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I. Introduction

The class of diffraction and radiation problems to which the spheroidal
geometry is appropriate is extensive and of considerable interest from many stand-
points, and considerable effort has been expended in this field over the past quarter
century or more, Generally speaking, these problems yield readily to the standard
methods of attack, to the extent that their solutions are expressible in terms of the
appropriate sets of eigenfunctions of the separated wave equation. Unfortunately
these spheroidal functions, though much more extensively tabulated now than a few
years ago, still represent a serious obstacle in the attainment of quantitative results.
The dependence of each function on four independent parameters or arguments in-
dicates the immensity of the number of values which may be required, and the com-
plete lack of recurrence relations and scarcity of other computation aids makes the
calculation of these values extremely tedious for anything less than a large-scale
facility. It has been the objective of this investigation, as well as an earlier one
under AFOSR Grant 62-265, to develop and exploit new relations between the spher-
oidal functions and other better known functions which might reduce the labor and
complication involved in obtaining new numerical values of the spheroidal functions
and thus facilitate the quantitative solutions of new spheroidal diffraction problems

or the extension of existing solutions into ranges not previously covered.

II. Discussion

In the earlier investigation it was intended to develop certain relations be-
tween spheroidal and elliptic functions with a view toward making use of the fairly
comprehensive tables which exist for the latter. Although the results of this effort
were largely negative, in that the relations found did not seem to be useful in general,
the original ideas have yielded a relationship involving certain integrals of exponen-
tial type, which is apparently new and merits further consideration. This is derived

briefly as follows.
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In the standard literature on spheroidal functions(l), there appears the
following expansion of the product of a radial and an angular function:

@
(1) r+m-n mn m )
S (c,n)R (c g) = r=_2_o 1 i dr (e) Pm+r(cose)3m+r(kr)
’ (1)

where the d (c) are the same coefficients which express a single spheroidal
function in terms of a series of spherical ones, as in the expansion
®
mn m
S =
mn(c, ) d (c) P +r(n) . (2)
r=0,1
If eq. (2) is substituted in (1) and both sides are then multiplied by Pz +3(n) dn
and integrated between -1 and +1, the orthogonality of the Legendre functions
leads to the form

1

_ o
2(2m+8)! n, (1) r+m-n mn m .
2m+28+1)8! d‘: (c)Rmn(c, g) = Z i ( ) Pm+r(c056(n))

r=0,1 B
(kr(n)) P (n) dn (3)
or, setting
1
2m+22 = (21:4!-8)'. S (0059('1))1’ +M (ke dn = Cz(c. £),

(l)e.g. Flammer, Spheroidal Wave Functions, Stanford University Press, 1957.
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Since the integration over n with £ held constant is actually a line integral over
an elliptic contour, the arguments of the spherical functions in the integrand are

found from the geometry of the spherical and spheroidal coordinate systems to be

2
cos®(n) = \/'—'7—5”"-—2==. rn) = 2
§+n -1 §-n

Examination of the integrals which remain reveals that these are not elliptic but
are reducible to combinations of elementary and exponential (i.e. sine or cosine)
integrals. If the index s is allowed to range from 0 to oo, there results an in-
finite system of linear homogeneous equations in the "unknowns" d:m(c), which

can be written

® _,
:.A:l é‘;“(c) [c’r’;(c,g) -5 1"32:1«:,5& =0, 8=0,1...00. (4

Existence of a solution to this system requires the vanishing of the determinant, i.e.
det [cm(c, 5-5 PrY(, g')] =0,
rs rs mn

and the quantity in'RgL(c, £) is thus cast in the role of an eigenvalue of the infinite
matrix @;ns(c, E;}, which could be determined by standard methods if the elements
of the matrix were known. Once this eigenvalue and the requisite number of elements
are known, the system (4) can presumably be solved (approximately) for some finite

number of coefficients d;nn(c).
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Considering the intractable nature of the integrals in (3) and the difficulties
inherent in the manipulation of infinite matrices, it is not clear whether or not the
above development is of any immediate practical value. It appears, however, on
the basis of the known properties of the spheroidal coefficients that it should be
possible to construct a Hilbert space, the elements of which are vectors gmn with
components d:m(c), and if this is the case the considerable body of general theory
on linear transformations in Hilbert space would be applicable to the matrix -@E}
and might yield results of interest.

