mode), and with perfect
mechanical symmetry, a coupling variation of several db will occur as the spiral is rotated
in the ground plane. With the commercial spirals tested, other effects add to the basic ¢-
variations. These variations stem from the following secondary causes and apply to all
antennas in this class:

1. In-phase feed currents and the subsequent redistribution of

current on the spiral.

2. Reflections from the ends of the spiral elements.

3. Reflections from the cavity.

4, Distributed, induced reflection by neighboring elements.

5. Direct radiation from the feed and balun.

The effects noted above are more critical in coupling properties than in near-
axis properties. While it is difficult to isolate the effects of the several secondary causes,
additional information thereon would help in the future design of flush antennas.

Variations in the ground plane coupling pattern are not completely undesirable

for they make possible appreciable decoupling by proper orientation. However, the observed
¢-variations chahge rapidly with frequency, so decoupling can occur only over a narrow band.
For array purposes, it would often be better to have frequency independent ¢-variations over
the band, even at the expense of higher coupling levels.

In the presentation of experimental work which follows, the level of the radiation
patterns is not determined, but can be found by relating the end-points (6 = 900) to the coup-

ling data, which are fixed in level. In most coupling patterns, the top line in the pattern is
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set at -20 db or, in some cases, at -30 db. The spacing in wavelengths is given with each
curve to relate the results to the models discussed earlier and shown in Fig. 4.

3.2.2 Circular Archimedean Spiral. Two similar circular Archimedean spirals

obtained from Aero- Geo-Astro Corporation were tested singly and together. Pertinent data

follow:
Frequency range: 2-4¢gc
Number of turns: 13
Width of conductor: 0. 62 inches
Width of spacing: 0.62 inches
Balun type: Roberts, strip-line
Diameter of cavity: 4 inches

In order to test each antenna singly, a quarter-wave monopole probe was used as
a transmitter and located 11.3 inches away from the spiral center. A 4 ft. x 4 ft. ground
plane using absorbing material all around yielded results within 0.5 db at large couplings
(-35 db or higher) and within 2 db at lower levels (- 50 db) compared to the values using a
12 ft. x 12 ft. plane in the highly accurate anechoic chamber.

The general problem of coupling between flush antennas in a ground plane is
greatly simplified by the fact that the incident field is linearly polarized, since the tangential
E-field must be zero at the conductor. This, plus the fact that in the far-field, the field looks
like an ordinary plane wave, means the great majority of problems can be solved merely
knowing the coupling patterns. The implication that the winding sense of the spiral is irrele-

vant breaks down in the near-field case because the receiving spiral in a spiral-to- spiral

configuration subtends a large enough angle of the other that the phase distribution of the
transmitting field over the receiving area is no longer that of a constant-phase plane wave.
However, this effect can be noted experimentally by comparing the couplings at large and
small spacings.

Figure 11 shows typical coupling patterns between the spiral antenna and a tuned

monopole probe. These exhibit sharp nulls near the upper end of the design band for both

antennas "A" and "B", due to cavity, balun radiation and second- mode effects. (The second

‘mode is excited by in-phase currents at the feed, and has a null on the axis). Figure 12 shows
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coupling patterns taken at three spacings for two similar circular spirals "A" and "B'' at one
frequency. At other frequencies the behavior was similar. (These data were taken before the
experimental setup allowed continuous coupling patterns.) The patterns are fairly consistent
as the spiral-to- monopole spacing is varied even at the extremely close spacings where the
probe is 1.5" from the periphery. Even more consistent is the coupling level, which at the

pattern maxima follows within 0.5 db of the ordinary 6 db per (distance) octave of frequency

variation at distances of 1 wavelength or more. At closer spacings, the level tends to rise
somewhat above the 6-db line by up to 1.5 db at 1/2 wavelength (see Fig. 12).

Extensive tests were taken on the coupling patterns, from 1.7 gc to 4.2 gc in
50-Mc increments on spirals "A'" and "B'". Rather than present all the curves involved,
typical patterns are shown in Fig. 11 and reduced data are shown in Figs. 13(a) and 13(b).
Figure 16 shows the total variation of coupling as a function of frequency. The actual spac-
ing is held constant so that the electrical spacing, in wavelengths, changes with frequency.
For comparison, a uniform coupling curve, inversely proportional to frequency, is also
shown.

The coupling decreases noticeably near 4 gc, where simultaneously the radiation
pattern is becoming narrower (see Fig. 9). This increase in gain means more power is
radiated along the axis, and thus less along the ground plane. The variations are small at
lower frequencies and increase to extreme values at the higher frequencies, where sharp
nulls occur. Just above the rated frequency band, the coupling increases sharply with small
variations. The reason for this is that the second mode, which has a null on the axis of the
spiral, becomes predominant. This mode occurs when the feed currents differ appreciably
from the out-of-phase condition. There is a large in-phase component when the balun is
operated outside its designed band. Furthermore, the second mode has more energy con-
centrated along the ground plane, which accounts for the rise in the coupling level.

Figure 14 shows the angular position of the maxima as a function of frequency.

An expanded angular scale is used for clarity; one should remember that ¢ = ¢ + 2n7 in the

figures. At the lower end of the band, the maxima and minima shift quite rapidly. This is
due to standing waves arising from reflections at the ends of the spiral elements. These
standing waves are more predominant at lower frequencies because the current traveling

wave is not sufficiently attenuated by radiation damping. The curves of Fig. 14 demonstrate
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that nulls of the pattern, which move in much the same manner as the maxima, can only be

used for decoupling over a narrow frequency band.

3.2.3 Square Archimedean Spiral. Right-hand and left-hand wound square spirals

were experimentally tested on the 12 ft. by 12 ft. ground plane in the anechoic chamber.
Pertinent data follow:

Type: Cavity-backed, two-arm, twenty turns

Frequency range: 2 - 4 gc

Balun type: strip-line, Roberts, located in cavity

Manufacturer: Advanced Development Laboratories

Model No.: 1L (left-hand wound)

3 R (right-hand wound)

Overall dimensions (antenna and cavity): 2 in. x 2 in. x 1in.

