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ABSTRACT

The purpose of this report is to investigate some of the ultimate performance
limits predicted by theory in a few specific problem areas associated with laser
communication.

First problem area: The various causes for the deterioriation of an optical
signal during its passage from space to a terminal on the earth are considered,
such as attenuation by the normal constituents of the atmosphere and by clouds, fog,
haze and rain; seeing, scintillation, anomalous disperion and background radiation.

Second problem area: The quantum-mechanical limitations on observations
of electromagnetic radiation are reviewed. The statistical theory of communication
and of detection of signals is extended to quantum-limited communication channels.
A photon counter is shown to be able to recover as much information from a signal
as is compatible with the quantum'limitations. At low signal levels it is found that
binary operation can utilize a high percentage for the channel capacity. A photon
counter may be a photomultiplier or a laser amplifier followed by a photomultiplier.
A theory of laser amplifiers is presented. The latter type counter, which has not
yet been realized, promises the additional advantage of providing discrimination
against background radiation outside the channel frequency band. The means for
controlling the bandwidth of such an amplifier have not yet been investigated.

Third problem area: For the purpose of providing adequate discrimination
against background radiation before detection of signals by a photon counter, vari-
ous optical filter principles are investigated, in particular the Wernicke prismatic
filter and the polarization interference filter. Theresult is that desired bandwidths
and tunability are theoretically obtainable but that state-of-the art limitations are
as yet discouraging.
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I
INTRODUCTION: GENERAL OBJECTIVES AND PROBLEM AREAS

In the last few years considerable attention has been directed to the use of
optical frequencies for long-distance communication. The continuous pressure
toward higher and higher frequencies in the field of electromagnetic communication
has traditionally been based in the past on the fact that bandwidth is one of the im-
portant factors affecting the capacity of a communication channel; for constant rela-
tive bandwidth the absolute bandwidth grows directly with the midband channel fre-
quency. Another motivating circumstance has been the growing realizable antenna
gain with increasing frequency for constant aperture; the approximate coherency
made possible by the laser has extended the range of this advantage into the «+jdiv il
frequency band.

However, there are also adverse circumstances encountered in the optical
range. Every communication channel involves flow of energy from a transmitting
system to a receiving system; at optical frequencies the smallest resolvable energy
increment or the minimum ''grain size' of this flow becomes appreciable and limits
severely the amount of information that can be carried by a wave of given bandwidth
and power at the point of reception. Since classical field theory and network theory
are not capable of providing adequate theoretical models under these conditions, it
is necessary to reformulate the statistical theory of communication in terms of
quantum mechanics.

This reformulation and the conclusions reached on the basis of resulting
quantum theory of communication constitutes the most fundamental problem area in
optical communication. The primary targets here are‘ theoretical upper bounds for
the rate of transmission of information under various specified ranges of the para-
meters involved, such as frequency, bandwidth, power, background radiation, etc.

Other problem areas will be concerned with the realization and implementation
of channels which apprecach these upper bounds as closely as physical limitations

and the state of the art permits. Particular areas may be defined according to the
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different operational transformations which the signal processes pass through in the
channel. At the transmitter terminal these include encoding, modulation, and
optical processing performed by the antenna system. During their passage through
space and atmosphere the signal wave may be subject to diffraction, absorption,
scattering, mixing with background radiation, and Doppler frequency shift. At the
receiving end there is again processing by antenna optics and finally detection and
decoding, the latter two operations subject to additional noise and to the quantum
measurement limitations referred to above.

The general objective of the work reported here has not been to delineate the
present state of the art but to investigate the ultimate performance limits predicted
by theory and possibly to suggest the most promising research strategy for bringing
the state of the art rapidly closer to these limits.

The directives for the present study call for work in three specific problem
areas, which will now be quoted and given a preliminary discussion.

First Problem Area: Deterioration of Optical Signals Propagating Through
The Atmosphere,

"'A possgibility which exists for future optical communication links is the em—
ployment of direct aerospace=to-earth or earth-to-aerospace transmission.
While receiver and transmitter sites canusually be chosen for ideal visibilities,
even here a finite probabil ity exists of temporarily poor visibility conditions due
to excessive rain, fog, smoke, orhaze. Assuming the worst possible condi-
tions which can occur, the possibility of information transmission during these
conditions istobe determined. Asanexample, consider extremely dense
fog conditions to exist. The existence of such a fog conditionwill, atbest, cause
considerable attenuation of the received signal. However, there is also a pos-
sibility of almost total attenuation of the signal energy and/or high information
degradation due tomolecular scattering and absorption. The basic question
which needs tobe resolved is whether situations exist where it is impossible to
achieve satisfactory information transmission. Possibilities which need to

be studied for satisfactory transmission should include large power output
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boosts, operation atfrequencies avoiding molecular absorption regions, simul-
taneous transmission at various different frequencies, and choice of modulation
techniques. The analysis is to include effects on the coherence properties of
the received signal. "

This taskdirective calls for a comprehensive study of all the factors that may
affect the power level and information content of an optical wave trainbetween its emis-
sion from the transmitter antenna and its acceptance by the receiver antenna. Many
aspects of this problem area havebeen investigated by the astronomers since the
beginning of this science. The choice of a site of an astronomical observatory and an
evaluation of its merits are very nearly the same problems as those encountered when
planning an earth terminal for space communication. The difference lies primarily in
the nature, particularly the bandwidth,of the observational data tobe collected in the two
cases. Consequentlyalarge amount of research results obtained by the astronomers
are available and relevant for the purposes of this task (See, for instance, Augason and
Spinrad, 1965).

The power accepted by the receiving antenna may be written

i 2_-2
PR = PTATARA R “exp {—Jﬂ‘y(r)dr} (1.1)
0

where PT is the transmitted power, AT and AR the effective apertures of the
transmitter and receiver antennas, respectively, A the wavelength, R the distance
and y(r) the extinction coefficient at the distance r from the transmitter.

The order of magnitude of R for deep-space communication may vary from a
few hundred miles at perigee in an earthbound orbit to interplanetary distances of
108 miles or more. The wavelength range specified for this study extends from
0.4 microns in the visible spectrum (violet) to 20 microns in the far infrared.
Modulation bandwidths of 1000 megacycles are to be anticipated.

The extinction coefficient y(x) is the combined result of a number of different
processes in the atmosphere which partially absorb or scatter the radiation during
its passage . The normal constituents of the atmosphere have numerous molecular

bands in the infrared part of the spectrum; drops or particles forming haze, fog,
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clouds, rain and snow scatter the radiation to an extent depending on the ratio of
particle size to wavelength as well as on the density and electromagnetic properties
of the particles. There are certainly conditions under which complete opacity is
encountered; the maintenance of uninterrupted communication depends ultimately

on the choice of sites or the existence of alternative sites and facilities as far as the
earth-based antenna is concerned.

The received signal level and its low-frequency modulation are affected by
the phenomena of ""seeing' and scintillation, associated with turbulence in the lower
and higher strata, respectively. The former may be minimized by choice of site;
design of an appropriate type of modulation may reduce the interference due to the
fluctuations introduced by the latter. The theory of communication channels with
randomly varying properties is not yet very far advanced; for that reason we have
not been able to include a thorough study of these phenomena.

The modulation of an optical signal may be affected by dispersion in the atmos-
phere which occurs on the edges of absorption bands. The remedy is obvious: use
only wavelengths well within the atmospheric "windows'',

The question to what extent the coherence of a laser signal is affected by the
passage through the atmosphere requires further study. We have included a brief
discussion of this subject.

The background radiation appearing as random noise in the optical channel
constitutes another limitation, particularly at longer wavelengths. In addition to
the obvious contributions from the galaxy, stars and planets, an appreciable com-
ponent is added by the atmosphere and by sunlight scattered in the atmosphere and
by interplanetary matter. High resolution of the receiver in direction as well as in
wavelength reduces this source of noise to its minimum,

Second Problem Area: Choice of Detection System for Optimum Rate of

Transmission of Information,

"A second problem to be considered is a study of the desirability of using binary]
quantum counters as detectors in the ideal laser communication system. Gordon

(Proc. IRE, 50, 1898 (Sept. '62)) shows that the binary quantum counter has high
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information efficiency when the total received power is less than one quantum per
sample. Consequently, the basic question here concerns the utility consistent with
the basic tenets of the communication system of operating at information receipt of
less than one quantum per sample, where the communication system is subject only
to the ultimate theoretical limitations discussed above. Consideration shall also be
given to coding techniques allowing minimum information degradation. "

The questions raised in these directives reach the fundamental limitations on
physical measurements. The electromagnetic field in the laser beam, reduced in
energy density by diffraction, absorption and scattering and possibly affected by
background radiation, "seeing', scintillation and anomalous dispersion, carries a
limited amount of observable information per unit time. The upper bounds for the
rate at which information is recovered at the receiving end of the channel depends
also on the kind of detectors and amplifiers used; it is the need for an investigation
of these particular relationships which are emphasized in the above directives.

In Chapter III we begin such an investigation by a brief review of the quantum
theory of the electromagnetic field. From the minimum-uncertainty specification
of the field in terms of energy eigenfunctions, its maximum entropy, i.e. its
maximum information content, is obtained. A more recently developed description
of the field in '"coherent states'' is introduced, since it has certain advantages for
the subsequent work concerning interaction of radiation with matter in the detection
processes.

The maximum entropy or 'channel capacity' of an optical wave train of given
power and frequency band is discussed and compared with the classical results for
microwaves and lower frequencies. If the background radiation is negligible, the
entropy is limited by the Heisenberg uncertainty or (equivalently) by the "zero-point
energy'' or "vacuum fluctuations'' associated with each mode of the field. This
entropy is calculated from an expansion in energy eigenstates as basis functions,
since these form a complete set of mutually exclusive events; there is no implica-
tion, however, that the information must be recovered from the wave train by

means of energy measurements.
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In connection with optical channel capacity we shall discuss the concept of
"optimum bandwidth". Since the channel capacity is a monotonic function of the
bandwidth, there is no finite bandwidth that maximizes the channel capacity. But
beyond a certain point, which will be roughly estimated, the increase in channel
capacity is so small that it is by far outweighed by the growing error rate and
rapidly increasing complexity of terminal equipment for processing of the large
number of samples in encoder and decoder. At a background temperature of 300°K
and a wavelength of 20u, this marginal bandwidth is about three times the average
number of photons entering the receiving antenna per second, giving an average
signal level of 0.3 photons per sample pair. At a wavelength of 0.4u, the corres-
ponding figures are 1022 and 10_22 , respectively, which appear to be too extreme
to have any practical interest; the scattered sunlight in the atmosphere provides a
much larger background spectral density than equilibrium density at 300°K
leading to a narrower bandwidth and a larger fraction of a photon per sample.

Pulse modulation techniques have been very highly developed for classical
communication systems in recent years. Because of the different statistical propert
ties of quantum-limited channels, the application of such techniques to optical chan-
nels requires a new performance analysis. The binary pulse code suggested in the
directives quoted above is conveniently evaluated by means of statistical decision
theory. For this reason the statistical theory of signal detection is in Section 3. 4
extended to quantum-limited channels.

One significant difference between the classical background-limited binary
channel and the quantum-limited binary channel is the extremely small 'false-
alarm'' or "false-count" probability in the latter at low signal levels. It is conse-
quently possible to design the signal so as to minimize the '"miss' probability
alone. This leads to a highly asymmetric operation, using high-energy pulses
separated by sufficiently long intervals to satisfy the average-power limitation of
the transmitter,

There are two serious state-of-the-art problems involved in the realization

of such a channel. In the first place, subsequent receiver components have to be
6
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found that do not appreciably raise the false-alarm probability. In the second place,
efficient codes have to be found for such highly asymmetric channels.

In Section 3.5 the coding problem is considered. The recently proposed per-
mutation principle in coding lends itself well to the coding of asymmetric channels.
A numerical example involving a simple error-correcting code of this kind is given.

In order to give the discussion of the photon-counter channel a good perspec-
tive, comparisons with other methods of detection are given. The superhetero-
dyne method is briefly covered in connection with the statistical detection theory in
Section 3.4. A laser amplifier as a receiver component is analyzed in Section 3. 6.
Such an amplifier serves two purposes: to raise the signal level before detection or
"counting, '' and to discriminate against background radiation and possible extra-
neous signals outside the modulation band of the channel, i.e. to satisfy the need
for a narrow optical filter at the input to the receiver. Both purposes are consid-
ered in this section.

This laser study was undertaken by a member of the group with a very strong
background in quantum mechanics and laser theory. No attempt has been made to
coordinate in detail the notation and presentation in this section with the rest of this
report., It remains a more or less self-contained contribution to the illumination
of an important subject in the second problem area of this report.

The spontaneous-emission noise in the amplifier raises the false-alarm
probability and thus changes the output statistics in a Gaussian direction. The
unique discrete low-level behavior of the photon counter is lost in this method as
well as in the superheterodyne method. The filter properties of a high-gain laser
amplifier appear promising; however, it cannot at the present time be stated with
certainty that as large bandwidths as 1 Kmc can be achieved with a laser amplifier.

Third Problem Area: Optical Bandpass Filters for Communication Systems.

"The third area to be considered is the determination of the theoretical
limitations which establish the narrowness and the transmissivity of band-

pass filters, tunable and untunable, within the spectrum specified.
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Interference filters are of special interest. The limitations to be con-
sidered are only those of the filters themselves and not those due to
external system considerations such as Doppler. Recommendations for
future and unusual filter research which may approach the established

limitations are also of interest."

Motivation for interest in this problem area is derived from the second problem{
area: In a binary channel employing a simple photon counter as a detector, the reduc-
tion of interference from background radiation and extraneous signals by frequency
filters must take place at optical frequencies.

Bandpass filters at optical frequencies have the drawback that their geometrica\i
dimensions must be taken very large compared to the wavelength of the radiation.
This fact alone largely eliminates the flexibility and easy control of filter parameter
over wide ranges which characterizes filter design at conventional communication
frequencies.

The filter design problem is further complicated by the tunability requirement,
i.e., the desirability that the center of the pass band be adjustable to account for
variable conditions, such as the Doppler shift due to relative motion of transmitter
and receiver.

A filter which absorbs radiation emits under equilbrium conditions an equal
amount of radiation; it is consequently necessary to maintain the filter temperature
far below the temperature of the source of background radiation in order to improve
the signal to noise ratio. In the visible range, where the background is primarily
scattered light from the sun or moon, this condition is usually automatically
satisfied, but in the infrared local thermal radiation may become important, and
refrigeration of filter as well as of the detector itself may substantially improve
the signal-to-noise ratio.

In Chapter IV existing types of optical filters are described and analyzed.
There do not appear to be any strict theoretical limitations for the performance of
filters operating on the interference principle. However, practical and state-of-the-

art considerations suggest that filters — in particular tunable filters — suitable for

8
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optical photon-counter space communication will not be designed for some time to
come. The narrow bandwidth and high stop-band attenudtion required leads to
considerable bulk and very large pass-band attenuation with presently available
materials. The former may be tolerated at the ground terminal, but the latter is
prohibitive for channels expected to operate with a fraction of a photon per sample

signal level at the receiver antenna.
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FIRST PROBLEM AREA: DET:RIORATION OF OPTICAL SIGNALS
PROPAGATING THROUGH THE ATMOSPHERE

2.1 INTRODUCTION

After defining the first problem area in the preceding chapter, a brief outline
was given of the purpose and contents of this chapter. The first group of phenomena
to be considered are various extinction processes in the atmosphere: scattering by
clouds, rain, molecular and aerosol particles, and absorption by molecular bands.
Furthermore, optical signals are under some circumstances subject to deteriora-
tion by "'seeing'", scintillation and anomalous dispersion. We shall also consider
the possible loss of coherence of the signal waves during passage through the at-
mosphere. The background radiation, its sources and magnitudes, are finally the
last subject considered in this chapter.
2.2 EXTINCTION PROCESSES IN THE ATMOSPHERE
2.2.1 Attenuation by Clouds

Clouds are mixtures of waier droplets, ice crystals, and some water vapor.
There is much variation between clouds, and in the course of evolution of any indi-
vidual cloud. For this reason, it is felt to be of more value to cite here the results
of experiments performed by Gates and Shaw (1960) under a wide variety of cloud-
cover conditions than to refer to calculations such as those of Deirmendjian (1964).

A cumulus cloud model was introduced by Deirmendjian (1964) in which the
attenuation per unit path correspbnding to the liquid water droplets only is reported
to be essentially frequency independent for wavelengths between 0.45u and 16. 6u
and has an average value

‘Ycumulus ~17 Km-1

Since cloud thickness is said to be in the range 230-2100m, the one-way transmis-
sivity would be between exp (-4) and exp(-34), or roughly between 0 and 2 percent.

Models for other types of clouds, and the effect of water vapor were not considered.
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The extension of exact computations to longer wavelengths may be difficult, since
values of the index of refraction of water at these Wavelengths, which would be re-
quired, do not seem to be available,

The experimental data presented in Gates and Shaw (1960) were obtained in a
spectral region lying between 0.1u and 154 for transmission through a large variety
of mixtures of cirrus, cumulus, and nimbus cloud covers. Near 0.5u, the trans-
missivities varied between roughly 20 percent and 95 percent. Above 10u, they
ranged from 30 percent up.

The conclusion to be drawn from these data is that clouds may present signi-

ficant attenuation, but not total opacity.
2.2.2 Attenuation by Fog and Haze

For fogs no satisfactory theoretical values of the attenuation coefficient have
been located in the literature, although some indication of parameters for a fog
has been obtained, namely a water content of 10-’7 g/cm with radius of droplets dis-
tributed according to an inverse square law, n(r) = Cr_2. A calculation has been
attempted, but remains incomplete. It has not been possible to construct a satis-
factory functional form for an approximation to the Mie efficiency factor for extinc-
tion which will be valid over the whole range of integration over droplet size, for
the index of refraction corresponding to the frequency band of interest, or that part
for which the index is avaiable. The theoretical approach is as follows:

Fogs are assumed to consist of a distribution of water droplets whose radii r
are taken to obey the law suggested by Kurnick, Zitter, and Williams (1960):

n(r) = Cr—2 ro<r<r1
(2.1)
=0 r<r or .r>r

o 1

-7 -3
with a total water content w of 10 'gcm ~ . The constant C may be related to

w since

11
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- 3
w = 1gcm3n(r)i7rr dr
r 3
(6
r2
4 371 2 2 -3
~§1rchcm —2---3—1rCr1gcm
(since r1>>r0)
WA~ 10-7gcm-3 (2.2)
whence
3 -7 2
ALY = o .3
C > 10 r, (2.3)

Now, where Q(x,\) is the extinction area-ratio function derived from elec-

tromagnetic theory, the attenuation coefficient 8 is defined as

Bfog(k) ~IQ(I'. AT r2 n(r) dr

r

1
= CIJ Q(r,A)dr (2.4)
r
o
Sl
= Cle Qa,\)da, (2.5)
a
0

where the variable a, or r/A, or kr/27, is convenient. The limits of inte-
gration are thus functions of A . Q is a function of A through the index of refrac-
tion as well as of kr. The index m of refraction has been obtained by many work-

ers, and is tabulated by Deirmendjian (1964):
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TABLE NI-1. REFRACTIVE INDEX OF WATER IN THE INFRARED

A (microns) Re(m) Im (m)
0.45 1.34 0
0.70 1.33 0
1.61 1.315 0
2.25 1.29 0
3.07 1,525 0.0682
3.90 1.353 0.0059
5.30 1.315 0.0143
6.05 1.315 0.1370
8.15 1.29 0.0472

10.0 1.212 0.0601
11.5 1.111 0.1831
16.6 1.4 0.4000
We have then,

_ -7 _-2
Bfog(x) = 15:10 r"AL(),

(2.6)
a

1
L() f Q[a,m()]da,
a

o

a =1/ 20u< 1, < 500, r< 10_1/;
and the computational problem is essentially to obtain Il(l) . This has not been
carried out, although an approach has been devised, as described below.

An expression is needed for Q which holds for complex values of m. This
may be obtained by use of the ""forward scattering theorem' to relate Q to the
"scattering amplitude" S(m, 6,0). This latter quantity may be obtained by analyti-
cal continuation to complex m of an empirical expression valid for real m, which

is given by vande Hulst (1957).
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Haze is an aerosol of solid particles suspended in the at:nopphere. A size
distribution modal commonly employéd is that proposed by Junge (1963). Experi-
ments on infrared attenuvation reported by Kurnick et al (1960) seem tofit the predic-
tions based on this model, and furthermore a direct count of the particles con-
firmed the distribution. Based on this evidence

n(r) = Cr“P , T <r< r (2.7

=0 otherwise

with ro = 20 or 50u
r1 £ 0.1pu

and P is a function of r rather than a constant, but roughly 2 < P< 4.5, with
the larger values typifying haze and P = 2 for water fogs at 100 percent relative
humidity. C will depend on the mass of aerosol present. No information on
values has been obtained.

With the distribution (2.7), one has, according to Kurnick, Zitter, and
Williams (1960), for the attenuation by scattering in transversing path length L,
exp [-0go L], the values given by

3-P

= '
L C'x , (2.8)
as long as the condition is satisfied that
r 9. (2.9)

Otherwise, a more complicated dependence of 0 on A results. We might inves-
tigate the approximate form valid near the limit but exact theoretical treatment is
not justified in view of the uncertainty of the meteorological parameters.

The experiments of Kurnick, Zitter and Williams, with L = 200 yards,

indicate values of oL consistently near unity for A = 1y, and decreasing to

14
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about 0.2 as A increases to 10u . '

The situation with regard to comparison of theory and experiment, or applica-
bility of experimental results as ''typical, ' is unsatisfactory here as for clouds.
Therefore, it must suffice to cite the few numbers reported by Curcio, Knestrick,
and Cosden (1961), and Kurnick, Zitter, and Williams (1960). Fogs in the Chesa-
peake Bay region yielded attenuation coefficients (in the spectral region 0. 30u-3u)
which were usually between 0, 02 Km-1 and 2 Km_1 . This wide a variation does not

permit drawing a practical conclusion. A series of measurements which were made;
in Chicago on days of fog and generally poor weather, during the course of forma-
tion of fog, for the band 1 - 10u showed the optical density oL to be between 0.1

and 1. 0 typically, where the path L was 200 yards. In other words, the scattering
attenuation coefficient o variedbetween 0.5 Km 1and 5 Km‘l. Again, nopractical conclu-
sionis possible. Inboth references, the curves reported do exhibitbetter transmission
for the large wavelength end of theband. [he latter measurements do not exceed atten-
uations of 0. 4Km"1 for X >2u, nor do the former. It appears, then, that this
end of the band is preferable for transmissions through fog and haze.

Deirmendjian (1964) reports calculations based on integration of the exact
Mie solution over assumed droplet size distributions for fogs, incorporating the
frequency dependence of the dielectric constant. The computed attenuation coef-
ficients decrease from roughly le"1 near .5u to slightly smaller values near
10u, in agreement with the trend obtained by experiments. Any conclusion which
is to serve as a foundation for important decision must await further experimental
investigations which may further clarify the situation.

The model of a clear standard atmosphere published in the U, S, Standard
Atmosphere (1962) permits a haze component and is discussed by Elterman (1963).
Attenuation of infrared radiation by that aerosol distribution was computed by
Elterman, and the attenuation coefficient for wavelengths below 0. 5u was found to

be 0. 20 Km—1 at sea level. For the band 0.5u -5u, an approximately linear
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decrease to a value of 0.05 Km“v1 is anticipated on the basis of experimental re-
sults obtained by Curcio and Durbin (1959), Knestrick, Cosden, and Curcio (1961)
and Curcio, Knestrick, and Cosden (1961).

Deirmendjian (1964) has computed the attenuation coefficients for continental
and coastal types of haze. These results are tabulated below .

TABLE II-2. ATTENUATION BY HAZES (Deirmendjian, 1964)

-1 -1

Wavelength Bcont ental( ) B coastal(Km )
(microns) aze Haze
0.45 0.1206 0.1056
0.70 0.0759 0.1055
1.61 0.0312 0.0691
2.25 0.0194 0.0424
3.07 0.0269 0.0602
3.90 0.0128 0.0236
5.30 0.0075 0.0112
6. 05 0.0129 0.0189
8.15 0. 0050 0.0062
10.0 0.0032 0.0045
11.5 0.0064 0.0097
16.6 0.0082 0.0134

2.2.3 Attenuation by Rain
A distribution function for the droplet radius r in a "typical" rainstorm

(103 droplets per meter3 with modal radius r, of 5 x 10"2 mm) has been suggested
by Diermendjian (1963). Ideally, the attenuation coefficient would be computed by
integrating over this distribution the extinction cross-section. This latter quantity
could in theory be derived from the Mie series or one of approximations to it, such
as those discussed in vande Hulst (1957). However, no approximation valid for
rain drops of the sizes assumed by the distribution function (radii of the order of a
few mm) at micron wavelengths, and convenient for accurate calculation, has been

discovered. For this reason, we have observed that the droplets are large enough
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electrically at all wavelengths we consider to insure the approximate validity of the

simple assumption that the extinction cross-section is given by

op = 27 r2 ) (2.10§

The "generalized gamma distribution' proposed by Deirmendjian (1963) for a
moderate rainstorm reads, for a concentration of 103 per m3 and r = 5x 10-2 mm,
dn

5 3 -1
G = 5:333x10°r exp [ -8.944{F |m mm ™ . (2.11)

It is clear on further analysis that r here is measured in mm. This distri-

bution may be expressed in terms of the normalized radius x = r/ rC as follows:

_ 16 -3
dn = =5 x 500x exp [ -2 %" |dx meter (2.12)

By utilizing (2. 10), one is enabled to form the attenuation coefficient

B = -g- T X 103 rf JxS exp [—2 \];}dx meter * (2.13)

~ g- T 10_2km_1 rXB exp [-2 J?]dx = % 71072 —@ km ™! (2.14)
2
o

1 1

A~ 0.2625 7 km = ~0.795 km (2.15

This attenuation is the equivalent of only 40 percent transmission in 1 km
through a moderate rainstorm, for all frequencies in the band we consider. In the
absence of parameters for droplet distribution in rains described as other than
""moderate', no statement about them can be made.

