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ABSTRACT

A study of the excitation and propagation of wave like disturbances in an ionized
medium, such as the ionosphere, is made based on the linearized Euler's equa-
tion and Maxwell's equation. The local propagation constants of the basic modes
of propagation are discussed. A computer program for the evaluation of these
constants with given ionospheric properties is given, Methods of investigating
the propagation of such waves in inhomogeneous and/or bounded media, such as
ray tracing, invariant embedding, reflection and refraction, orthogonal expan-
sion, and the use of a general matrix formulation are presented. A unified
matrix-operator transform method for investigation of the excitation and prop-
gation of disturbances in an ionized medium is proposed.
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EVALUATION

The subject report represents about 1 1/2 years effort on excitation and propaga-
tion of disturbances in the ionospheric plasma. Towards describing these
phenomena, the contractor has applied matrix-operator techniques and developed
generalized formulations applicable to a wide range of associated problems. How-
ever, particular problems though noted and discussed are not resolved. For
instance, excitation is formulated for all possible souces but problems are

solved only for extremely simplified media/source conditions.

The report significance is based on its scope rather than on detailed calculations.
As indicated, the problem types are as broad as possible and the mathematical
techniques powerful. However, the formulations are limited to linear macro-
scopic conditions., The significance of the contractor's results is that while
little new physics is introduced in this report, the mathematical bases for
several important problem classes have been developed.
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INTRODUCTION

This report presents the results of an investigation of the excitation
and propagation of wave like disturbances in the ionosphere. Recognizing
that the ionosphere is a complicated physical system such that the eventual
solution of the problem has to rely heavily on approximate, numerical cal-
culations, the primary efforts of our investigation were devoted to the choice
of a model, the investigation of techniques that may yield the solution to the
problem directly, and the solution of some idealized problems which may
allow some insight into the validity of a particular approach or which may
yield results useful to the eventual solution of the complete problem.

The model of the ionosphere is taken as a three-fluid plasma con-
taining ions, electrons and neutral particles whose density, temperature and
average mass are known. The problem is formulated mathematically by
linearizing the coupled hydrodynamic and Maxwell equations. In order to
clarify the approximations involved in the use of these equations, they are
deduced from the Maxwell-Boltzmann equation in Chapter II.

The basic modes of propagation in the three-fluid plasma are dis-
cussed in Chapter III. It is found that if all the coupling effects are included,
the propagation constants in a homogeneous medium satisfy a tenth order
algebraic equation. The basic properties of these waves are introduced
through the study of degenerate cases. Based on collected published data on
the ionosphere (Appendix A), propagation constants were evaluated by use of

a digital computer, for several discrete angular frequencies and directions



of propagation, corresponding to an altitude of 100Km. The results of the
computations are presented in Section 3.3. Due to a lack of time and funds,
similar calculations were not made at other altitudes. The computer pro-
gram used in the calculations is discussed in Appendix B.

A generalized operator transform approach was formulated as a
unified approach to the problem of the excitation and propagation of waves
in ionized media. This method, valid in principle for both homogeneous and
inhomogeneous media, reduces the mathematical problem to that of solving
a generalized integral equation in transform space. For homogeneous media,
analytical solutions are possible. Some new results on the solution of the
excitation problem in a homogeneous electron plasma have been presented by
Wu (1965) in a separate report. A general discussion of the application of this
approach to excitation problems in inhomogeneous media is given in Section 7. 3.

The excitation problem in a bounded two-fluid plasma is considered
in Section VI, using the conventional methods of orthogonal expansions. The
formal solution of the fields excited in the plasma by a dipole source above
a conducting plane and sphere is obtained in a form suitable for numerical
integration.

Based on the assumption that the solution to the excitation problem in
a homogeneous medium may be used near the source even in an inhomogeneous
medium, the effect of the inhomogeneity on wave propagation is investigated in
Section VII. Conventional ray theory, the technique of invariant embedding
and the reflection and refraction of waves at a discontinuity, is formulated for
an electron plasma. A novel approach, using Kron's method of large system
analysis, is investigated in Appendix C. All of these methods, in principle, may
be extended to more complicated problems. However, the feasibility of obtaining

numerical solutions by these methods remains to be tested.



II

THE EQUATIONS OF MOTION

2.1 The Boltzmann Equation

Basically, the study of the excitation and propagation of distur-
bances in the ionosphere can be formulated in terms of the kinetics of a
partially ionized gas mixture. From the microscopic point of view, there-
fore, one may start from the well known Boltzmann's equation with a source

term, which is

3 )
= +u. = f+
o fj(g, ut)tu o fJ.

_B s

9 -
5 fj= Zl(fj,tk)i-sj(_r_',g,t) (2.1)
k

The terms in (2.1) are defined as follows:

f(r,u t)du3 is the average number of particles of the jth
] component per unit volume in the velocity
range (u, u+du);

mj is the mass per particle of the jth component ;

X is the force (external an&1 long range) exerted
j ) ) _
on each particle of the j~ component;

I(fj, f k) is the rate of change of fj due to short range
interaction with the kth component, and is known
as the collision term;

3
Sj(g, y, t)du is the source per unit volume per second of

particles of j©° component externally in-
jected into the mixture in the velocity range
(4, utdy) .



The long range forces of interaction between charged particles may be ex-
pressed in terms of the electric and magnetic field in the medium. Thus, the

term Xj may be written as

)_<j=xj+qj(5+gx§> (2.2)

where
% is the external mechanical force;

th
qj is the charge per particle of the j component;

E, and B are the macroscopic electric and magnetic field*
respectively.

On the other hand, a detailed knowledge of the short range interaction,
especially in an ionized media, is not known. Simple models for this inter-
action (or collision), are generally postulated in the investigation of Boltzmann's
equation.

The solution of (2.1), even without the source, the external force and
the collision term, is extremely difficult, and has been the subject of a great
deal of research which, to date, has yielded only approximate solutions to some
idealized problems. Since the pertinent macroscopic properties of the mixture,
such as temperature, density, average velocity, etc., are all contained in the
first three moments of Eq. (2.1), the present work is confined to the investi-
gation of the macroscopic equations (magneto-hydrodynamic equations) governing

the laws of mass, momentum, and energy conservation. Mathematically, these

%
We assume here that the effective electric and magnetic fields acting on each
particle are essentially the macroscopic field, see Ginzburg (1961), p. 28.



equations, which are interpreted as the first three moments of Eq. (2.1), do
not represent a complete description of the system. In general, approximate
relations between the higher moments and the first three moments are neces-
sary. These relations are derived either by using perturbation theory (Chapman
and Cowlings, 1939), an approximate distribution function (Everett, 1962), or
variational methods (Marshall, 1957)*. The results obtained by these methods
invariably introduce some macroscopic constants (or parameters) into the sys-
tem of hydro-dynamic equations. For a complicated mixture, such asthe iono-
sphere, some of these "constants" have never been determined experimentally
or calculated theoretically with certainty. For an engineering approach, we
shall, in this work, simplify these relations so that the "constants" involved

in the resulting macroscopic equations are reasonably well known either from

experimental measurement or approximate theoretical considerations.

2.2 The Macroscopic Equations

The macroscopic equations governing the average motion of each com-
ponent in an ionized gas mixture can either be considered approximately as the
first three moments of (2.1), or deduced directly from the application of the
macroscopic conservation laws of mass, momentum, and energy. These laws,

and some explanations concerning them, are given below.

*
Due to the vast amount of literature on this subject, a complete list of
references cannot be given in this report and thus only representative
references are listed.