Coupling measurements were taken between the square spiral antenna and a
quarter-wave monopole. The monopole was perpendicular to the ground plane, and located
11. 3 in. from the center of the square spiral antenna. Coupling patterns were recorded for
frequencies from 2 to 4 gc at 100-Mc intervals. Typical curves for Spiral 1 L are shown in

Fig. 15.

Further study of these coupling patterns reveals a preponderance of maxima at
locations radially out from the antenna corners (at ¢ = 0', 900, 180°, and 2700).

Figure 16 indicates the maximum and minimum coupling between the 1 L spiral
antenna and the quarter-wave monopole, normalized such that the spacing between these two

antennas is a constant number of wavelengths. These curves indicate:

a) A relatively small variation in coupling as a function of frequency.
b) A relatively constant difference between maximum and minimum coupling
levels over the frequency range.

¢) A trend toward increased average coupling as the frequency is increased.

indicate:

a) A greater beam width than that observed for the circular spiral.

b) A relatively constant gain over the frequency range of the antenna.
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3.2.4 Fabricated Spiral. In order to control the phase of the feed currents, a '

laboratory spiral was constructed having the balun outside the cavity. For matching pur-
poses, a dielectric-filled cavity was utilized, the spiral being fed by a tapered two-wire line.
The cavity depth is 0.663 inches, a quarter wavelength at the geometric mean frequency in
the medium whose dielectric constant is 2.48. The spiral is circular, Archimedean, and
has eight turns. Further details are given in Figs. 7 and 17.

When the feed currents are balanced (8 = 0), the coupling pattern has 180° sym-

metry; that is, C(g) = C(¢ + m) (see Figs. 18 and 19). The same is true when the feed cur-

4.0

rents are in-phase. In both cases, the antenna has mechanical and electrical 180° symmetry.

Small amounts of in-phase currents have an appreciable effect on the current distribution,
and cause an electrical asymmetry. Experiments show that when the current phases are
within 10° of balance, the direct radiation from the two-wire line is not significant, although
it increases as frequency increases (Fig. 19). Even better balance stability is found with the
printed circuit balun in the AGA spirals, since the fields are tightly concentrated between the
strip-line conductors. If the phases vary by 90° or more from balance, the direct radiation
becomes significant, and the feed structure approaches a monopole. When this happens, the
radiation from the feed structure becomes comparable to that of the spiral itself, and the

coupling level will increase. The coupling levels and variations observed in the
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commercial spirals are of the same nature and magnitude as those for the fabricated spiral,
but differ in detail, since the feed structure and number and size of turns differ.

Patterns for the fabricated spiral are shown in Fig. 20. The extreme broadening

of the pattern for frequencies near 4 gc is due to the high effective dielectric constant.
Observed coupling levels are consistent with the patterns taken.

In the figures involving the fabricated spiral, the quantity 8 represents the phase
angle between the two arms of the spiral; 8 = 0 corresponds to the usual out-of-phase feed,
and 8 = 180° corresponds to the second-mode excitation condition, or in-phase. Intermediate
phases are achieved by adjusting the balun, shown in Fig. 17. Experimentally, the lengths
of the balun were calculated by assuming length and phase-shift to be proportional. Although

introducing some error, this assumption is adequate for the purposes of the experiment.

3.2.5 Theoretical Study of the Square Spiral Antenna. A theoretical analysis of

the fields from a square spiral antenna is presented in Appendix C. In this analysis it is
assumed that current waves travel out from the center terminals of the antenna with a wave
propagation constant g which is constant. In addition, it is assumed that the current does
not experience reflection at the spiral corners and that it is attenuated in the "radiation re-
gion" of the antenna.

The equations resulting from this analysis were programmed for the IBM 7090
computer and radiation patterns were calculated. These patterns were found to check quite
well in many respects with those obtained experimentally. Both theoretical and experimen-
tal coupling patterns have maxima at positions radially out from the corners of the antenna.

3.2.6 Comparison of Computed Patterns with Experimental Results for Square

Spirals. The equations from Appendix C for the electric fields of the square spiral antenna
were used to try to predict the fields from the square photo-etched spiral. This spiral has
twenty turns and a spacing of .01 in. It is designed to operate between 2 gc and 4 gc. This
antenna assembly was mounted in a 12 ft. by 12 ft. ground plane when the measurements
were taken. (See Section 3.2.3.) Since the width of the wires and the spacing between wires
are equal, the antenna and the ground plane can be considered as being the complement of a
square spiral in free space. The free space spiral has the same geometry as the spiral

formed by the spaces between wires on the spiral. Equations for predicting the fields of the
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Fig. 21. Experimental and theoretical radiation patterns, square spiral.

ADL spiral in a ground plane are then found by interchanging E¢ and Eg in the equations for
the complementary free-space spiral.
It should be noted that the radiation from any spiral is affected by the cavity and

the photo-etched balun in the feed system. These effects are not considered in the derivation

of the field equations and hence do not appear in the computed patterns. Both theoretical and
experimental patterns are shown in Fig. 21. The absolute levels of the theoretical curves
are arbitrary since they depend on the current at the terminals, which is not known exactly.
Note that in Fig. 21 the experimental pattern has higher directivity than the computed pattern.
This is due to the fact that the cavity radiates more power directly outward than in directions

near the ground plane.

In Fig. 22 there are definite maxima at locations near the spiral corners in both
the experimental and computed patterns. Note, however, that the experimental pattern does
not contain a great degree of symmetry for field points 180 degrees apart. This deviation
from the theory is primarily due to the imbalance iﬁ the feed caused by the balun, and by

direct radiation from the balun.

An attempt to simulate this imbalance was made by calculating a pattern for the
case of unbalanced currents at the feed terminals. Since no information was available con-
cerning the amount of imbalance the balun caused, a guess was made. A six-degree error
in the phase and a two-to-one ratio in the amplitudes of the terminal currents were assumed.
The resulting field pattern is shown at the top of Fig. 22. The curve suggests that if the
actual imbalance in the feed were known, then closer correlation with experimental results
could be realized.

The patfern for the component of electric field in the plane of the spiral (Fig. 23)

is symmetric with respect to the origin; that is, the magnitudes of the electric fields at points
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Fig. 22. Experimental and theoretical coupling patterns, square spiral.