2.2.4 Rayleigh Molecular Scattering

Another mechanism attenuating infrared radiation even in clear weather is

the scattering by molecules of the atmospheric gases. Since the molecules are
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much smalier than the wavelength, this scattering is referred to as Rayleigh scat-
tering. A calculation of this effect employing molecular abundances based on the
U.S. Standard Atmosephere appears in Elterman (1963). The attenuation at 0.55u
and sea level is roughly 102km™!. It decreases rapidly with altitude as abun-
dance falls. For larger wavelengths, the attenuation is orders of magnitude small-
er. As Elterman states, it is consistent to associate with the ""clear standard
atmosphere'' an aerosol component, forming the ""turbid atmosphere, "' He computeq
 attenuation by this aerosol in the infrared.

2.2.5 Rayleigh and Aerosol Attenuation
These two effects have been combined by Elterman (1963) into an optical

thickness for the turbid atmosphere, 1'? (h) . Interms of this quantity, the slant
path transmittance at zenith angle 6 from altitude h to the edge of the atmos -

phere, as reduced by Rayleigh scattering and clear atmosphere aerosol attenuation,
is given by

Th-cn = exp[—*r(tn(h) sec 9] . (2.16)
Elterman tabulates this quantity 7'? (h) for wavelengths between 0.4y and 4u; it
should not exceed the values computed for 4u if larger wavelengths are employed.
Since the transmittance of a 44 wavelength from ground to aerospace at angles

only 5° above horizontal may be calculated to exceed 90 percent (from Elterman's
tabulated value of t(:)(O) = 0, 0489 at 4u), there appears to be no reason to con-
sider the mechanism for attenuation for A > 4u . For smaller wavelengths, it can
be significant at near-horizontal angles for transmision from ground or low alti-
tudes, and the tabulations are accordingly reproduced here for A between 0. 4u
and 1.67u .
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TABLE [I-3. TURBID OPTICAL THICKNESS

h(km) T‘f(h)o.m #f(h)o.su 'r?(h)O.GH 7‘:’(11)0.7“ -r‘f(wo.eu T‘f(hn.em

0 0.4977 0.2661 0.1813 0.1394 0.1057 0.0771
1 0.3707 0.1771 0.1079 0. 0761 0.0514 0. 0338
2 0.2973 0.1312 0.0727 0.0468 0.0273 0.0151
3 0.2494 0.1051 0. 0546 0. 0328 0. 0165 0. 0071
4 0.2134 0. 0877 0. 0438 0. 0250 0.0112 0. 0035
5 0.1843 0.0747 0.0364 0. 0202 0. 0083 0. 0019
6 0.1600 0. 0645 0.0312 0.0171 0. 0068 0. 0013
7 0.1389 0. 0559 0.0270 0.0148 0. 0058 0. 0010
8 0.0893 0. 0484 0.0234 0.0128 0. 0050 0. 0009
9 0.0765 0. 0418 0. 0202 0.0111 0. 0044 0. 0008

2.2.6 Absorption by Molecular Bands
The simple Lambert-Beer exponential law of attenuation is useful only for

monochromatic radiation and homogeneous propagation paths (i.e. paths of constant
atmospheric composition, pressure, density and temperature). For other situa-
tions it has been necessary, as many authors have realized recently, to develop
more convenient formulations in order to predict attenuation. Some of these ap-
proaches are discussed briefly here, and the extent to which they promise to be
applicable to situations of interest is indicated.

It has proven fruitful to introduce the 'band model' and to deal with averaged
absorptances over a spectral interval larger than the width of a molecular absorp-
tion band, thus eliminating the computation difficulties associated with the rapidly
varying absorption coefficient derived from considering individual lines of the band.
In conjunction with the band model approach, a method of introducing the variation
of atmospheric properties over the propagation path is neede&. Plass (1962) has
derived an 'equivalent path' concept. Using this concept and band parameters aris-
ing from the theory of molecular spectra, he computed and tabulated a set of trans-
mittances. Since no intermediate steps in the computations are reproduced or tab-

ulated in the referenced reports, these computations cannot easily be extended to
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situations other than those for which his results are tabulated. They deal with the
effects of 002 bands in the wave number range 500 - 10, 000 cm"1 and of water
vapor bands (using both wet and dry stratospheric distributions) in the range
1000-10, 000 cm-l. Transmittances (averaged over 50 cm"1 regions for slant
paths originating at altitudes of 15, 25, 30 and 50 Km and traversing the entire
atmospheric thickness at initial angles with the horizontal from 0° to 90° have been
tabulated. The tabular values have been graphed and are presented in Figs. 2.1 -
2. 13 so that implications for this study may be seen.

First of all, the conditions of relatively low transmittance can be seen to

1, 2200-2500 cm'l,

occur in isolated spectral regions, such as 550-750 cm
34003800 cm ™!
complete opacity may be encountered for near-horizontal operation from an initial

altitude of 15 Km. One would conclude from Figs. 2.8, 2.9, 2.10, 2.11 and 2. 12,

, 1450-1750 cm-l. At the centers of these regions, essentially

on which curves of a given spectral region for the same elevation angle but differentJ
transmitter altitudes are displayed, that there is improvement in transmittance,
but there is still some loss, even for altitudes like 25 and 30 Km. This loss might
present practical difficulties. Transmittance values typically fall below 50 percent
near the band centers. Although near-vertical transmittance is more dependable
than low-angle (see Fig. 2.7 for an indication), this is a fact of little significance
unless the trajectory of the object with which communication is desired can be
controlled.

An example of averaging, taken from a table of Plass, in which the band-
width is 50 cm_l, or 1500 Kmc, is presented in Fig. 2.4. It appears that the
transmittance is not improved at the band center, but the region of poor transmit-
tance is widened, and is less sharply bounded than for the noﬁ-averaged curves.
These conclusions are to be expected from the nature of averaging with bandwidth
comparable to the width of the absorption region.

It should be pointed out that any wavelength region where the absorption varies
rapidly with wavelength is entirely unsuitable for communication since dispersion

will severely distort the modulation of the signal.
20
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The general character of the curves for water vapor, as displayed in Figs.
2.1-2.3 is the same as for COz. High altitude sites and near-vertical inclination
improve transmittance. We have chosen to base curves on the calculations made
by Plass for the ''dry atmosphere' model of Gutnick, since in any case the attenua-
tion should not be less than predicted by this model. Regions of poor transmittance
appear to exist for wave numbers 3570-3670 cm-l, 3700-3900 cm-l, and 5300-
5400 cxn-l .

Because of the paucity of intermediate tabulations, the results of Plass (1963)
cannot be applied to transmission over arbitrary slant paths wholly within the at-
mosphere. For ground-to-aerospace predictions, they require supplementation by
a method which treats the segmerit of the path‘between ground level and the initial
altitudes appearing in the tabulations.

Such a method has been constructed by Zachor (1961) and is detailed in that
reference. He starts with band models which contain certain parameters. These
are evaluated for the bands important at each wavelength region by fitting laboratoryj
data to the models. Zachor tabulates the appropriate modei and parameters as a
function of wavelength, essentially from 1.4u to 10.8u, for both CO2 and H20.

He invokes the Curtis-Godson approximation to formulate his models in terms of
mean concentrations and pressures over the propagation path, supplying instruc-
tions for obtaining these means associated with arbitrary slant paths (within some
limits of location, length, etc.) Summer and winter distributions of water vapor
enter the tabulations. Although much laborious computation would be involved, the
material of Zachor (1961) is a satisfactory source for a method of predicting CO 5
and water vapor attenuation over paths wholly within the atmosphere. It may, of
course, be used for the missing lower part to join with Plass' results in a prediction
for ground-to-aerospace applications.

This material deals only with CO_ and water vapor. It is suggested that

2
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transmitter sites be chosen to avoid sources of atmospheric pollution, since
adequate predictions of attenuation due to them are not readily feasible. Alter-
natively, it will be advantageous to operate within spectral regions which, as far
as the spectra of these contaminants are concerned, lie in 'windows'.

No reliable estimate of attenuation due to minor but permanent constituents
of the atmosphere is possible at this time.

The strong absorption bands are listed in Table II-4below, and the corres-
ponding abundance at sea level appears in Table II-6. Table II-4 is based on work
reported by Goldberg (1954).

TABLE II-4. ABSORPTION BANDS OF SIGNIFICANT INTRINSIC STRENGTH

Band Center Approximate Absorption
Wave Nr. Wavelength Species Cross Section

cm'l microns , cm-1 per cm NTP
3756 2.6 H,0 vapor 180
1597 6.3 H,0 vapor 300
5331 1.9 H,0 tapor 30
7250 1.4 H,0 vapor 20

667 15.0 CO, 173
2349 4.3 CO, 2480
3613 2.8 CO, 28
3714 2.1 CO, ) 25
1167 8.5 N,O 8.5
1285 7.8 NO 245
2224 4,5 N,O 1933
1306 7.7 N,O 150
3019 3.3 N,O 300
6005 1.7 N0 1

Weak absorption bands would be difficult to avoid, so that in contrast to the
strong absorption bands at which the atmosphere may simply be taken as opaque,
it is of interest to be able to compute the absorption associated with these bands.

Strengths of some weak bands appear in Table II-5 (Goldberg, 1954).
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TADLE 1I-5. SOME WEAK ABSORPTION BANDS

Coefficient
‘-w‘::::' Wavelength . stituent Mm-?‘ >
-1 Microns cm ~ per cm NTP
2130 4.5 Co, 0. 0037
2003 4.6 Co, 0.0070
1933 5.2 Cco, 0.0110
6228 1.6 Co, 0.0077
4260 2.3 co 1. 8000
1868 5.1 NO, 0. 4000
6005 1.5 CH 0.9600

In addition to the absorption due to these constituents, water vapor exhibits
a number of weak bands at diverse wavelengths. In the absence of reliable infofma-
tion on the abundance of water vapor (which is in any case highly varisble), it does
not appear useful to list in Table I-7. Abundances of other constituents have been
cited by Altshuler (1961) and Watanabe (1958). They are presented both for the
sea-level atmosphere (that table would then pertain to low-altitude situations) and
the total atmosphere (which is important for communications with an extra-atmos-
pheric vehicle), |

As an indication that even weak bands at sea level can be significant, one may
compute the transmission over 1 Km in the 1933 cm-1 band of CQ, at sea level:

In Tle = -0,011x 32 =-0,352
T= 0.7

Thus, there is non-negligible attenuation for even this illustrative calculation.
It might be possible to communicate in spite of this loss. However, if transmis -
sion through the entire atmospheric thickness were required, one would predict a

greater attenuation:
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‘nTATl( = -0,011 x 320 = - 3.52

T= 0.3.

TABLE I-6 SEALEVEL ABUNDANCES

Constituent Abundance at Sea Level
Atm-cm per Km Path

co, 32.0
NO 0.027
CH 0.24
CO 0.11
TABLEII-7, SOME TOTAL ABUNDANCES
Constituent Total Atmospheric
Abundance (atm-cm)
co, 320.0
CH 1.2
N,O 0.4
CO 0.06-0.15
H,0 103 - 104

2.2.7 General Considerations on Absorptien: Windows

We have seen that absorption within bands may be severe. In view of this
fact and thfe difficulty of computing absorptiog profiles, it is imperative to circum-
vent the difficulty by deciding to operate in "windows'' between the regions of severJ
absorption. Such a decision is practical only if sufficient bandwidth is available in

the windows. Since the relation between frequency and wavelength is
A=cly (2.17

one has for the relation between two descriptions of bandwidth
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A -c.alvay--t—2 Ay (2.10%
so that, ¢.g., for a 1 Kmc bandwidth at wavelength of N microns, the wavelength
interval required is given by

A = (N2/3)10-5u . 2. 104
Thus there is adequate bandwidth available in the windows, which are usually deter-
mined from the solar spectrum to be (in microns) 0.95-1.05, 1.2-1.3, 1.5-1.8,
and 3-5. Some authors (Gaertner, 1957) list 8 - 10 as a window but others (Howard
and Garing, 1962) consider the 03 band at 9.6u to be a serious cbstacle to trans-
mission through the atmosphere, and the astronomer Goldberg (1954) refers to it
as "'strong' so that 8 - 10u should be rejected as a window until further study. It is
clear that the windows listed allow bandwidths in excess of 1 Kmc from application
of criterion (2.19)
2.3 Background Radiation from Sky and Astronomical Objects

It is known (see, for example, Augason, Spinrad, 1965) that the sky is a

source of radiation in the wavelength region of interest here, commonly designated
"atmosphere noiée", and that the moon, planets, and many stars emit infrared as
well as visible light. Design of a ground-based detector for reception from a sat-
ellite transmitter must take this radiation into account. This section contains a
brief review of the power levels of these sources, and suggestions for reducing
their effects somewhat. The problem of communicating in the reverse direction
would necessitate study of radiation from the earth, which is not treated here.
Clear-sky noise radiation originates in two main mechanisms (Bell et al,
1960), scattering of sunlight and emission by atmospheric moiecules. Each of
these contributes radiation of slightly different characteristics, according to
Rollin and Zwas (1965) which combines presentation of experimental data with con-
clusion from simplified model calculations. According to this publication, the
scattered sunlight should not be significant for A> 4u . For the shorter

38




pommsmee THE UNIVBRSITY OF MICHIGAN ——y
06615-1-F

wevelongths, and operstion during the daylight hours, it may centribute a speetral
radiance as large as 103 microwstts per cnz-lterradtn-mlcm. peaking slightly
below 14 wavelength. If this value is intolerably large, there are few measures
svailsble. Perhaps operation between 1 and 54 might allow some reduction of
this estimate of spectral radiance from scattered Qunltght.

The other source of 'sky-noise' is atmospheric emission from molecules,
which has been measured by Bell and coworkers and is present both day and night.
For a clear sky this seems to be negligible below roughly 5u. If other considera-
tions dictate use of longer wavelengths, the spectral radiance could be as high as
103 microwatts per c:m2 - sterradian-micron, but could be reduced nearly an order
of magnitude by choosing a site at high altitude in a dry climate and not subject to
air pollution. Even in such a situation, noise can attain the value quoted above
during near-horizontal beam orientation, since the effective atmospheric thick-
ness and thus the emissivity are a maximum for the orientation.

Clouds have been found to be good radiators which is reasonable because of
their water-vapor content. Their spectral radiance may approach 103 uw -cm-2
-sterra,dian-1 -u-l, near 104 wavelength, and again is small for A <5u.

Bell reports that an overcast sky radiates like a good blackbody at tempera-
tures near ground ambient. This would imply that little radiation is produced for
A <5u, and that peak radiance occurs near 10u, with values of perhaps 600-1200
microwatts per cm2 - sterradian-micron for ground temperatures of 0°c to 40°C.

The moon, planets, and some stars are sources of small amounts of infrared
radiation, which is discussed by Rollin and Zwas (1965) on whose tables and curves
we base this section. He gives peak spectral irradiances, neglecting absorption in
the terrestrial atmosphere which would reduce the already small values. Some of
these calculated values are:
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TADLE HI-8. BACKGROUND FROM ASTRONOMICAL OBJECTS

MAXIMUM SPECTRAL
SOURCE IRRADIANCE, NO ABRBN ATM,
Watts - cm 24~}
-7
Full Moon 10
Venus 10-10
Mars, Mercury 1071 each
Jupiter, Saturn
Brighter Stars < 10-10 each

2.4 Turbulence, Dispersion and Coherence
Two processes interfering with quantitative astronomical observations are

"seeing' and "scintillation, ' both associated with turbulente in the atmosphere.
The former appears as smearing and dancing of images in a telescope and is
caused by refraction of the light from a distant source as it passes through turbu-
lent layers of the lower atmosphere. Scintillation appears as fluctuations of the
amplifitude of light after passing through turbulent air in the upper strata of the
atmosphere. For an optical communication channel the result of those processes
is somewhat analagous to the consequences of multipath transmission through the
ionosphere or communication by tropospheric scattering in the radio spectrum.
The theory of communication channels with randomly varying properties is still

in its infancy, and for that reason no complete treatment nor detailed prediction
of the reliable communication in the presence of these phenomena can be given here
However, it is suggested that the relatively slow and coarse variations due to see-
ing can be largely overcome by a choice of site at relatively high altitude. Also
the scintillation frequencies are relatively low, as far as available observations
indicate; a choice of modulation bands excluding vulnerable frequencies may pos-
sibly render scintillation harmless without too radical sacrifice in channel |
capacity.
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Another possible source of distortion of the information-carrying modulation
is anomalows dispersion in the atmosphere. However, such dispersion is associ-
ated with absorption bands, which furnishes another strong reasom for selecting an
operating frequency as free as possible from molecular sbeorption. If this pre-
caution is taken, there should be no disturbance from this source.

The question of whether or not the coherence of the signal waves will be affec-
ted by the interaction with the atmosphere is best discussed in a quantum-mechani-
cal context and is therefore postponed to the end of the third chapter.
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SECOND PROBLEM AREA: CHOICE OF DETECTION SYSTEM FOR
OPTIMUM RATE OF TRANSMISSION OF INFORMATION

3.1 Iptrodyction
The fundamental considerations in this general problem area concern the per-

formance limits of a communication channel utilizing a beam of light in the spec-
trum between 0.44 and 204 wavelengths under specified conditions of power, back-
ground radiation, distance, antenna optics, etc. A second set of objectives must
necessarily be investigations of various ways and means of approaching these per- -
formance limits, particularly various methods for modulation and detection, as
well as for encoding and decoding.

In the next section we begin this study with a brief review of the quantum
theory of the electromagnetic field and the ultimate uncertainties or limits of re-
solution affecting any observatioﬁs or measurements of the electromagnetic field.
The procedure followed is to expand the field in a set of natural modes, preferably
traveling-wave modes, and then to make use of the equivalence of each mode with a
quantum-mechanical harmonic oscillator. An arbitrary state of the mode may be
expressed alternatively in terms of engrgy eigenstates or in terms of "coherent
states'' as basis functions. The energy eigenstates are most convenient for the
evaluation of entropy and channel capacity, because they constitute mutually exclus-
ive events. The coherent states, on the other hand, have considerable advantages
in describing electromagnetic waves generated at a power level where a classical
specification is a good approximation and then reduced to quantum levels by dif-
fraction and attenuation and finally interacting with a detector.

A following section applies the entropy concept to the evaluation of the chan-
nel capacity of a beam of light for communication purposes and studies the varia-
tion of this capacity with various parameters of the beam.

As an introduction to a digital operation of the channel, a statistical theory
of signal detection is developed in close analogy with the classical theory of detec-
tiontion of signals perturbed by white Gaussian noise. The binary channel with an
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ideal photon counter is then discussed in the light of these theoretical results, and
comparisons are made with other methods of detection. A section on coding and
decoding of binary sequences in optical channels for elimination or reduction of
errors follows.

A theoretical study of quantum amplifiers is also included in this ohapter,
since it seems highly likely that laser amplifiers and oscillators may become im-
portant components of optical receivers in the future. The motivation for this stedy
is more ixﬁmediately the inference that an amplifier-counter combination may be
designed to count photons as effectively as a photomultiplier and in addition supply
the desirable discrimination against background radiation outside the bandwidth of

the signal.
3.2 Fundamental Uncertainties in Observations of Electromagnetic Radiation

The usefulness of electromagnetic radiation for communication over great
distances depends on the fact that such radiation possesses at a point of observation
observable parameters that are related in a causal or statistical manner to the
corresponding parameters at the distant source.

The second chapter of this report has discussed some of the transformations
to which radiation is exposed during propagation through space and atmosphere
primarily from the point of view of classical physics. In the present chapter the
objectives are to study the theoretical limits for observations and measurements of
electromagnetic fields in the wavelength range of 0.4 u4 to 20u; furthermore, to use
the results to evaluate the maximum amount of information per second that can be
recovered from an electromagnetic wave train of given power and bandwidth and to
compare the potential performance of different methods of modulation and detection.

This report is obviously not the place for a complete development of the quan-
tum theory of radiation and the interaction of radiation with matter. A brief review
of this subject matter shall be given, however, since a number of the fundamental
concepts and mathematical models will necessarily be used in the subsequent analy-
sis. The complete presentation is found in the references (Schiff, 1955,
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Lowisell, 1964, Glauber, 1963),

The classical electromagnetic field is described by Maxwell's equations and
a set of initial and boundary conditions. In order to obtain a discrete set of matural
modes, it is convenient to postulate a field confined by a box or waveguide with per-
fectly reflecting walls. For the box dimension axbxd the modes are defined by
the roots of the dispersion equation,

2 2

__4, 2 47 2 4x g wl' 2 2 2 wr
+ (=) + (=) - = + + _ -
<I'a) (m-b) n-d) cz X ky kz cz 0 » (3.1)

where {,m and n are appropriate integers, wr is the eigenfrequency of the
mode (£, m,n) and c is the velocity of light. Alternatively the reflection in one
dimension (say z) may be replaced by periodic boundary conditions, so that the
natural modes are defined in terms of travelhig waves rather than standing waves.
The latter is the more suitable procedure for application to communication chan-
nels. In a vacuum (Coulomb gauge) Maxwell's equations may be written

oB 0
curl E = -5 ---a—t-curlA (3.2)
and
1 3E 1 82A !
2
cur1B=——=-——7=vA, (3.3)
c2 at 02 ot

where A is the vector potential.
The energy H of the field in the waveguide is

‘ 2
1 2.1 2 1 oA 1 2
H= - J(GOE + IJ— B )dV = -Z-JV[GO -é-t- ) + “—0 (curl A) }dv , (3.4)

0o

where dV = dxdydz and integration is extended over the total volume.
Since the natural modes constitute a complete orthogonal set, any field in the

waveguide may be expanded in a sum of natural-mode components
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1
Ax,y,z,t) = — (tu (x,y,2) (3.5)
natr s b oy
and
dA(x,y,z,t) _ 1
— - Zpr(t)ur(x,y.z) , (3.6)
o T
where
2
2 wr r
V'u +—+u =0 (3.7
T 2
c
and
2
d ql‘ , . ]
2
—= +w .q =0 . (3.8)
dtz r qr

The quantum-theory modifications of the classical field descriptions may con-
sequently be introduced for each mode at a time. In the following a single mode is
referred to and the subscript is dropped from the functions q(t), p(t), and u(x,y, z).

Equations (3. 7) and (3. 8) describe simple harmonic variation in space and
time. A natural mode in the waveguide constitutes a harmonic oscillator, and the
theory of the harmonic oscillator according to quantum mechanics applies to it.

The time functions p and q introduced above in (3.5) and (3. 6) represent the
momentum and position of an equivalent mechanical harmonic oscillator of unit
mass and radian eigenfrequency W From (3.2), (3.3) and (3. 4) it is easily con-

firmed that the energy expressed in these variables is

(p2+wq ). (3.9)

This result follows from the orthonormality of u(x, y, z), the boundary conditions,
the vector identity

curl u. curl u = u.curl curl u +div (uxcurl u) (3.10)
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and the separation constant given by (3.7) and (3.8) .

In the quantum-mechanical analysis of the oscillator motion H, p and q become
Hermitian operators modifying the state vector or wave function of the oscillator.
The oscillator is '"quantized" in the usual way by postulating the commutation

relations

[q.q] = [p.p] =0, (3.11)

a] - 1.

The operators p and q may be replaced by two linear combinations, the anni-
hilation and creation operators (non-Hermitian), defined by the relations

1

(wq + jp) (3.12)

a:
28w
and
+_ 1 :
a = —— (uq - jp), (3.13)
=

obeying the equivalent commutation relations

[a,a] = [a+,a+] =0 (3. 14‘1

[a, a+] 1 . (3.14b)

The Hamiltonian energy operator (3. 8) can then be written

H = %ﬂw(a+a+aa+)

=hw (ata + %) . (3.15)

The eigenstates of this operator constitute a complete orthogonal set of wave

functions with the eigenvalues

H = foo+ =) (n=0,1,...) , (3.16)
n 2

1
where 5 Hw constitutes the ground-state energy, the ''zero-point' energy or

"vacuum fluctuations'" related to the basic quantum-mechanical uncertainty
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expressed by Heisemberg's uacertainty principle.
An arbitrary (time-varying) state can always be expanded in terms of these
functions.

(0.9)

[>=) c|n> . (3.17)
n=o
The operators a and a+ make it possible to relate the energy eigenstates
to each other by recursion equations:
aln> = [0'|n-1> (3.18)
afln> = [t [n+1> . (3.19)

By repeated application of (3. 19), any state | n> may be related to the ground
state| 0>

(a*')u

|n>= |o> (3.20)
Jn!
and
an
<n|=<0| — . (3.21)

n!

According to the quantum theory, any measurement of an "observable" will
as a result indicate one of the eigenstates of the corresponding operator. If the
state of an oscillator is represented by an expansion in energy states, and if pre-
cise measﬁrements of energy are made, the uncertainty principle states that no
information can simultaneously be obtained about the time or phase coordinate, A
more desirable procedure would be to minimize the total uncertainty about a pair
of conjugate variables, such as position and momentum, or eiectric and magnetic
fields.

Glauber (1963) has suggested than an expansion in terms of "coherent states"
and corresponding measurements will accomplish this purpose. The annihilation

operator a is a linear combination of the position and momentum operators; the
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eigenvalues of this operator will specify jointly position and momentum with an
uncertainty which can be shown to be consistent with the uncertainty principle.

The complex eigenvalues a and ar"I of the operators a and a+, respec-
tively, satisfy the equations

aja> = ajla> (3.22)
<a|a =<ala (3.23)

It is easily shown that a normalized coherent state | @ > expanded in energy
eigenfunctions is

n
la> = exp (- 2 |e/2)) == |n> . (3.24)
e (- 3 ); =

When the expected value |a'l2 ‘of the number of photons in the mode is given, it
follows that the number of photons in a coherent state of the mode has a Poisson

distribution
| @ |2n
n'

|<n|cv>|2 = exp(—lalz) . (3.25)

The ground state|a|2 = 0 is the same unique ground state |n> forn=0.