(i) The conservation of mass and charge. If the mass density of
each component in a mixture is pj , and the macroscopic average of its
velocity is yj , one then has

L p+v-(pV)=Q (2.3)
ot ] i B

where Qj is the material source input. The charge density of each com-

ponent is given by

P q,
S (2.4)
m,

]

g,
J

and the current density is given by

1 =0V (2.5)
] 17)
Thus, the conservation of mass implies the conservation of charge.
(ii) The momentum equation. For each component of a mixture, we
may define a pressure tensor to account for the transport of the fluctuation

part of momentum. This pressure tensor may be written as

P.=p. (2.6)
=P

-
u=l

j

th .
where pj is the partial pressure of the j component, Ij is the trace-
less pressure tensor, and I is the identity tensor. Similarly, the kinetic
temperature Tj of each component can be defined in terms of the partial

pressure by

P,
p. == kT (2.7)
™



where Kk is Boltzmann's constant. Due to short range interactions
(collisions) between different components, the momentum of each component
is not conserved. The usual momentum equation for each component is
given by

A A e DAL SR

i

where _I_<‘j is the external mechanical force per unit volume acting on the j
component, and kji(\_/j-\_fi) is the effective force per unit volume acting on
the j  component due to short range interactions (collisions) with the i
component. The precise calculation of the coefficients kji requires a de-

tailed knowledge of the mechanism of short range interactions. Approxi-

mately, it can be shown that

N 2rnimj (number of binary collisions in unit volume per
= 4
L

ji ij m+m, X sec. between particles of the two components)
i

(2.9)

(iii) The energy equation. Due to collisions between particles of
different components, the energy of each component in a mixture is not
conserved. The transfer of energy due to a collision, again depends on the
mechanism of the collision, which, of course, is unknown. Assuming a simple
model of collisions, such as an inverse fifth power interaction, it can be

shown that the energy equation for each component of the mixture is



9 JL_2 1.2
—p 5V, FUL+V [.(-V.+U V4+p V.-V 1
Jt {2 j J} SRR LA R

.+9.] = E-L+F -V +h,
j =i i j B i B

J

m.V.+mV, 2K
_Z Vji {( mi+mj ) : (yj-yi)+ mi+mj (Tj-Ti)} (2.10)

i

where Qj is the conventional heat flux, hj is the heat input to tl;; jth
component, and Uj is the internal energy per unit mass of the j com-
ponent.

Although the transfer of energy due to collisions given by the last
term of (2. 10) was derived from a very simple model, its physical impli-
cation is quite clear: collisions between particles of different components
tend to equalize the average velocity of the components as well as the ran-
dom energy (the term involving the temperature difference).

Besides these conservation laws, obtained from the mechanical point
of view, the long range interaction between particles expressed in terms of the
macroscopic electric field and magnetic field must also satisfy Maxwell's

field equation. These are

v (€ E)=Zo.+o (2.11)
o= j 8
j
V-B=0 (2.12)
9B
V E-—= : .
XE-—= x0 (2.13)



OE
VXB -y € —m
B-ug€ ot L+I (2.14)

where Mo and eo are, respectively, the free space permeability and per-

mittivity Ml—e = ¢, the velocity of light), oé , and I s are the external
0o
sources of charge density and current density.

The solution of the equations obtained from the conservation laws
together with Maxwell's equations, even with some known relations between
7,9, ij and the other macroscopic variables, is too complicated to
yield any immediate result. Therefore, some approximations, neglecting
secondary effects but retaining the basic features of primary physical im-
portance, are necessary.

From the system point of view, the system of equations may be con-
sidered as several subsystems coupled together, i.e. the systems for the
motion of each component, and the electromagnetic system. The motion of
each component is coupled through (i) the collision terms and (ii) the electric
and magnetic influence via Maxwell's equations. If this coupling is neglected,
each component may be treated as a simple gas. For a disturbance in a simple
gas, the conventional theory of acoustic waves applies. In acoustic theory we
assume that, to a first order of approximation, the entropy remains constant

and the acoustic velocity is given by

9P
dp | constant entropy .



Based on the success of using linear theory and the constant entropy
approximation in the investigation of acoustic disturbances, even in gas
mixtures, our present investigation shall be concerned primarily with the
effect of the coupling terms on the acoustic disturbances. Approximate
equations that degenerate to the acoustic equations when coupling is neg-

lected are given in the next section.

2.3 The Perturbation Equations

For the investigation of disturbances in the ionosphere, we shall
simplify the macroscopic equations deduced above by using approximations
consistent with our present day knowledge of the ionosphere. Therefore,
the following idealizations are made in this investigation:

a) The ionosphere is assumed to contain three distinct components:
electrons, ions (singly charged) and neutrals. The average mass per particle
of each component is designated by m_, m, and m . respectively.

b) When undisturbed, the average temperature and number density
are known as a function of altitude. The temperatures of the components are
denoted by Te’ Ti’ and Tn’ respectively, while the number densities are de-
noted by Ne' Ni’ and Nn’ respectively. In general, local electrical neutrality

may be assumed, so that

N=N=N . (2.15)

The collision coefficients, kei’ ken’ and kin , given by Eq. (2.9) can there-
fore be estimated approximately.

c¢) The disturbances are assumed to be weak, so that linearized

equations apply. The perturbation of the electron, ion, and neutral density

is denoted by D0y and n 0’ respectively.

10



d) The thermal and viscous effects are considered to be of secondary
importance, so that the stress tensor and heat flux can be neglected, and for

each component j,

2
V:p. = mU Vn, (2.16)
] 1) J
. . .th
where Uj may be regarded as the local acoustic velocity of the j component.
e) The perturbed electric field is denoted by E, and the perturbed mag-
netic field by poll . Due to the presence of the earth's magnetic field, the

total magnetic field is given by

B=B +uh=Bb+uh (2.17)
where Bo is the magnitude, and % is the unit vector indicating the direction
of the earth's magnetic field.

Based on the above assumptions, the equations in Section 2.2 may be
linearized by neglecting the second order terms. Taking the Fourier trans-
form (with respect to time) of the resulting linearized equations, the following
equations governing the perturbed motion of electrons, ions, and neutral particles
are obtained.

Electron Motion

2
U
. e e
-iwV +— Vn =-—[E+V xB]
o e
k F
ei en e
- — - - - +
Nm (!e !1) m (Xe lI'n) N
oe o e

11



- +V- (N =
e (oye) Qe

where e is the electron charge (numerical value).

Ion Motion

-in +V- (NV)=Q,
1 0~1 1

Neutral Particle Motion

Un2 kni kne
-1 4+ — = - - - - +
1m—ln N Vnn N m (Yn l,i) N m (Yn Ye) En
n n n nn

-in +V-(NV)=Q
n n~n  “n

Maxwell's Equation

VXE- iwuoll = -K

Vxh+iweE=eN(V-V )+1
= o- o-i e 8

12

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



where ls is a current source, and where, for completeness, a magnetic
current source K has been introduced.

The set of Eqs. (2.18) through (2.25) represents a coupled system of
18 first order partial differential equations relating the 18 field quantities
(3 components each of \_/i, ye, \_/n, E, h, and the three scalar ., D, nn) to
the sources. The solution of such a system, especially in an inhomogeneous
(stratified) medium such as the ionosphere is extremely complicated. There-
fore, our investigation of this set of equations is limited to:

a) The investigation of the characteristics of the propagation of the
disturbances in a locally homogeneous medium.

h) The development of techniques that may enable one to solve such
large scale systems numerically or approximately.

c) The investigation of some idealized problems. For example, in
some regions of the ionosphere, if we neglect collisions and ion motion, a
relatively simple set of equations involving only the motion of electrons is ob-

tained. These are given by

ng—iwoll= -K (2.26)
Vxh+ive E+eN V=1 (2.27)
- o~ o= =s
, 2
-imN V +mU Vn+eN [E+VxB | = F (2.28)
O o= = =0 -
N V' Y+V- (NV)-ien = Q (2.29)

where the subscript e has been deleted from all variables since no con-

fusion would result. The excitation of disturbances in an electron plasma,

13



based on certain limiting cases of the above equations, has been discussed by
many authors but the most comprehensive investigation has been carried out by
Y.K. Wu under this contract and the results presented in an earlier report
(Wu, 1965).

d) Some idealized problems involving the excitation of disturbances
in a bounded plasma.

The result of these investigations will be discussed in detail in the

remainder of this report.

14



III

PROPAGATION CONSTANTS

3.1 The Dispersion Relation

In principle, in a homogeneous medium, the set of Egs. (2.18)
through (2.24) may be solved by the usual Fourier transform technique.
'Basically, for each function of the space variables r , we may intro-

duce the Fourier transform defined by

L Bﬂ’iﬂ' L f(r)dr (3.1)
(27)

‘The transform of the set of Eqs. (2.18) through (2.24) yields a set of linear

T(g) -

algebraic equations for the transformed field quantities, which can be golved
by inverting the matrix formed by the coefficients of the algebraic equations
(functions of 8). To carry out the inverse transform for the field components,
it is then necessary to find the roots of the determinant of this matrix. This
relation is known as the dispersion relation. The truth of this statement

can be seen from the following discussion. Instead of applying a Fourier
transform to Eqs. (2.18) through (2.24), assume that the components of the
vectors and the three scalar quantities vary as Wei's-' L Where W is inde-
pendent of r and represent the magnitude of Vex’ etc. This is the usual as-

sumption of plane wave propagation where s is the propagation vector given by
8=8% (3.2)

and r is a position vector in space. Making this substitution into Egs. (2.18)

15



through (2.24), assuming no sources, a system of linear homogeneous equa-
tions are obtained. In order that a non-trivial solution exist for this set it is
necessary that the determinant of the coefficients be zero. This result yields
the propagation vector s as a function of frequency and, therefore, is the
dispersion relation. It is obvious that the determinant obtained in this way

is identical to that obtained from the matrix resulting from the application of
the Fourier transform.