180 degrees apart are equal. This result was predicted since diametrically opposite points
on the spiral (points reflected through the origin) carry identical currents. Computer results

also revealed a 360-degree phase shift for E¢ as ¢ is varied from zero to 27 radians.

3.3 Horn Coupling: Theoretical Considerations of Aperture

3.3.1 General Aperture. If the geometry shown in Fig. 24 is used, the far-field

expressions of an arbitrarily shaped aperture source in a ground plane are

E =0

r

-jkR N
_ ke =Ty . jkp + R
E9 ~ 27 Rsinf &E(p) Re dA
-jkR A a. B

g - & cose [ B 6 Faa (3.6)

(0] T R A
H =0

r

jas
D
I
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e}
o

Here the integration is over the whole area A of the aperture, and the circumflex (A) indi-
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cates a unit vector.
These formulas were developed here in an internal memo, but a more direct

method is given by Harrington (Ref. 12). They can be derived from

o 1K

== A
T E(p)xz dA

ER) = -vx ff

plane

where r is the distance from the source point to the field point, by using the far-field approxi-

mation

— A
r= R-p-R.

3.3.2 Rectangular Aperture. In the case of a rectangular aperture such as a

flush- mounted horn, these expressions simplify. In general, a horn is fed by a waveguide,

which is excited in the TE,, mode; thus, the aperture field is linearly polarized, e.g.,

10

E(p) = Ejp )1/)\. The geometry of Fig. 25 shows that

ko R
EG = 2—1’]— T EO Sln¢ g(9’¢)
jk o KR
E¢ = o R E0 cos § cos ¢ g(8,9) 3.7
where
a/2 b/2 N .
g0,0) = | dc [ ity fsind(Ceosd rnsing) g (3.9)
-a/2 -b/2 )
where
E0 = maximum value of the aperture electric field, and
f(¢,n) = distribution of the aperture electric field.

This expression, has been given much attention, summarized by Silver (Ref. 5), so that the
results there can be directly applied to the flush- mounted horn. The two factors to be con-
sidered in the aperture are the field distribution and the phase distribution. A summary of

the results is now presented.
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For a first approximation, the phase variation can be ignored. Near 6 =0 (along

the main beam), this assumption will give good results. As the aperture becomes larger in

terms of wavelengths, the fields away from the main beam become more highly affected by
phase variations. Thus, the coupling between a horn and another antenna in a ground plane
is sensitive to phase variations. The presence of this effect necessitates a detailed knowl-
edge of the aperture fields. Phase variations can be calculated for horns by consideration
of the flare angle.

First of all, most horns have aperture fields that are ""separable, "i.e.,
f(¢,n) = £ f
(€,m) §(C) 77(n)

Then,

g(6,9) = [fa/z fc(g) ejszinG cos ¢ dC] ) [J.b/z £ () Jkn sinf sing d”l:\ .
-2/2 -b/2 " (3.9)

From this, it can be seen that the problem reduces to one of evaluating the integrals

1 .
a r ux
G (w =3 j 1 e £ (x) dx (3. 10)
and
bl vy
G (V) =5 ]_1 e £ (y) dy
where
a
2
y =2
u = % sin 6 cos ¢
v = %b— sin 0 sin ¢ (3.11)

g(6,9) = G (v) G ()
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In a great number of applications, the horn is fed in such a way that the magnitude
of the electric field is independent of 1. The magnitude of the ¢-distribution in a small horn
(e.g., an open-ended wave guide) is roughly that of the TE 10 mode, coslra£ . As the horn is
increased in size, higher-order TEno modes can come into play. In the case of the common
pyramidal horn, the transition from waveguide modes to propagating modes takes place
smoothly enough so that higher-order modes are not significant. In a box horn, however, the
odd- numbered TEnO modes are excited, and the distributions of the aperture field become
flattened in the center of the horn, tapering to zero at the sides. This latter effect can be

approximately represented by a trapezoidal distribution.

3.3.3 Constant-Phase Aperture. Phase variations are momentarily ignored, and

the following three distributions are considered:

(1) Constant, representing a limiting case.

(2) Cosine, the standard distribution.

(3) Trapezoidal, in-between distributions (1) and (2).
It will be shown that a constant distribution gives the sharpest main beam and the highest
sidelobes, and a cosine distribution gives a broader beam and reduced sidelobes. (This is
often referred to as the "array taper effect.') The trapezoidal distribution falls in between,
and its shape is dictated by the horn and feed configuration and size.

(1) For the constant distribution: fu(x) =1 f(y) = 1.

v

G(u = a sin u

u u
(3.12)
G(v) = b sin v
v v
(2) For the cosine distribution: fu(x) = 08 3 X, fv(y) =1
G (0 = 2a _cosu
u m 4[12
1-324
1'2
(3.13)
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1—_0! -1 S X S -a
(3) For the trapezoidal distribution: fu(x) ={ 1 -a<x< @ }, fv(y) =1
1:—2 a<x< 1

G (u) = a SOSCOU-cosu
(1- a) u?

(3. 14)
sinv

(@]

=
[
ox

Since these quantities will eventually be squared, they are shown in decibel form,
where zero corresponds to the case u = v = 0, the maximum of the function for these distribu-
tions. For small values of u, the trapezoidal distribution approaches the constant distribu-

tion, i.e.:

G(u = a cosau- cosu _ . s1r‘1lu
4 (1-a) u?
For large values of u:
G~ = . (3. 15)
u e '

The function Gu(u) depends on the distribution fu(x) as well as "u'". This is
plotted for several distributions in Fig. 26, where the oscillatory terms are ignored, for
reasons cited below. As an example, to obtain the fields of a pyramidal horn, one would
choose the cosine distribution (2) above, find the values of Gu(u) and GV(V) from Fig. 23, and
use Egs. C.2 and C.6.

The wavefront at the mouth of most horns does not have a constant phase over the
aperture. The sharper the flare of the horn, the more pronounced the variation of phase.
These variations tend to broaden the beam and smooth out the sidelobe pattern, and generally
raise the sidelobe level somewhat. The curves of Fig. 26 will yield first-order answers
which are adequate for many RFI purposes, within £7 db. If further accuracy is desired,
the horn flare and feed characteristics will have to be considered. Phase variations are

discussed in Silver (Ref. 5, p. 186).
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Fig. 26. Side lobe levels for several aperture distributions.
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Fig. 21. Cross-section of dielectric rod.