The coherent states defined by (3.22) form a complete but not orthogonal set
of states. Because of the nonorthogonality the expansion of an arbitrary state in
terms of coherent states may not be unique, but Glauber has shown a unique proce-
dure that leads to an expansion with suitable properties. The starting point is the
expansion (3. 17) in energy eigenfunctions. Multiplying both members of (3. 17) with
the unit operator

%f|a><a|d2a = > ja><a| =1, (3.26)
n

where integration is extended over the complete complex a-plane, the result is

) ) a"" 1 @h"
|>- ;Cnln>—2n:cn7—n_? lO)—;J’|a><Q|nZCnJ_——n_—!-‘ |0>. (3.27)
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In the last member the opersiors cperating on <« | may be reglaced by their

Mvﬂm a*. The summation is then a function of 2 comglex variable :-a"I

n

z
) = Z‘ Wf (3.28)

n

Since

Z [cnf =1 (3.29)
n

this function is finite for all finite z; it is also analytic over the whole finite
z-plane,
Choosing the phase origin to give from (3. 25)

<a|0> = exp (—% ]alz) (3.30)

(3.27) is obtained in the more convenient form

|f>=%fa> fa) exp (- |of®) da . (3.31)

The fact that the expansion functions have been limited to analytic functions of
a* represents the constraint which makes the result unique; otherwise many differeng
expansions in coherent states could be found.

In the case of a mixed coherent state specified statistically by its density oper-
ator p, Glauber introduces the ''P-representation' defined by the relation

p= Jr Pla) |a><a| d2a . (3.32)
Because of the nonorthogonality of the a-states, the integration is not carried
out over a set of mutually exclusive events and P(a) is not strictly a probability

density, even though it is real and satisfies the equation

trace p = J‘ P(a) d2(a) =1, (3.33)
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An interesting special case is the Gaussian density operator

jem{--zlf—f}lvwldza . (3.30{

Transformed to the energy representation it proves to be identical with the well-
known density operator of a harmonic oscillator in thermal equilibrium, i.e., the
operator form of Planck's black-body radiation law. In this orthogonal representa-
tion the operator is diagonal and has the form

P>

m
>
p = 2 > <n |m><m| (3.35)
1+<n> m | 1+<a>

3.3 Entropy and Channel Capacity
In classical statistical mechanics and in information theory the entropy con-
cept plays a central part (Jaynes I., 1957). When nothing is known about the state

of a system, except some average or integrated state variables, the most conserva-
tive estimate in statistical terms is the state that maximizes the entropy under the
given constraints. This maximum entropy value then is a measure of the amount

of information that would be required to specify the state of the system completely.
The entropy of a system with n discrete states with probabilitiea P, is defined as

n
H=- Z p, logp (3.36)
=1 i i

which is a maximum when all the states are equally probably (Shannon, 1949)*
The entropy of a system described in terms of quantum mechanics (Jaynes II,
1957) is conveniently described in terms of the density operator p for the system
H

- Trace ( plogp) . (3.37)

*Boltzmann's symbol H is adopted here for the statistical entropy function. Con-
fusion with the Hamiltonian operator is less likely than confusion with signal power
if the symbol S were used for entropy.
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The state of a harmonic oscillator in thermal equilibrium with its environ-
ment is a maximum entropy state; it is easily shown that the demnsity operator
(3.35) maximizes the entropy under the constraint of given temperature or ex-
pected value of energy. Equation (3.34) represents the same state in a dif-
ferent mathematical form, but it is not an appropriate basis for caloulation of
entropy, because the different a-states do not all represent mutually exclusive
events.

The maximum entropy of a harmonic oscillator at temperature T or
expected value <n> of number of quanta above zero-point energy is

H =log (1+<n>)+<n> log <1+ L . (3.38)
<n>
Since both the density function in' (3.34) and the wave function for the ground
state |0> of the harmonic oscillator have a Gaussian form, it is interesting
to compare (3.38) with the classical entropy of a Gaussian variable perturbed by
another Gaussian variable. If the variances are <n> and N, respectively,
the latter is

<n> )

for one pair of samples.

Equating (3. 38) and (3. 39) and solving for the equivalent noise energy leads

to the result

(3.40)

A Loy
+
—
i
/;\
+
|H
SN—~
+
A
=]
v
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1 1+<n> 1 -1
N = <1+ ) -—} . (3.41)1
<n> <n>

Since the right member of (3. 41) is not a constant independent of <n>, there
is no universal level of equivalent classical Gaussian noise which accounts for the
fluctuations or uncertainty predicted by the quantum theory.

As expected from the correspondence principle, such a level exists in the
limit <n>>>1, However, it is not the naively expected zero-point energy,
1/21#w, but 1/e fiw per cycle bandwidth. The approximation

H = log(1+e <n>) (<n>>1) (3. 42]

holds within one percent for <n> as low as four; at <n> = 1 the error is about
-5 percent.
The corresponding 1imit in the opposite extreme is

N x~ L for <n><<1 . (3.43)]

-log<n>
The second term in (3. 38) becomes the dominant one, and the effective signal-
to-noise ratio
%Z o2 - <n>log <n> (3.44)
decreases more slowly than <n>, or, in other words, the '"noise equivalent"
(3. 43) is not a constant but decreases logarithmically as <n> approaches zero.
These striking differences between the results of Gaussian statistics and those|
of the quantum distribution (3. 3. 5) are consequences of the asymmetry and dis-
creteness of the latter. The probabilities p(m) of observing m photons varies
exponentially with m

hf 1 <p> |m
= C- [- -] . [ ] . 3.45
plm) P | i 1+<n> | 1+<n> (3.45)
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This geometric progression of probabilities can be simply illustrated by a
lopsided "tree'" composed of an infinite number of cascaded identical random binary
choices (Fig. 3.1.) The two probabilities in the diagram are:

1

p = PO = o= (3.46)
<n>
= 1-p(0) = 3. 47
d p(0) 1+<n> (

The entropy of m is a weighted sum of the entropy Ho of each single choice

2
= +qH + +
H=H+qi +qH + .... (3.48)
where
1 <n> 1
Ho = -plogp - qlogq = T log(1+<n>) + TS log (1+ 253) . (3.49%

The appropriate factoring and substitution then leads to the previous expres-
sion (3. 38)

H

{10g(1+<n) + <n>log (1475} (p(O) +p (D +p(@)+. . . .)

1
log (1+<n> +<n>log (1+ =5-)

(1+<n>)log (1 +<n>) +<n>log 2:]_> , ‘ (3.50)

From the second member we can conclude that in the absence of background
radiation and with a perfect photon counter, a binary receiver which can tell the
outcome of the first choice only, may utilize the fraction p(0) of the wave entropy.
A ternary receiver can utilize the fraction p(0) +p(1), and so on. Thus a 50 per-
cent utilization is indicated with a binary receiver and an avei'age of one photon
per sample pair. A higher utilization is obtained at smaller photon counts, but at
a considerably lower rate of transmission.

Fig. 3.2 shows the variation of this ideal utilization factor and rate of trans-

mission with frequency in terms of the frequency f0 where
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FIG. 3.1. Trobability "tree" for consecutive random choices.
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FIG. 3-2. UTILIZATION FACTOR AND RATE OF TRANSMISSION
WITH FREQUENCY.
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—E—9-m‘,’ =1 (3.51)

Here E' is the expected value of the energy per sample pair and T' is the equiva-
lent equilibrium temperature. This unsophisticated discussion, of course, omits
the uncertainty and loss of information due to the probabilistic nature of the detec-
tion process, which was taken into account in the optimization of the binary chan-
nel in Gordon's paper (Gordon, 1962) and which will be considered in the next
section of this report.

The square of the envelope of classical Gaussian noise has also an exponen-
tial distribution, but it is continuous rather than discrete such as (3.45). The most
significant difference between Gaussian noise and a quantum-limited maximum-
entropy wave is that envelope and phase are independent random processes in the
former case but not in the latter. |

Equation {3, 38) expresses the maximum total entropy im the latter case,

Whatever wave parameters are being measured, the total entropy cannot exceed
this value per sample pair. The fact that the entropy is most directly calculated
in terms of the energy eigenstates (3. 35) is simply a consequence of the orthog-
onality of these states, their unique property of offering a set of mutally exclusive
events, This should not be taken to mean that each mode of the electromagnetic
radiation necessarily assumes one of these discret ""photon states". The coherent
states previously discussed offer an alternative and often preferable way of des-
cribing an arbitrary state of the field in terms equally consistent with the uncer-
tainty principle.

The preceding discussion suggests that whenever the avérage energy per mode
or per pair of samples in an electromagnetic wavetrain amounts to at least a few
quanta, the fluctuations and uncertainties introduced by the basic quantum phenom-
ena are very nearly equivalent to a perturbation by Gaussian noise with a variance
of hw/e per cycle bandwidth., In this sense it is sometimes convenient to refer to
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a "'quantum noise level" which reasenably well shove the beundary Ww/kT e plays
a part similar to the thermal noise level far below this boundary.

The maximum-entropy radiation described by the density operator (3. 34) and
(3. 35) for one mode or a pair of samples may represent radiation emitted by a black
body in equilibrium or an originally coherent carrier wave modulated to its full
informational capacity for given average intensity before being reduced to a low
level by diffraction and attenuation.

At microwave frequencies and lower there is no question concerning what is
meant by a coherent carrier wave: a pure sine wave in the time domain, or a deita
function in the frequency domain, and fair approximations to such waves are readily
available. At optical frequencies this is not yet the case. Even the purest "mono-
chromatic' wave so far obtainable from a laser oscillator has a nonzero spectral
width depending on spontaneous-emission noise, Doppler broadening, and a number
of other physical phenomena. | |

Such a wave may be characterized by the width and shape of its spectrum or
equivalently, in the time domain, by its mutual coherence function kﬂauber, 1963,
Beran et al, 1964):

*
1“12 = <V OV (t+n)>, (3.52)

where Vi(t) (i=1,2) is a complete representation of a component of the electro-
magnetic field at the time t at the point P1 in space. If the negative-frequency
range is omitted from the Fourier transform of the field component, the inverse
transform multiplied by two defines the "analytic signal" Vi(t)' Representing the
field by a set of harmonic oscillators, it is found that the a.nnihilation operator of
the field modes in the domain of quantum-mechanical operators corresponds,
except for a dimensional factor, to this analytic signal Vi(t)'

The mutual coherence function is an extremely useful concept in the study of
the behavior of light beams in time and space.

Let us however for the moment disregard the imperfections of the carrier

57



- THE UNIVERSITY OF MICHIGAN
06515-1-F

wave and assume that the optical signal at the transmitier oan be completely spec-
ified classically as a modulated sine wave. At a certain time tl a pair of time
samples specify the instantaneous value of the signal in the following way:

= + = -
'(ti) Slc<:ocwti Sm sin wti Sicos(mt1 91) (3.53)

where w is the carrier or midband radian frequency and the pair of samples are
alternatively given by (sic' Sis) or (Si, 91). Except for a fixed change of scale and
phase the signal will be represented by an expectation value of this same form at
a distant observation point, most likely superposed by the expectation value of
some background radiation.

If the transmitter makes optimum use of the full width of the frequency band

f1 to fz, there are

n=(f, - fl)'l‘ (3.54)

independent traveling modes generated by the transmitter and an equal number
arriving at the receiver in the observation interval T.

The channel capacity, i.e., the maximum rate of transmission of information,
is now the difference between the entropy of the input to the receiver and the en-
tropy of the background noise, multiplied by the number of modes transmitted per
second (Gordon 1962),

C= [H(signal +noise) - H (noise)] n (for T=1gec) . (3.55)

In terms of the bandwidth Af = f2 ~-f 1 the average noise power N or noise
power per cycle bandwidth No = N/Af the expected value of the number of quanta

per mode in the absence of a signal at the receiver is

> = — = _9-
<n noise WwAS Hw o (3.56)

Similarly in the presence of a signal of average power S

sin _ StRoAl g

> = = = +
<n sigtnoise BwAf hw Af fgar H (3.57)
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For given average signal power S, noise pewer No per cyele bandwidth and
bandwidth Af the capacity of an optical communication channel may thea be obhhud
from equations (3.54), (3.55), (3.56) and (3.57). After some simplification the
result is

S+N _Af N
S 0 Ko Af 0 W
* o M Rar T o + - o log(l+=) ) A

(3.58)
If BwAf is very small compared to both S and N, this expression reduces

to the classical capacity for a channel of given average power perturbed by white

Gaussian noise

C=Af log(1+3). (3.59)
In the other extreme, the pure quantum-limited channel (No <<tw), the
capacity is
S S o
z=A + + + —_—
c f{log(l moar ) toar log (1+ =3 } (3. 60)

These results show that for given bandwidth and average power the channel
capacity falls off rapidly toward the higher frequencies where the quantum limita-
tion becomes more and more severe. Optical communication channels are conse-
quently potentially competitive only where extreme bandwidths are required or in
cases where other properties than channel capacity are of dominating importance.

If channel capacity is the only criterion, there is no "optimum' bandwidth,
since the capacity is a monotone function of bandwidth, However, the channel
capacity approaches asymptotically a finite limit with increasing bandwidth. A
certain value can therefore be roughly determined beyond whfch any further gain in
capacity is obviously too small to justify the resulting increase in error probability
and complexity of terminal equipment.

Such a rough bandwidth measure is in the classical channel perturbed by white

Gaussian noise easily obtained by rewriting equation (3. 59) in the following manner:
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CN Af
0 oOf m
—_— e + —
3 Afm log (1 Y, ) (3.61)

which approaches unity with increasing bandwidth. The right-hand side has cne
single parameter Afm which is the bandwidth for which the signal-to-noise ratio
is unity, For Af = Afm this dimensionless capacity is n2 = 0, 69 of the asymp-
totic value one.

For a corresponding analysis of the capacity of a partially quantum-limited
channel (3. 51), two independent parameters are required:

Afg S
0= X T 7T (3.62)
N
o= (3.63)
with the result
hw 1 (o] 1 1
c—_ == +— +(u+ + —) - + =
C gz {log(l T (ut+o)log(1 u+0) ulog (1 m )} . (3.64)
This dimensionless channel capacity increases montonically from
OatAf = 0(c=w) to log (1+%) for Af = w (0= 0) .
By algebraic manipulations (3.57) may be transformed to
+
o L (Hﬁ)l “(1+§)
. — = +—_ )+ =
C 5 log (1 u+0) — log N (3.65)
(1”',;)

Here the first term has the same asymptotic values quoted above, while the
second term is zero at both limits. The first term reaches a value of half the

asymptotic limit

) = —é—log(1+—) (3. 66)

for the bandwidth
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S -l s S
Af = = [u(1+u)] —_ F —_—— (3.67)
h o o Ll N @ )

At this point the second term is not hegligible; for u < 1 it is positive and
reaches values up to about half the value of the first term. However, since the
first term is by far dominant and the sum is monotone, the bandwidth (3. 60) may be
taken as a rough indication of the point beyond which the payoff in channel capacity
will necessarily become small compared to the cost of coding complexity. Since the
measure is rough and of interest primarily in the strongly quantum-limited frequency]
range where u is small, it may be more appropriate to write:

-1 /
S 2 S

A = ~ - —_—=
f'h ~H Hw

o, hw
h ﬁwNo

S

(3.68)]

Since no known practical codes approach the channel capacity with negligible
error probability, it is necessary to settle for a rate of transmission of information
considerably below the ideal capacity. The discussion above suggests that given a
wide band channel the first unsophisticated coding operation that may be performed
is to reduce the bandwidth of the signal. Close to the asymptotic capacity a sub-
stanial increase in signal-to-noise ratio and reduction in error probability can be
obtained with only a moderate loss in theoretical capacity.

If (3.60) is accepted as the upper limit of useful bandwidth, the number of sig-

nal photons per sample in a marginal channel is

n, = ,fu(l*ru) . (3.69)

At the crossover point between noise-limited and quantum-limited channels
(u=1), which for a temperature of 290° K occurs in the infrared at a wavelength of
72 u, ng =1.4. In the wavelength range of thifzgroject 0.4 to 20y, the marginal
number of photons per sample varies from 10 to 0.3. The theoretical channel
capacity under these conditions varies approximately from 45.5S MAw to 1.1 S/Awbits,

respectively, i.e. roughly fifty to one bit, respectively, multiplied by the average
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number of received signal photons per second.

It is doubtful that it will be practically and economically justifiable to design
optical communication links for as large bandwidths and as small photon numbers
per sample as indicated by the marginal conditions discussed above.

3.4 Statistical Detection Theory for Optical Signals

The derivation of the channel capacity (3.51) implies that in principle an ideal
code and an ideal detection process exist which make it possible to receive informa-
tion at the rate stated by this equation. With an "ideal" code is understood a code
that may require infinitely long "words' or "messages'' and infinite storage time.
An "ideal detection process'' measures the signal with no greater uncertainty than
required by the postulates of quantum mechanics.

With practically realizable codes and additional uncertainties introduced by the
rmeasuring equipment the rate of transmission may fall far short of the channel capac-

ity. The optimum design of an optical channel then involves a judicious compromise

tetween fractional sacrifice of the channel capacity onthe one hand and cost and com-
lexity on the other.
Some of the basic design alternatives for a communication system are:
1. Information-carrying wave parameter: Amplitude, phase, frequency, or
polarization
2, Digital or analog data transmission
3. Detection method:
a) Direct transformation of the received light intensity into charge or cur-
rent, ''photon counting, "
b) Superheterodyne conversion to a microwave frequency band and sub-
sequent classical data processing.
c) Photon amplifier followed by a).
d) "Homodyne'" detection.
4, Choice of a redundant code for elimination of errors.

An early analysis of optical communication systems (Gordon, 1962) indicated
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among other results that for low-level channels where less than one signal photon
per sample pair on the average reaches the receiver a remarkably high fraction of
the channel capacity appears to be attainable with binary digital signals detected by a
photon counter. Under these conditions such a simple system compared favorably
with more sophisticated systems. These tentative conclusions furnished the motiva-
tion for the directives in the present problem area, which call for an investigation of
the theoretical upper limits for the performance of a low-level binary photon-counter
communication channel, i.e., a maximum rate of transmission of information with a
negligible frequency of errors.

This investigation requires the performance of two tasks:

1. Optimization by means of statistical decision theory* of the detection of
binary digits in a quantum-limited channel.

2. Design of an error-correcting binary code to match the channel statistics
determined in 1. ’

The purpose of the present section is to analyze the first task; the subsequent
section will discuss the second task.

Figure 3.3 is a schematic presentation of a generalized form of the first task.
The space és represents the ensemble of possible signals that may arrive from the
transmitter in a given observation interval T. Each signal is specified by the
expected values of the field variables at a set of time samples, or equivalently by a
set of eigenvalues o, of coherent states of the field modes incident during T. In
the same terms the space EN represents the ensemble of all possible background

radiation fields in T. The purpose of the counter and decision unit is to produce a

ecision as to whether or not a signal has been reaching the input during T. In order
o simplify the first formulation of the problem, the signal ensemble may be taken to
ave one single nonzero member S_so that the decision is between two subsets of

1
ES’ sl and So’ the latter being the null set for which all samples are zero. Later

[<For a presentation of the classical statistical decision theory applied to signals in
the presence of noise, see Peterson et al (1954), Van Meter et al (1954),
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on, the results may be generalized by averaging them over a more realistic signal
ensemble, taking into account uncertainties in the phase and amplitude of the carrier wave
generated at the transmitter, variations in propagation characteristics, etc.

The superposition of signal and background radiation generates ''pre-observa-
tion space' ép which is essentiallyan a-space in terms of coherent states of the field.
Any observation on this space is subject to the Heisenberg uncertainty; an ideal pho-
ton counter may be used to project each point in this space onto a set of points in
"observation space' ao, where the points are defined by a stream of electrons
observable by classical means. The rest of the receiving equipment serves to im-
plement a certain decision rule, which projects observation spaces into decision
space, which has only two elements: '"Yes'' and '""no", signal or no signal.

An ideal photon counter translates each input |ai|2 into a number of photons
n, according to (3.25). It should be noted that the Poisson distribution governing
this random transformation is not an independent postulate but follows directly from
the quantum statistics of the radiation field. A simple model of an ideal counter is
an ensemble of atomic or molecular systems normally in their ground states; each
photon captured raises one of them to a continuum of excited states, where an elec-
tron emitted into a vacuum or a conduction band can be observed by classical means.
Even in case of 100 percent quantum efficiency and a perfect count of electrons, the
counter introduces a certain amount of uncertainty and statistical fluctuations,
required by the uncertainty principle, or equivalently, produced by the photon
statistics. This ""quantum noise' is another manifestation of the same fundamental
rules discussed above in terms of entropy (Eqs. 3.38 and 3.39),

Because of the random nature of the background radiation and the "quantum
noise' introduced by the counter, it is not possible to find a decision rule that con-
sistently will lead to a correct decision, whether or not a signal was received during
the observation interval T. In order to formulate such a rule in a quantitative man-
ner and evaluate the performance its application will lead to, it is first necessary to

assign appropriate probabilities to the various points in and g . If a point P
% o
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is produced by thermal background radiation alone, each sample in the time interval
T may be assigned a Gaussian probability density with zero mean and a variance cor-
responding to the temperature of the background. In the presence of the signal, the
mean distribution of each sample is displaced by the expected value of the signal
sample. In the projection of a point in z.p to a point in Co each pair of samples ai
(real andimaginary) of the former changes into a time sample of the latter accord-

ing to (3.25). The samples of P and S, may be written in real rather than complex

1
form as follows:

p, = P, coswt, +P, sinwt =P, cos(wt.-{.) (3.70)
i ic i s i i i "
and
s, =S, coswt, +S, sinwt, = S cos(wt, - D.). (3.71)
i ic i is i i i i
In the absence of a signal the Gaussian distribution in pre-observation space is
then written

[\&)

n d(bi PidPi Pi
F (P = —_— -
d Sb( , D ITJ; o < exp{ SN ( ¢ (3.72)
there N is the noise variance and
n= (fz - fl) T (3.73)

fis the number of sample pairs in time T.

In the presence of a signal the Gaussian variable of mean zero and variance N

#is p - s; the corresponding distribution is, after the above transformation of variableﬁi

1 2 2

— + -
2N [Pi 5

1 1

n d(Di P.dP, ,
dFSl(P,Q):JIO—-Z-;r-o——I\I——e {'

2P.S. cos (. -9.)‘,} (3.74)
ii i il

The operation of the photon counter depends only on the power, not on the phase
bf the incident radiation. Equations (3. 65) and (3. 67) may consequently be integrated
ht once with respect to (Di
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n Pi2 PidPi
dF O(P) = TJoexp { TN} ¢ —N— (3. 75

and

n P dP_
dF (P) = exp %-L(S)} ﬂ ) < L 1) , (3.76)

where No is the noise power per cycle bandwidth, i.e., the spectral density of the

-

noise. L(S) is the total energy of the signal, evaluated from the average value of
the signal power

n
= 1 1 1 2. L(s)
s-; ;5521 =3 E{S(t)cos(wt-(bi)] dt = —— (3.7704
and
1 2 '
;5 Si = (f2 -fl) L(S) . (3.78)}

The symbol Io(x) denotes as usual the zero-order Bessel function with an imaginary
argument,
The expected value of the number of photons in the traveling-wave field mode

represented by the ith sample is

lpiz'T 1)2i No 1)2i
m1=§ flw =§ﬁ.ﬁ_&)=ﬁ.#’ (3.79)

defining the new parameters u, the average number of thermal photons per mode,

and 7, the time between consecutive samples or the reciprocal of the bandwidth.
Let r. be the number of photons counted by the detector in the ith interval.

From the Poisson distribution for To given m., the observation-space distribu-

tions are obtained as follows:
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PS (r) = deFs (m)P (r)
0 0 o ! my
r
n 0 dm m ml -m. n uri
i i i i
= n —— exp P —' e e = n- -————+1 » (3.80)
ismo Jo H H r. i=o (1+u)ri

which is Planck's well known black-body distribution.

0 0)

Psl(r) J dFSl (mi) Prn (r)
0

i

n i am, i 1+ ) ™
exp {- = —_— (-— ex {-m_— -_ (3.81)
oo 20 ()l

After the substitutions

2 +u 1)zi
S e—— [ — +
X . m, = 5% (1+u) (3.82)
and 9
S,
B =y = - (3.83)
Y 2N (1 +u) ? :
leach integral in (3, 81) can be written
®
+
2 ut -x2 I (2Bx) ){2r 1
J= ? -—-—-m € o dx
"1+
(1+u) 0
r Y
m e
= — L (-v) (3.84)
+ ' .
(1+“)r 1 r' 'r

Where Lr(x) is the rth order Laguerre polynomial.
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Censeguently, the distribution in the presemce of a signal is *

) o

Dy wi

ps (r) = n e 1 Lr (-‘Yl) 37 r—l, (3.85)
1 i=o0 i (1+u)1 U

and the likelihood ratio for any point in observation space represented by a radius

vector ;
P, (r)
Sl 1
A+ iy o f-ul, WL e = (3. 86)
S i i i i

(Y
Here % and p are known characteristics of the signal and noise ensembles,
normalized with respect to the photon energy as specified by (3.72) and (3.75). The
components of the random vector occur only in the polynomial Lr( - .

The logarithm of the likelihood ratio is

r'

1
log A (r) = -u}i—_,:yi +21 log [ —i- Lri(-‘yi)} =-A+a, (3.87)

The first term on the right is independent of ri; in a previous notation it may
also be written

_LS s L)

A N T+5 - N o ° (3.88)
o 0
The last term
a= Ylog ==L (-q)| = Y.lIo (-71-+1) (3.89)
L e T ; 108 . ’ '
i i 1 i,j jr

*This distribution which was first included in the April 1965 interim report on this
contract has later been independently presented by Glauber (1965).
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where Tir is the jth zero of the rth order pelynomial, is clearly a monotone function
of the likelihood ratio and its value can be used as a basis for a decision on whether
or not the observed point in observation space indicates the arrival of a signal. Since
all the zeros of the Laguerre polynomials are real and positive, the last member of
(3. 89) results from a complete factoring of the polynomials in the sum of the second
member. It is somewhat more suggestive to write each polynomial in (3. 89) as r,

times the average logarithm over all the zeros of the r, polynomial.