Explicitly, if each field variable such as ye(g) is replaced by

ye(g)els T the following equations are obtained™.
SXE= wuoll (3.3)
S8xh x-weE-ieN(V.-V ) (3.4)
= o— o—i —e
N
n=—gV (3.5)
e w——e
N
x = g. 3.6
nr o By (3.6)
Nn
n=—sV (3.7)
n w—-n
2
Un
V (1Y +HV e -i L R OV ettty NV Y (3.8)
e eien 'm w Vete'" 2N w ei~i  en—n ’

*
No confusion should result if ye is used to denote \_le(l) etc.

16



2

U n.
) e E ~ i i,
v.(I+iv, v ) =+i=—=+iQV xb+ts— —+iv_V +iv_V (3.9)
=i le 1n m w i—i =N w ie~e in—n
2
U n

V (v #+iv J=ms—=——=+iy V +i V. (3.10)
-n ni ne = N0 () ne—e ni—i

For simplicity, the normalized collision frequency ratio an
which accounts for the loss of energy of particles of mth kind due to

collisions with those of the nth kind given by

k
mn

Ymn~ wx density of mil component

has been used in Egs. (3. 3) through (3. 10).
To obtain the dispersion relation from the above systems, we shall,

without loss of generality, choose

1]

u
N>

n

and

B =(zcosf +ysing)B
=0 0

where 6 is the angle between the direction of propagation and the d. c.
magnetic field. By expanding the vector equations and quantities in (3. 1)
through (3. 10) into components, the dispersion relation may be given in the

following determinantal form:

_
Al A A
Ay Ay Ay | =0 (s.11)
Agp Az Agg

_ ]



where the sub-determinants (minors) Aij are given by the following equations.

A

(Bz - 32)(1 + wei + ivm)

2 2
-iﬂe(Bo-s)

L (32_52)82 sin@ cos @
2 0
Be

+ wzsz sinf cosf

L

1Qe(8(2>-'2) Be
I +uz o2 sing cos8
— —-— o—— an—— — e wm—— G Gm—— o— — — -— _l — e USSP —
l
2
(30-82)(1+iyei+11/.n) |
27 0
“*e"o |
— — — — — I._..ﬁz _; — — IS ——
|(B,-8 )1 +iv _+y )
0 L (6(2)_82)820“29

—

I
|
|- -1—2 (Bi- 82}'2 sin6 cos 8
I
|

e

I
|
| | 2

| -wz(ﬁ(z) -52 cos  0)

(3.12)
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I
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|
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0 ! 0 s
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For simplicity we have also introduced the following normalized quantities

in Eas. (4.12) through (4.20).

A W
= W J€E == i
Bo o™ o (free space propagation constant)
W
'Be in é v (propagation constant of respective
* e,i,n acoustic waves)
e2No
) = m—l— (normalized plasma frequency)
eBo
Q i -
L 1= “’me 1 (normalized gyro-frequency)

Equation (3. 11), when developed, is a polynomial of 5th order ins~ , in-
dicating the existence of five basic waves (modes). These modes may be
interpreted as the result of collisional and other forms of coupling between

the following basic types of waves: neutral acoustic, electron acoustic, ion
acoustic, ordinary and extraordinary electromagnetic waves. In order to

learn more about the effect of ""coupling' on these five basic waves, the charac-
teristics of wave propagation in the subsystem will be studied first. This, of
course, implies the investigation of the roots of the subdeterminants of Eq. (3.11).
3.2  The Basic Modes of Propagation

Basically, there are five natural modes of propagation in the model of

the ionosphere considered, corresponding to the five basic energy storage
mechanisms. The dispersion relation, therefore, yields a polynomial of 5th

2
degree in s , corresponding to the five basic types of waves (or modes of

22



propagation). Due to the collisional coupling, and the collective action of
charged components through the electrostatic and magnetic interaction,
identification of each particular mode of propagation is somewhat ambiguous.
In order to understand more clearly the roots of the dispersion relation,
some general characteristics of the basic modes of propagation are discussed
in this section.

Since the thermal energy exchange was neglected in the present first
order analysis, the effect of collisions would be to cause attenuation of the
waves due to the transfer of ordered energy into random energy. When the
appropriate collision terms are small, v<< 1, the effect of collisions on the
phase velocity of propagation is small and the nature of the basic waves (or
modes) of propagation can be determined by neglecting collisions. The effect
of collisions can then be estimated by the following consideration. A particle
of the ith kind, with ordered motion, will lose some of its energy (ordered
motion) when it collides with a different type of particle. This energy loss
represents the maximum attenuation due to collisions since some of the ordered
energy transferred to the second particle will eventually be returned (fedback)
to a particle of the ith kind by means of a series of collisions with other
particles. Therefore, the energy lost in the initial collision can be considered
as the attenuation due to collisions and the feedback of energy as the coupling
effect of collisions.

As a result of the above discussion, the nature of the waves (modes) will
be studied by first neglecting collisions and then the attenuation estimated by
considering only the attenuation due to collisions.

a. Neutral Acoustic Waves

If collisions are neglected, the motion of neutrals can be considered

separately. The equations describing the motion of neutrals are:
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Nn
n =-w—§~y (3.7)

2
Un nn Ss
Vsgs——==—.V (3.10)
-n =N w 2 -n
0 B

These equations yield the basic characteristics of the acoustic type waves,
namely they are longitudinal waves in the sense that the velocity is in the
direction of propagation. The propagation constant of the acoustic wave is

given by

W
s = Bn U (3.21)
n
and is consistent with the definition of acoustic velocity. Collisional coupling
would modify the above conclusion somewhat. To estimate the attenuation of

the acoustic wave, we may modify (3.21) to

(3.22)

Equation (3.22) gives the limiting value of the attenuation constant for acoustic

waves at high frequency which is

1 kniql-kne
30 Nm_ (3.23)
n n n
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b. Electron Plasma (Acoustic) Waves
The acoustic type of wave for electron motion is not as simple as that

for neutrals.

Since the motion of charged particles necessarily causes current
and bunching of charges, the mechanical equation of motion of the electrons
should be considered together with Maxwell's equations. If we neglect col-
lisions and the d.c. magnetic field, and assume that the motion of the ions
is negligible due to their heavy mass, the coupled equations to be considered

are

SXxE=uwh (3.3)
sXxh=-weE+ieNV (3.4")
- = o~ o—e
No
ne = 'J' S Ye (3.5)
E n
__'i;__i_._q 1
Ye- lm w N W (3.7
e 0

82 SS ieNo
[l’_‘*"_'} E = \" (3.24)
2 2 1= we =e
B~ B o
0 0
and
SS i
[1-%]v = -—2E (3.25)
Be e



The nature of the wave may be made clear by separating E, and
\_/e into components in the direction of propagation, (the longitudinal com-

ponents, EL , V__) and the components transverse to the direction of

eL
propagation, ET and VeT . In terms of these components, we have
ieNo
E =—
L o VoL (3.26)
)
S2 ieNo
1-2=)E =
( Bz)ET ~= Vor (3.27)
0
s2 ie
(1- —2) VeL= - —HH)EL (3.28)
B e
e
ie
- .29
VeT= mew ET (3.29)

From Eqgs. (3.26) and (3.28) we find that the longitudinal components

of Ye and E are associated with the propagation constant,

s=B \|l-w (3.30)

which has the characteristics of an acoustic wave, and is generally called

the electron acoustic (plasma) wave.