3.4 Dielectric Rod Antennas

Introduction. Dielectric rods have been in general use for obtaining directional
radiation patterns since shortly before World War II.

3.4.1 Mode of Operation. A dielectric rod antenna can be operated in several

different modes depending on the type of excitation supplied by the feed, the operating fre-
quency, the rod diameter, and the dielectric constant of the rod. The problem of electro-
magnetic wave propagation along a dielectric rod has been solved satisfying the boundary
values imposed by the surface of an infinitely long dielectric rod (see Ref. 6). It is found in
general that pure TE or TM modes can only exist on a dielectric rod if there is no dependence

of the fields on the azimuth angle ¢ (see Fig. 27).

For the general solution of the wave equation one obtains hybrid modes which are designated
as HE or EH, depending on whether the TE(H) or TM(E) mode is predominant, respectively.
All modes except the HE11 mode have a cutoff frequency. Therefore, by operat-
ing at a low enough frequency, one can always operate the antenna in a single mode, the HEll‘
The field distribution for the HE11 mode is shown in Fig. 28. This distribution is quite simi-

lar to the TE 1 mode in circular wave guide.

1

Figure 29 (Ref. 7, p. 482) shows the ratio of ¢/v, the ratio of wave propagation

velocity in free space to that in the dielectric.

As shown in Fig. 29, for e = 2. 56 (the dielectric constant of polystyrene), one can

operate up to a frequency where d/x = 0.6 before exciting higher order modes.
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E Field Lines

————— H Field Lines

Fig. 28. HE11 mode for the dielectric rod.
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Fig. 29. Ratio of c ( free space wave velocity) to v
( dielectric wave velocity) for € = 2. 56.

3.4.2 Energy Concentration. The closer the dielectric wave velocity comes to

¢, the less tightly the energy is coupled to the dielectric guiding structure. It is not very
difficult, however, to obtain close coupling of the wave to the dielectric rod. For example,
as long as ¢/v > 1.05, 50 percent or more of the total energy travels within a distance of
0.2x of the rod surface. This condition is satisfied, according to Fig. 29 for d > 0. 3.

3.4.3 Operating Mode. Since the HE,, mode has no cutoff, it is the lowest

11

order mode one can excite. At any one cross section, the E-field lines excited are in phase

and give rise to radiation in the form of a forward lobe. This is the pattern which has been

predominantly used with dielectric rod antennas.

3.4.4 Directivity. Dielectric rods, especially ones that are untapered (and

therefore have uniform phase velocity along the full length of the antenna) are limited in
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their directivity to about 15 db (corresponding to a minimum half-power beamwidth of about
300). This limitation in directivity is brought about by the first sidelobe being merged into
the main lobe, thus bringing about a broadening of the main lobe. The merging of the two
beams occurs when one tries to make an untapered rod too long, i.e., exactly under the
condition which would give increased directivity.

3.4.5 Side Lobe Levels. For untapered dielectric rod antennas,first sidelobe

levels are usually less than 10 db below the main beam. This is due to the behavior a uni-
form current sheet exhibits when the velocity of a wave propagating along it is uniform and
slightly lower than that of a wave in free space. For untapered rods, the directivity for a
fixed d/A, as a function of length will increase until one reaches the Hansen- Woodyard condi-
tion, i.e., the point at which the wave at the end of the radiator is 180° out- of-phase with
the direct free space wave originating from the feed end of the rod. As is well known, as
one approaches the Hansen-Woodyard condition, the first sidelobe increases its level. For
even more of a phase shift between the two ends of the rod, the first sidelobe increases until
it becomes as large as or even larger than the desired end-fire radiation lobe.

3.4.6 Analysis of Coupling of Two Parallel Rods. A one-dimensional analysis

of the coupling factor was derived for two equal length, parallel dielectric rods. The case
analyzed is that of two parallel rods, either with parallel or anti-parallel wave propagation,
for the case of the electric probe feeds parallel. If the feed probes were oriented at an angle
¢ with respect to each other, an additional decoupling of the fields equal to cos ¢ would occur.
The following is a description of the detailed attack undertaken: First, the far-

field pattern of an untapered dielectric rod can be very well represented by

E0 = %(sin u)/u
where
u = ZL (B -k cos 8)
L = length of antenna
",
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)tv = guide wave length in dielectric rod
A = wavelength in air
6 = angle measured from the rod axis.

To compute the emf V on the receiving rod, the following integral was set up:

L —jBrz .

Vreceived = A of Etransmitted(z) - € dz

(where A is a proportionality constant).

The problem then becomes one of evaluating the above integral which turns out to

be:
L 1 sin % (Bt - k cos 6) -jBrZ
v, .d=Af—I; i sin 0 e dz
eceive o —2—(8 - k cos 6)
t
where
Bt = wave number of transmitting antenna
Br = wave number of receiving antenna
sinf = d
d® + z?
cosf = z
d? +z?

The above integral only takes into account the far-field pattern of the transmitting antenna.

In order to simplify the evaluation of the above integral, it was broken up into one
wavelength long segments, with an expansion taken around the center of these segments (i.e.,
at the points z = i - 1/2, i integer):

-j2rR
AT
received 5 Roi
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1/2 sin [11 L, (Cl— (cos 6, + g/Roi)) ]
-1/2 TL, Cy- (cos 0.+ g/ROi)

+ sin @,
i

-inL_ [Cy- (sin ei+g/R0_)] [(i- 1/2) + &)
e ! d¢

Z
I

length of receiving rod in wavelengths

6. = tan_1 do
i (i- 1/2)

with
_ [3 2, (i 2
Ro. = d0 +(i- 1/2)
i
L0 = L/x
d0 = d/x

This integral becomes, approximately:

Yo (st )
\' . =j P, 1 +———
received &1 i’ 1/2 Ai1ROi

. . (i-3/2) . . (i+1/2)
-jmL A, -jrL & A, + ——— jmL A, -jmL & A+ d¢
o iy 0 [ iy Roi o1y 0 iy Roi
e e -e e