Y

a = Zri avg[log(-;y—i- +1)J . (3.90)

i r

Thus @ measures a certain nonlinear correlation between the observed vector T
and the specified signal Sl' Any term in the summation is zero for r, and Y
equal to zero; it grows monotonically but more slowly than linearly with r, and Y -

A very large class of decision functions can be stated in the form

D[Ar) 21 ] =1 or Dleza ]=1

and

D[X(r) < Ac] 0 or D[a < aC] =0, (3.91)

where the threshold values Ac and ac may be selected by minimizing a risk func-

tion of some kind. According to (3.87) and (3. 88) they are related by the equation

L(S) 7
= - — @ eom— +
log kc N e a . (3.92)
In the analogous case of a classical detector of a known signal in white Gaussian
noise the variable corresponding to « is the linear correlation between the observed

vector and the known signal; then a matched filter constitutes a perfect analog com-

ter, producing at its output a current or a voltage proportional to the time integral
f their product. In the case of the photon counter, the analog computation of an
cceptable variable on which to base a decision is not equally straightforward.

The problem can be made more tractable by restricting the class of signals.
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Lot ue limit the ochoice to binary signals; each sample Si (yi) has only two pos-
sible values, 3ero and Sk ('yk), respectively. Disregarding the obvious practical
abotasles, o oan in principle be obtained from T in the following way. The re-
ceiver input ? 1is first transformed by a nonlinear transducer without energy
storage, deeigned to give an output proportional to Lr(—yk) for a fixed given Y -
Since all nonzero values of v are the same, there is no need to compensate for the
nounlinearity of the relation between @ and y. The transducer output is applied to
a filter matched to the signal, in principle a tapped delay line, giving an output which
at t =T is proportional to a. The final component of an automatic receiver is a
trigger circuit that observes the filter output at t = T and indicates that a signal was
observed, if this output exceeds the value calibrated to correspond to a. Otherwise
it indicates that no signal was observed.

The performance of a receiver operating 6n the basis of the decision function
(3.91) is evaluated in terms of the relative frequencies of erroneous decisions,
"misses' as well as "'false alarms". These quantities are simply indicated by the
distribution functions of A(r) or ofr) in the presence or absence of a signal, respect
tively. Since a is the sum of a number of independent random variables of known
statistical characteristics, a characteristic-function method may be used to com-

pute these distributions. The characteristic functions are:

[80] nk
¢g (8) = [Zexp ijglog [%—, Lr( -‘yk)nPs (r)] (3.93)
(o] r= ’ o
and
n
g @ = | T e fi 1063 1, oy} 2 0] (3.94)
1 r=1 t 1

where n is a number of equal nonzero signal samples Sk in T. The inverse
transformations give the distributions in the respective cases.
For values of n between one and ten numerical computations may be per-

formed to give information of the statistical behavior of the channel. In the
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particular case n = 1, i.e., when pulse length, duty cycle and bandwidth are such
that only one independent sample pair or channel mode is observed in each observa-
tion interval T, the photon count itself is the obvious basis for the decision, and
only the distributions FSO
mance. Gordon (1962) presented exltenswe computations for binary optical channels

(r) and F (r) are needed for evaluation of the perfor-

on this basis, maximizing the rate of transmission of information under the con-
straint of given average signal power and background radiation. We shall return to
a more detailed discussion of the case n = 1, which can be considerably simplified,
after a brief analysis of the opposite extreme, n, >>1, which permits a few gen-
eral conclusions of interest.

When n is large, the variable a is the sum of a large number of independ-
ent random variables with identical distributions. According to the central limit
theorem the distributioﬁ of @ is then approximatély standard normal. This permits
a rather close comparison with the classical channel perturbed by white Gaussian
noise. In the classical case the performance of a likelihood-ratio detector depends
on one parameter only, which is the same as A in (3.88) with fiw = 0. In the case

of a photon counter for detection of binary signals, on the other hand, there are three

independent parameters in (3. 80), (3.81), (3.85) and (3. 86), which may be chosen:

n = 1o (n = duty factor) , (3.95)

po= No/hw (3.96)f
and

A= pyn = L(S)/(No+hw). (3.97)

In the classical case the single parameter A can alternatively be expressed
as the average signal-to-noise ratio multiplied by the number of independent sample
pairs. Onme is tempted to define a tentative effective noise power (f2 -f 1)(N0 +hw) and
express A from (3. 97) in the analogous manner. However, the signal -to-noise ratio
so defined is not equally significant as in the classical case, since the three quanti-

ties u, n and T, oceur not only as a product but also separately in the expression
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for the likelihoed ratio and its distribution function. That this signal-to-noise ratio
under some cenditions is unduly pessimistic is suggested by the entropy calculations
in the previous section, where the limit of the spectral density of the quantum noise
alone was found to be Bw/e rather than fw .

For large n the approximately Gaussian distribution functions FS (@) and
F. (a) for the variable a in (3.87) and (3.89) have means and variances which we

S
dex%ote by (mo, 00) and (ml, al), respectively. The logarithm of the likelihood ratio

is then
dFsl(a) (@-m )2 (a'm1) oo
log o - 5 - 5s— tlog — = a- A (3.98)
So 200 201 1

where the last member is taken from (3.88). The equality of the second and third
members of (3.98) holds for all values of a; consequently equal powers of @ must

have equal coefficients. The following relations are obtained:

0 =0,=0 (3.99)
o 1
12
mo = A - 0l o} (3.10&
1 2
= A+ —
m, A 50 . B.10)

Here A is easily evaluated numerically from (3.97); in addition one of the

ree quantities m, m, or 02 must be determined in order to specify the approx-
imate distribution functions of @. Figure 3.4 shows a graph of m / n evaluated from
1 ut 1
L T QY ) 3.102]
o/ "k n S s (1+“)r+1 r''r ‘
%s a function of vy = e for various values of u .
Except for the choice of a threshold value ac for the decision signal-no signal
the error probabilities can be expressed as functions of one single parameter o,

brovided that o is large enough for the Gaussian approximation to be satisfactory.
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Figure 3.5 shews qualitatively the relationship between the two distribution functions
in terms of the normalized argument a/o. The curves are of equal shape and dis-
placed a distance 0 from each other. This single parameter is easily found from

(3. 100).
moﬁ m, !
g = JZA(I T ) = 2n.kwl(1-——-) . (3.103)
nYH
The first factor
2L(S) 1/2
m = [W] (3. 104)

corresponds very closely to the single parameter/2L/ N, in the classical detection
problem, the only difference being the fiw added in the denominator. The important
qualitative difference between the classical and the quantum-limited detection prob-

lem is expressed by the second factor

m m »
1- T" = |1- “k;’)“ (3.105)

which severely reduces the distance between the two distributions for small values of

Y - Figure 3.6 gives the square of this factor for u =.05 and 1.0, respectively,

lotted vs v. In Fig. 3.7, 02/2 n, is shown as a function of ¥ for a few values
fu.

It is seen from Fig. 3.6 that the factor (3.105) is not very strongly affected
py the value of u except at very small values of 7.
When the Gaussian approximation is good enough, the above results make it
how possible to calculate, at least numerically, the error probabilities for any chosen
*hreshold value A(r) = )\c . The receiver operating characteristic (Figs. 3.8 and 3. Si
As a convenient graph for presenting this information in compact form. The coordi-

pates in this diagram are the conditional complementary distribution functions
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FIG. 3-5. DISTRIBUTION FUNCTIONS a/o .
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(a-m )

, 1 o
= P A =P =]1-F ). = - o 106
X 800 (r) 3 c) So(F) so( c) . m exp < 202 ) d (3 )

[+ ] 2
()32 )=P_ (H) =1-F_, (A ) 1 exp omy) do
y=Pg Wr)2d J=Pg H)=1-Fs Q)= orc? ('—2') '
1 ! 1 a 2r0” 20 (3.109

Because of the relations between m,, m, and o, this diagram has one single
parameter o which determines the error statistics for any chosen threshold value
lc . The graph is identical with the standard graph representing detection of a
completely specified classical signal in white Gaussian noise, the only difference
being the definition of the parameter o which in Fig. 3.6 is represented by the
symbol d. Thus, as soon as © has been caléulated for a given binary channel, the
hit and false-alarm probabilities can be chosen from any point on the corresponding
curve in the standard graph, each point representing a different value of lc
( = dy/dx in a linear plot).

The first conclusion suggested by these results is that under the conditions
compatible with this Gaussian approximation the optical channel always gives a
poorer performance (higher error probabilities) than a classical channel with the

same pulse energy and white Gaussian noise of the power
N = (No +Hw)Af, (3.108)

since the factor (3.105) in the parameter o (3.103) only asymptotically reaches the
value one. On the other hand, the entropy calculations in the present section indi -
cate that the ""quantum noise'" under optimum conditions is considerably smaller
than this value. The large number n of samples in a pulse or code group which is
required for the Gaussian approximation consequently appear to be unfavorable.

It is illuminating to state the variation of o with n within the Gaussian
domain. The factor m depends only on the total pulse energy and on the spectral
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density of the ''total noise' N0 +dw. If o contained this factor alone, it
would be immaterial whether the pulse energy were spread over a large num-
ber of gamples in a wide frequency band or concentrated in a few samples in
a narrow band; this would be in complete agreement with the classical Gaussian
detection problem. The second factor (3.105) depends on ¥y which is inversely
proportional to the bandwidth but it is independent of n - Consequently, if 0
and the bandwidth are reduced proportionally, the first factor remains invariant,
while the second increases monotonically. For given pulse energy and noise den-
sity the best performance is obtainable with the smallest o and the bandwidth
compatible with the other constraints of the problem.

It is tempting to generalize this obser vation by the inference that it is nec-
essary to preserve the characteristic statistics of the photon counter, illustrated

by the asymmetric 'tree'" in Fig. 3.1, in order to optimize the performance.
The second term in the entropy formula (3. 38) is a component peculiar to such
statistics which apparently is lost in any mode of operation that tends to modify
the statistics in a Gaussian direction. At low signal levels this second term be-
comes a substantial fraction of the total and consequently important to recover as

far as possible.

The conclusion is then that the first condition toward an optimum mode of
operation is the use of pulses, each one formed by a single pair of samples
(n.k = 1), The variable a in (3.80) is then simply equal to r, the photon
count for the pulse. At low signal levels the discrete nature of r reduces the
flexibility of the decision process; the threshold value ac =r, = 1 has to take
care of a considerable range of signal levels. The error statistics of the channel
for this threshold are given by the following probabilities, illustrated by the diagram
Fig. 3.10.
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1 [ o
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Hit ph'l-PSI(O)'I-mexp‘-M7)'l-m exp -m
(3.112)

If the background noise is thermal radiation of temperature T, these quan-
tities may alternatively be written in terms of the quantity

ﬁw

=exp( - ) (3.113)
K
pq:l--y:l—em(-ﬁ) (3.114)
eveexp( - DY)
Ppry=expl-i (3.115)

pm=p=(1-7)exp{ s (1- 'y)S [l-exp(-%’,)] exp {- L(w) [1 em('k_'l‘)]}

(3.116)

‘]ih=1—pm=1'P . (3.117)

These probabilities differ slightly from those presented for the binary channel
by Gordon (1962); he postulated Poisson distributions for both signal and noise rathen
than the distributions derived above (3.81) and (3.82). For the case of negligible
noise (y = 0),, however, the differences vanish.

The asymmetric character of the channel is here indicated by the fact that in
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general one type of error is mueh more probable than the other, i. 6., p.>> Py -
It is intitively obvious that the error rate can be minimised by eheice of a binary
code that makes a pulse much less frequent than a space. The prior prabability Q
of a pulse is also the duty cycle of the pulse train, and for given average power the
energy per pulse is inversely proportional to Q .

The joint event [S, R] of a pulse or a space being sent and a pulse or a
space being received then has the probability matrix

Plo,0] P[o,1] (I-Q);Pq(l-Q)pf
p[1,0] P[1,1] @, 9 }
(1-QX1-9(1-Qky
= Qp l1-p : (3.118)]

The rate of transmission of information per digit may be written as the sum
of the entropies of input and output minus the joint entropy of input and output.

H = H(S) + H(R) - H(S,R)

P(Sl)
= -log [1-p(sl)] - P(8,)log T-‘ﬂE;F

P(Rl)
-1og [ 1-P(R1)J - P(R)log WK;Y

+ P(0, 0) log P(0, 0) + P(0, 1)1og P(0, 1)

+P(1,0) log P(1,0) + P(1,1) log P(1,1) . (3.119%

An optimum value of the duty cycle Q may be found by 'setting the derivative

of H with respect to Q equal to zero under the constraint of given average power,
i.e., a number of photons per pulse inversely proportional to Q

us)_ g

) Q =r . (3. 120)
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Thus B is the average number of signal photons per sample and r the number of

signal photons per pulse.
The resulting equation for the optimum Q or r may be written as follows:

d10g 1-;—,1 -l+p+y plog = log Ay
log | —£ - . P P =y (3.121)
1+ (g log 22 - 1) 1 —y-plog S1=Y
T (FTy 18 v-plog
where
p=(1-1) exp [—r(l—'y)] = (1-1) exp [-%(1-7)] . (3.122)

It is clearly not feasible to express any one of the variables Q, r or p as
a single function of the parameters f and y. However, a graph mapping the nu-
merical solution may equally well be plotted from an inverse function B=8(p,vy)

which may be written as follows:

Y
1=y ve
log [1- - ]

B= p L U~Nl-p (3.123)

Y
(1 -p-y)[l + -]:—p:l
where y 1is the right-hand side of (3,121).
In the case that the background radiation is negligible (y << 1), this expres-

sion simplifies to
-1
B=r {1-e'r+exp[:—(ri]} (3.124)

e -r-1

which is the same as the function given by Gordon (1962). His graph is reproduced
in Fig. 3.11.

It is helpful at this point to illustrate the result by some numerical examples.
Take for instance a binary channel operating under the conditions: 8 = 0.06,

Q=0.06, r=1,y=0. The theoretical capacity of a wave with this average energy
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FIG 3.11: OPTIMIZED AVERAGE RECEIVED PULSE AMPLITUDE
FOR NOISELESS BINARY CHANNEL AS FUNCTION OF
AVERAGE NUMBER OF RECEIVED PHOTONS PER
AVAILABLE TIME INTERVAL. The probability of

sending a pulse i8 given by Q = B/r .
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per sample is 0.333 bits per sample pair while the binary channel at the transmit-
ting end has an entropy of 0. 328 bits per sample pair. The detection process
recovers 0.176 bits per sample pair under ideal circumstances. The difference
between the latter two figures 0. 152 bits constitutes the equivocation introduced
by the random detection process. The recoverable entropy is consequently about
53 percent of the maximum input entropy at the given power level.

The coding problem, which remains to be solved and which will be discussed
in the next section, is to design a code that will remove the errors in the received
message caused by the missing pulses. In this example the probability of a miss
isp= e’ = 0.368. In a hundred sample-pair intervals there will be on the aver-
age 16.7 pulses transmitted, of which 6.2 are missed by the detector. This is
clearly a very high percentage of errors which would require a highly redundant
code with very long code sequencés and elabofate computer programs for coding
and decoding for correction of the errors without substantial loss in rate of
transmission.

An extreme example is obtained by taking r = 0,5 in (3.125), This represents
an average level of 8 = 0.0032 photons per sample pair or an optimum Q of 0. 0064,
The percentage recoverable entropy has increased to 76.5 percent which is, how-
ever, only 0.022 of a bit per sample pair. The probability of a miss is now
e_0'5= 0.606. A sequence of a thousand pulse intervals will on the average have 6.4
transmitted pulses out of which 3.9 will be missed.

Going in the opposite direction to r = 2, we obtain 8 = 0, 416 photons per
sample pair and an optimum Q = 0.208. The error statistics are now more reason-
able: out of a 100 pulse intervals 20. 8 pulses are transmitted and 2. 8 missed, and
45 percent of the channel capacity is still theoretically obtainable. The transmit-
ted pulse train has a bit rate of 0.92 per pulse, while the theoretical channel capac-
ity at this pulse level is 1.24 bits per pulse. 45 percent of this is 0. 56 bit per
pulse. At this level the first term of (3.38), which according to Gordon's analysis
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is the freetion that theoretically can be resovered by a superheterodyne methed of
reception, is only 41 percent of the total. The pheten eounter retains an advantage
at this power level, although it is not a very large ome. The error frequency de-
creases bere considerably faster than the 'efficiency. ' For this reason a reduc-
tion of the bandwidth is a rather inexpensive way of making the coding problem eas-
ier and less costly to solve.

Another way of reducing the error frequency at a slight cost in channel capac-
ity is to use a somewhat smaller Q than the optimum value, if the properties of the
laser transmitter permit operation with a low duty cycle and correspending high
pulse energy. Because the tangent to the entropy function at the maximum is horizontal,
the Q-value is not very critical, as far as the entropy is concerned,while it affects
the error probability more rapidly. '

The comparison made above with a superheterodyne method of detection can
easily be verﬁied by a modification of the statistical detection theory presented
earlier in this section.

The high-level local-oscillator field may be taken as a common component
of every signal represented by a point in signal space ES in Fig. 3.3. For a binary
detection problem the no-signal subset S o has one point representing a field with
the constant expectation amplitude So and the oscillator frequency 0. Similarly
the signal subset 81
field and a signal field of frequency w and expectation amplitude S

has one single point representing the sum of the oscillator

| (S1 <<S°);

the resulting envelope squared has a steady component of % (S 3 + 812) and a sine
wave component of amplitude SOS 1 and the frequency |wo -w| = wl. In the pre-
observation space the expectation vectors of thermal radiation are added to the
signal vectors as in the previous case. The distributions in observation space are

then :
A ﬁ 1 . pri
Pso(r) = 1’oexp(-u'{))-r—,. Lr (=y)

e (3.125)
0 r. +
i i (1 +u) i

1
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n ] 1 Hri
P_(7) = exp -uly +v,) — L (-v -‘Y)——T;I (3.126)
S1 {0 [ o i ri. r1 o i (lm)i
where in analogy with (3. 83)
5,
Y s I+ (3.127)
2 2
So +28081 coswlti+S1
y +y = (3.128)
o i 2N(L+u)

The number n of envelope samples or normal modes of the field incident on
the photon counter must now be chosen with regard to the intermediate frequency
rather than the signal bandwidth, since a wave of the frequency w. is tobe repro-
duced in the counter output,

From (3. 125) and (3. 126) the likelihood ratio is now found to be

1

N L(y0 'yi)

AB =TT exp (-uy) ——(—)— (3.129)

i=o

and its logarithm

) . (3.130)

log A () = ﬂ u'yi+z Zlog(1+

i=1 i=1 j=1 j

As in the previous case (3. 89) the Laguerre polynomial in (3. 129) has been

th
broken down into factors of the first degree, v _, being the j root of Lr(X) =0

r
The variable Y (3.128) has both a first-order and a second-order small com-
ponent; to facilitate a consistent approximation, expand the logarithm in (3.130)

retaining two terms. The result is
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28 OHUt 1
logA (#) = Zm) Z 3
r
isl isl =1 l*...l
Yo
n SZ r
+ 1 j
$2 Loty 4y )
i=1 o jsl %o 7)
s-A+a. (3.131)

Since n in this case is necessarily rather large, the random varisble a will
be very nearly Gaussian, and we can find its distribution functions if we determine
the mean m in the absence of a signal. Because of the cosine factors, the sec-
ond summation has mean zero for identical r, - statistics, and the last summation
is negligible. Consequently m = 0, and the problem reduces to exactly the
same form as a classical known signal in white Gaussian noise of spectral density

No +%fw, the characteristic parameter being

o= [24 = 21‘(3) (3.132)

i.e., the square root of twice the pulse energy divided by an equivalent noise power
per cycle bandwidth,

Again the result indicates that it is the Gaussian statistics introduced by the
necessity of averaging over a large number of events rather than counting single
discrete events which reduces the recoverable entropy to the first term in the
equation (3.57). Extrapolation of these conclusions down to pulses of only one or
two photons, however, does not look reasonable. The correlation between the num-
ber of counts r and the known signal measured by a in (3. 131) is not very signi-
ficant when the total count during the whole pulse interval differs only by one or
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two units in the presence or absence of a signal, respectively. In any case, the
conclugion that the superheterodyne method of detection is unsuitable for reception
of marginal optical signals is certainly well justified.

The discussion in this section of detection of small light pulses by photon
counters has so far assumed an ideal photon oounter, i.e. a device with no other
limitations than those imposed by the basic postulates of quantum mechanics. Othen
limitations are encountered in any practical realization, primarily of the nature of
the state of the art, imperfect'materials, etc. A vacuum photo-emission tube has
a "'quantum efficiency' less than 100 percent; this can easily be accounted for sim-
ply by reducing the expected values of all signal and noise powers in preabservation
space by this factor. More serious is the ''dark current' in the photocell caused by
thermionic emission, leakage currents, etc. which causes spurious counts and
raises the false-alarm probability, which is a very vulnerable point in the process-
ing of signals with average powers of less than one photon per sample. Cooling of
the emitter and careful design and processing techniques can keep this source of
error to a minimum. The situation is consequently reasonably satisfactory in the
wavelength region above about 1u , where photo-emission cells with good quantum
efficiency are available. In the far infrared, however, where semi-conductor
devices offer the most promising performance, the reduction of the dark current
to the point where single photons can be counted with reasonable accuracy appears
to be a much more difficult problem. Otherwise the semiconductor phbtocells have
the advantage of offering very nearly 100 percent quantum efficiency, and recent
developments indicate that the bandwidth problem is not as serious as has been
anticipated. ,

In a photoemissive cell the "count" is represented by the emission of an
electron. It remains to count the electrons, which on a single-event basis is no
trivial task, even if it is a classical task without any absolute limitation similar
to the quantum limitations on counting photons.

In the photomultiplier tube each electron emitted by the photocathode is
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"multiplied'' by a nember of cascaded secondary-emission processes. At the out-
put terminals the pulses are large enough to be measured or recorded by ordinary
methods. Also the secondary emitters have a dark current, so that the false alarm
rate would be very high if all the pulses were counted. However, those pulses
originating in the multiplier section are likely to be of smaller amplitude than the
original pulses from the photo cathode. The error rate can consequently be kept
down, if all pulses below a certain amplitude are ignored. Extremely low dark
counting rates as low as one in ten minutes have been reported in the literature for
tubes specially designed for counting single-electron events (Eberhardt, 1965,
Baum, 1962).

The photomultiplier preserves and explores the digital nature of a low-level
optical signal. More conventional broad-band electronic amplifiers have a noise
factor appreciably different from unity; they provide a noise background which may
add appreciably to the false-alarm rate.

Anticipating a few facts from the last section of this chapter, some remarks
may be made about the use of a combination of a 1aser amplifier and a photocell as
a photon counter. The laser amplifies the signal as well as background and quantum|
noise; in addition it provides noise by spontaneous emission. Theoretically we
would expect at least that an ideal amplifier and an ideal counter would perform as
well as the counter alone. The situation in the amplifier is somewhat analogous to
the electron multiplier: a noise pulse generated somewhere in the active material
will not travel the full length of the amplifier; it will not be amplified as much as
the light pulses entering from the antenna. Amplitude discrimimation should thus be
able to eliminate most of the spurious pulses. The remaining advantage of the
laser amplifier is its selective gain: only signals and noise within its narrow

bandwidth will be amplified.
3.5 Coding and Decoding of Optical Channels

Within the limits of available time and manpower it has not been possible to

devote as much attention to the question of coding in optical channels as the subject

93




p———— THE UNIVERSITY OF MICHIGAN

08515-1-F

deserves. The results developed in the last few years for binary symmetric chan-
nels, or more specifically, for classical signals perturbed by white Gaussian
noise, are not directly applicable because of the different statistical characteris-
tics of a quantum-limited channel operating under conditions of less than one photon
per sample,

The cause of the different behavior of the optical channel is of cour se the dis-
crete photon statistics that dominates the detection process at low signal levels.
The nearly complete absence of false-alarm type errors makes it advantageous to
concentrate the signal energy in short pulses rather than to spread it uniformly
over the whole signal interval, which in the classical Gaussian channel is equally
satisfactory.

The optimum pulse length for given average power was discussed in a pre-
vious section. This quantity determines also the bandwidth, since the pulse should
also be a single envelope sample. The remaining problem is to design a code which|
permits the transmission of information with a sufficiently small frequency of
errors.

It may be of interest to consider for background information the performance
of some standard binary codes for classical channels perturbed by white Gaussian
noise, Tables and graphs given by Viterbi (Golomb et al, 1964), show that for
L(SN o= 1:which is the marginal cut-off condition discussed in connection with
(3.61) in the previous section, the error probability decreases very slowly with
increasing code length, from about 0.15 uncoded to about 0. 05 for a length of 210
of an orthogonal or transorthogonal code.

In a quantum-limited channel with negligible background radiation the quan-
tity B in (3.120) and (3. 124) may be expected to play a similar part to L(s)/No .
The numerical examples given subsequent to (3.124) show a much more favorable
situation. With B = 0,06 the overall error frequency is no more than 6. 2 percent
but when a pulse is actually transmitted, the pulse energy over hw is r=1 and the
probability of a miss is 0.368. Considering the last two figures, a rough guess is
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that the convergence in error probability for increasing code length is no better
than the Gaussian channel for L(s)/No =1,

For L(S)/ N =2, the code tables indicate a much better convergence for the
Gaussian channel, and our last example of a quantum-limited channel with r = 2
also seems more promising. We shall come back later and discuss an error-
correcting code for this case.

Slepian's permutation modulation (Slepian, 1965) offers a coding-decoding
principle that is in no way restricted to symmetric channel statistics. We shall
present a modified version of this principle, adapted to a low-duty-cycle off-on
operation.

Consider a sequence of n digit intervals. Fill the first m of them with pulses
so that the desired duty cycle Q = m/n is obtained. All different permutations
of this basic array of digits now cbnstitute the‘ensemble of code words, numbering:

nl.
il ey

Redundancy is introduced by including only words with exactly m pulses

rather than all binary words used with such probabilities that the expected value

of the number of pulses is m. This constraint serves an analogous purpose to the
parity relation in parity codes.

In the absence of background errors, this simple code only detects missing
pulses but cannot correct the errors.

In case of multiphoton pulses and background noise, the receiver first
records the energy or likelihood ratio fdr all the n intervals of a sequence, then
assigns pulses where the m largest values are located. The result is a member of
the code ensemble and can be decoded on an one-to-one basis. This procedure
leads to a maximum-likelihood decoding.

By adding digits in more than one dimension, additional constraints and more

information about the errors can be achieved. If n/m is a reasonably small integer,
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~

a two-dimensional permutation code meay be generated by the matrix shown in
Fig. 3.12. All different permutations of rows and columns form the vocabulary of
the code.