On the other hand, from Eq. (3.27) and (3.29), we see that the trans-

verse components are associated with the propagation constant
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2
5= 08 yl-w : (3.31)
o e
This transverse wave can be identified as the electromagnetic wave.
One may also estimate the attenuation of these waves by considering

the attenuation effect of collisions and neglecting the coupling effect. For

the electron acoustic wave, we have

i‘*'iV ‘ (3.32)

e en

2
s =B Jl—w +iv
e e

For the electromagnetic wave, we have,

(3.33)

c. Ion Plasma (acoustic) Wave
When the ion motion is not negligible, such as in the case of a low
frequency, collionless plasma, the coupled motion of electrons and ions is

described by the following equations.

s2 BS ieN
l-—+'—"°]E=— 2 (V.-V) (3. 34)
2 2 = WweE =i —e .
B~ B 0
o o
88 N
—=0
[1_ ZJ Y " mwt (3.35)
Be e

27



5-8 i
[1- 0] V = += g (3. 36)
2 =i

Again, the longitudinal components are associated with acoustic types
of waves. The propagation constants for these waves are determined by the

equation

4 2 2 2 23 2 2.2 2 2
S -[Be (l--we )+Bi (l—wi )] s +Be Bi (l-u.)e -w, )=0 (3.37)

The roots of this equation are given by

999792

2 r
2(1-02m82%0-00 J[B 2(l-w2)-3.2(l—w.2)] 2148%8%,%
e 1 1 e e 1 1 e 1 e 1

1
S==2§..Be

(3.38)

Equation (3. 38) shows that the two waves may be considered as the result of

the coupling, by electric forces, of an ion acoustic wave and an electron acoustic
wave and, in general, cannot be separated into an ion and electron acoustic
wave. However, at high frequencies where the coupling is weak (u,}2<wez<<l)

the roots are approximately

s= 3 \l-w, (3.39)

s=f3 \Jl—wz (3.40)
e e

where (3. 39) is determined by the positive sign in (3. 38) and may be identified

and

as the ion acoustic wave and (3.40) is given by the negative sign and may be

identified as the electron acoustic wave.
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The effect of collisions at high frequencies can be estimated by

neglecting the coupling effect of collision only and (3. 39) and (3.40) become

-

sxf3, Jl-w.2+iv. +iv, (3.41)
i i ie " in

and

s=f3 Jl-w 2+iu +iv (3.42)
e e ei en

At lower frequencies where the coupling effects are large the two waves, of

course, cannot be identified as an ion or electron wave ; however, since

Bi >> Be we can say that an ion type of acoustic wave is given by the positive

sign in Eq. (3.38) and an electron type of acoustic wave by the negative sign.
As the coupling effects become larger, the motion of the electrons

and ions become nearly equal and only a single wave propagates. This point

can be determined from (3. 37) and is
W 2+w,2 =1
e i

2, 2 2, 2
When W, +wi <1 two waves propagate while for we +(.)i > 1 only
one wave can propagate. Similarly, the transverse component of the velocity
and electric field is associated with the electromagnetic wave. This electro-
magnetic wave has a propagation constant given by
2

8=B° 1-we -w, (3.43)
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d. Electromagnetic Waves

The transverse characteristics of electromagnetic waves are modified
due to the presence of the d. c¢. magnetic field. Inspection of Eq. (3.3) re-
veals that the perturbed magnetic field is always transverse to the direction of
propagation, while the electric field, in general, has a component in the direc-
tion of propagation. The presence of a d. c. magnetic field causes the
electromagnetic field to split into two distinct modes. Based on the propaga-
tion characteristics of these waves, they are referred to as ordinary and ex-
traordinary waves. However, in the analysis of a warm plasma problem,
these waves are coupled together and, in general, lose their distinguishing
characteristics.

An appropriate terminology for these waves has been given by
Allis et al (1963) and discussed in detail by Wu (1965). This terminology
is based on the characteristics of propagation of these waves when the direc-
tion of propagation is at a fixed angle with respect to the d. c. magnetic field.
In this section, the well-known characteristics of these waves will be deduced
in order to clarify the terminology used to describe them.

The basic characteristics of electromagnetic waves in a plasma under
the influence of d. c. magnetic field can be brought out by considering the

waves in a cold, collisionless plasma. The equations to be solved are therefore,

s2 88 ieN0 ieNo
(1-;2_+;_2-_)E’w6 Xe“wec’ Y (3.44)
o o
.ode B g v (3.45)
“e m_ W e—e

%
This deduction follows the procedure of Stix (1962).

30



and
ie £ A
V.2+———+iQQ V.xb (3.46)
-1 m W 1=1

Since the d. c. magnetic field tends to force the charged particles to have
a circular motion in a plane perpendicular to the direction of the d.c. mag-
netic field, it is convenient to refer all directed quantities to the direction of

the d. c. magnetic field. Therefore, without loss of generality, let

o>
u
N D

and

8 = 3(zcos@-ysind).

In terms of the components of E, \_/e and Xi Eqgs. (3.44), (3.45) and (3.46)

become
82 ieNo 1eNo
- — X o — + ——
(1 BZ)Ex we Vix WE Vex (3.47)
o
s2 9 s2 ieNQ ieNo
(1- —-sin 0)E - =5 8infcosd E_=- V. + \' (3.48)
8 z 8 y W€ iz we ez
(0 0 0
B2 s2 9 ieNo ieNo
- — ——— = - + .
5 8iné cos@ Ez+(1 5 CO8 O)Ey oe Viy e Vey (3.49)
Bo Bo 0 o
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_de o (3.50)
ez me(d Z

_E
v =-—=X_iqv (3.51)
eX m W e ey

ie E
v s-—-Ltiqv (3.52)
ey m W e ex

The equations for the ion velocities are similar to those given in Egs. (3.50)
to (3.52), and may be obtained from them by replacing e and Qe by -e and
Qi , respectively.

Although the dispersion relations can be obtained directly by forming
the determinants of the above equations, the basic characteristics of the
waves can be made clear if we consider the component equations separately.

Eliminating the z-component of velocity yields a relation between Ez and Ey:

2
(P-n sinze) Ez- n23m8 cosf Ey (3.53)

where, for simplicity, we let

P2 (1-w 2-02 (3.54)
e i
and 9
2 =8
n == (3.55)
B

(o)
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Similarly, the transverse components of velocity may be expressed in

terms of the transverse components of the electric fields by use of Eqs. (3.51)
and (3.52). This is accomplished in simple manner by forming the right hand

rotating and left hand rotating field components such as Ex+ iEy, Ex- iEy, etc.
Using the rotating field components in (3. 51) and (3. 52) we obtain

ie
-Q NV +iV = — +i
(1 e)( ex 1 ey) ] (E lEy) (3.56)

ie
m W
e

(l-Qe)(Vex- ivey)a (Ex- iEy) (3.57)

and similar equations for the ions. By substituting these results into (3.47)

and (3. 40) the following equations are obtained.

+L 2 -
B - n)E = iE (oY (3.58)
x y 2
and
+ 2 2 -
-nzcosesinGE +(B"l" -n cos 6)E =-iR—£E (3.59)
z 2 y 2 'x
where
we W,
R=1-79—- 140
2
Ue wi
L= l-a "1a
e i

From the determinant formed from the coefficients of Eqs. (3.53), (3.58)
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and (3. 59) the equation for s, or n is given by

2 2 + 2 2
n 6)-n [P@—L—)' (Hcos 6)+RLsin 6] +RPL= 0 (3.60)

4 2 +
n (Pcos 9+R—'I-J-si 5

2

Equation (3. 60) indicates the anisotropic behavior of the propagation (direc-
tion dependence of propagation constant) of the electromagnetic waves, where
as the acoustic type of waves discussed previously are isotropic. The direc-
tional characteristics, and the identification of these waves can be simply

obtained by expressing Eq. (3.60) in the form

2
2o P(n’-R)(n°-L)
R+L (n2_2RL )(112~P)
2 R+L

(3.61)

Thus, in the direction 6=0, the two waves have the following features.

a) nzsR, 2 2
e
= l- = - 3.62
828 ‘ (3.62)

and from Eq. (3.58)
E = -iE
X y

which is the characteristic of a right hand circularly polarized wave, and

b) n2=L, 7 2

e i
828 Vl' 1+Q 1+Q, (3.63)
e 1

which corresponds to a left hand circularly polarized wave.
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0
In the direction 6=90", (propagation transverse to the direction of the

magnetic field) we have

2
a)n =P
=B \Ll-w °- :
8 Bo Wy - W, (3.64)

which is a wave uneffected by the magnetic field and, therefore, is generally

referred to as the ordinary wave, and

2 2RL
b) 0= BT
2 2 2 2
we U U wi
1-175 - 14:9)(1 1+Q 1-(2
s=Bo 5 5 (3.65)
w (:J
(- L
\ 1-02 1422

which is generally referred to as the extraordinary wave.