A, =C —cos@i

A, =C —sin@.1

iy 2
c, = ¢/v for transmitting antenna
Cy = ¢/v for receiving antenna
-j21rROi -jnLo(i- 1/2)Ail
P, =S 21reLo A Ry sin 6,
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Now set:

2 5
Il(a) = ¥ ax = 2 sin a/2
-1/2 a
172 .
I(a) = j] xe/ X gx = 1 cosal/2-E sin a/2
2 _1/2 a a

Then the final expression becomes:

N 0
= ~ 1 i- 3/2
VI‘eceived N z P, {J € L [”Lo (Ai +—-R__> :l
i=1 2 0.
1
j1rL0Ai
1 i+1/2
2 o
i
-jmL A,
01, )
e i-3/2
B ["L0<Ai *°R >J
o 2
1 7 i
j1rL0Ai1
e i+1/2
"R R D ["Lo<‘°‘i 'R )]}
o 2 0.
1 i i
z
itti Recelvin
Transmitting g
rod Rod

Fig. 30. Coupling geometry for two rods.
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3.4.7 Radiation Patterns. Two radiation patterns are shown in Fig. 31 for the

case of a two-wavelength long radiator and a six-wavelength long radiator. The ratio c¢/v is
1.25 and 1.08, respectively. These particular ratios were chosen because they represent
the Hansen-Woodyard condition of increased gain. Physically, in the Hansen-Woodyard
wave propagating in the dielectric is equal to that of the free space wave plus 1800, i.e.,

BL =KL + 7. In both cases, the main beam is narrower and the sidelobe levels are higher
than they would be for the ordinary endfire condition (which, incidentally, can be realized
only approximately with a dielectric rod radiator, since it requires v = ¢). The beamwidth
between 3-db points is 44° for L = 2 and 24° for L = 6. The highest sidelobe levels in the
two cases are -9 db for L =22, and -11db for L = 6.

3.4.8 Coupling Factor. Figure 32 presents the coupling factor for two rods of

equal length for two cases. The two rods in each set have the same dielectric wave velocity.
For each set of radiators, two cases are shown: The lower coupling level curve (drawn in
solid lines) stands for the normal case in which both rods would radiate in the same direc-

tion if energized. The higher coupling curve (drawn in dotted lines) shows the coupling if
one of the rods would be reversed. This latter case of course, would not be of interest in
practical arrays. The curves of coupling factor (in db) versus rod-to-rod distance generally
show the expected dependence. For the case of L = 22, the coupling for the normal case
oscillates gently about the 6 db per octave line. For d less than 41, the coupling increases
more rapidly than the 6-db line, as is to be expected just from the geometry of the situation.
At d = 3.3, for example, the tip of the receiving rod is being illuminated by the maximum
of the first sidelobe of the transmitting rod. According to this, one would expect an increase
in the power coupled for spacings around 3. 3.

For the 6 rods, the oscillatory variations about the 6-db line are seen to be
quite pronounced. This prediction is quite reasonable in view of the many lobed sidelobe
structure of the transmitting antenna. In order to indicate what kind of variations in coup-
ling versus spacing one might intuitively expect, it is useful to determine the spacings at
which the peaks of the first and the next to the last sidelobe are intercepting the tip of the
receiving antenna. From Fig. 31, these are seen to occur at 6 = 34% and 6 = 810, respec-

tively. The spacing for just intercepting the maximum of the first sidelobe is d = 4,052,
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Radiation Field Pattern (in db)

Radiation Field Pattern (in db)
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Fig. 31. Radiation patterns far dielectric rods.
(a) Rod length L = 2x, ¢/v = 1.25.
(b) Rod length L = 6x, c/v = 1.08.
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Coupling (in db)
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Fig. 32(a). Coupling versus spacing for two dielectric rods of equal length.
Rod length L = 2, ¢/v = 1.25.
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Coupling (in db)
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Fig. 32(b). Coupling versus spacing for two dielectric rods of equal length.
Rod length L = 6, ¢/v = 1.08.
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the spacing corresponding to the interception of the next-to-the-last sidelobe maximum is
d = 38). At spacings in the neighborhood of 4 considerable variations in the coupling factor

occur, mainly as a result of contributions due to the first sidelobe. As the spacing increases,

the interference effect of the sidelobes can be observed. The deviations from the 6-db line
become smaller and smaller for larger spacings due to two factors. First of all, the ampli-
tude of the sidelobe levels is decreasing as the angle 0 is increasing. Secondly, the number
of sidelobes intercepted by the receiving antenna decreases as the distance d between rods

increases.

A final warning should be given about generalizing the results presented to other
cases. Since both the radiation pattern and the integral producing the coupling are strongly
dependent on L, Bt and Br, the final result is very sensitive to variations in any of the

parameters.
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4. SPIRAL ANTENNA DATA TAKEN AT HARMONIC FREQUENCIES

Data were taken on both square and circular spirals at harmonics of the normal
operating frequencies. The most significant data are included in this report. All the measure-
ments were taken in the large anechoic chamber with the spirals mounted in a 12 ft. x 12 ft.
ground plane.

Two patterns of the fabricated spiral "W.R.'" as described in Section 3. 2. 4 with
the arms fed out-of-phase (8 = 0°) are shown in Fig. 33. Note especially that in Fig. 33(b),
the effect of the current phase variations is to introduce beam-cock. Many patterns were
taken on the fabricated "W.R."" spiral with both in-phase (8 = 180°) and out-of-phase (8 = 0°)
currents, but the two curves shown are illustrative.

Some represenFative patterns of the square spiral "1L" are given in Fig. 35.
The patterns indicate not only the presence of higher order current distribution at harmonic

frequencies, but the lack of symmetry indicates that the balun does not feed equal out-of-

phase currents to the arms of the spiral above the design band (2- 4 ge).

Figure 34 gives some representative patterns of the circular spiral "A". The
minimum of EG near 6 = 0 at 5 gc indicates the presence of some third harmonic current
distribution. As in Fig. 35, the patterns tend to become less symmetric at the higher fre-

quencies, due to the effect of the balun.