(W n -4
p—— B e—pt— B ——y |— m——
Tl._..lo 0jo0. 0
1_-00 hd ¢

8. .

11...1 .00 0
0... 011~ 110 0
1.

0....041.... 110 0

‘I'o...OO.. Oil 1

Ilo...0fo....0]1 1

FIG. 3.12. Matrix for Two-Dimensional Code.

With no false alarms, such a code corrects a single error which is located at
the intersection of the row and column for which the digit sum is m-1. It detects
the presence of multiple errors, but the intersections cannot unambiguously indicate
the location of the errors in that case.

For a channel with multiphoton pulses and b ackground noise the receiver
constructs two matrices for each sequence and applies the maximum likelihood pro-
cedures to the rows of one and the columns of the other. Lack of coincidence in-
dicates errors. Coincidence should be achieved by erasing one or more of the low-

est 1-digits and insert 1-digits for the same number of zeros with the highest like-
lihood ratio.
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As an example, let us consider the last numerical illustration mentioned
above. Q is rounded off to 0.20; taking the rows and columns of the length 5 digits,
there will be one pulse per row and column, each with a miss probability some-
what smaller than e-2 = 0.135. Then the probability that the whole square will be

received without error is

P(0) =exp(-5 0,135 = 509 .
The probability of one error in a block of 25 digits is

P(1) = 675657 . 0.35 .

After correction of the single errors, on the average 86 percent of the blocks
are rendered correctly, and the code indicates which blocks belong to the 14 per-
cent containing multiple errors. The price paid for this error reduction is a re-
dundancy of ' '

log 5!

1- 262,59
-25 leogQ+(1 -Q)log(1-Q) fo

in comparison with a binary channel with independent digits, selected at random with
the probabilities Q and 1-Q,

If a channel performance on this basis is not acceptable, it is necessary
either to set the sights considerably lower as far as rate of transmissions is con-
cerned, boost the average power, or to develop an asymmetric class of algebraic
codes which permits more flexibility than the simple code discussed above, and
makes it possible to operate with a higher initial error frequency and negligible
errors after decoding. Time and manpower limitations have made it impossible to

devote appreciable effort to this general problem.

3.6 A Theory of Quantum Amplifiers
3.6.1 Introduction

Quantum amplifiers have received considerable attention in the literature,

Shimoda et al (1957) have presented an analysis of the amplification and fluctuations
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of the number of photons. Louisell et al (1961) and Gordon et al (1963a, 1963b)
have studied the amplification and fluctuations of the field amplitudes as well as
the number of photons, and have derived expressions for the praobability distribu-
tions of the field amplitudes at the output, for various forms of input fields.

The present analysis is aimed particularly at the traveling-wave quantum
amplifier, although the model can be easily adapted to other types of amplifiers.
The approach is based on the density operator method. Equations for the density
operator of the electromagnetic radiation are derived and solved. The basic ap-
proximation is that the amplification is assumed to be linear. This means that the
analysis will not be valid if the field becomes strong enough to saturate the gain.
Among the novel features of this study is that the broadening of the energy levels
of the active material is taken into account. This broadening gives the amplifier a
finite bandwidth. |

The motivation for this analysis stems from the possibility of using the am-
plifier in an infrared or optical frequency communication channel. It is known that,
at infrared and optical frequencies, the spontaneous emission noise of the ampli-
fier is relatively large. An important question, therefore, is whether and under
what conditions the use of the amplifier improves the signal detection despite the
spontaneous emission noise, In view of the gain selectivity provided by the narrow
amplification bandwidth, it is expected that the amplifier used in front of the de-
tector will improve the signal-to-noise ratio by reducing the fraction of the incident
noise reaching the detector. Although our main interest is directed toward a
channel based on energy measurements, we do give some consideration to the
amplification and fluctuations of field amplitudes.

The present study of the quantum amplifier is by no means complete. A very
important aspect, namely the nonlinear behavior of the amplifier, has been left

out. This phenomenon will presumably play a significant role in future applications
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of laser amplifiers in communications. I is felt that the preseat approach pro-
vides a promising starting point for further understanding of the nonlinear behavior

of quantum amplifiers.
3.6.2 Formulation of Problem

The physical problem we wish to study can be represented schematically
as in Fig, 3,6,13, Electromagnetic energy carrying information enters the input
of the amplifier. The state of the input field is represented by a density
operator pR(to)

R(t ) NP %TE A~ R
p o) ‘—L.CT' j : » p (tO+T)
1
to t t¥r 6t T

FIG. 36,13 QUANTUM AMPLIFIER SCHEMATIC.

and the state of the output by pR(t°+T). The length of the amplifier is L. The
signal enters at time to and leaves the amplifier at time ;t°+ T. Assuming that
dispersion can be neglected, we shall have

L=cT (3.133)
where c is the speed of light. Knowing the density operator of the signal consti-
tutes as complete a knowledge of the state of the signal as is allowed by quantum
theory. The problem we wish to solve, therefore, is to determine pR(t°+T) in
terms of pR(to) and the characteristics of the amplifier. The latter is an assem-
blage of material particles grouped in atoms or molecules. F“or simplicity, we
shall use the term atoms to denote both. It is assumed that the atoms do not inter-
act with each other, although they may interact with external fields, such as
pumping fields, and with atoms of different species that may be present. In

fact, we do assume that there is a second species of atoms present whose

Hamiltonian will be denoted by HP. This species will be referred to as the
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"perturber.” The first species, whose Hamiltenian will be denoted by
H will be referred to as the active material. Let V° be the nteraction betwesn

the two. This interaction causes the broadening of the levels of HA. Let further-
more, H be the Hamiltonian of the radiation field, and A(r) the vector potential.
Then, the total non-relativisitic Hamiltonian is

2
e e
R _A P c o o g 2,0
= + + - « A
H=H +H +H +V Emcga A(;)+E 24(5), (3.13¢)
o 02mac

where the index o refers to the crth particle, e, and m _ are its charge and mass,
and ;o, Py its position and momentum operators, respectively. The net macro-
scopic charge density is assumed to vanish so that we need consider only trans-
verse fields.

Let now {u.k(r)} be an orthonormal complete set of eigenvectors appropriatel
to the problem. These vectors satisfy the equations

Vg () =0, (3.135)
and
2
Py ) + &
| uk(g)+:2-gk(§) =0, (3.136)
where
W = ck. (3.137)
If, for example, u, are the free space eigenvectors, we shall have

23 ik.r
0, @ = @) h gke"‘ , (3.138)

where the index k is assumed to contain the polarization index as well. In terms

of the eigenvectors Uy the vector potential operator becomes
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1
Ar)=c Z(—:'.’; )/Z {a.kh(r) +a{(u; (z)} (3.139)
k

where a  and a; are the usual annihilation and creation operators, cbeying the

commutation relations

[a.k, ak'] Y (3.140)
and
[‘k’ a.k,] = [al'(. a{,] =0, (3.141)

Procesees in which more than one photon are gimultaneously emitted or absorbed,
or processes in which photons are scattered do not have any importance in laser
amplifiers. Thus, we may dispense with the term éz . The total Hamiltonian

now reads
H:HR+HA+HP+V°+de(ak+a1) , (3.142)
k
where
= to +1
it Zk*“"k(%“k‘“z)' (3.143)
and dk is a particle operator defined by
€y % 1/2
%5-‘;.%(%1-() (Po'sk) . (3.144)

In defining d.k, we have used the dipole approximation and have replaced eﬂ_c—;

by 1. Hence, d.k is the dynamic electric dipole moment operator. Note that it
is the collective dipole moment operator since it contains a summation over all
particles. This summation extends over electrons as well as nuclei. One should
group this sum into partial sums each of them containing the particles of each atom.

Since the atoms are assumed to be uncorrelated, one can write
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N
d = Z ds). (3.145)

je1

wh.ere d.‘(‘j ) is the dipole moment operator of the jth atom. Strictly speaking,
dl((] ) is the projection of the dipole operator on the polarization vector & of the
kth mode.

The problem has thus been reduced,as usual, t> the interaction of an assem-
blage of harmonic oscillators with an assemblage of atoms. As long as mode
coupling does not play a significant role, one can study the amplification of a single
mode without losing much of the physics of the problem. Limiting this treatment to

the case of a single mode, Eqs. 3.142 and 3.143 becomes
g +H +HD + Ve +d (d +a) (3.146)
and
HR=hw(a+a+—;-), (3.147)

where we have dropped the mode subscript k for simplicity. Thus, w denotes the
frequency of the field mode.
3.6.3 Time Evolution of the Density Operator .

Let p(t) be the density operator of the compound system (harmonic oscilla~
tor plus atoms) at time t. At a later time t + 7., the density operator is given
by (see, for example, Margenau and Murphy, 1963)

p(t+r) = Ul plt) UT(r) (3.148)
where U(7) is the time evolution operator of the system and is given by
i

~—Hr
Ulr) = e D . (3.149)

Let us also introduce
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Homw i +uT +v° | (3. 180N
0 = iR+ i (3.151)

and
V md(at+a). (3.152)

Then, the total Hamiltonian becomes
(0] .
H=H +V,. (3.153)

Now, consider the representations {[ n)} and {I B)‘ defined by

at a|n> = n|n>, n=0,1,2 (3.154)
and

B
H |B> =EB

respectively. The eigenstates | n> are the well known photon number operator
eigenstates. The eigenstates | 8> cannot be found easily. What we know is that

18>, (3.155)

the Hamiltonian HA of the active material can be assumed to have two eigen-
states |1> and |2> with energies E1 and E2, respectively, such that
E2 >E K The Hamiltonian HP may consist of several parts. At least one of
them must have a continuous spectrum. Let |p> be its eigenstates. To compute
| B> one must solve the eigenvalue problem (3.155). Of course this requires a
more detailed specification of HP and the interaction Vc. Since we wish to keep
the problem at rather a general level, we shall avoid specifying either HP or V°
any further. Hence, we shall not attempt to solve the eigenvalue problem (3.155)
but we shall only make use of some of the properties that | 8> can be expected to
have. Note that if the interaction V° is sufficiently weak, the eigenstates |B>
can be expressed in terms of the eigenstates of HA and HP'

The density operator p(t) represents the state of the whole system. As the
electromagnetic wave progresses from left to right in Fig, 3.6, 13, it finds it-

self in an environment of new atoms each time. The population of the levels
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of the atems are controlled from outside by means of pumping. Of oourse, this is
true oaly if the field is not so strong as to saturate the amplifier . With this under
standing, the level populations are assumed to be constant throughout the amplifier.
Thea, we may write

olt) = o) 0°(0) , (3.156)
where pR(t) describes the state of the field made at time t and pB(t) describes
the state of the rest of the system at time t. This separation does not imply
that field and atoms are constantly uncoupled. In fact, Equation (3.148) describes
precisely the coupling between the two. Strictly speaking, pB(t) represents the
state of those atoms that have not interacted yet with the field.

Our ultimate goal is to describe the field after amplification. To describe
the field means to be able to compute expectation values of field operators. Let
2 be a field operator. Its expectation value < Q2> is given by

<> =TrQp. (3.157)
Since £, being a field operator, commutes with |8>, Eq. (3.157) can be written

<> = Tr {Q[Trﬂ‘p]} , (3.158)
where Tr 8 indicates that the trace with respect to atomic variables is taken. If
we introduce the reduced density operator (Fano, 1957)

R
p (t)=Tr Bp(t) (3.159)
we shall have
R
<QD>=Trap (t) . (3.160)

Note that this definition of pR is consistent with Eqs. (3. 157) slnce Tr Bp (t) =1,
Thus, our objective now is to determine the time evolution of P (t)
Combining Eqs. (3. 148), (3,156) and (3. 159), we obtain

PR+ = Tr g U 6N(0 00 U (3.161)

This is a field operator. Considering an arbitrary matrix element in the
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n-repregentation we have*
P t+7) = <m [ Teg U 310 A0 UH) 0> (3. 162

Writing out the trace explicitly, and neglecting the off-diagonal matrix elements of
B
p , by invoking the random phase approximation, we have

R
P (t47) = Zé <mB|Ulr)| m B >p7 n pﬁlﬁl(t) <myB |0'] ng>
(3.163)

To proceed further, one needs to calculate the matrix elements of 7).
Recall that . U(T) is given by

e- % (H°+V) T

and that H° is diagonal in the representation {I n‘> | ﬁ>}. The matrix elements
of U(T) in this representation can be conveniently calculated by means of damping
theory. As discussed by Akcasu (1963) or Messiah (1964), the diagonal matrix ele-

ments are given by

-ilmw+w 8 - )T
<mplu)| mg>=e B mf " mf (3.164)
and the off-diagonal matrix elements by
<mg |[UN]mB'> » <mp|VImp>
|
T
J dt &mp | U(T-t) |mp> <m'B'|Ut)| m'B'> (3.165)
0
where SmB, [ B and wg are defined by
2
ﬁ mB—Emva)

(3.166)
*The Dirac ket and the subscript notations will be used interchangeably throughout.
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[ .= =% Z < 1V m@ " $(E_ - E ar) (3.167)
mB m'B'*mB ‘B mﬂ
and
g
Uﬁ- 5 . (3.168)
In the present problem, the diagonal matrix elements of V vanish. Thus S B
becomes
. 2
smB=P Z '§’(‘P‘:3J_v Imﬁ)' (3.169)
mEPmg * mp Fmp

where IP indicates the Cauchy principal value. It is essential to keep in mind
that both S and [ are quadratic in V,

Having found expressions for the matrix elements of U(7) , we mnow consider
Eq.(3.163). The terms resulting from combining diagonal matrix elements of U(T)
with off-diagonal matrix elements of U+(T ) , and vice-versa, do not make any con-
tribution of interest. This is easily seen after a straightforward calculation of these
terms. Thus, Eq. (3.163) becomes

plfn(u T) = pzn(t) 2. <mB |u(T) | mp> pr< ng | tn > +
| P (3. 170)r
£ D o ® ) <mBl UM [myB,> P 5, <m | v ") [n8>
m m 172 BB
where the prime on the summation symboi indicates that equal values of the dummy
indices are to be excluded. To simplify writing somewhat, we introduce the symbols

By m Y <mB|U(T) |mB >p§B<n3|U+<-r>l 8>,  (3.17)
B

and
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mn
o 2(7)-% <mp| U |lm B> o B<m231 10N | 08> .
1 (3.172)

In terms of these quantities Eq.(3.170becomes

Roemn ()

mem m m

pm‘fn«m = o® (©)a™r) +
mn mm, 12 172

(3.173)
Nothing has been said about the time interval, r thus far. In fact, due to the per-
turbation calculation we have used (damping theory is indeed a perturbative approach
which, however, takes into account the decay of the initial state), T cannot be made
arbitrarily large. It is to be understood as macroscopically small but large com-
pared to characteristic times of atomic processes. This time interval will be used
to calculate events per unit time and then develop a differential equation for pzn(t) .
This is the subject of the following section.

3.6.4 Differential Equation for the Matrix Elements of pR

The calculation of A" (7) and anm (1) is rather lengthy but straightfor-

ward. The result is 12
Ay v
APr) = o l(m-nloT 5B g "up” (3.174)
5 fep°
where we have introduced
=S -i[ (3.175)
Tmg™ "mp " mp
From the term containing Cl:lnm ,itturns out that only the terms ﬁor(m1=m+1, m2=n+1)

1 2

and (m1 =m-1, m, ®# n-1) do not vanish. Thus, the following equation is obtained:

2

%
R -i (m- R B Vg g)"
pmn(t+ T)=e ! m-njw7 [pmn(t) EB: pBB e mf ‘np

9 (¥
+ Jm+ )@ t) 'p( NG Z o, B1|DBB1I JBBI(T)

i1n"n
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R 2 )
+JE§E‘ p(m-l)(n-l)(t) é pBlﬁl lDBﬁll Jml(f)] (3.176)
1
where the quantites J(t) are defined by
-y -y )T
(4) mp b
JaoMme
A 1

{ -i(f“’*"ggl"ms%tl)ﬁl)>71} J 1<*“’ Bg nB +1)Bl) 1}
e - -

4 - - -
%8s, Yxnff"’ml)f;l) (1o v *nB”(nﬂ)Bl)

(3.177)

For r sufficiently small, the exponential in the first term of the right side of
Eq.(3.176) can be expanded in a series and the first two terms be retained. Re-
call that vy is quadratic in V and hence quadratic in D. This means that by retain-
ing only the first two terms, we limit the expansion to second-order perturbation
theory. Now taking

R R
+7) -
i R p (t+7)-p n(t)

~ mn
5 P - , (3.178)

we obtain the following differential equation:

d R R B *
'&?pmn(t) = pmn(t) [-i(m-n)w-i gpﬁp(”mﬁ -vnﬁ)] +

i m

BB
+ Jm+1)(n+1) p 1)(n+1) Z Py y ‘DBB |2 N

T

(-)
2 ’gg,

T

(M

R ' B
+mn’ o (t) Z p 'D l
(m-1)(n-1) B.B. I BB
‘ Bﬁl 1”1 1
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(+)
J -
8B,
The quantities —— are to be interpreted as independent of .

To proceed further, one must compute the summations over f and Bl . Thisinturn
implies that the eigenstates and the spectrum of HB = HA + Hp +V® mustbe found. Of

|course this problem canbe solved by, for example, using damping theory again. Howeveq
we do not know ve and Hp, andwe donotwish to specify them. Thus, we resortto

another alternative.
Recall that HA represents a two-level system. I the coupling v° is turned off,

that is, if thelevels of HA are notbroadened, the summations over 8 and Bl simply re-

uce to summations over the twolevels. Also, p?B would then assume the values p22

d 91131 representing the fractional populations of the upper and lower levels, respec-
ively. The couplingto the ﬁe/rturbing mechanism causes the levels of HA to be slightly
hifted from their previous values. This shift andbroadening are statistical in nature.

oughly speaking, one may say that the two-level atoms can nowbe found to have energies
djacent to the previously sharplevels. We may then use the following formula: Replace

e summation over f by

Z
> | o Ww,w)de , (3.180)
0 I R

where ﬁwz = E2 and ‘ﬁwl =E 1 are the unbroadened levels of HA The function

oj(w',wj) is assumed to be sharply peaked at wj so that, although the integration

can be extended to infinity formally, the main contribution comes from a small

frequency interval around w,. The above is to be used as follows: Consider, for

J

example, an expression of the form

' B 2
2. p ]D l Fw_,w, ) (3.181)
88, BBy | BBl BB A
where F(w_,w, ) is some function of w,and w, . This expression will be
B8, B %™ B,
replaced by
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r
j oz(wv‘ wz) 01 (U", wl) F(w', w'") dw' dw" +

2 " "
1 D21 J'fol(w',wl) 9, (w ,wz) F(w', w") dw'dw" , (3.182)
A

where pi and p are the fractional populations of the upper and iower levels

11

of the active material, and D_. is the usual dipole moment matrix element. In

21 B_ AP P
writing this expression we have assumed that p =p p and p has been ab-

sorbed in the function o,. Indeed these functions depend on the state of the per-

J
turbing mechanism and the nature of interaction between HA and Hp' In our

case, the validity of the approximation involved in replacing (3.181) by (3.182)
is enhanced further by the fact that the functions F(w_, w, ) we shall encounter

g B
are themselves peaked functions of w, and w, . This lapproximation does not

solve the problem of finding | B> butB simply glll.lfts it. Nevertheless, this enables
us to reach some conclusions without knowing the functions oj explicitly. To
determine these functions, however, one has no other alternative than solving the
eigenvalue problem.

We now use this procedure to compute the summations over B and Bl in

Eq. (3.179). First, we take up the quantity

. B *

i % pBB ('ymB - 'ynB) .
The real and imaginary parts of 'ymB are given by Eq. (3.169) and (3.167) ,
respectively. A somewhat lengthy' calculation in which use of the peaked charac-

ter of oj is made, gives the following result:

. B X, _ * *
i %‘pﬁﬁ (Y~ = [(mtDK" @) +m+D K @] +e, [mK(w) +nK W) e

»
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where
A g 2
c=o [0, [°8 . -1z (3.184
i =P l 21 . )
bJaZrcg(ww)-Zxﬁ Py ‘D21'2g(ww) (3. 185)
Kw) = rglw, wo) +1if(w, wo) , (3. 186)
g(w,wo) = fol(w',ul)oz (w+w', wz) dw' (3.187)
o, (w W, )cr (wr, wl)
flw, w ) = f dw'dw', (3.188)
W +w-w"
and
E.-E
w 21 (3. 189)
0 :
' . . (D) ()
Next we consider the terms involving J ~' . Note that J ~ contains v's

in the exponentials as well as in the denominators. However, the terms containing

5

also contain the factor

D Bﬁllz . Since the y's are themselves quadratic in

D, we should retain only terms of second order in D, if our approximation scheme
is to be consistent. Thus we replace all v's by zero. The resulting expression is
substituted into Eq. (3.179) and the summations are then performed. Use of the

peaked character of the functions oj is again made. The result is

(+)

(1)
2BB

- 276 |D gw)=b  (3.190a)

21| p11

25y 8, P8, [ ——

BB,

5
BB (m)

9 -

ZpBB

oK 2 'D |2 pA glw,w)=b
21 22 0
BB,

(3.190b)
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The quantities b, and b, are as defined in Eq. (3.185).

Combining now these results with Eq. (3.179), we have

d R R
Ty pmn(t) = -1(m-n)upmn(t) -

- {cz [om 1) K0+t DKW | + ¢, (mEK(w) + nx‘m)} oy (8

R R
+ by [me gt thy \l(m+1)(n+1)p(m ' (3.191)

This differential equation describes the time evolution of the state of the field mode.
The parameters appearing in this equation have been expressed in terms of the pop-
ulations of the energy levels of the active material, the coupling constant D and the
functions glw, wo) and f(w, wo). One can easily see that these functions are peaked about
wo. The function glw, wo) is tobe identified with the spectrum of spontaneous
emission from | 2 > to |1>. If one assumes that the levels of the active
material are sharply defined (i. e. ignore broadening), then oj would be a delta

function; i. e.
oj(w',wj) = Jw —wj) , j=1,2, (3.192)

One can then easily verify that

glw, wo) = é(w—wo) , (3.193a)
and
fww)s P L (3.193b)
(0] U—wo

If one starts with two sharply defined energy levels and proceeds as we did, the
summations over B, Bl can be carried out rigorously and no need for introducing
the functions Uj exists. Then one finds the results given by Eqs. (3.193a,b).
This shows that the procedure we used to perform the summations is self-consis-

tent since it gives the correct results in this limiting case.
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All matrix elements of the density opem tor pR ovbey Eq. (3.191). For the
diagonal matrix elements, however, this equation assumes a simpler form. In-

deed, if we take m = n and observe that

cj(K +KY = b, . j=1,2, (3.194)
we obtain
d R R R
dat pmm(t) T [bz (m+1) +b1m} pmm(t) +me p(m~-1)(m~-1)(t) ¥
F b (mt1) o () (3. 155)
1 (m+1)(m+1) : o

This is essentially the equation that Shimoda et al (1957) have obtained on the basis
of probabilistic arguments. Here, we have generalized the results of these authors
in two respects: we have obtained equations for the off-diagonal matrix elements
as well, and we have accounted for broadening so that the amplifier has a finite
amplification bandwidth. The off-diagonal matrix elements of pR are necessary
in the study of the amplification of the field amplitudes. This aspect has been
studied by Louisell et al (1961) and by Gordon et al (1963a, 1963b). The present
work differs in the approach and in that we have accounted for broadening. The
results of the above references are recaptured if the functions Gj are replaced by
delta functions.

3.6.5 Solution of the Differential Equa tion

The equation for the diagonal matrix elements of pR has been solved by
Shimoda et ai (1957). The method they used was to introduce an appropriate gen-
arating function, develop a partial differential equation for it and solve the equation.
Here, we solve the general equation for arbitrary matrix elements. Due to the
different form of the equation the method of the above authors cannot be used
directly.

First we observe that according to Eq. (3.191), the (m, n) matrix element
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is coupled to the (m+1, n+l1) and (m-1, n-1) matrix elements only. Let us consider th#
subset of matrix elements for which m-n={ has a given value. Byletting £ varyfrom
- to + , over the integers, we obtain the totality of the matrix elements of pR. We
observe, furthermore, that the matrix elements of a subset with a given £ are coupled to

each other and not to matrix elements belonging to any other subset. Thus, letus set

m=n+! . (3. 196)
Substituting this into Eq. (3.19) we obtain

d R R R
Tt P = -atede W+ by {(n#)n Patt-1n-n'? ¥

R
+ b1 ,l(n+1+1) (n+1) Pln+1+1) (n+1) (t) (3.197)

where
ba= b2 +b1 (3.198a)
¢ ;—,b2 + 1, | (3. 198b)
Y= g- +iv) 4 (3. 198c¢)
and
vsw—(cz—cl)ImK=w-(cz—cl)f(w.uo). (3.198d)

These new parameters have been defined for the sake of reducing the equation to
as simple a form as possible.

Now, we introduce a new set of functions an(t) defined by

F (=0 (1 ’E‘L (3. 199)
mn mn n.

and substitute into Eq. (3.197). We obtain

()

d g W ()b (m+1)

- (R)
5 m(t) = - (bm +c) Fm (t) +b2 (m+L)F Fm+1

(t) (3.200)
m

0

1
where we have changed the notation slightly. That is, we have written Fm

(t)

instead of F( (t) . The advantage of transformation (3. 199) is that it has

mH)m
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removed the square roots and has reduced the equation to a form very similar to
the one obeyed by the diagonal matrix elements. We may now proceed by using the
technique that Shimoda et al (1957) have used.

L
Let us introduce a generating function R( )(x, t) defined by

(0 0]
R 1) = > F) . (3.201)

m
m=0

We have a family of differential equations and a corresponding family of generat-
ing functions parametrized by £. Again, for £ = 0 we obtain the generating function
of Shimoda et al (1957). Since the parameter £ is contained in the coefficients of
the equations, we shall drop it from here on. Taking now the partial derivative

of R(x, t) with respect to time, and using Eq. (68) we obtain

JdR oR
ot +(1-x)(b2x—b1) -5;+(c-ax)R=0, (3.202)

where we have introduced
a= b2 (L+1).