In general, for 0< 6 < % the two waves are coupled and lose their
distinguishing characteristics. However, they can be distinguished mathe-
matically by the limiting condition as 9 —» 90° . Waves whose propagation
constants are obtained from the same branch of the solution of Eq. (3.61) as
the ordinary wave, (3.64) will be called the modified ordinary waves and the
waves whose propagation constant is given by the same branch as the extra-

ordinary wave, (3.65), will be called modified extraordinary waves.
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The dispersion relation, given in the form of Eq. (3. 61) can also be
utilized to identify the regions where each of the waves can exist along a
particular direction (or are heavily attenuated). Since tan26 is positive
along each mathematical branch of the solution, nz is a continuous function
of 6, and waves are heavily attenuated if n2 < 0. One may, according to
the values of P, R, and L , investigate the possibility of the existence of
unattenuated propagation by using the well-known CMA diagram. For the
case of a cold plasma, such a diagram is given by Stix (1962). The application
of such a diagram to the case of warm plasma was given by Wu (1965).

e. Waves in a Warm Plasma

The analysis of the dispersion relation pertaining to the propagation
of waves in a warm plasma, where the effects of thermal velocities are consid-
ered, is generally quite complicated, even for the collisionless case. For an
electron plasma, the determinantal equation was laboriously developed and
discussed by Wu (1965). A simplified approach to this problem, based on the
discussion given in the previous section, is to investigate the proportionality
constant only in the directions 6=0 and 0= 90°. If the values of n2 in these
directions are known, say @, @, and a, for 6=0 and Bl, 82 and 83 for

9=90° , the dispersion relation may be easily written in the form

(n2 -a )(n2 —az)(nz-as)

1

(3.66)
(08 Mo’ -8, Xn"-B)

2
tan 6 = constant
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where the constant term can be obtained easily from the determinantal
equation by a limiting process. For example, consider the case of a
collisionless electron plasma. The set of Maxwell's are given by Egs. (3. 47),
(3. 48) and (3.49) while the equations of motion for the electrons are obtained
by adding an acoustic velocity term to Egs. (3.50), (3.51) and (3.52). The

complete set of equations are

(1-n2)Ex= Y \Y (3.67)

2 2 2 ieNo
(l-n sin §)E -n sin HcosOE = \' (3.68)
z y w€o ez
ieN
-nzsinecoseE +(l-n2c0329)E -2y (3.69)
z y wEo ey
s2 2 ie Ez 82
(l-—cos )V =-———=— -—— gin6coshV (3.170)
32 e me W B 2 ey
e 0
vV =-=—2X_i0v (3.71)
ex m_ W e ey
82 2 ie E 2
(1- =7 sin §)V_=-— L E_ingcosoVv (3.72)
8 2 ey m w 8 2 ez
e e
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For 60=0 we have from (3. 68)

2
U E

2 .

(I-n" Ly --2-Z (3.73)

2 ez m W
A e

While the transverse components of the velocity are identical to those
obtained for the case of a cold plasma and are given by Egs. (3. 64) and (3. 65).
The z-component of the system of equations is decoupled and yields one propa-

gation constant as

s= Be 1-w (3. 74)

which is easily identified as the electron plasma wave. The same procedure
used to eliminate Vex and Vey for the cold plasma can be applied to the re-

maining equations yielding the propagation constants

(3.75)

and

(3.76)

which are easily identified as electromagnetic waves.
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For 6= 90° the components of the equation again decouple yielding
the propagation constant
2

s =B -0 (3.31)

which is identified as the ordinary electromagnetic wave. For the trans-

verse field, EX and Ey can be eliminated yielding

w2
V I-—2=—)+iQ Vv =0 (3.77)
ex 2 e ey
1-5
2
B
0
2
. 2 s
-iQV + l:l-w --—] vV =0. (3.78)
e ex e B2 ey
e

A second order equation in 32 can be obtained from (3. 77) and (3. 78)

and is
s4 _82 [(Be2+ Bozx 1- “’ez ) 'ﬂez Bez] + 302 Bez [( 1- we2)2 ) Qe2 ] 0
(3.79)

The roots of (3. 79) can be investigated easily and correspond to waves obtained
due to the coupling between the extraordinary electromagnetic wave and the

electron acoustic wave.
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The dispersion relation can then be obtained from the propagation

constants and Eq. (3.66) and is

2
s [
tan 9 = - 0 ;2 (3.80)
[n P][n n(l -Q )-Bi(m n2 RL)]
o

The constant in (3. 66) was evaluated by comparing the limit of (3. 66) as
Be —> ® to the cold plasma equation. A detailed discussion of Eq. (3.80) was
given by Wu (1965) in a previous report.

The same approach, when applied to a warm plasma, considering both
electron and ion motion, does not yield such a simple result. For the sake of

completeness, the result is given below.

, (-8 LKs-B R)[4-[B (1-uP)+8 00 ] 5488 01w -0

tan 0 = -

4 3
[(s -Bo P) s +Als +Azs +A3]
(3.81)

where

2 2 2 2 2 2 2 2 2
- {Bi (l-q -2 )+Be (l-we -% H-Bo (l-we -u )}
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2.2 2 2 2 2. 2, . 2 2.2
A = oo )= S S
ZBeBi [l% b'% Qe(lul)ﬂl(l% Qegl]

2.2 2 2 2. 2 2 2,2 2 2 2 2 2
+Bo Bi [(l-w -4 )(l-“i )-Ql (--l—we )] +Bo Be [(l—we - )(l—we )-Qe (1-(% )]

(<

2,2,2 2 22 2 2 2.2 2. 2 22
A3— —Bo Be Bi [(l—u)e -Q ) +ZQeine w, -(l-we )Q1 -(l—wi )Qe +Qe§21 J

For the sake of comparison, Eq. (3.81) has been written in terms of s2
rather than nz

It is easy to see, from Eq. (3.81), that for 6=0 two coupled elec-
tromagnetic waves are possible and two acoustic waves, due to the coupling
between the electron and ion acoustic waves. For 6= 900 the first term in
the denominator is precisely the same as Eq. (3.64) and is the ordinary
electromagnetic wave. The second term in the denominator yields three waves,
an electromagnetic wave and two acoustic waves which are the result of coupling
between the extraordinary electromagnetic wave and the electron and ion
acoustic waves.

3.3 Propagation Constants in the Ionosphere

The characteristic waves for the collisionless case discussed in the
previous section yield the basic characteristics of propagation, in general,
only for the direction of propagation parallel or perpendicular to the direction
of the d.c. magnetic field. For intermediate directions of propagation, the
basic modes are coupled and lose their identity. Indeed, even for the parallel

and perpendicular case, the basic modes are coupled as indicated, for example,
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by Eq. (3.38). The effect of collisions, as mentioned in Section 3.1, can
probably be considered as composed of two parts, attenuation due to col-
lisions and coupling due to collisions. Examination of the curves in Appendix A
shows that for the ionosphere, especially for charged particles, the coupling
due to collisions is probably of secondary importance when compared to
coupling due to electric forces and due to the d.c. magnetic field as exem-
plified by the plasma frequencies and gyro frequencies, respectively. Because
of this, it is probable that the most important effect of collisions is the attenua-
tion of the waves. The attenuation of the waves can be considered as due to
two causes. The coupling due to electric and d.c. magnetic forces and that
due to collisions. At frequencies and regions of the ionosphere where the
coupling forces are small, the collisions terms (also small) have the greatest
effect on the attenuation of the wave and have very little effect on the phase
velocity of the waves. As the coupling forces become large, the attenuation
due to collisions becomes small compared to electric and magnetic forces

and in this region the collisions terms have their greatest effect on the phase
velocity. This point can best be illustrated by examination of Eq. (3.32). The

real and imaginary parts of this equation are

v] 1
2 -
1—w2+\l(l—w2)2+(v +v ) 2
e e ei en
s =f3
r e
2 22 AR
-(l1-w) + \L-w Y+ +tv ) |2
e e el en
s.= B ,
i e 2
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Since for the regiozns of the ionosphere considered Vei+ven<<we2 it is
evident that for we <1 s is a strong function of the plasma frequency and
s, is largezly a function of the collision terms. For wez> 1, due to the
factor l-we , the reverse situation is true.

It should be noted that the above analysis does not apply to the neutral
wave since, of course, electric and magnetic forces do not affect the neutral
particles directly. Because of this, the propagation constant for the neutral
wave should be given to a good approximation, by Eq. (3.2) for the ionosphere.