Coupling patterns in the ground plane were taken for both the square spiral "1L"
and the circular spiral "A" at frequencies between 8 and 10 gc. These patterns are not
included here, but in general they can be described as follows:

The coupling patterns for the circular spiral have from three to five maxima
irregularly spaced. The ratio of absolute maximum to absolute minimum coupling varies
from 15 to 25 db.

The coupling patterns for the square spiral have from five to seven maxima
irregularly spaced. The ratio of absolute maximum to absolute minimum is greater than
that for the circular spiral, since there are either one or three very deep nulls in many of

the patterns.
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Fig. 33. Harmonic radiation patterns for Fabricated Spiral "WR".
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Fig. 34. Harmonic radiation patterns for Circular Spiral "A".
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Fig. 34 (Cont.). Harmonic radiation patterns for Circular Spiral "A".
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Fig. 34 (Cont.) Harmonic radiation patterns for Circular Spiral "A".
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Fig. 35. Harmonic radiation patterns for Square Spiral "1L".
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Harmonic radiation patterns for Square Spiral "1L".

Fig. 35 (Cont.).
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5. EFFECTS OF SKIN CURVATURE ON COUPLING

Under certain conditions which are met in a number of aerospace configurations,
the effect of a curved conducting skin on the coupling between two antennas along the skin can
be calculated knowing the flat-plane coupling between the same antennas and the geometry of
the skin. These conditions are:

1. The diameter of the skin is greater than about two wavelengths.

2. The curvature in the region of the antenna is small.

3. The Fresnel-zone boundary is smaller than the radius of curvature.

These restrictions can be relaxed and still yield good results.

The problem was formulated in cylindrical coordinates but is valid for spherical
geometries, or any geometry where the radius of curvature along the ray path between the
two antennas is constant. The chief reference on this work is by Hasserjian and Ishimaru
(Ref. 8). Their approach can be extended to treat other than thin resonant slots, indicated

in Ref. 9 along with an outline of their method.

Procedure for Calculating Curvature Effect

Under the conditions listed above, the coupling between antennas T and R (see
Fig. 36) on a cylinder of radius ""a'' can be calculated by multiplying the flat-plate coupling

by the factor f(y), where

_ kag®
y -
/ k ry
ry = /2% + a®¢? = distance from T to R along the surface

f(y) is given below, and in Fig. 37.

The flat- surface coupling is the coupling of T and R separated by ry along a con-
ducting plane.

It is first necessary to calculate y. Several alternative forms are given below

for convenience.
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axis of cylinder

Fig. 36. Geometry of two slots on a cylinder.

Cylinder:
. (krs)3/ 25in 9 2.507 rs3/ 2 in? 6
ka 2V
y = 3
ka ¢® (radians) _ 2.507a ¢ (radians)
krs A rS
.
[ 2% + (ap)?
_) _a¢
Ts _J sin 0
z
\ cos 6
Sphere:

y =./ka ¢3/2 (radians)

r = a¢

where ¢ is the angle between the antennas on a plane defined by the two antennas and the

center of the sphere.

f(y) is analytically expressed by
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( l—ej"/4«/_z 7]y «/2_ ]1’/4L...,¢small

Ym0
f(y) = J 2/3
/4 & exp[ J<7y§ / m]
] xfn( ) ; , ® not small
- V2! m=1 m
where
t; = 1.019737/3
t, = 3.24 o In/3
ty = 4.820 & i1/3
t, = 6.163 ¢ I1/°
ty = 7.372 & In/3

For large values of y, only the first term need be considered, and the asymptotic approxima-

tion holds:

If(y)| ~ 1.550yY/3 ¢+ 7005 ;2/3

) 1 2/3
l#y)1 g = 8.686[§logey+.4380— 1005y~ ] db

1 2/3
20 [§ log )y +.1902- .3042y7 "] db
and the phase lag over the flat plate value is given by

Phase [f(y)] = .4045 y%/° - . 2618 radians

23. 18 y2/3 - 15. degrees

The curves for f(y) are shown in Fig. 37.

The error introduced by using this expression is less than 0. 5 percent in the
magnitude for y > 2, and in the phase for y >4. The latter terms of the series rapidly be-
come more negligible as y increases.

To a first approximation, then, it is necessary to reduce the coupling found by
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"flattening" the cylinder into a plane by the curvature factor |f(y)!. As the curvature goes
to zero, y approaches zero and |f(y)| approaches unity.

Whenever more than one ray path may contribute significantly to the coupling,
modification of the above procedure is necessary. While in theory there are an infinite num-
ber of paths corresponding to multiple encirclements of the cylinder, for the region of inter-
est (a > 22) all except the two paths where ¢ < 360° yield terms on the order of 70 db below
the latter. Thus the modification need only be extended to treat two ray paths. The waves
will interfere or reinforce according to the relative phase. In no case will the reinforcement

be greater than 6 db over one path alone.
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APPENDIX A

RELATION BETWEEN COUPLING AND MUTUAL IMPEDANCE

Consider the general linear two-port network depicted in Fig. 38.

L 12y % Zog Zyg——1y

+ +

vy Zy9 Yy
—0

Fig. 38. Two-port network.

The network equations are:

Z,, 1. +2Z2.,,1

1 1171 12

<
n

2
V2 = 22111 + 222 12 .
Since antenna pairs are generally linear and reciprocal,

le = Z21 (mutual impedance) .

Furthermore, for far-field coupling, we see that

|lel << IZHI

IleI << IZzzl
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The power transmitted is:

W =

2
t I1 Re (le) .

The power received by a matched load is:

2 2
I |lel

_ 2 _
W, = Iy Re(Zyy) = 7g5 Z,5)

Thus the far-field coupling is:

2
W, iz
W, 4Ry Ry

where

R,, = Re (le)

11

R,, = Re(Z

22 22) )

Mutual impedance is obtained from an open- circuit measurement, whereas coupling is ob-

tained from a tuned measurement.