Note that for £ =0, wehavea=c=b The program now is to solve Eq. (3.202),

9 -
express the solution as a series of powers of x, identify the coefficients with Fm(t)

R
and then determine p(m + I)m(t) from the equation

R _ m!
p(mﬂ)m(t) = Fm(t),, —r (3.204)

R
The initial condition will be a given set of matrix elements pmn(O) and hence a
known set of numbers F  (0) .
mn -
To solve Eq. (3.202) we consider the equivalent system of ordinary differen-
tial equations

dx dR

-0 (bx-b)) =dt= ——5% - (3.205)
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Introducing
y= L (3. 206)
1-x ,
the first equation gives
Y, k-
5t " -y, (3.207)
where k is defined by
by -®
k= ——2—— . (3208)
The solution of Eq. (3.207) is
yi =y e +x, (3.200)
where we have introduced } |
A= -112- = b2 (3.210)
2k 52 -b; - ’

Considering now the second differential equation and using the above expression for

y(t), one can solve for R(x,t). The result is

-ivit 4 - 2+
ivet tkt o 2kt+Yo) 1

R(x,t)=Ce (3.211)

where C is the constant of integration.
Let now p:m(O) be the matrix elements of the density operator of the field

mode at t = 0. These are assumed to be known. Then, from Eq. (3.199) we have

_ ,(m+l)!
Fm(O) = P(m_'_l)m(()) , (3.212)

and the initial value of R(x,t) is

R = iﬁ F (0x" . (3.213)
0o m (o]

m=0

Setting t =0 in Eq. (3.211) and using Eq. (3.213) we find
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c=(yo+x)'u+” nﬁ F_(0)x " (3.214)

which determines the constant of integration. Substituting into Eq. (3.211), we havq

2 m\ k-t yo+k G-Zkt t
R(x,t) = (Z Fm(O) Xo ) e W > . (3.215)
m=o o
Now introduce the quantity
G= e2kt , (3.216)
in terms of which Eq. (3.209) becomes
y=y0G+7L . (3.217
Solving for y, we have
- _
yo—a(y-k). (3.218)
Using this relation and the fact that
1
x =l-=~, (3.219)
Yo
we obtain
-+
x = Y- +G) (3.220)
o y-A
Recalling the definition of y (see Eq. (3. 206)), we have
_1-(+GN1-x)
Simiarly, using Eqs. (3.216), (3,217) and (3. 206), we obtain
y ax oKt
° 1
= . (3.222)
y *tA 1+X (G-1)X(1-x)

(0]

It will prove to be more convenient to write Eqs. (3.221) and (3. 222) as follows:
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__G*A
G+ -1 Gtr -1 "
T Tx-T A
X-1°%
and
-2kt
+
Yo re - 1 1
yo+X 1+x(G-1) . 2 (G-1)
1+x(G-D
To compress notation, introduce the parameters
G+x -1
§= X1 :

"=emor

and

Also, note that

X 1-nx
0 by
1- —x
bl
and
y +le-2kt
0 _ M
y tA T l-zx
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Substituting into Eq. (3.215), we obtain the solution of the partial differential equa-

tion, namely

k-t m m/ P2\ !
(1-zx)

m=o0 1

To express this as a power series in x, we use the identities

n !
(1-a)= 3 (1" e’ (3.229)
£ ! '
and
@
- (n-1+q)!
(1-)" = q;; -(—5-—2_1 !qq! al . (3.230)

Then, Eq. (3.228) becomes

L+1 Lk-iv)t
e

R(x,t) = u
® ® j
S5 f §<-1>’F (0) €™ _bﬁ) R
m=0 r=o j=o =0 1
m! (m-1+j)! (t+Q! r+j+q
rt (m-r)! (m-1! 52 Q! X : (3.231)
Settingnow r+j+q=M, (3.232)
Eq. (3.231) becomes
R(x, ) = MH 1 el(k-iv)t
[40) ® mHHq _ gy
i g: (-nyMIa F_(0g™ M
j=0 gq=0 m=0 Ma=j+q
<12>J q m! (m-1+j)! (£+q)! M
°) (M-j-q)! (m-M++q)'(m-1)! §' £' q!
(3.233)
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Considering the coefficient of a specific power xM and using Eq. (3.204), we
obtain the final result

R (t):(_)M M!  £+]1 Kk-ivit
PM+0)M AR N7y ) T

praf P2V 2
Z_J p( epl0E D <rb1) Er

mso =0 q=0

J (m+£)! m! (m-1+j)! (L+q)!

, (3.234)
(m-1)! 2! (M-j—q)! (m+j+q-M)! j! q'
or in a slightly different form
R ® = ( )M M! 441 Mk-iv)t
°a+pmt = 1 \JWTIF e
© .
R m j(mﬂ)!m!
I;,) Omiom® 5 ot (3.235)

itq (m-1H)! (t+q)!
(1) ( )( ) (M-j-q)! (mH+q-M)'j! q!

Although the summations extend formally from zero to infinity, in fact they are
limited by the requirement that none of the factorials be negative. This restriction
stems from the initial equation (3. 231).

Letting £=0 in Eq. (3.235), we obtain the solution for the diagonal ma trix
elements, that is,

R _ M R m m!
pMM(t) =(-n)" wu f Pmm(O)E -1t

m=0

j+q ) (m-1+j)!
ZZ( D ( )q(M_j_q)! Ry - (8230

j=o g=o
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This still is not the Shimoda et al (1857) result. These authors assume that the
field mode has a precise number of photons in the initial state. This implies that

L (3. 237}
mm mm,
where m is the initial number of photons. Therefore, by deleting the summation
over m in Eq. (3.236) and replacing m by m , we obtain a result equivalent to
that of Shimoda et al (1957). Note that all parameters appearing in Eq. (3.235) and
(3.236) depend on the two parameters G and A. The second characterizes the
population inversion of the active material. Quite often a maser-laser temperature
is introduced in order to characterize the population inversion. This temperature
T_ is defined by
m
by Jﬁwb/kT‘
< = e m

By

(3.238)

and is negative for an active material (here k is Boltzmann's constant and should
not be confused with the same symbol appearing in previous equations). In terms
of this negative temperature one has

>
"

%o TKT (3.239)
m

1-e °
The other parameter G will be shown to be the gain of the amplifier.

3.6.6 Amplification of the Field Amplitudes
Although our central interest in this study is the amplification of the energy

(or number of quani:a), we shall discuss somewhat the amplification of the field amplit
tudes since this aspect sheds some light on the properties of quantum amplifiers.
Moreover, it is not necessary that laser communication channels be confined to
energy measurements only.

The field amplitude operators are given by
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+
q= “% (a +a) ’ (3'24()&,
and
+
pe 1,{%" (a -, (3.2400)
It is more convenient to introduce the dimensionless hermitian operators
+
Q&a +a, (3.241a)
and
+
P=ila -a), (3.241b)

which are related to q and p through the equations

_ h _ hw
q=Q 5o ‘and p=P 5 - (3.242)

+ + +
Letnow < a (t)> = Tr { pR(t)a } be the expectation value of a = The
matrix elements of a' are given by
+
= +
<n |a|m>= Jm S mtl - (3.243)

Using this relation we obtain

[00)
2 <> - {Tr ,;R(t)a+} = St ofmi L (3280

m(m+1)
m=o0
From Eq. (3.90) we find

9 R R b R R
t pm(m+1)(t) =1 pm(mﬂ)(t) B (b2+2— ) pm(m+1)(t) —bmpm(mﬂ)(t) ¥

R R
*b, ,’m(m‘rl)p(m_l)m(t) *b, ,(m+l)(m+2) ? (m+1)(m +2)(t) . (3.245)

Combining this with Eq. (3.244) and after some rearrangement and simplification,
we obtain
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52— <a' > = &t <a ) > | (3.246)

where k and v have been defined in Eq. (3.208) and (3.198d). Evidently, the solu-
tion of Eq. (3.246) is

(k+Hy)t
b}

<al)> = <> e (3. 247)

where < a+(0)> is the expectation value at the initial time which, for our purp0381
is the time zero at which the signal enters the input. The time that the signal spends
inside the amplifier is related to the length of the amplifier through Eq. (3.133) .

Taking now the complex conjugate of Eq. (3.247), we obtain the solution for
<alt)> , namely,

Cal) > = <al0)> KTV (3.248)

Combining the last two equations, we have

< Q>

]

[< Q0> cos vt + <P(O)>simut] e, (3.2498)

< P(t)>

"

[-< Qo> stnvt + < PO>cosvt] e . (3.245b)

The corresponding equations for the oscillator coordinates q and p are:

<qlt)> [< q(0)> cosvt + :l)_ <pl0)>- sinvt] ot (3.250a)

< plt)>

[-w < q(0)> sinvt + <pl0)> cos vt] ekt . (3. 250b)

These equations are similar to those obtained by Louisell et al (1961). They
|differ slightly because here we have accounted for a shift in the oscillator frequency
which will be discussed later. The equations of Louisell et al (1961) are obtained

if we replace v by w, which is equivalent to neglecting the shift represented by

Cy = ¢y ImK (see Eq. (3.198d). The exponential represents the gain which increases

xponentially with the difference (bz-b 1) and the time that the signal travels inside
e amplifier. Note that ekt is the square root of G which is defined by Eq. (3.216),
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The field coordinates increase as the square root of G. Of course the gain is larger)

than unity only if the upper level is more populated than the lower i.e. ifb. >b L°

2
This is understood to be the case throughout this treatment.

».6.7 Amplirication of the Energy

The energy of the field mode is directly proportional to the number of photon:su
present. Thus, we shall study the amplification of the number of photons. The
rhoton number operator is a a. If we denote by f(t) the averags number of phctons

at time t we shall have

()= <a(Dal)> . (3.251)

The expected value of the energy then is fwf(t!. To find an equation for f(t), we

+
proceed exactly as we did for < a (t)> . In the present case only diagonal matrix
elements of pR need be considered since the representation {m >} by definition

+
diagonalizes a a. Thus, we obtain the equation

d
—_— = +
5t f(t) = 2Kkf(t) b2 , (3. 252)
which has the solution
b, b
fit) = (f(O) + P fb ) e“Zkt - -E—_z—b- ) (3.253)
2 1 2 1
A more convenient form is
f(t) = GF(0) +(G-1)x , (3.254)

where X\ and G are as defined by Egs. {3.210) and (3.216). The quantity A charac-
T we shall

have A > 1. The equality is attained under complete inversion. To have the maxi-

terizes the population inversion. For active materials, thatis for b2> b

mum possible amplification, we would desire this extreme case. For very large gain,

i.e. for G>>1, f(t) can be approximated by

f(t) = G(f(0) + 1 ) . (3.255)
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This shows that there will be an output even when the number of input photons f(0)
is zero. Clearly this is due to spontaneous emission.

3.6.8 Fluctuations of the Field Amplitudes.

In a previous section, the expected values of the field amplitudes were ex-
pressed in terms of the expected values at the input, and the gain. The outcomes of
measurements of these amplitudes at the output will fluctuate about the expected
values. It is desirable, therefore to have a quantitative estimate of these ﬂuctuationa
upon which one can base a criterion for the usefulness of the amplifier. A rather

conventional measure of the fluctuations is given by the quantity

2
& = <892 (3. 256)
<Q>
where(AQ2> = <Q2> - <Q >2 . (3.257)

A similar quantity ﬁzp measures the fluctuations of P. Let us now calculate
<Q@W> and <PXH>

From the definition of Q, we have

Q2 = a+aJr +aa+t 2a+a +1, (3.258)
from which we obtain
2 + .+
<Q%(t) > = <a(ta (t) D> + alt)alt)> + 2f(t)+1 . (3.259)
Observing that
+ o+ K
ZaWalt)> = <al(tha (t)> (3.260)

+ .+
we conclude that we only need to calculate the quantity <a (t)a (t)> . Using
Eq. (3.243) we obtain

Y

<a'Wa'w> = Trfaa’o 0f = S ok @ JmimeY, (260
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from which we have

®
d aa'> = S 4 R \ '
oy <a (ta (£)> = 2. St pm(m+2)(t) (m+1)(m+2) . (3.262)

Now, we make use of the differential equation (3. 191) for the matrix elements of
R
p . After some straightforward algebraic manipulations, we obtain

d—t‘i <a'Wa'®>=2k+v)ca Ba @®> (3. 263)

which has the solution

<a'a'w> = <a(0aT (0> 2KV (3. 264)
From this and Eq. (3.260) we have
<alalw> = <a(0)alop> 2 (3. 265)
Now Eq. (3.259) becomes
< ¥ > = 26<a’0)a’ ) > cos 2wt +
+ 2G<a+(0)a+(0) >(i) sin 2vt +
+2Gf(0)+2(G-1)A +1, (3.266)

where we have used Eq. (3.254). The superscripts (r) and (i) indicate the real and
imaginary parts, respectively, of the quantity they qualify. Using the same proce-
dure to compute < Pz(t) >, we find

<P)> = -26<a (a0 > cos2vt -
-26<a 02 0> gin 2t +

+2Gf(0) +2(G-1)a +1. (3.267
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Taking the squares of Eqs. (3.249) we have

<Qlt)> 2, G<Q(0)>2 cosZvt + G< P(0) D2 lin2 vt+G<Q0)><P(0)> sin2vt,
(3.268a)
and
<P(t) >2, G< Q(O)>2 sinzvt + G <P0) >2 coszvt-G<Q(0)> <P(0)>sin2vt .
(3.268b)
To study the fluctuations of the field amplitudes, it suffices to consider the
average values and derivatives at a particular time. In fact, this time should be
the time T at which the signal leaves the amplifier. Thereafter, the signal will
be free and evolve like a free harmonic oscillator. The phase of the output depends
on the phase of the input and the length of the amplifier. Since we are not inter-
ested in the phase of the signal at this stage, we may assume that the time T that
the signal spends inside the implifier is givenby T = M 3;; , where M is alarge
integer. This assumption simplifies the equations somewhat without affecting the

conclusions concerning the statistics of the amplitudes. The equations thus becomg

(r)

<QAD> = 26< a (0)a'(0) > +2680) +2(G-1) A +1, (3. 269a)
<PAO> = -26< a (a0 D™ +26H0) + 2G-1) A +1, (3. 26%b)
<an>2 = c<qo) >, (3. 270a)
<p>2 = G<po)>? (3. 270b)
Using the definitions of Q and P one can easily show that
2<a'(0a"(0) > < L [<d0)> - <PP0>] (3.271a)
and
% (<Q2(0)> + <P2(0)>] = 2f(0)+1 . (3.271b)
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+ .+ (r) ,
By virtue of these relations, the quantity 2 <a (0)a (0) > can be eliminated
from Eqgs. (3.269a,b) which become

G< Qz(())> +(2x -1D{G-1), (3.272a)

2, <
<Q (>
and

< P2(t)> G < P2(0)> +(2x -1(G-1) . (3.272b)

Combining these equations with Eqs. {3.270a,b) and (3. 256), we obtain

<A Q%> = 6<AaQiO> + (2 -1G-D, (3.273a)
<aPAH> = GAPAO> + (@ -1G-1), (3. 273b)

and therefore

2 2 2A-1 G
E = € +
Q R <Q(0)>2
2 2 2 -1 (G-l )

= + ) (3.274b)
&P ip < P(0)>2 G )

Recalling the definition of A (see Eq. (3.210), we have

(3.274a)

-1
G ?

+
b2 bl

2 - 1=

(3.275)

by by

For active materials we shall have 2X - 1> 1, the equality occurring when the

' 2
lower level is empty. The quantities fé and ép characterize the amplifier noise
referring to measurements of Q and P, respectively. The quantities fé and

2
CP refer to the input signal. The other terms depend on the parameters of the
0

device, and the input field amplitudes. They decrease as the field amplitudes
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at the input increase. These terms are due to spontaneous emission. This follows
from the fact that they are present evem when the gain of the amplifier is unity,
that is, when b2 - b1 = 0; and, on the other hand, they vanish for b2 = 0. To see
this, one recalls that
(b.,-b.)
Geo 2 1

Then it follows that

. G-1) _
4o {‘”“”‘c“} -mt, (3.276)
and this vanishes for b2 =0,

For large gain (G>>1), Equs. (3.274a,b) can be approximated by

&£ x € 4 _2"'1_2 , (3.277a)
e D <quo)>
5‘:‘, = &i + —2"—-112 (3.27M)
o <P(0)>
It should be noted that large gain does not imply b2 >> b1 and, therefore,

even for large gain (2X -1) will not be equal to unity, in general. The relative
values of b2 and b 1 are determined by the physical properties of the active
material, while the gain can be made as large as desired by increasing the length
of the amplifier. From Egs. (3.274a,b) we conclude that the quantum mechanical
fluctuations at the input (which depend on the state of the input signal) go through
the amplification process unchanged. In addition, one has the spontaneous emission
noise whose relative importance decreases as the field amplitude. of the input signal
increases. The terms é and é are due to what one might call quantum
noise. They are a manifesgation of th: fact that a quantum variable cannot be deter-
mined precisely unless the system is in an eigenstate of the variable in question.
The other tem s in Eqs. (3.274a.b) are due to the internal noise of the amplifier

that is spontaneous emission. The quantum amplifier, therefore, does not change
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the quantum noise of the signal. It only adds to it the noise of spontaneous emis-
sion. Recalling the relationship between (Q, P) and (q,p), we can write
Eqs. (3.274a,b) in the form

62 = &2 + —5—@12—2- (2x -1) %1— , (3.278a)
q Q9  wql0) >

and
2 2 Aiw/2 G-1 n
£ = £ +—=(@-1)(—7=) . (3.2780)
p P, <p(0)>2 ( G>

Again, the quantities 8(21 and 5(21 are dimensionless. The above equations
indicate that the effect of internal noise on a measurement of q, for example,
decreases as w2< q(0) >2 increases in comparison to fw/2 , and similarly for p.
The significant conclusion is that the effect of spontaneous emission noise is deter-
mined primarily by the state of the signal at the input. To see it more clearly,
note that for b 1" 0 and large gain one may replace the quantity (2x-1) %—l by 1.
Then, it follows that the effect of spontaneous emission noise on the output signal
increases as the average value of the input signal decreases. This is reminiscent

of Gordon's (1962) conclusion about energy measurements.

3.6.9 Application to a Special Case.

Let us consider now the case in which the input signal is in a pure coherent
state in the Glauber (1963) sense. Such a state is represented by |a > and is
defined by a 1 @> = a |a> . Then we shall have

<Q0)> = 2Rea, {P(0)>=2Ima. (3.279)
It is straightforward to show that

<QX0)> = 4(Real +1

and

< P2(0)> = 4 (Im 0)2 +1,

Consequently < AQ2(O)> = <A P2(0)> =1, (3.280)
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Then Egs. (3.273a,b) give

AQAYD> =< aAPYY> = G+(@A-1)G-1) . (3.281)

The uncertainties associated with P and Q are equal because this is a property of
the coherent state. And the amplifier preserves this property.

If we consider the limiting case in whichA =1 and G >> 1, and transform to
q and p, we find

(3.282a)

R

€IR €I

<A

(»]

<A pz(t)> = —G . (3.282b)

Thus, we recapture the results of Louisell et al (1861) as a special case of a more

general set of equations.

3.6.10 Fluctuations of the Number of Photons

The second moment of the distribution of the number of photons is given by
+ +
<aaaa> . Tocompute this expectation value one proceeds as in the previous
sections. Thus, a differential equation is obtained whose solution is

<a'Walba (Bal)> = \:<a+(0) a(0)a (0)a(0)> -

b, (b, ) b B, +b
2 2 1 2 2 "1\ | 42
" b,b,)? +(f(0)+b-b)( b-blﬂc’ )

21 270 2
b 3, +b b.(b.+b,)
-(f(0)+ 2b > ( b2 b1> G+ _2__2___15 , | (3.283)
by-by )\ by-b, (b.-b.)
27
Let us introduce now the quantity
A =<a®Wa®a®al®> -4,  (3.284)

which is the variance of the photon probability distribution. We shall calcul ate this
quantity for the case G>> 1, Then one obtains the simpler result
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20 . 2 | a2 by *b, bg
Af(t) =G [A (0) + bz “bl f(0) + zs’z'_—b;ﬂ} (3.285)

where only leading terns have been kept. For a more exact calculation, one wiil
have to use all terms in Eq. (3.283).

The term A!z (0) is the variance at the input and depends on the initial state
of the field mode. The remaining terms are minimized for b1 =0 (i.e. when the
lower level is empty) but never become zero. For the ideal amplifier (i.e.,

b1 = 0), we have
af = & af(0) + & (t0) +1) . (3.280)

Let us introduce the quantity

2 AP

= —p ’
B A
and denote by f? its value at t=0. From Eq. (3.255) we have f(t) = G(f(0)+1)
0

ld (3.287)

under the assumption that G>>1 and the lower level is empty, in which case
A =1,

Then we have

AF(0) 1

2 v
6f- (f(0)+1)2 t o T (3.288)

If the input signal is in an energy eigenstate, then Afz (0) = 0, and we obtain

2 1
f’f T o)+ 1

(3.289)
This is due to spontaneous emission and it decreases as the number of input photong
increases. Of course, this is valid under the assumption that the input was in an
energy eigenstate. Such an eigenstate is not realizable in the form of a propagating
signal. Thus, one will always have a finite Af2 (0) in most practical situations

and it is Eq. (3.288) that is applicable.
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3.6.11 Gain Selectivity of Quantum Amplifiers .
The analysis up to this point has shown that the amplifier gain is an expon-
ential function of k(w) and k(w) is directly proportional to the line-shape function

gw,wy). Usually, glw, wo) is a function of frequency more or less peaked about
W A rather typical example is a Lorentzian centered at wo. This gives the am-
plifier a finite amplification bandwidth. In addition, the gain has a certain shape
depending on the function glw, wo). The amplifier will exhibit, therefore, a certain
gain selectivity, and the question we attempt to answer in this section is whether or
not this selectivity can be used to improve the signal-to-noise ratio at the detector.
Specifically, we shall consider the following situation: A signal with power
spectral density fis(w) enters the input of the amplifier. Noise with power spectral
density fin(w) accompanies the signal. These power spectral densities are here
understood to represent number of photons per unit frequency. The output signal
will be detected by a detector assumed to have a bandwidth Aw. For simplicity, its
quantum efficiency is taken to be unity over the whole bandwidth Aw. We now wish
to compare the signal-to-noise ratio at the input with the signal -to-noise ratio at the
output.

The signal power spectral density f(w) in photons per cycle is assumed to be
appreciable only inside a bandwidth §w and negligible otherwise. The bandwidth &
is assumed to be smaller than Aw. One can easily convince oneself that if this is
not the case, the preamplifier will reduce the signal-to-noise ratio because of its
spontaneous emission noise.

Let us consider the input conditions first. The total input signal power is

SWw
+ =
wo 2 dw
S, = J f (w) =— (3.290)
i is 2n
w - v
o 2

*vhere wo denotes the carrier frequency which is assumed to coincide with the

fransition frequency of the two-level active material. The total added (external)
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noise power at the input is

Aw

+ =

o 2
N® a £ X (3.291)

i Aw 'in 27
W = —
o 2
This noise may be assumed to be black-body thermal radiation of a certain
temperature To, which arbitrarily will be taken as 290°K for reference. Then

we have, also in photons per cycle:

1
fin(w) - ?_% ) . (3.292)
0

For the bandwidth of interest in this contract we may assume that fm(w) is constant
in each application to a very good approximation. Thus, we may take

N = £ ";‘—:’ : (3.293)

A signal generated at classical power level and attenuated coherently can be

represented by a ""coherent state" according to Glauber (1963). As pointed out in
Section 3.6.9, the quantum fluctuations, or the zero point uncertainty, then has a
spectral density of one photon per cycle. The same result has been arrived at
through different reasoning by a number of authors (Stern, 1960; Gordon, 1962) and

is discussed at length in Section 3.4."'
The total noise before amplification may consequently be represented by

_ Aw
Ni = (fm+1) o (3. 294)

The input signal-to-noise ratio, which will be denoted by ri , now is
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ow
+ —
o 2
dw
. fis(w)-z';
w
S W - —-
_ 1 o 2
ri-ﬁ- = . (3.295)

i Aw
(fin * 1) 2r

Not e that when the external noise fin becomes much larger than 1, then the quan-
tum noise can be neglected and one has again the classical formula.
Consider now the output conditions. From Eq, (3.253) we find that the cutput

power 3pectral density fo(w) is given by
£ () = G (£, @) +1_)+(GW)-Dr (3. 296)

This contains the amplified signal, the amplified external noise, and the spontane-
ous emission noise. Thus the output signal power spectral density is

f (W = Gwf W , (3.297)
oS 18

while the output noise power spectral density is

f W = GWif +(Gw-1r+1, (3.298)
on in

where we have again added the quantum noise. For gain much larger than unity,
the quantum noise can be neglected. Although it is the case of large gain that we
are especially interested in, we shall nevertheless retain the quantum noise in our
formulation for the sake of consistency. Note that the quantum noise remains
unaffected by the amplification process. Of course this is only a pictorial way of
speaking since the quantum noise manifests itself upon detection and has to do with
the uncertainty principle.

It must be emphasized that by taking one photon per unit bandwidth as the
power spectral density of quantum noise, we do not exhaust all possibilities. In
general, the fluctuations of quantum origin depend on the gtate of the system.

135




— TH N1 RSITY OF MICHIGAN e
'y VE 06515-1-F

Here, we have in mind a field in a state of maximum entropy in the senge that
Gordon (1962) defines it. This is to be considered as a standard case useful in
evaluating the quantum amplifier.

Now, the total output signal and noise will be, respectively,

ow 6w
+— + =
wo 2 Po 2
s = f W . Gt W, (3. 209)
o o8 2% is  2n
w v L
o 2 o 2
and
Aw Aw
= +—
o' 2 LT
N = f ¥ [cwit, + (6w -1)x] 52
0 Awon 27 Aw in 27
Uo- —2 wo- —2— (3 300)

If we denote by I the signal-to-noise ratio after amplification, we shall have

6w
wo+—2_ w
G(w)fis(h)) o
S W - oW
L0 . o7
o N Aw
o W t—
o 2 4
W
[owe + (G -Da+1] &2 . (3300
w _éw_ '
o 2
Let us now introduce
ro .
R= — , (3.302)
r

and investigate the conditions under which R is greater than unity, in which case
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the preamplifier improves the signal to noise ratio.