One other fact of significance should be pointed out at this time in regard
to the attenuation of the electron and ion types of waves. For loose coupling,

2
) <<1, Eqgs. (3.32) and (3.41) are approximately,

(vei+ven)
=0 4] ——
S Be ! 2U

e

(V'+Vin)
~B +i
=B+ 20,

Thus, the attenuation of the electron and ion acoustic waves is given
by the ratio of the collision frequency to the appropriate velocity. Again, refer-
ring to Appendix A, this number is relatively large and these waves are
rapidly attenuated, in general, and the '(l;' point for the magnitude of these waves
is reached in a distance of one kilometer at the most and,in many cases, in a
distance of a few meters.

A complete analysis of the effects of collision and direction of propagation
on the modes propagating in the ionosphere would involve a detailed analysis of

the dispersion relation, Eq. (3.11). Because of the complicated nature of this

43



equation and the analytic expressions obtained for the coefficients of the re-
sulting fifth order polynomial in s2 , the dispersion relation was programmed
for analysis by a digital computer. A complete discussion of the program is
given in Appendix B. Due to limitations of time and money, only a limited
amount of data was obtained and the results tabulated in Table I. The propaga-
tion constants were computed for 150 intervals of 6 between 0 and 900 at
angular frequencies of 3x 103, 3x 104, 3x 105, 3x 106, 3x 107, 3x 108 and
3xlO9 radians per second, using parameters appropriate to an altitude of

100 Km in the ionosphere. The roots are presented in groups of five, corres-
ponding to the five basic modes of propagation, the first two roots correspond
to the two electromagnetic waves and the last three to the electron, ion and
neutral acoustic wave, respectively. The columns in the table correspond to
variations in direction of propagations and the rows, in groups of five, to fre-
quency variation, the lowest frequency appearing at the top of the table and the
highest frequency at the bottom. The left hand column of the table lists, in
addition to frequency, the corresponding values of Bo’ Be’ Bi and Bn while the
two extreme right hand columns list the appropriate normalized values of the
plasma frequencies, gyro-frequencies and the collision frequencies. Only
three significant digits are listed for the real and imaginary parts of the prop-
agation constants; however, many more digits were required to achieve the
required accuracy. In this table, the imaginary parts of some of the rbots

are negative. One particular case of importance is that for the neutral wave
at 6=0 and w= 3x103 . The negative sign was due to a lack of accuracy in
the procedure for determining the roots of the polynomial in that not enough
iterations were carried out in the process. The roots of this polynomial were
evaluated a second time, using greater accuracy, and the following results ob-

tained for the five roots.
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.139x10'4+i.612x10'3

.592;;10'3+1.132x10'4

.702x10'l Fi.141x10°

.533){10l + i.188x101

103x10° +1.251x10°"

It should be noted that all numbers agree except for the imaginary
part of the root corresponding to the neutral wave which is now positive, as
it should be.

Several other examples of roots with negative imaginary parts occur
for w= 3x109 for one of the electromagnetic waves. It is obvious that in
this case the negative part is due to the numerical calculations and is not a
representative number. Thus, it would seem reasonable that the imaginary
parts of the roots are probably not reliable when they are much smaller than
the corresponding real part.

In spite of the discussion, it is felt that the following conclusions are
justified, based on Table I and the previous discussion.

1. For very high frequencies, the real part of the propagation
constant for all modes is essentially given by
Bo’ 'Be’ Bi and Bn’ respectively.

2. The electron and ion types of acoustic waves are highly
attenuated, i.e. the magnitude of this type of wave de-
creases to 1/e of its initial value, in traveling only a
few meters.

3. The attenuation of the electromagnetic waves is dependent

on the collision frequencies for S>> 2 but becomes
large for < 2. €
—e
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4. The attenuation of the neutral acoustic wave is relatively
low and it will propagate over relatively long distances
without appreciable loss(hundreds of kilometers).
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THE OPERATOR TRANSFORM METHOD

4.1 The Operator Approach

The set of linearized equations governing the excitation of waves in a
three fluid plasma,(Eq. (2. 3) through (2. 149, for a general inhomogeneous
media with parameters depending on space coordinates, is close to impos-
sible to solve. In the case of stratified media, one may, perhaps, with tedi-
ous algebraic manipulation, reduce these equations to a system of ordinary
differential equations of higher order. General solutions for such higher order
differential equations with variable coefficients are not known. Therefore,
approximate numerical methods must be used to obtain the solution to such
problems.

A formal procedure for reformulating the systems of equations which
may introduce some simplification and offer the possibility of a numerical
solution, is the general operator-transform method proposed by Wu (1965).
This procedure is an extension of the operator method used by Diamet (1963)
to obtain formal solutions for Maxwell's equations. The procedure for the for-
mal reduction of the equations is as follows:

FIRST: For the purpose of exhibiting a general solution to a system of basic
equations, it is convenient to reformulate them in the following single operator

equation

W Y(r)=p(r) (4.1)

where Y(r) is a field vector composed of the field variables such as the electric
field E, the velocity field V, etc., f(r) is the source vector containing various
excitation sources such as the electric current source J, the mechanical source
F, etc., and U/ is the system matrix differential operator relating the field to

the sources. W contains all the properties of the medium and is a function of
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the space coordinate r. In general, without loss of generality, the system of
basic equations can be rearranged so that some of the submatrices of W are
identity matrices.

SECOND: Here, we introduce the generalized transform techniques, which
amounts to choosing some convenient basis of representation for the solution
and transforming the operator differential equation in real space to an operator
integral equation in transform space. The generic summation symbol §,

such as used in Schiff (1955), will be used , which requires that the ex-
pression following this symbol be integrated or summed over the entire range
of the repeated variable. Formally, for any quantity a(r), we may introduce

the following transform pair:
Transform  A(s) = $d(s, r)a(r)
Inverse a(r) = gc(r, s)A(s) (4.2)

with the property that
g c(r, s)d(s, p) = 1(r, p)
and $d(u, r)e(r, s) = 1(u, s) (4.3)

The idemfactor f(u, 8) comprises a Dirac delta function or a Kronecker delta and
a unit dyadic, as required.

To illustrate the transform pair consider a rectangular coordinate sys-
tem. The real space variables are coordinates (x, y, z) and the transform space
variables may be considered as (sl, 8, 83). The range of the real space and
transform space variables is - to + . In this case a Fourier transform is

appropriate and d(s, r) and c(r, s) are
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1 -ir-s
e

d(s, r) = 3
(2x)
. s (4.4)

Now, we proceed to the transformation of the operator Eq. (4.1). Let
J(s) andf(s) be the transforms of the vectors ¢/(r) and P (r), respectively, i.e.,

7(s) = gd(s, ri(r)

Y(r) = § c(r, s)s) (4.5)
(s) = $d(s, r)p(r)
f s) = $d(s, r)f(r “6)
p(r) = $clr, s)f(s)
Also, we take the transformation law for the matrix operatorw as
S (u,s) = gd(u, r)weclr, s) (a.7)

Premultiplying both sides of Eq. (4.1) by d(u, r), and then substituting the ex-
pansion for Y(r) as given by the transform pair in Eq. (4.5) and summing or
integrating over the complete r-space the operator Eq. (4. 1) in the real space
becomes the operator integral equation in the transform space

g0, s)f(s) =f0) (4.8)
This equation has the character of a generalized integral equation of the first
kind, with f(s) as the forcing function, {{s) as the unknown function, andf{u, s)
as the kernel. ‘uf(u, 8) is a function of two composite variables of the transform

space and retains all the pertinent information about the system.
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THIRD: Because of the earlier rearrangement and diagonalization, the dyadic
kernel W/ (u, s) can be properly partitioned so that the order of the matrices to be
manipulated may be reduced, by introducing coupled integral equations of the
second kind, which in turn may be recombined into one integral equation of the

second kind. For example, we can have for Maxwell's equations

:l(u, s) -Z(u, s)
W v, 8)= . (4.9)
-Y(u, 8) 1(u, s)
Then, the partitioning of {(s) and ﬁ(u) into two vectors
V(s) W(u)
Js)= . e (4.10)
K(s) J(u)
produces the following coupled integral equations
V(u)=W(uH$ Z(u, s) I(s) ' (4.11)
I(u)=J(uH$ Y(u, 8)V(s) (4.12)
Let V(s) and I(s) correspond, respectively, to the transform of the electric
field and the transform of the magnetic field, then these Eqs. (4.11) and (4. 12)

have the generalized forms of the telegraphist's equations of Schelkunoft (1955) if

s is taken to indicate different modes in the waveguide.