Z,, = — (A.4)

receiver
open- circuited

The loading that occurs in near-field situations will alter the relation given by Eq. A.4.
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APPENDIX B

SLOT COUPLING THEORY

In terms of a complete orthonormal set of transverse vector mode functions, the

transverse field in the waveguide region may be represented as

V(2) ey(x,y) + LIJ' V.(z) e(x,y)

E(x,y)

g

H(x,y) = I;(z) B (x,y) + )" L(2) hi(x,y) .
i
The subscript 1 identifies the dominant TE 107 mode in rectangular guide; the summation is
to be taken over all modes except the dominant one. Both Ei and Fi are chosen so as to satisfy

orthogonality requirements:

1]

ff(éi- Ej)ds 55

ff(Hi-Hj)ds = 51]"

the surface integrals being extended over the guide cross-section. This orthonormality

property leads to:

<
=
i
~—~
—
=l
D

—t
5
i
—
~—
s}
=

For the geometry shown in Fig. 39, the dominant amplitude in guide B (receiving guide) is

given by (see Ref. 10)

o= [S LSRR - YRR [AxEp)) dA, A,
(B.4)
QRN R LN [fxE (5)]dA_dA_
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By
]
1)

Fig. 39. Coupling geometry for two close slots.

A .
where n is a unit vector normal to the plane.

P, ; and Er are the source coordinates at the apertures A and B, respectively.

- . _ -kIT, |
ooy Jwe 7 vv t
Y(Rt,Pt) = 277 (I + F) elf l
t (B. 5)
—jklrrl

?t and ?r are the same field point in terms of coordinate systems (£, 7, ¢) and (x, y, z),
respectively. In the first approximation, the scattering-term [the second term in Eq. B. 4]
is ignored. This approximation amounts to the assumption that the electric field on R is not
disturbed by the introduction of the slot in the perfectly conducting plane. It is further

assumed that

7 - A TE o a a
ET(pT)-nEocosa, 2<:‘;<2.

Broadside Coupling of Two Identical Waveguides (see Fig. 39)

The method of computing the coupling between two rectangular slots is outlined

here.
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-a/2  -b/2  -a/2 -b/2

E a/2 b/2 a/2 b/2 .
2 '
e Ve e |l [ ] {[COS%’SCOS%]

2 -k flE-£"% + (n-n")?
(k2+a—az—2)e / }dn'
V/@-FV—+W-WV

By setting

N =7y+d

and after performing some algebraic operations, one obtains (Ref. 10)

E 3
2 B e
I = '\/a—l; 2mjw k (1r) K1

where
w(d+b)
a
T 2
_ m o1y ST
Kl— f du[—a——lu a|ilf [(1 22)(1rv)cosv
0 k"a
7(d-Db)
a
-j ka Ju2 4yt
7’ e T
+ (1 + ) sin v dv
k®a’® 2 2
u +ve o
= o+ jBl
The values of K1 =+ j'Bl for different d have been evaluated on the IBM 7090
computer.

The total power received at the receiving guide R is
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The power transmitted from the slot T was derived in Ref. 11 and can be written

as
Eo2 2 Ay
_ ka’ zf
where
7h
.a b u n?
'yl+]51=j (—é—-u)duj {(1- 22>(1r—v)cosv}
0 o} k"a

. k
_]_a u? +v?
T

2
+ 1+ L sinv € dv
k%a? 2 2
u’ +v

This integral is evaluated for a wavelength of 1. 283", a =0.9"and b = 0.4". The results

are

vy, = 1.424508

61 = 2.697506
The coupling C is expressed by
c oo
Wi
or
C = ka &) 1 K. |2
4 4 b 2 1
7 T
('61) 1-
k%a?®
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APPENDIX C

DERIVATION OF SQUARE SPIRAL FIELDS

In this section the radiation fields of the square spiral antenna are derived. The
antenna is assumed to be made up of a series of linear wire elements arranged in a configura-
tion similar to that of the square spiral (see Fig. 40). Each wire carries a traveling wave of
current. The phase of each current is the same as the phase of the corresponding current on
the spiral. The magnitude of the current on each wire element is held constant, and attenua-
tion, due to radiation, is depicted by reducing the current magnitude on successive wire
elements in each leg of the spiral. If one assumes a constant magnitude current on each wire
element, the vector potential may be calculated.

point

1

In) — L/2

D

Fig. 40. Geometry for square spiral analysis.
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The vector potential due to a traveling wave of current on a linear wire element
displaced a distance s from the origin is found as follows. For a y-directed wire (Fig. 39),

the vector potential at a large distance r from the wire is given by

If R is large compared to a wavelength, r is given approximately by
r = R-nsingsind - scos¢sinf .

The current is assumed to have the form

I(n) = Io e-J'B(n +10) (C.?2)

where the factor -jB¢ will be used later to adjust the relative phase between currents on diff-

erent wires.

Equation C. 1 now becomes

o

e_ij I e-jB(nﬂ‘l) k(n sing sinf + s cos @ sin6) dn

]
y 4R f_ () €

|

or

KR + Bl - ks cos$ sinb) -I% ‘
f e](ksme sing - B)7n an .
L

2

IO e'J(
Ay - 4R

After integrating and combining the two resulting exponentials into a sine term,

one obtains

1 e—j(kR + Bl - kscos 9 sinb)
(6]

= sin %'[B- k sin 6 sin 8] (C.3)
y 91R [B - k sin 6 sin ¢]
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where

s = the distance the element is displaced from the origin
L = the length of the element

B = propagation constant for current wave

k = propagation constant for waves in space (air).

In a similar manner, the vector potential due to a traveling wave of current on an x-directed
wire is given by

I e-j(kR + B - ks cos @ sinf)

A =0 sin 3 [6 - k sin 6 cos 9] . (C.4)
X 27R[B - k sin 6 cos ¢]

In order to apply these results to the case of the square spiral, an approximation
to the square spiral geometry must be made. It may be seen, in Fig. 41(b), that the geom-
etry of the square spiral can be divided into four triangular regions and one small square
region by drawing four lines which pass through the corners of the wires. If the four triangu-
lar regions are now translated so that the vertices of the triangles (points a;, 2y, 2g, and
a4) are positioned at the same point "a" in space, the geometry of Fig. 41(b) results.

Note that this translation has eliminated the small square region at the center of
the spiral. The relative translation between diametrically opposite triangles is equal to the
length of the diagonal of this small square region. Since the diagonal length is equal to the
spacing between the spiral wires, the translation will be small if the wires are spaced very
closely together.