It has already been assumed that the signal power spectral density f“(u) is
appreciable inside a bandwidth 6w . We also have found that the amplifier gain is
appreciably larger than unity only inside a certain bandwidth determined by the
function glw, wo). At this point we reinterpret 6w as being the larger ome of the
signal and the amplifier bandwidths. It is again understood that $w is smaller than
the detector bandwidth,otherwise no quantum amplifier can 1mprove'the situation.
In fact, what we are essentially attempting to determine is how small should
6w/ be in order to achieve a desired value for R.

Let G be an average gain defined by

W +£‘i‘

o 2
G = — Glw)dw . (3.303)
w -
o

Recalling that fin is constant inside the bandwidths of interest, and after some
straightforward manipulations, we find

No = (G-1) (fm+ d)sw+ (fm+1) Aw . (3. 304)

Let us also define an effective gain Ge given by

w+6i

o
G f, (w)dw
is

w _6w
G = ° -fw } ' (3. 305)
e w +2¥
o 2

fis (w) dw

6w

w02
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In terms of this effective gain we have

w+6u

o
S =G fi (W dw , (3. 306)
o e w-ﬂ ]

o 2

and upon combining this with Egs. (3.301) (3. 302), and (3. 305), we abtain

G

Re—p o (3.307)

(G- 1)(f +1)( )+1

In order to compress notation, let us introduce the quantity

fin+>‘ 6w
{ = (fi—n—;f—) (—ATJ) , (3. 308)

in terms of which R becomes

G
R = —o (3. 309)

(G-1)¢ +1

From Eq. (3.292) one can easily see that for the range of frequencies of
interest to this contract, we shall have either fin £1 or fin <1. Asfor A,
for almost all practical cases one can assume that A <10. Consequently, the
order of magnitude of § will be determined primarily by the order of magnitude of
6w/Aw. The bandwidth Aw depends on the detector, while 6w depends on the
signal and the amplifier. One can probably take the value 50 Mcps as a rough
lower bound for 6w. As for Aw, one would expect it to be at least four orders of
magnitude larger than éw. Thus, a rough estimate of § would be from 10“1 to

10-4. Of course these values are not intended to represent precise upper and

lower bounds but rather typical values of §. It should be evident now that the
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magnitude of R will depend substantially on the relative magnitude of Ge aad G.
Since Ge depends on the spectral shaps (“(d of the signal, so dees R, There
is a special case, however, in which R is independent of the spectral shape of
the signal. This happens when G(w) has a square form and we shall examine this
case in some detail.

Let us assume that G(w) is given by

Gw) = G for wo-z—“’ <w<u + %“’ (3.310)

= 1 otherwise.

Then, from Eqs.(3.303) and (3. 305) we obtain

G=G =G (3.311)
e o
and consequently
G'o
R= . (3.312)
(G -1)C+
Go 1)§+1
If the gain is much larger than unity, R can be approximated by
G
R = —0 (3 313)
G0§+1 ) ' ’

If, in addition, { is such that GOC <<1, we shall have

R=G. (3.314)

This means that for gain Go = 10, for example, we have an improvement of 10dbs|
Of course, Eq. (3.314) is also valid whenever G, & <<1 independently of the
order of magnitude of Go.

In the general case in which the conditions Go >>1 and Go {>>1are not
necessarily satisfied, one should investigate the behavior of R as a function of G0
and ¢. The results of this investigation are given in Fig. 3.6.14 where we have
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plotted R as a function of G0 for three values of { . From this Figure it ig
evident that, for a given §, R increases rather fast as the gain increases up to a
certain point. Further increase of the gain does not give any substantial improve-
ment. One also sees that improvement of the order of 10 d can be obtained with
a rather low gain (gppromdmately G, = 10), as long as { is smaller than 10_2.
Values of ¢ much smaller than 10~2 ghould not be difficult to achieve. Then, one
could have, for example, 20 dbs improvement with gain approximately 100.

A comment as to the actual shape of G(w) is in place at this point. Recall that

Bk(w
Glw) = e ) . (3. 315)
In many practical problems, the shape of k(w) canbe approximated by a Lorentzian,
i.e.
k(W) ~ ———-27——2 , (3.316)
W) + v

where B and v are constants. Then, G(w) will be the exponential of a Lorentzian.
In Fig, 3.6.15 we have plotted k(w) normalized tounity. Wehave alsoplotted G(w) for
maximum gain 20 and 150, again normalized to unity. As is seen from the Figure,
considerable narrowing, and hence selectivity, results because of the exponential
form of G(w). That is, the selectivity of the material is enhanced as the gain is
increased. The selectivity is enhanced further when the signal itself is peaked about
W,

The results of this section indicate that the use of a quantum amplifier in front
of a detector with detection bandwidth larger than the amplification bandwidth, in
general improves the signal to noise ratio at the detector. The improvement in-
creases as the gain increases and as the parameter { decreases. The analysis of
the case of square gain indicates that as the gain increases, one should decrease ¢
in order to achieve maximum improvement. That is, increasing the gain beyond a

certain point does not improve the situation appreciably without further decrease

of ¢ .
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3.6.12 A Nots os the Effect of Attenuation op Signal Coherense.
A pertinent question is whether the ccherence preperties of 2 signal are af-

fected by the attenuation that the signal may suffer during transmission. If the atten}
uation is linear, the question can be partially answered on the basis of the foregoiag
analysis. By assuming that b1> b2 , and hemce G <1, we have a model for a
linear attenuator. Them, according to the results of Section (3.6.8) the quantum uncer-
tainties {q and [p associated with field measurements remain unchanged except
for the fact that the noise of spontaneous emission is added (see Eqs. (3.278a,b)) .
Also, from the analysis of Gordon et al (1963a), follows that the moments of the
field distributions are simply multiplied by respective powers of the gain, i.e., if
the nth input moment is Mn , the same output moment will be Gn/ 2Mn. Thus, as
far as the field amplitude distributions and their moments are concerned, one may
say that coherence is not destroyed by attenuation. In other words, the phase re-
lationship between field amplitudes will not be destroyed. However, it should be

pointed out that this does not imply that coherence in its most general sense is pre-
served. For example, it is conceivable that a detection scheme might be based on
an n fold coincidence measurement. In that case one does not know whether coher-
ence is preserved or not. Further research is necessary before an answer to this
question becomes possible. In 'addition, af the present time it is not known whether
scattering will destroy the coherence of the signal either in the limited or the gen-
eral sense. The previous conclusions were based on the assumption of linear atten-
uation. If the attenuation is due to absorption, this assumption is satisfied. But

it is not clear at this time whether attenuation due to scattering can be considered ag

a linear process. This is another question which must await further research.
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OPTICAL BAND PASS FILTERS FOR COMMUNICATION CHANNELS

4.1 Survey and a Preliminary Evalyation of Kpown Filter Principles
The third problem area selected for this study is motivated by the importance

of minimizing by optical means the background radiation incident on a quantum-

counter detector in a communication system, since in this detection scheme no
opportunity of intermediate-frequency frequency discrimination is offerad.

Filtering of optical and infrared radiation in the wavelength interval 0. 4 to
20p is generally accomplished by the use of interference or absorption type filters.
There are, however, other kinds of filters available for special applications. Op-
tical filters can be classified according to the physical mechaalsm involved in their
operation as: (1) selective absorption; (2) selective reflection, (3) scattering;

(4) interference; (5) polarization; and (6) refraction (Greenler, 1958). We will
briefly discuss s ome filters now béing used, their characteristics and the possi-
bility of changing their center wavelengths or of tuning them.

Glass color filters and gelatin filters are commercially available in the 0.2 to
1.0 micron range. These filters operate on the selective absorption principle and
their pass band characteristics are generally not very sharp. They can be useful
as bandpass filters in conjunction with some other narrow-band filter to eliminate
multiple pass bands of the latter. Tuning of such filters is not possibie.

Transmission interference filters (Greenler, 1958), in the simplest form a
Fabry-Perot interferometer, are available commercially with transmission peaks
of 30 percent and a width of 150 ):. in the range 3900 1; to 7800 A . When the semi-
reflecting metal films of the Fabry-Perot interferometer are replaced with quarter-
wavelength stacks of alternately high and low indexes of refraction, narrower pase
bands and higher peak transmissions can be obtained, while the sidebands are de-
creased. In this way peak transmission of 73 percent and pass bands of 70 A are
typically achieved; although with some sacrifice in the peak transmission, pass
bands as narrow as 20 A are possible. At these frequencies, a wavelength pass

. 12
band of 20 A corresponds to a frequency pass band of about 10" cps. (Focketal,
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1964). Interferemce filters in the 1.4 tc 4.5 micron range are available with pass
bands of about 1/50 of the center frequency, or sbout 1013 cps. The interference
filter can also be made as a reflection, rather than a transmission filter. Hadley
and Dennison (1947) discuss both thoroughly. The interference iype fflter is feas-
ible to tune; this possibility will be discussed below.

Another filter which is useful in the visible and infrared range is the Chris-
tiansen filter (Greenler, 1958, Kruse et al, 1962, Holter et al, 1962), In this fil-
ter a powdered dielectric is suspended in an appropriate fluid. The two components
are chosen so that their refractive-index vs wavelength curves have different slopes
and cross near a desired wavelength, At the point where the refractive indices are
the same, the radiation passing through the filter is not deflected. On either side
of this point, however, the particles of dielectric scatter the radiation, thereby
attenuating it. Pass bands of 200 .;. in the range 4000 to 8000 A have been obtained.
The width of the pass band is determined by the relative slopes of the two refractive
index curves. The fact that the index of refraction of a liquid changes more rapidly
with temperature than that of a solid has been used to make a tunable band-pass
filter (Greenler, 1958).

Clever use of the birefringence of crystal quartz plates has been applied in the
design of the birefringent filter (Greenler, 1958) It is also called the interference
polarization filter or Lyot-Ohman filter. Quartz plates are cut with their optical
axes parallel to their large faces, and these plates are mounted between polarizers
whose axes are oriented at 45° with respect to the quartz optical axes. The incident]
radiation is converted to linearly polarized light atthe first polarizer, and thereafter
only that part of the light whose axis of polarization is parallel to the polarizer
axis will pass. If each succeeding quartz plate is twice as thick as that which pre-
cedes it, then in a given wavelength interval it will have twice as many maxima and
minima. The transmission of the entire assembly of plates and polarizers is the
product of the transmission of the individual sections, and there sre now sharp

transmission peaks separated by )\o/ N where )Lo is the lowest--order wavelength
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for maximum transmission, and N is the order of the maxima. Filters using 6
quartz plates have been made with a pass band of 4.1 A at 6563 A (Greenler, 1958).
Some commercial filters are available with pass bands as narrow as 1 A . These
filters have a potential for tuning.

There is another type of interference filter called the frustrated total-reflec-
tion filter which has been used in the vicinity of 5000 A (Fock et al, 1964). Its oper
ation is based on the fact that the reflection is not total when radiation is incident
on a boundary between high and low index of refraction materials at an angle great-
er than the critical angle, if the low-index of refraction material is thin enough.
The filter is constructed of two flat triangular pieces of glass joined along their
hypotenuses but separated by two thin layers of low refractive index and a high
index of refraction spacer in between. The wavelength of maximum transmission
is determined by the optical thickness of the spacer, the angle of reflection in it
and the phase change on reflection while the width of the pass band depends on the
thickness of the low refractive index layer. Bandwidths of 120)'\ to 30A have been
achieved with peak transmission of 93 percent to 12 percent.

Two other filters which are restricted primarily to the infrared range are
commonly used. They are the semiconductor filter and the residual-ray plate or
reststrahlen filter (Greenler, 1958; Kruse et al, 1962; Holter, et al, 1962), The
semiconductor filter is a low-pass filter which absorbs wavelengths shorter than
that associated with its energy gap between the valence and conduction bands. The
cut-off characteristics are quite sharp, but because impurity atoms can introduce
electron energy levels between the valence and conduction bands, the impurity con-
tent must be kept low if absorption beyond the cut-off wavelength is to be minimized,
The semi=conductor filter has a cut-off wavelength in the range of 1 to 8 microns
and can be used with interference filters to obtain a rather narrow pass band and
to eliminate the side bands of the interference filter. Since the width of the energy
gap of the semi-conductor is temperature-dependent, the cut-off wavelength may

exhibit a temperature-dependent shift,
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The residual-ray plate filter depends for its operation on the ionic structure
of a crystal. When radiation impinges on the atoms in a crystal, the electric field
tends to set the ions into motion. A resonance will occur which is related to the
restoring-force constant of the crystal and the masses of the two ions. The crystal
will re-emit a band of wavelengths about this natural frequency. The principal
restrictions on the use of the residual-ray plate filter is that there is only a limited
number of center wavelengths available. In addition, they are limited generally to
applications at wavelengths greater than 15 microns.

One other choice that is commonly used to filter light or disperse it is the
prism or grating spectroscope. Such a device is essentially one which converts a
frequency spectrum into a spatial spectrum by means of a dispersive element. The
resolving power of a rock-salt prism spectroscope is about 200 at 5 microns and
400 at 14 microns which is equivalent to a pass band on the order of 300 K at 10 mic-
rons wavelength (Harrison et al, 1961). The grating instrument in the wavelength
range 3 to 25 microns has no better resolution than a well-designed prism spectro-
scope, since the theoretical resolving power of the grating is seldom realized in
infrared work (Brady, 1950). This is due to the fact that the limit is set not by the
grating, but by the slit width which must be employed for adequate illumination. The
present practical limit of the resolving power of the grating is 8000 from 1.5 to 7
microns, or a pass band on the order of 6 A at 5 microns wavelength. At 20 microng
wavelength the pass band would be about 160 1& The spectroscope may be of some
interest in designing a tunable filter.

In the application in which we are interested, the ideal filter bandwidth is on

the order of 109 cps, the expected modulation bandwidth. The corresponding pass-

T

bands at 0.4 microns and 20 microns wavelength are 5.3 x 10-3 X and 13:&, respec
tively. If we recall the passband widths quoted above for present commercial
filters, we observe that these desired bandwidths are 1 to 2 orders of magnitude
smaller than that is available with the filters discussed. It appears that the best
chance for obtaining the desired bandwidth occurs at the longer wavelengths of the
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interval 0.4 to 20 microns.

_ Whea the question of tuning a filter is considered, of these filters mentioned
shbeve, two kinds seem easily adaptable for tuning, the interference and the Chris-
tiansen filter. The spectroscope may also have some potential in this area, as mens
tiowed proviously. Tuning of the interference filter is feasible by electro-optic,
piezoelectric and perhaps also magneto-optic and magneto-strictive means, while
the Christiansen filter is, in principle, at least, capable of electro-optic tuning.

A quite extensive amount of work has been published in recent years in this connec-
tion concerning the modulation of light by application of electric or magnetic fields
to optic materials. We mention briefly here the common electro- and magneto-
optic effects and present some examples where they have been used.

The electro-optic effect in a crystal is a change in the refractive index with
the strength of the applied electrié field. If the change is linearly related to the
field strength, it is known as the Pockel's effect. The coherent-light phase modu-
lator using the Pockel's effect was described by Peters, (1963) who used a slow-
wave microwave structure to provide a modulating electric field in a crystal of
ammonium dihydrogen phosphate. The experimental evidence suggests that a modu-
lation bandwidth several octaves greater than 1 Ge could be obtained, Kaminow
(1961) carried out a somewhat similar experiment, using a crystal of potassium
dihydrogen phosphate in a cylindr cal cavity and a modulation frequency of 9.25 Ge.
Gil'varg and Kolesov (1961) reported on the use of these two crystals in a high-
speed shutter and Niblack and Wolf (1964) report on a polarization modulation-
demodulation system utilizing a Pockel's cell for the modulation of a continuous-
wave helium-neon gas laser as the light source. .

When the change in the refractive index is proportional to the square of the
applied electric field, it is known as the Kerr electro-optic effect, which should be
distinguished from the Kerr magneto-optic effect which will be mentioned later.

The Kerr electro-optic effect is characteristic of a crystal with a center of sym-
metry (Nye, 1960); if the crystal has no center of symmetry, then the electro-optic
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oifect may be linear. Holshouser, et al (1961) constructed a Kerr-oell microwave
light modulator which used a re-entrant micrewave cavity to provide the modulation
field and whioch achieved up to 80 percent modulation at 3 Ge.

The magneto-optic effect may also be classified as linear or quadratic. The
linear magneto-optic effect is called the Faraday effect; when the effect is propor-
tional to the square of the magnetic field it is known as the Cotton-Mouton effect.
Schmidt et al (1964) have used the enhanced Faraday effect near the absorption line
of sodium vapor to modulate the plane of polarization of light traveling through the
vapor. Pulse modulation was carried out up to 698 Mc with no evidence of reduc-
tion in frequency response. Fock and Bradley, (1864) reported on the Faraday ro-
tation in mercury vapor near an optical resonance. Since only light in the vicinity
of the resonance experiences appreciable rotation, they suggest that by using a
pair of crossed polarizers with thé cell a narrow-band modulated filter, having a
pass band of about 1500 Mc can be realized.

Another magneto-optic effect which may be of interest is the Kerr magneto-
optic effect. This term refers to a change in the polarization or intensity of light
reflected from the surface of a magnetized medium. When we speak of the Kerr
effect hereafter, we will mean the Kerr electro-optic effect, unless we specify
otherwise.

The piezoelectric effect is also of interest in this context. It is exhibited by
some crystals in which a strain is set up when an electric fiéld is applied; converse-
ly, a stress produces an electric polarization. This effect has been used by Hauser
et al (1963) in designing a stressed-plate shutter. Seraphin et al (1963) employed
the piezoelectric effect in designing a Fabry-Perot type light modulator ueing a
quartz spacer, the thickness of which was changed piezoelectrically. Another
interesting application of this effect was made by Ashtheimer et al (1964) who de-
signed a frustrated total internal reflection infrared moduiator. Its principle of
operation is similar to that of the frustrated total-reflection filter which was dis-
cussed previously. In this case, however, there is only air separating the two
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halves of the device, and the separation is controlled piezoelectrically. Since the
transmission falls off as sinh-z% where d is the separation and A the wave-
length, we see that decreasing A or increasing d decreases the transmission.

It can thus act as a low-pass filter whose cut-off frequency can be altered by chang-|
ing d. It could possibly be used with an interference filter to make a tunable band-
pass filter,

The magnetostrictive effect, that is distortion produced in certain materials
when subjected to a magnetic field, has also been used in this area. Bennet and
Kindlemann (1962) report on the use of magnetostriction for making angular and
separation adjustments on the end plates of a helium-neon maser. The device was
constructed with the eventual use in mind of achieving negative-feedback frequency
stabilization,

As discussed above, the electro-optic effect involves a change of the index of
refraction with applied electric field. If a Christiansen filter were to be made usinq
an electro-optic fluid, then the cross-over point of the refraction indexes of the
two materials composing the filter could be shifted in frequency, providing a tun-
ing mechanism for the filter. From a practical standpoint, however, the relative
slopes required for the dispersion relations of the two materials in order to obtain
a sufficiently narrow pass band may be unrealistic considering the properties of
materials presently used for such filters, particularly since one of them must be
an electro-optic material, In addition, the tuning range that can be achieved may
be too limited to make such a filter of interest. These questions will be considered
more fully later.

The various interference fﬂter§ such as the polarization, frustrated internal
reflection and reflection and transmission filters are tunable in principle, though
the techniques of accomplishing the tuning will be different. For the present we
discuss briefly the transmission-type filter.

The transmissivity of the interference transmission filter for normal incid-

ence is given by:
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T = 1 2 L 4.1)
[l'f'é] 1+ _ﬁ_ sin2 é_
T g2 2

where R, T, and A are the spectral reflectivity, transmissivity and absorptivity

of a single reflection layer of the filter and

§= 4”X“d+2¢ , (4.2)

In this formula, n is the refractive index of the medium between the two layers,
d is the layer separation, A is the free-space wavelength and ¢ is the phase

shift for reflection from one layer.

We observe that T is a maximum whenever sin % =0, i.e., when
5 _ ‘
'L;:d—+¢=N1r, N=1,2,3... (4.3)

N is referred to as the order of the interference fringe. We see that the wave-
length of maximum transmission for a given order of interference N is determined
by n, d and §. Thus, the filter should be tunable by adjusting any one or more

of these three parameters. If for the moment we neglect changes in § and consider
only n and d variables, and if we wish to tune the filter over the interval A 1 to

)tz where Kz =A)\1 , then

2
kl(A- 1) = X (nzdz - nldl) (4.4)

n,, d1 and n,, d2 are the index of refraction and the separation at the ends of the

tuning band. We can rearrange this expression to get

n2d2 = Anldl = T— . (4. 5)

So we see that the product of the index of refraction and the separation must be

changed in proportion to the desired change in center wavelength A _ of the pass

1
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band. In addition, the absolute change in th¢ oroduct of nd is proportional to N, so
that the change required is a minimum for a :iven A when N=1 ,

To get an idea of the order to magnitude of the quantities involved, suppose we
consider piezoelectrically tuning an air-filled Fabry-Perot interferometer over an
octave bandwidth from 5 to 10 microns wavelength. Then ll = 5 microns, n=1, and
N=1, d2 = 5 microns, d1 = 2.5 microns. If barium titanate, which has the largest
piezoelectric constant known, 3 x 10—4 microns per volt, (Astheimer et al, 1964),
were to be used to accomplish the 2, 5 micron change in separation, then a voltage
of almost 10, 000 volts would be required. This large voltage can be decreased by
placing slabs of piezoelectric in series mechanically, but in parallel electrically.
And since the relative displacement of the plates of the filter could be reversed by
changing the direction of the electric field, the 10, 000 volt requirement could be
decreased to 5,000 volts. The requirements for tuning the simple Fabry-Perot
interferometer do not seem unreasonable then.

The frustrated internal reflection filter and the Christiansen filter together
suggest another possible filter configuration that would be tunable. We will refer
to this configuration, which has the geometry of the Wernicke prism (Strong, 1958)
as the Wernicke filter. A cross-section of this filter is shown in Fig, 4.1.

FIG. 4.1, Sketch of a Wernicke Filter,

If the two materials of which this filter is composed have refractive index relations
vs wavelength with different slopes, which cross over at some wavelength, then at
this particular wavelength, the incident radiation will pass through the filter with

no deflection. At wavelengths longer or shorter than this, however, reflections will
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occur at interfaces AB and CB. For wavelengths where the indexes of refraction
are sufficiently different, total internal reflection will take place at these interfaces,
but on opposite sides of the center wavelength. If now, one or the other of the ma-
terials is electro-optic in nature, the center wavelength could be changed. The
consideration mentioned above with respect to the Christiansen filter apply here
also. There is an additional feature here, however, in that the radiation emerging
from the Wernicke filter would be spatially dispersed on either side of the center
wavelength, providing a potential additional filtering mechanism.

We have reviewed here some common methods used for filtering in the optical
and near infrared regions of the spectrum. Some possible mechanisms by which a
filter might be tuned were discussed, and some examples of the application of these
mechanisms in the modulation of light and infrared radiation were presented. Some
possible schemes for constructing a tunable filter were considered.

In the next section we shall investigate some specific filter designs more
thoroughly, particularly concerning theoretical limitations on their band pass

characteristics and tunability.
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4.2 The Wernjcke Prigmstic Filter

This prism-type filter was mentioned briefly in the previous section. It
was suggested that this filter, which has the geometrical configuration of the Wer--
nicke prism, has some possible potential for tuning. This section of the report
discusses the transmission characteristics of this filter and the practicality of
tuning it.
4.3 Development of Filter Transmissivity and Calculations

The filter configuration is shown in Fig. 4-2 with the dimensions and other

parameters indicated. The refractive indices of the two materials of which the

prism is made are n, and n,. In this development we will assume there is an en-

trance slit of height ;H throzugh which passes a parallel beam of light. Light which
is reflected out of the primary heam within the prism will be assumed to be ab-
sorbed at the walls so that no secondary beams are considered. Absorption within
the prism is neglected for simplicity; it will be discussed later. Diffraction effects
at the entrance and exit slits are also neglected. The light will be assumed to be
polarized with the electric vector parallel to the entrance slit. The Gaussian sys-
tem of units is used.

Light which is normally incident on the first air-glass interface will be par-

tially reflected, and the amplitude E . of the transmitted electric vector will be,

t1
for unit incident amplitude,
_ 2n0
= 4.6
IE:tl n, +n (4.6)
1 o
At AB where the light falls obliquely on the interface, the transmitted amplitude
is given by ‘
4.7
. E, 2n, cos6 (4.7)
+
t2 n, cos 91 n,, cos Gl—
and from Snell's law we have
n, sin 6, = n, sin 02' (4.8)
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The amplitude of the transmitted electric vector at the remaining interfaces

is found in a similar manner, so that the electric vector of the emerging wave is

given by
4 2
2 n_n; n,cos 81 cos 62 cos 93
E = .
to
+ + + +
\:(n1 no)(nlcos 6, +n, cos ¢1) (n2 cos 6, +n, cos ¢2) (n1 cos 6, n_cos ¢3)]
(4.9)
where
n
g, =sin”| L sing (4.10)
1 n, 1
= - {4.11
6, = 26, ) L )
n
-1 2
= gi -_— 81 (4.12)
¢2 sin li o) sin 62]
0,=6, -, (4.13)
-1{ "
¢3 = sin ey sinf,| . (4.14)

In order to obtain the intensity of the output light, we square the amplitude
of the electric vector as given by (4.9)  and multiply by the ratio of the cosine
of the angle of incidence to the cosine of the angle of transmission and the ratio of
the refractive indices at each interface to find the power flow through the interfaces
and obtain

2

E,  cos ¢1 cos ¢2 cos ¢3

IO = 5 9 5 (4.15)
cos 8, cos 6, cos b,

The refractive index terms which appear in the power flow expression have can-

celled out.
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The light power passed by the exit slit will be further decreased due to the
dispersive effect of the prism. If h is the total displacement of the beam, then
the total light power passed by the exit slit will be

h .
P = 10< -ﬁﬁ) A (4.16)

where we have assumed an exit slit of the same height as the entrance slit and A is|

the area of both slits. The displacement of the output light beam is found to be

1’ cos(01-92 si112491 sin26

= - N - + -_— . _

sin 6 ssin 01 cos 6 ' J tan93 cos 6, St lel 92] )
1 (- 2 )

(4.17)

This displacement is measured with respect to the point at which an undeflected ray
would emerge from the filter, and is taken to be positive in either direction from
the undeflected position. If the exit slit is located a distance L1 from the last

1
glass-air interface, then an additional displacement h™ results,

h!- 1! tan ¢3 ) (4.18)

Finally then if the ratio of the output to input power is formed, the power

transmission coefficient T is obtained, as

1
hth
T= _—— 4.19

Io [1 2H ] ( )

where now I0 is dimensionless, since we have divided by the power in the incident
field. When this expression becomes negative, the output is then, of course, zero.