The elimination of either the field vector V or I in the Egs. (4.11)and

(4.12) gives the general form of the Fredholm integral equation of the second

kind, e.g.,

V(u)=F(uHgK(u, s)V(s) (4.13)
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where

F(u)=zW(uHg Z(u, s)J(s)

(4.14)
K(u, 8)z=8 Z(u, v)Y(v, s)

are both known functions. For homogeneous media the kernel has the ideal

form

K(u, 8)=N(s)1 (u, s) (4.15

and the integral Eq. (4.13) can be explicitly solved as

V(s)= [1 -N(s)] 1 Rs). (4.16)

For inhomogeneous media, no such idealization is possible, but, in principle,
solutions may be obtained by standard techniques of numerical analysis.

This generalized operator approach, therefore, may be called a
"unified"' approach in the sense that within the same mathematical framework,
a technique is available which, in principle, is applicable to problems in-
volving either homogeneous or inhomogeneous media.

4.2 The Integral Equation

The steps outlined in Section 4. 1 for reducing the system of partial
differential Eqs. (2.3) to (2. 7) into integral equations in the transform domain
is straightforward and has been carried out explicitly by Wu (1965). A sketch
of this reduction is given in this section.

The matrix equation relating the fields E, Ye’ yi, V,h,n,n,n

n - e 1 n

to the sources K, Qe’ Qi’ Qn’ I, F Ei’ En’ is rearranged in such a way

e!
that the resulting matrix operator contains two sub-matrices which are identity
matrices. This rearrangement is essential in order to simplify the resulting

integral equation by eliminating some of the field variables. The resulting
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matrix equation is given by Eq. (4.17), where S are related to the

1,2,3,4
sources I, Ee’ Ei’ and En , While the Aij are source independent operators.

The explicit forms of § L and Aij are given by Wu (1965).
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The matrix Eq. (4.17)can be put into an operator form as

W y(r) = P(r) (4.18)
where . ~ -
h Zig
n qu
e
n iQe
i —
W
nn iQi
w(r) = E W
: iQ
v pr) = —n (4.19)
-e W
Y 5
| o %
S,
5,

Equation (4..18) can be considered as an abstract relation between the
sources and the resultant fields. ¥(r) is the eighteen-vector representing the field
quantities, P (r) is an eighteen-vector representing the source quantities, and
W is the system matrix differential operator relating the field to the sources.

The generalized Fourier transform, such as defined by Egs. (4.2) and (4. 3) may

be used to obtain the transform of Eq. (4.18). The result may be formally ex-

pressed in the form of Eq. (4. 8) which is repeated below.
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$ wf (u,8)y(s) =P (u)

(4.20)

Equation (4.20) may be put into the generalized forms of the telegra-

phist's equation by partitioning the transform of the field vector, {(s), the trans-

form of the source vector, ﬁ (s), and the transform of the matrix differential

operator, W (u,s), as follows:

J(s)=gd(s, 1)

-

| =

| =

< dJ<

=1<1

w

56
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It(s)
V (8)
e
V.(s)
1
V (s)
n
Vt(s)
I(s)
e
L(s)
1

I (s)
n

(4.21)



;—;& I(s)
0
iQ
e
- W, (o
iQi
Y Wi(s)
1Qn
#(s)=gd(s, 1) y 2 Wn(s) (4.22)
8, w t(s)
5, Je(s)
§3 Ji(s)
| 8, | i Jn(s) ‘

where 1(s), V (8), 1 (s), 1(s), 1 (s), J (s), W.(s), J (s), J.(s) and J (s) are

t t e i n t t e i n
three by one column matrices, and Ve(s), Vi(s), Vn(s), We(s), Wi(s) and Wn(s)
are scalars.

In view of the orthonomality of the transformation kernels, c(r, s) and

d(s, r), the eighteen-dyadic kernel WS/ (u, 8) can be partitioned as
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The elements in these equations are given explicitly by Wu (1965).
By substituting Eqs. (4.21), (4.22) and (4.23) into the integral Eq. (4.20)

the following generalized telegraphist's equations can be obtained:

It(u) = Jt(u)+$ Yt(u, s)Vt(s) (4.24)

Vt(u) = Wt(u)+$ Zt(u, S)It(s)+$ Tte(u, s)Ve(S) (4.25)

+$Tti(u, s)Vi(s)+$ Tm(u, s)vn(s)

Ie(u) = Je(u)+$ Ye(u, s)Ve(s)+$ Tet(u, s)It(s) (4.26)

+8 Yei(u’ s)Vi(s)+$ Yen(u, s)Vn(s)
Ve(u) = We(u)+$ Ze(u, s)Ie(s) (4.27)

Ii(U) = Ji(u)+$ Yi(u, s)Vi(s)+$ Tit(u, S)It(S) (4.28)

+$Yie(u, s) Ve(s)+$ Yin(u’ 8) Vn(s)
Vi(“) = Wi(u)+$ Zi(“’ S)Ii“’) (4.29)

I(u) = Jn(u)+$ Y (u, s)Vn(s)+$ T (8)1(s) (4.30)

+¢ Y (o s)Ve(s)+$ Y ,(u,8) v.(s)
Vn(u) z wn(u)+$ Zn(u. s)In(s) (4.31)
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By properly partitioning §(s), f(s) and W (u,s) as given by Egs. (4.21),
(4.22) and (4.23), the basic equations can be reformulated into the general form
of the Fredholm Integral Equation of the second kind.

First of all, the transform of the field vector is partitioned into three

column vectors each with six components as follows:

ﬁ@l(s)j
Us)= | gyls) (4.32)
LQB(S)

where

_It(S)
Ve(s) Vt(S) Ii(S)

g (s)= , U.(8)= , P (8)E
: V.(s) 2 I (s) 3 I (s)
1 e n

LVn(S)~

Similarly, the transform of the source vector is partitioned as three six-column-

vectors . ~
$(s)
f(s)= () (4.33)
§o)
where - )
[~ 7
I ()
W (s) W (s) J.(s)
e t 1
ﬁl(s)E W.(s) ’ 152(8)E J (8) ’ ﬁB(S)! J (s)
i e n
W (s)
n
- -

60



Next, the transform of the matrix differential operator as given by Eq. (4.23)

is partitioned in the following form

-—--- =]
1(y, ) -‘bflz(u, 5) - w13<u, s)

W ez | -W, s lus) 0 (4.34)
Wy (u,8) 0 I(u, 5)

Substitution of Egs. (4.32), (4.33) and (4. 34) into the integral Eq. (4.20)

gives three coupled integral equations which are

g, (u) = ﬁl(u)+$ ‘le(u. 8)&172(8)+$ ?Afls(u, s)i/B(s) (4. 35)
Pylu) = P (W+B W), (u, 8)7, (s) (4.36)
503(u) = §3(u)+$ 1¢/31(u, s)@l(s) (4.37)
where
Yt(u, s) O
llflz(u. 8)2 0 Ze(u’ s) (4. 38)
0 0
Y o _]
o o
0 0
(u, 8)=
w13 2@ 0 (4.39)
0 Z (u, s)
- n -
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Zt(u, s) Tte(u, s) Tti(u, s) Tm(u, s)

ule(“’ s)=
Tet(u’ s) Ye(u, s) Yei(u’ 8) Yen(u’ s)
(4.40)
T. (u, s) Y. (u,s) Y (u, s) Y. (u,s)
it ie i in
'u{;l(u, 8)=
T (u,s) Y (u,s) Y (u,s) Y (u,s)
nt ne ni n
(4.41)

Finally, the substitution of Eqs. (4.36) and (4.37) into Eq. (4.35) gives

the desired Fredholm integral equation of the second kind for the field variable

g,(s) as

@1(“) = F(u)+$ K(y, S)LPI(S) (4.42)
where we have defined

F(u) 2§ (W48 W (u,8) B, (s)+§ 1«1/3(u, s)ﬁB(S) (4.43)
and

K(u,8) = ¢ ?"{2(“’ v) U{l(v, s)+§ 2'{3(u, v) usfl(v. 8) (4.44)

which are both known functions.