The geometry in Fig. 41(b) is more easily analyzed since each wire element is
geometrically symmetric with respect to the axis it crosses. The current on each element
in Fig. 41(b) will be assumed to be the same as on the corresponding element in Fig. 41(a).

The total vector potential for the spiral antenna may now be found by summing
the contributions due to each wire element. Equations C.3 and C. 4 will be altered for use in
these summations.

Performance of these summations requires consideration of the direction of

propagation of the current wave on each wire element. In Fig. 41(b), the current waves on
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o111 |

3
(a) Actual (b) Model

Fig. 41. Square spiral configuration.

the y-directed elements crossing the positive x-axis travel in the negative y-direction (down-
ward). However, the waves on the elements crossing the negative x-axis travel in the posi-
tive y-direction (upward). This difference in the directions of wave propagation on y-directed
elements may be considered in the y-component of the total vector potential by changing the
sign of B (except in the exponential term) in Eq. C.3 when it is used for components crossing
the negative x-axis. Similar considerations must be made in Eq. C.4.

The relative phase between currents on all elements must also be considered in
performing the summation, hence, the factor -j3¢. This factor may be used to adjust the
phase of the current at the center of the wire element being considered. It is easily seen
from Eq. C.2 that if the phase of the current at the center of the wire ( = 0) is correctly
chosen, then the phase of the current at other positions along the wire (In |~ > 0) will also be
correct. The factor -jB¢ will give the correct phase at the center of each wire element if ¢
is defined as the length of the spiral leg from its beginning at the center of the spiral out to
the center of the element being considered. With ¢ defined in this manner, the current at

the center of the mth y-directed wire element is given by

-jBe
I =2l ge ™
m m
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where m=1 designates the first y-directed wire element to the right (or left) of the origin
and m=M designates the y-directed element farthest to the right (or left) of the origin (see

1)m+1

Fig. 41(b). The factor (- accounts for the out-of-phase feed at the center of the

spiral. Similarly, for x-directed elements, the current at the center of the nth element is

1Bt

yn+1 Il e

1= (-1

The only remaining alteration of Eqs. C.3 and C. 4 needed to make them appli-
cable to the spiral antenna is to change the sign of "s" (element displacement from origin)
for elements crossing negative axes.

With the above alterations of Eqs. C.3 and C. 4 taken into account, expressions
for the total vector potentials in the x and y directions, respectively, may be formulated

and are given by:

-j(kR + Bln - ksn sin @ sin @)

N 1 I e Ln
A = Z -pttt 2 sinT(ﬁ-ksinecos;b)
X 21 27R (B - k sin 6 cos ¢) (.5
-j(kR + p¢_ - ks_ sin 8 sin @)
N [ Le non L
v ) (o sinTn(B+ksinGCOS¢)

n=1 271R (B + k sin 0 cos @)

and
e-j(kR + Bﬁm - ksm cos ¢ sin 0)
A = - (_1)m+1 m sinTm(B+ksin9sin¢)
y m=1 21R (B + k sin 0 sin ¢)
(C.6)
e—](kR +pBt - ks  siné sin é) L
- E(-l)m+1 m sin—zﬂl—(ﬁ-ksin()sin(b)
m=1 271R (B - k sin 8 sin 9)
where

—
1}

magnitude of the current on the mth element,

m
Sp = displacement of the mth element from the origin,
Lm = length of the mth element.
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The total vector potential due to all currents on the spiral is then given by

A may be expressed in terms of spherical coordinates as follows:

= A A
A = A99+A¢¢

where

o>
1]

Ax cos @ cos 0 + Ay sin ¢ sin 6 (C.8)

>
I

—Ax sin ¢ + Ay cos @ . (C.9)

The electric fields are then given by:

s3]
|

g = -jquG (C. 10)

E, = -jopA (C.11)

6"

Performing the indicated operations produces the following expressions for E 0 and E ¢:

-j(BIn - ksn sing sin 8)

-jwue-ij N n+l In® Ly
E9 e cos ¢ cosh ngl(— 1) (3~ K sin 6 05 9) sin —- (B - ksin6 cos9)
—j(Bﬂn +ksnsin6 sing)
N n+1 In € I"n
+ cos® cosf Z(-l) : sinT(B+ksin9cos¢)
=1 (B8 + k sin 6 cos @)

-j(Bﬁm- ksm cos 9 sinb) L
sin Tm(6+ksin9 sing)
(B + k sin 6 sin @)

m+1 Im €

M

+ singcosd ) (-1)
m=1

—j(B!Zm+ksm cos ¢ siné)

M I e L
+ sin @ cosd Z(—l)m+1 m sin Tm(B—ksinGSingb)
m=1 (8 - k sin 6 sin ¢)

(C.12)
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—j(Bln - ks sing sin 6)

. -jkR N 041 In e Ln
E, = L% Ising ) (-1) sin —~ (B - k sin 6 cos 9)
¢ 2R n=1 (B - k sin 8 cos 9)
-j(Bln +ks_sind sin¢)
N n+1 Ine I"n
+ sing Z(-l) sin—2—(6+ksinecos¢)
n=1 (B + k sin 6 cos ¢)
-j(B?_-ks_cos¢sinf)
M m+1 Im € i " Lm
- I} K sin 6 si
+ cos 9 mgl( 1) G Ksmosmg) sin — (B+ksinf sing)
-j(Bf__+ks_ cos¢ sinb)
M qlye " L
+ cos ¢ Z (-pmt m , . sin —— (B- ksinf sing)
m=1 (8 - k sin 6 sin @)

(C.13)
It should be noted that throughout this analysis no restriction has been placed on
the magnitude of the current on the spiral (In and Im) except that it must be constant over the
length of any individual wire element. Magnitude adjustments may be made between succes-
sive wire elements, however, and these adjustments may follow a certain mathematical
relationship. A logical choice for this relationship would be a current magnitude which
attenuates only slightly until the ''radiation region’ of the spiral is reached, and thereafter,

attenuates at a greater rate. The expression

has these characteristics and was used in computing field patterns.
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