Some calculations have been carried out for the Wernicke filter as a function
n n
of the ratio n—l , for an angle 91 of 60° and a ratio Tl of 1.5. Figure 4. 3 shows
2 n 0
the quantity IO as ;1—1 is varied. The transmission abruptly goes to zero when
n

o 1.152 since then the light no longer is incident on the exit face of the prism,
2
but strikes the bottom surface. Figures 4.4 and 4.5 show the displacement ratios
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M2

.62 .96 1,0 1,04 1,08 1.12 1.16
FIG. 4.3: TRANSMITTED LIGHT INTENSITY, I, AS FUNCTION OF B, /ny=1.5
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RATIO OF DISPLACEMENT h' T0 L! AS FUNCTION OF a, /n,

FIG.4.5
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1

h h n
I ad—-Pr as = varies. By wiilizing the results of these graphs we oan fiad
L n

the power transmission coefficient of the fiiter as a function of 1_13; . We are pri-
marily interested however in the fllter transmission as the frequency is varied, so
that we must assume some model for the frequency dependence of n, and n, on

f. For simplicity it has been assumed that
ny o) =, [1+ 4 tan @ N (4. 20)

where n, is the common refractive index of both parts of the filter at the center
frequency of the passhand, and A is the fractional change in the frequency about

the center frequency, i.e.,
f-f
—fﬁ = A (¢.21)
1o :

Since

f
¢ dn _
ncdf tan a

it is apparent that tan a is a measure of the sensitivity of n to changes in f.
The bandwidth of the filter is now defined to be the frequency separation of

the half-power points with respect to the maximum transmission and the normalized

bandwidth NB is taken to be the bandwidth divided by the center frequency. We

can write the normalized bandwidth NB as

(5 ) (&)
f._ -f nz U nz L-
B . nl
tana2 tana —(-—— tana,
Y 1 L2

(4.22)

Z
o
n
o (]
"
-
1
B>
t
"
~
-]
~__~

where fU and fL are the upper and lower frequencies of the pass bands, and

(n1 /n2)U and (n1 / nz)L are the ratios of (n1 /nz) when the transmitted power
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has fallen to one-half at the frequencies 'fU and fL . It should be noted that
-1<AL<0 and 0<AU<oo 80 that 0<Nn<m. This presents an unrealistie
picture when NB >1 since the concept of a normalized bandwidth then becomes
somewhat meaningiess. Actually, a normalized bandwidth greater than 1 is of mo
interest here, and we will devote our attention primarily to values of N’ <1,

Since nl/n2 is symmetric about 1.0 over the range of values used in the cal-
culations below, then (3.333) can be simplified to

N, = u?al . _";2‘71 [(nl(nz)v-l] (4.23)

where tan a, has been set zero for simplicity, and

(o) /oy = 1.0 +6; (n/ny) =2.0-8 . (4.24)

The quantity (nl/n2 )U can now be obtained from (3. 330), noting that 7
is reduced to one-half its maximum value when

1
hth 1
oH 7 (4. 25)

An approximate value for <nl/n2 )U can then be calculated for the range

.995« nl/n2 < 1,005 by noting that the expressions

1'11T=i'b1(-2-1--1); %r_tb(fl-l), (4.26)
L 2 )

are approximately true, where b and bl are the slopes of the h/L and hl/L1
curves, the + sign applying for nl/n2 > 1.0, and the - sign for nl/n2 <1.0,
As a result of (3,334) and (3.337) we obtain then

b [(ay /)y 1] 1% [y 1] =B e
Thus,
H
(n,/ny )y -1% P (4.28)
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and
N = 2 (4.29
B lbl :
tana b, Lb
1 H H
This expression is valid when (3.337 boldl1 or when NBtu\a <.01. M

that case, since bx8 and bz 5, 8—+53‘n>zoounqm-.d R may be

seen from (3. 340) that N; decreases inversely proportional to L/H and L /H
so that the ability to achieve sharper filter characteristics by increasing these

parameters is limited by the largest practical 4. and L1 and smallest practical
H which could be used.

The normalized bandwidth for this filter is shown in Figs. 4-6 to 4-8 as
a function of L/H, h /H and tan a,, obtained without approximation from Figs4-4]
and 4-5 and expression (3, 334), It should be noted that values of L/H less
than tan 01 are not meaningful since then, as can be determined by Fig. 4-2, the
entrance and exit slits would extend below the apex of the center prism and light
could pass through the two slits without having encountered it. Since 01 is 60° for
these curves, then L/H> 1,73,

Recalling that the intended application for this filter would be in a laser com-
munication system with a frequency range from 1.5 x 1013 to 7.5 x 1014 cps and a
bandwidth of 109 cps, it is apparent that the Wernicke filter is unsuited for this
application, since the required value of Ny 1s 6.6 x 10961.33x10°%. This is
3 to 4 orders of magnitude less than what can be achieved with a reasonable value
for tan @ and L/H. Actually, almost any value of NB that was desired could be
obtained by choosing tan a large enough, but some data on materials used in this
frequency range given by Kruse2 indicates that the maximum value for tan @ may
be on the order of 0.1. This value leads to normalized bandwidths on the order of

. 10_2. Usually, materials that are more dispersive are also more lossy so that
the insertion loss of the filter could be intolerably large. It should be recalled that

Fig. 4-3 shows the maximum transmissivity of the filter considered in these
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calculations about 90 percent, but absorption has been neglected.

The normalized bandwidth could be decreased by increasing the angle 91.

In the idealized treatment made here, this would indicate an improved filter per-
formance. However, because the normalized bandwidth when 91 is 60° has been
found to be 3 to 4 orders of magnitude larger than what is required, and losses in
a real filter would further decrease its effectiveness, there seems to be no advan-
tage to calculating the filter performance for other values of 61.

Tuning of this filter could be achieved in principle if one of the materials of
which the filter is constructed were electro-optic in nature, However, the electro-
optic coefficient for potassium dihydrogen phosphate (KDP), a material with a
relatively large electro-optic coefficient of 8, 47 x 10"12 meter /volt (Peters, 1963)
leads to a change in the refractive index of only 25 x 10-12 E, where E is the elec-
tric field in volts/meter. Thus, éven for very} large field strengths, only a very
small refractive index change takes place, with negligible change in the center fre-
quency of the filter,

Actually, the requirement for tunability of the filter would then be that the
refractive indices of the two materials comprising the filter have very nearly the
same frequency dependence, so that the crossover point could be changed greatly
by a small change in either refractive index. On the other hand, in order to achieve
a narrow band pass the frequency characteristics of the refractive indices of the
two materials should be very different. These two requirements are thus not

compatible.

4.4 The Polarization Interference Filter

The polarization interference filter, or as it is also known, the Lyot-('jhman
filter and birefringent filter is a particularly attractive one from the standpoint of
the narrowness of the obtainable bandwidth and the possibility of tuning it. This
filter was designed by Lyot (1933) and first built by Ohman (1938). In this report,
the various features of this filter are discussed and its applicability in a laser

communication channel is considered.

167



peeee THE UNIVERSITY OF MICHIGAN —
06515-1-F

4.5 Bapdwidth and Transmission Characteristics of the Polarization Interference
Filter

The polarization interference filter may take different forms. Evans (1949)

congiders several possibilities. The discussion here islimited to the most basic
of these forms which consists of sections of birefringent plates cut with their optic
axes parallel to the large faces of the plates and placed between polarizers oriented
at 45° to the optic axes. A diagram of the filter is shown in Fig. 4.9.

The mechanism on which the filter operation depends is the difference in
propagation velocity for ordinary and extraordinary waves in the birefringent
material. When a linearly polarized wave is incident at 45° to the optic axis of the
birefringent material, the beam is split into two waves, the ordinary and the extra-
ordinary wave. The beams emerge from the birefringent material polarized at
right angles and with a phase difference depending on the difference in velocity of
propagation. The amplitude of the wave transmitted by a second polarizer depends
on the relative retardation of the two beams. If the difference in retardation is an
integral number of half waves, the interference between the waves is destructive,
and no transmission occurs. For the single birefringent plate of thickness d
placed between parallel polarizers, where absorption within the plate and reflection
losses are neglected, the transmission is given by Billings, et al (1951) as

.

T1 = cos2 [I_JLE] (4.30)
where u = n - n0 and n, and n are the extraordinary and ordinary indices
of refraction at wavelength A . When light light is incident on such a plate and
polarizer arrangement and the output is observed by a spectrbg‘raph, a series of
bright and dark bands, which is called a channel spectrum, is obtained. This
results from the argument of the cosine above taking on integral values representing
the higher order interference fringes.

If several sections of these plates are put together as shown in Fig. 4.9, and
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the thickness of birefringent plates are adjusted in the ratios 1, 2, 4 etc., the
overall transmiasion characteristic of such an arrangement exhibits pass bands
whose widths are equal to the fringe widths of the thickest plate separated in wave
length by the distance between fringe widths of the thickest plate separated in wave
length by the distance between fringes of the thinnest plate. If the sections are
numberedi =1, ..., N, the ith section will "have a thickness

i 1
N-1
dN =2 d1
where d. is the thickness of section 1. The transmission of the whole system can

1
then be given, when the absorption is ignored, by

T= [coe 0 cos 26 cos 40 . . . cos oN-1 6]2 (4.31)
where
_ mdu
6= A

is 1/2 the angular retardation of Section 1. The retardation is also spoken of in

waves, and is given by

L=<

)‘#
Thus, in order for the whole array to have a common transmission peak, the

retardation of each section in waves must be an integer such that with

[an; [ -
T L B

There are also side band peaks centered about the main peak and separated from it
by the fringe width of the thickest section.
Billings (1947) showed that (3, 342) can be written as
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: 2
T= [ 2N g } . 4.32)
2Nsin9

Figure 4. 10 shows a plot of this function. It may be observed that this curve
2
Siox ) function encountered in diffraction theory.

X
When the amount of light energy transmitted by the filter between the pass bands is

resembles that of the familiar

calculated, it is found to be 0. 11 of that contained in the pass band (Evans, 1949).
Thus, if an auxiliary wide-band filter were to be used to remove the unwanted |
transmission bands on either side of the desired one, the background light trans-
mitted by the polarization filter would be essentially confined to the main pass band*
The band width B of the filter is, as mentioned above, determined by the
thickest plate in the filter, and is (Billings, 1951) at the half power points given by

0.5 120 0.5 Xzo
B = = (4-33)
A - d
2N ldll-‘ NF‘

in terms of the wavelength. )Lo is the position of the pass band. The normalized

bandwidth NB is defined to be the bandwidth to center wavelength ratio, or

0.5 0.5A
N = o _ 0

B 2N—l dlu dNu

Thus for a given normalized bandwidth, the filter dimension will be proportional

(4.34)

to the wavelength, If, instead, it is desired that the bandwidth be given in terms

of the frequency, then with c the velocity of light in free space

B, - __3-5 , | (4.35)
N“

o

while the normalized bandwidth from the frequency approach produces the same
result as (4. 34). Note that the frequency bandwidth for the polarization filter of a
given length is independent of frequency, which is desirable in the laser communi-

cations channel.
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Quartz has been one of the birefringent materials used in commercial polari-
zation filters. The quantity uhas avalue of 0.011 for quartz so that for a bandwidth
of 109 cps, d’\l must be 13. 6 meters., This is clearly too great a thickness for a
practical filte;‘, quartz plates would if mit a filter to a bandwidth of an order of
magnitude or two wider than 109 cpe. Calcite, another material that has been used
for the polarization filter, has a u value of 0,172, so dN in this case must be
87.2 cm which is a more realistic thickness but still impractically large. A list
of values of refractive indices for some birefringent materials is shown in Table IV-1{
It can be observed that the u value for calcite is exceeded by that of only two other
materials, but the difference is not enough to make the filter dimension less than
40 cm for a bandwidth of 109 cps. It seems then, in light of presently available
materials, that the bandwidth requirement of 109 cps cannot be achieved in a prac- |
tical polarization filter. |

The absorption within the birefringent material of which the filter is con-
structed has not been considered above. The attenuation of a wave propagating
through a lossy medium can be accounted for by an attenuation constant a such
that

ax

Ix)=1e (4. 36)
0

where a can be a function of frequency. I(x) is the intensity at a point x within
the medium measured in the direction of propagation from the reference point
where the intensgity is Io. In the filter whose Nth element has a thickness

N-1

dN =2 d 1 where d1 is the thickness of the first element, the total thickness

is

Thus, the output from the last plate of the filter is decreased from that given in

(3. 342) by the additional factor
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TABLE IV-1,VALUES OF REFRACTIVE INDICES (Billings, 1951)

Crystal Class Indices
= 1, 4792
ADP Tet al €=
etragon w = 1,5246
€=] 4684
KDP Tet )
etragonal w = 1,5095
a=1, 492
Rochelle Salt Orthorhombic B =1.493
v = 1,496
= 11,5086
EDT Monoclinic B = 1.5893
v = 1.5930
artz Hexagonal € =1.553
Q *ag | =1 544
Calcite Hexagonal €=1.486
28 W= 1,658
NaNO Hexagonal € = 1.3361
3 Xag w=15874
Rutile Tetragonal €=2.903
w=2,616
a=1.503to 1.623
Mica Monoclinic B =1.545 to 1.685
v = 1.545 to 1. 704

€ extraordinary refractive index of uniaxial crystal.
w ordinary refractive index of uniaxial crystal.
a,B,y smallest, intermediate and largest refractive indices
of biaxial crystal.

174




THE UNIVERSITY OF MICHIGAN
06515-1-F

<(28-14, _-e2Nq4,,
e o ©

T = “. 37)

a
gince 28>>1 for N25. From the expression (3, 346), we can obtain then
- [ac/u Bf]

Ta =g (4.38)

The transmission is seen to decrease exponentially with decreasing bandwidth, so
a further narrowing of the bandwidth is eventually achieved, depending upon the
magnitude of @, only through rapid reduction of a peak transmission of the filter.

Another mechanism which decreases the peak filter transmission is the reflec
tion occurring at the various interfaces. This can be reduced in practice by use of
refractive index matching cements to join various components of the filter, or by
immersing the filter in an oil whose refractive index is near that of the filter com-
ponents. Reflection losses will generally be less important than absorption losses
and will not be dealt with here.

As a practical example, polarization interference filters have been made com-
mercially by Baird Associates (Greenler, 1958) using quartz plates having a band-
width of IA at 6563 A and with a peak transmission on the order of 10 percent.
Steel et al (1961) describe a filter using quartz and calcite plates with a bandwidth
of 1/8 Aat the same wavelength, having a peak transmission of 12 percent.

The aperture and field of view of the filter are also characteristics which are
of interest. The field of view is determined by the maximum off-axis effects that
can be tolerated in the filter. Evans (1949) considers this problem in detail and
go it will not be discussed here.

4,6 Tuning of the Polarization Filter
The utility of the polarization interference filter can be greatly enhanced by

devising a means for tuning it. A slight amount of tuning can be obtained by vary-
ing the temperature of the filter, since the refractive index and thus the retardation
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of the birefringent plate is a functicn of the temperature. The control which can be
obtained in this manner is, however, limited to a few angstroms and may actually
become a nuisance in a narrow band filter since then it must be very accurately
temperature-regulated.

A second method suggested by Lyot (1944) for tuning the filter is the obvious
one of changing the plate thickness. He proposed the scheme of making the indi-
vidual plates in the form of two wedges which could be slid across each other, thus
varying the length of the light path through the wedge combination. This results in
the requiremert for very fine adjustments to be made in synchronism to each plate
of the filter and does not represent a truly variable filter.

A third and most practical method for tuning of the polarization filter is the
addition of a variable achromatic phase plate or retardation plate to each fixed
elemen t so that one can vary the retardation of each section of the filter. The
achromatic phase shifter, which is, by definition capable of producing a phase shift
independent of the wavelength, could give results exactly comparable to those ob-
tained by the use of variable thickness plates mentioned above. The retardation
plate on the other hand, one example of which that is adjustable being the Kerr
cell, produces a r:tuardation dependent on the wavelength and so does not give
results as good as those obtainable with an achromatic phase shifter. Billings
(1947) and Evans (1949) consider this problem. The discussion below follows
Billings' treatment.

The tuning is accomplished by varying the retardation of each section so that
its nearest transmission peak is shifted to the place where the overall filter trans-
mission is to be a maximum. I, st the desired wavelength Ax the retardation of
the Nth plate is

- . N-l — N—l
= x + = [
l N x+2 nl 2 1

H

the argument of the cosine is given by
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0y = 7(x+2N 1n)=2" "o

Nx 1x,

where n, is the number of waves retardation for the first plate's nearest peak.

The nearest peak of the Nth plate has as the argument of its cosine

Ogn * (o 2" -1“1>"

where oy is an integer so chosen as to minimize |nN-x| . It is convenient
to number the peaks of each plate starting with zero at the natural filter transmis-
sion peak.

The retardation plate is now used to shift ONX to the value eNn without

changing the wavelengths )\x by adding an additional retardation &Nx such that

+ =
20 *o =20 . (4. 39)

Thus the transmission peak is shifted to the wavelength Xx. We can mention here
that &Nx will vary with wavelength for the retardation plate, but for the achromatic
phase plate it does not. The relation above can be put into another form, the
utility of which will be apparent below. Thus, equivalent to (3. 350)

= (4. 40)
eNn aN eNx
so that
ZN_1 n1 +nN
aN = ~i (4.41)
2 n1 +x

N-1_ o N-K (4. 42)

The relation between OKx and 91‘{ is determined, it should be noted, only by the
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fact that -2K'1d o that 6 -2K'19 But now, the retardation of
ac d)( 1 s a Kx Ix w, the retardation o

each filter section is given by a'Kon so that the 1:2:4: etc., relation between the

sections of the filter is no longer true. Thus,

2 N-1 2
Tx = [cos a, lecos a, 261xcos a32 elx »» . CO8 QLA le]

(4. 43)
so that while the peak of the filter has been shifted to wavelength )\x , the sideband
peaks may occur with different spacing and amplitudes than for the unshifted peak,
where T is givenby (4.31). Billings (1947) points out, however, that the var-
ious ai values may be the same for several of the filter sections and with an n
value of two or more, there is no significant distortion in the filter characteristics
or increase in residual light transmission even when the filter is tuned far from a
natural peak. It is obvious that the larger the variation of the ai' s from 1, the
greater will be the effect on the filter characteristic. At its largest deviation from

1, the value of . is

_ 1
aK—l*_F R . (4. 44)

+
2nll

Thus the variation is relatively small for the thicker sections, and this maximum
deviation occurs when the maximum retardation, 1/2 wave, is required to be added
+

to or subtracted from the Kth section.

The phase shift &Kx may be expressed as

by - 2 [eKn- GKX]
= 2K91x [aK— l]

) 20Kx[aK_l} ?

where, it should be recalled, 6, is 1/2 the retardation angle of section 1 at AX

1x
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If ay is substituted for from (3.353) and the formula
A -x)
0 x

1
X

is used, where )\o is a reference wavelength, then

K-1 K-1
+ -
] )tx n.K 2 n1 2 n,A

1l o
6Kx nll

lo is the wavelength at which the Kth section has a retardation angle of 29Kn s

and lx is the wavelength at which the Kth section has a retardation angle of 26

27 (4. 45)

]

Kx'
Billings (1947) has plotted the retardation in waves which must be added to the

plates of a three element filter in order to shift its pass band contirnuously from
0. 8)«c to 1.33>nc , where the first plate has a retardation of 47 at )tc .

When the achromatic phase shifter is considered, then the retardation which
is added is independent of the wavelength, As a result, the transmission peak of
each section is merely shifted along the wavelength scale to the desired point of an
overall peak without distorting the transmission characteristics of the filter even
when tuned far from a natural peak. As Evans (1949) points out, however, tuning
by the method of shifting the nearest peak of each filter section to the desired
transmission peak is a practical possibility whether the phase shifter is achro-
matic or not, since the results obtained with the retardation plate and achromatic
phase shifter are comparable.

4,7 Comments and Conclusions

Based on the results of the preceding analysis and calculations, the pris-
matic or Wernicke type filter appears to be unsuited for application in a laser
communication channel due to the limitation on the narrowness of the passband.
In addition, the tuning of such a filter is impractical and is incompatible with the
requirement of a narrow passband.

It has been shown above that the polarization interference filter is capable
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of producing arbitrarily narrow passbands, at least theoretically, when the absorp 4
tion is ignoved. However, when considered from a practical viewpoint, the thick-
»ess of material required to produce a passband of 109 cps is prohibitive when
presently available materials are considered. Tuning of the polarization inter-
ference filter is theoretically possible over a 2:1 band using electro-optic

techniques.

180




THE UNIVERSITY OF MICHIGAN ——m—m
06515-1~F

\'
SUMMARY OF CONCLUSIONS

5.1  Ifroductjon

This chapter attempts to summarize the conclusions reached on the
basis of the material gathered and analyzed as well as the theoretical investi-
gations presented in this report. All through the work the objectives have been
to explore the theoretical limits in each area rather than present boundaries
defined by the state of the art. We hope that particularly in the second problem
area we have been able to make organized contributions towards a better
understanding as well as a better quantitative grasp of the problems involved in
optical communication. In the first and the third problem areas the emphasis has
been on ariving at conclusions from a search of published theoretical investiga~
tions and recorded data.
5.2 First Problem Area

An optical signal from outer space may suffer deterioration before
reaching the ground due to

a) extinction (absorption and scattering)

b) ''seeing"

c) scintillation

d) "noise" radiation

e) dispersion

f) loss of coherence

In order to maintain communication despite these difficulties a number
of countermeasures are available:

a) boosting channel parameters (power, antenna gain)

b) choice of site (high altitude, stable weather)

c) diversity reception

d) alternate terminals (against local and temporary conditions)

e) choice of wavelengths ("windows")

f) choice of code and modulation frequencies
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g) selectivity of receiver

The conclusions are that several of the difficulties are easily minimized;
molecular absorption and anomalous dispersion by choice of operating wave-
length; meteorological conditions and associated extinction and seeing by choice
of site. The literature shows a very wide range of data on extinction. Even
for a specific known site it would be difficult to give a firm value of minimum
transmittivity. Near opacity over a wide wavelength range is found only in
dense fog and under a thick cloud cover.

Background radiation is minimized by receiver selectivity and antenna
gain, During daylight scattered sunlight is a severe limiting factor.

We have tentatively concluded that loss of coherence due to attenuation
in the atmosphere is likely to be small, but a more careful study of this problem
is suggested.

Scintillation is another phenomenon which we have not had opportunity
to devote much attention to. Tentative conclusions are that it introduces a
modulation of low frequency which may be discriminated against by choices of
modulation or code.

5.3 Second Problem Area

At very low power levels, observations of electromagnetic radiation in
the optical range become for fundamental physical reasons digital in nature. It
should not be surprising then that digital communication channels are found more
efficient than analog-type channels and detection methods under such conditions.

Entropy calculations for a binary optical channel using a photon counter
as a detector indicated an unexpectedly high "efficiency" (Gordon, 1962) for
average signal levels of less than one photon per sample pair, if we with
efficiency understand the fraction of the theoretical capacity that can be utilized
with an ideal binary code. The efficiency approaches 1000/ o as the signal level

approaches zero.
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Our conclusion is that such high efficiency figures are of the same nature
as the basic theorems in information theory: the length of the code and complexity
of the terminal equipment do not show resonable convergence close to this limit.
Numerical calculations indicate definitely, however, that there is a range of
signal levels below one photon per sample pair where the error probabilities are
reasonable, so that a practical solution is possible.

As far as the photon counter is concerned, it recovers ideally as much
of the information as quantum mechanics permits; no detector can do better. A
photomultiplier is not an ideal photon counter, but such tubes have been made
which have an extremely good performance.

The comparison of the ph(v)ton‘ counter with a superheterodyne detector
we find to be based on a somewhat doubtful extrapolation of the latter's perform-
ance down to the signal levels in question, but there is little doubt that the photon
counter method of detection is superior in this range.

Considerable attention has in this report been devoted to a quantum
amplifier as a receiver component, It appears intuitively plausible that an ideal
quantum amplifier followed by an ideal photon counter should also be able to
extract as much imformation from the signal as quantum mechanics permits. The
spontaneous emission noise in the amplifier is in a sense analogous to the dark
current in the photocell and the electron multiplier; most of the output pulses due
to the latter are smaller than the pulses generated by photons and can be discarded;
Similarly, in a single-transit traveling-wave laser amplifier the pulses generated
by spontaneous emission travel less than the full length of the active material;
thus they are amplified less and can be eliminated by a threshold device.

It is interesting to speculate whether or not similar amplitude discrimin-
ation can be made to eliminate the dark-current pulses in a tiny semiconductor
junction photocell and whether or not a digital amplifier or multiplier for such

a photocell is feasible. If the answer is affirmative, the photon counter operation
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of a communication channel could be extended to wavelengths above one micron,
for which effective photoemissive devices are not available and are unlikely to
become available in the future.

5.4 Third Problem Area

The photon=counter detector discussed above needs a narrow filter to
prevent counts of background radiation outside the bandwidth of the signal. The
investigation reported here concludes that there is no theoretical difficulty in
devising such filters, but the state of the art, as far as materials with desired
properties and other technological developments are concerned, does not at the
present permit the design of filters that meet simultaneously reasonable
requirements of length, weight, transmissivity, tunability etc.

The combination of a laser amplifier and photon counter discussed in
the previous section would have the advantage of selectivity as well as gain. The
question of whether or not sufficient bandwidth can be obtained for the signals

specified in the directives for this contract remains to be answered.
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