The advantages to be gained by this line of attack appeared uncertain, and
the task seemed large, and consequently it was not pursued further. Instead, the
principal effort has been expended on a simpler and more direct method of obtaining
approximations to the spheroidal functions, which we proceed to outline in general
terms before giving the specific forms of interest.

Given a linear ordinary differential equation of the form

LU = [x+ p(E)] U (5)

whose solutions U(E,)) are to be determined, suppose there is a simpler equation,

which can be written

Mxv = uv, (6)

whose solutions V(x,u) are well known, and further, that we can find a function
£(x) such that

LE(x) = Mx .
lim

E—>§
and the function £(x) in eq. (5) then gives an oequation of the form

Now for some particular value EO let A+p(§) = Moo Substituting this
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MU=uU+exU (M
x o

where, under reasonable assumptions of regularity, €(x) is small in some neigh-
borhood of X = x(Eo), and in this neighborhood a solution U of eq. (7) must thus
be approximated by a solution V(x(§ ),Ai'o) of eq. (6) and in general an iteration
scheme can be developed to extend the range or improve the approximation. The
accuracy of the result of course depends intimately on the natures of the operators
and functions involved and the region in which the forms are applied. Furthermore
the utility is limited in that no information on the normalization is involved, i.e.
the value of the unknown function is determinable only in the neighborhood of a
point at which it is already known. Nonetheless the procedure seems to offer ad-
vantages in certain applications, some of which are described briefly here in
terms of the spheroidal functions.

For the sake of definiteness we consider first the radial functions, for

which the operator LE in (5) has the form

2
B N P N - N
YT l:(g D dE:l 2

and p(§) = -c2§2. .

If for the approximating equation (6) we take the ordinary Bessel equation, whose
solutions are perhaps the most convenient set of functions we can hope to use, then
the requisite transformation £(x) is easily found to be

012+x -1

§ = or x =a|F]

where a is an arbitrary constant, and the transformed equation can be written ex-

plicitly as
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For our immediate purposes we can aband;)n the constant a, which seems to be
immaterial, and consider the case where .Eo = 1, The quantity go in eq. (7) is
then simply 4(c2- )tmn), and for the sake of clarity in the argument which follows,
we incorporate this in the independent variable, i.e. set o = 2x ch— Amn and
write the transformed equation finally as

d°v L du_ 2
ma 2 +l:1-—+€(0)]U
o 02 mn

2
6(c -1 ) 2 2
_ mn 2 2 2 2 2
elo) = - E: Iz;(c —kmn)+o.:] - El(c —kmn)-c:l ]- 1.

E(c2_ Moo 2]4

If €(o) is small, the function Umn(cr) should be approximated by a cylindrical function,

W
o

with

i.e.

U X az (o) (8)
m

(o)
mn

where a is independent of g, but o now depends on ¢ and an as well as x. To
this approximation, then, the only dependence of Umn on n is through o. The
accuracy of the approximation however depends on the magnitude of €(g), which
of course depends on n, and this dependence must be examined. In terms of the
variable x, it develops that

2
e(otx)) = "24[ o +(2-x2>(1-x2Z].
(1-x) 1_‘.__1_!.1_11

2
c
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In general, if c¢ is fixed, the eigenvalue Kmn increases with n, so that for fixed
¢ and x <<1, there will be an infinite range of values of n over which € is uni-
formly bounded and of order xz. Once the constant a and the eigenvalues Amn
are determined, the approximation (8) should thus be useful for all n above a
certain value.

Another possible application of tke above forms is in the determination of
the set of eigenvalues which make the radial functions vanish on a eertain spheroidal
surface, as required in the Sommerfeld-type solution of a scattering problem.
Suppose that for given m and some x within the range of applicability of (8) one of
the requisite eigenvalues, say Amo is known, Then if o = 2x ch- xmo, we can
write

U =adJ (6)+bN (6) =0
mo m o m o

in which a and b, being independent of o, cannot depend on n. Then

N (o)
m o

and for any other n, we can write

b v
(oo) [Jm(oo) Nm(on) - Jm(on) Nm(oo):] =0

aJ] (0)+bN (0) =
m n m n Jm

or
J )N (6)-J (6)N (c) =0
m O mn m n m O

which is a familiar equation, some roots of which are tabulated in the standard
literature on Bessel functions. The nth eigenvalue )'mn is thus given approximately



THE UNIVERSITY OF MICHIGAN
9603-1-F

in terms of the nth root of this equation by the form

2
0 <

It appears that it should be possible to obtain analogous approximations to the
ordinary eigenvalues, i.e. the values of Amn for which the angular functions are
finite at n = fl. To date, however, this objective has not been attained, despite
a fairly intensive effort. The analysis is complicated by the facts that at the finite
singular points the functions vanish to order m/2, and at the origin the dependence
on the parameter ¢ disappears.

Perhaps the most useful application of the above forms will prove to be in
the determination of values of the functions in neighborhoods of points at which
they are already known, i.e. in the development of refined methods of interpolation
and extrapolation. To illustrate some of these, we now consider the angular functions,

whose transformed equation is written

2
d Smn ldsmn l: 4 2 4$92- 1)2 mZJ
+= =4 ) " - =158 =0,
P do mn mn

2 2 .2 2, .4 2
de (o +1) (p™+1) p
'v\/;f’;; 1 T
with p = 1—_-?, . In some neighborhood of an arbitrary point Ny the angular

function Smn(c, n) ean be expressed approximately by the form

v

Smn(c, = a Jm('y:)nnp) + anNm(‘)t?np) (9)

mn

2 2
where 'Y(;mn = (1-110) V)xmn—c M

and @ o an are independent of 7. If two values are given in the allowable range,

e.g. values of Smn at two points or values of Smn and its derivative at one point,
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the constants @ n and an can be determined and the expression (9) used for any
n within a certain neighborhood of the reference point or points, whose extent’
depends on these points and on the accuracy required. As an illustration of this
procedure we compute an approximate value of Soo(c, n for ¢ =3.0, n=0.5,
given the values of Soo at n,= cos 50° = . 6428, n,= cos 70° = .3420. On the
basis of (9), we can write in general

1

Smn(c, no) = Z:z- Smn(c, 111)A02 - Smn(c,nz)AO]:l

where

mn mn
Ay = Jm('yo pi) Nm(‘Yo P

mn mn
: ij ) - Jm(‘Yo pj)Nm("'o pi)'

j
Using the tabulated value of ROO(S.O), SOO(S.O, .6428) and Soo(3.0, .3420) and the
expression (10) for 'yzo, we obtain the value Soo(3'0' .5) ‘= ,7575, which compares
reasonably well with the tabulated value Soo(3.0, .5) = 7571,

In the neighborhood of the origin, i.e. |n|<<1, the forms simplify some-
what, Since the parity of the angle functions is that of the quantity m+n, either
the function or its derivative will vanish at n = 0, according as m+n is odd or

even, and we can thus write almost immediately for [nl <1

~ T N 1+n [} lr_—
Smn(c’ n = 2 vlmn Smn(c’ 0 Em (J >tmn v1-n> Nm( kmn )
1 - H_’l
- Jm( men)Nm Q’X Vl—n >_-J m+n even

He

T ' N 1+
) Smn(é’o) [}m(V )tmn v 1-n> Nm( V-Xn_n-l)
- Jm(\/kmn) Nm(V"}m V%-j_’—:‘, ﬂ m+n odd.
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Various other particular applications of the above forms suggest themselves,
some of which involve the zeros of functions such as the Aij' A careful examination
of the accuracy obtainable and the range of applicability of the methods should accom-
pany investigation of these applications. |

II. Conclusions

An adequate assessment of the forms and me thods described in the preceding
discussion will depend, of course, on some fairly voluminous computations, as well
as some more detailed analytical work. Preferably these two lines of advance
should be closely coordinated and the overall direction should be determined in
accordance with the requirements of the unsolved or only partly solved physical
problems. Although the present forms should give values sufficiently accurate for
practical applications, it is clear that they are more suitable for filling in gaps in
existing tables as the need arises than for large-scale production of new ones. One
of the principal features of the Bessel function approximation is that it exhibits the
dependence of the spheroidal functions on the wavelength-eccentricity parameter c
and on the eigenvalue Amn more explicitly than the usual representations. Further

exploitation of this feature should be of value in a number of circumstances.
Respectfully submitted

Tudvriel B, St

ederick B. Sleator
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