Thus, the order of the matrices has been reduced from 18 x 18 to 6 x 6,
representing a considerable simplification of the problem. No attempt has been
made to obtain numerical solutions to the integral equation for a general in-
homogeneous medium, however, application of the results to a homogeneous

electron plasma has been illustrated by Wu (1965).

62



\

EXCITATION IN A HOMOGENEOUS PLASMA

5.1 General Formulation

The general operator formulation given in detail by Wu (1965) and out-
lined in Section IV, is, in principle, applicable to excitation problems in both
homogeneous and inhomogeneous media. For the case of a homogeneous, un-
bounded media, of course, the set of equations given by (2. 18) through (2. 25)
becomes a system of partial differential equations with constant coefficients.
In this case, the direct use of a three-dimensional Fourier transform will
reduce the system of differential equations in real space to a system of alge-
braic equations in transform space. Thus the Fourier transform of the field
components can be expressed in terms of the Fourier transform of the
sources.

Explicitly, if we define the Fourier transforms of the sources and

fields by Eq. (4.1), and choose the coordinates such that

(1]
]
N>

and

A AL
1_30-(zc056+ysm9)B0 ,

the following set of algebraic equations, relating the fields to the sources in
transform space, is obtained.

Maxwell's Equations;
- - 2 i . 1
sEy uuohx le (5.1)

sE wu h =iK (5.2)
y I-loy y
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—wuohz= 1KZ (5.3)

-shtweE +ieN (V. -V )=-il (5.4)
y o0Xx 0 iXx ex X

sh +we E +ieN(V. -V )=-il (5.5)
y oy o 1y ey y

we€ E+ieN(V. -V )=-il (5.6)
0z o iz ez pA

Electron Motion:

N s Q
n-——vy =i— (5.7)
e W ez W

iF

(4 +iv )V +0V cosf-K1V sinf+——E -iv V. -v V =—
el en ex e ey e ez Ume X el 1X en nx UNome

(5.8)
. iF
(4w + )V -QV cosb+——E -w V -w V = (5.9)
ei en ey e ex wm 'y eiiy enny u.)Nome
2 iF
8 e ie en
+iv +i + ing -——n+—E -i -i = (5.10)
(1 wei llIen)vez %Vexsmo wN ne wm Ez lueiv iz wenvnz wWN m
o e oe
Ion Motion:
Ns
n-—>—v =i& (5.11)
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iF,

(1+iw, +iv, )V, -2V, cosO+QLV, sind-——FE -, V -, V =——x
ie in" ix 1iy 1iz wm X ie ex in nx wNomi
(5.12)
ie iF,
(l+iy, Hiy, )V +QV._cos§-——E -iv, V -y V =——2 (5.13)
ie in" iy 1ix wmi y e ey in ny woNorn1
8 Uiz ie iFiz
(1+iv, +iv. V. -iQ.V. 8in@-——n-—E -iv. V. v, V = (5.14)
jie in" iz 1ix wNolwmlz ie iz 1nnszomi
Neutral Motion :
Ns
L 3 =ii (5.15)
n W nz w
iF
(4w +iv WV -iv V -y V =—2X (5.16)
ni ne nx niix ne ex wNomn
iF
(I+iy +iv WV - V -iv vV =—0L (5.17)
ni ne ny niiy ne ey wNnmn
2
8 Un iFnz
iy i i i -
(1 n’ni wne)vnz wniviz lunevez w N0 nn L.)Nnmn (5.18)

From the above equations, the transformed field quantities can be expressed
in terms of the transformed sources. Formally, the system of Eqs. (5.1)

through (5. 18) can be represented by the matrix equation

[L(s) #(s) =S(s) . (5.19)
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where [L(s)] is the matrix of the coefficients of the equations and f(s)
and S(s) are column vectors representing the field quantities and the sources

respectively. The determinantal equation,

L(s)= 0

the condition for the existence of fields in the source free region, has
been discussed in detail for the collisional case in Section III.

The algebraic procedure involved in finding the inverse of the matrix
[L(g)] , and then carrying out the inverse Fourier spatial transform to obtain
the fields excited by various sources is straightforward, but, nevertheless,
extremely tedious. Explicit expressions for the fields are generally obtained
only for some ideal problems. The most general case carried out explicitly
to this date is, perhaps, the work reported by Wu (1965) for the problem of
excitation of waves in a collisionless electron plasma.

5.2 Collisionless Electron Plasma

For the case of a collisionless electron plasma, which is, perhaps, an
adequate idealized model for the F-region of the ionosphere, the algebraic
equations are considerably simplified. In this case, Egs. (5.1) through (5.10)
form a complete system, so that the inversion of the matrix is relatively

simple. If one carries out the tedious algebraic steps, it can be shown that
E=-]"[ZG K+H. I1+L_F +M.Q] (5.20)
i G ij j ijj ijej ive
j

where i and j have the values x,y and z. Explicitly, the quantities in

(5.20) are
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s° 2
G= —2—(1-(2e cos 0)+s{
B B

(l-wz-ﬂzcose)+ 4[(l-w )(1-(2 cose)-Q sme:]}
B, B P B

o

_82 {51—2[(1 -mpz)2 -Qez cosze] + iz [2(1 -wp?)('l -wpz -Qezcoszo) -(2 -wpz Xlezs inze]}

B

e o

+(1-w)[(1 2,2 2]

N ;
G 1ne 32 [ Qecoseallhalz.]

o

-
G12' [32 1a11+90039a +Qsm9a3]

(0]

8 .
G2 1 p ) [—ﬂecoso :al2 1+ i a22 ]
o

=- £ + +
G22 3 1a21 Q cosé)a22 Q siné a23]

B

(o]

23
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S
— +
G31 32 [-Q cosf)a31 1a32]

(0]

2= +Q +
[1a cosfa_ +Q sm0a33]

32

1
=-—l(ia -2 cosba ,-Q sinfa,,)
e 13

H, 11 12

1 .
H = we (ﬂecoseau -ia),)

2
(1.8~
+1(l-82)a13]

e

1 .
H. = -weo [Qesme a11

13

=-—[1a -QcosOa Q sm6a23]

22

1
H, =— (Qecose a

22" e ~iagy)

21

1 . (1.8
Hy, o [Qesme a21+1(1-62 )323]

e
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: 1r .
HBl-_weo 1a31-Qecosea32—Qesm0a33]

H =L(Q cosfa
€ e

32 w 17

3 32

2
o supa i1
Hgq® weo[ﬂesmeaslﬂ(l 62) *‘33:|

e

11 “wme 11
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Mg=="5  S2g4
B we
e
where
s4 2 1 1 2 2.2
a,° 55 "5 [(-5+-§)(l—w )] +(1-wp)
BB B° B P
0O e (0] e

Bo Be Be Bo
2
- s 2
a, =—1(Zesm9 [?-(1%.) )]
0

4

8 2[ 1 2. 1 2,2]+ 22 2 .2

. _ Lo Ly ey 1- -Q 0

850 3232 8 (32+32 X1 wp) Bzﬂe sin 6| +( ui)) 2 sin
o'e o ‘e 0

9 2
=) "8inf cosh (_s__ -1)
e Bz

o

393

70



2 . s_
a0 -Qe sin6 cosf)(82 -1)

(o]

4 2

] 2 2. 28

a,, =—(1-Q cos 0)-—

33 .4 2
B ¢ B

(o] (0]

2 2
(1-w -Q c0820)+(1 -w2)2 -chosze
p € P e

Using the expressions for the components of E, the components of
h may be obtained from Egs. (5. 1) through (5.3), while the components of
-Ye and n, may be obtained from Eqs. (5.4) through (5. 7).

The Fourier inversion of Eq. (5.20) to obtain expressions for the
fields in real space, even for a unit impulse source, is quite complicated.
Numerically, the asymptotic expression for the field can be evaluated by
using the methods of stationary phase. Examples of such a procedure have
been carried out by Wu (1965), where the electric field, due to current
sources in the direction of the d. c. magnetic field, has been evaluated for
numerical parameters appropriate to various regions of ionosphere. The
numerical results obtained by Wu seem to indicate, and confirm the belief of
several previous investigators, that a substantial amount of energy is excited
in the form of plasma waves. However, from the numerical values of the
propagation constants of the waves (Section 3. 3) indicate that the plasma waves,

when collisions are not neglected, attenuate quite rapidly.
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Further detailed calculations are necessary to clear up this point,
since this fact is very important in the investigation of radiation from

current antennas in the ionosphere.
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VI

SOURCES IN A BOUNDED PLASMA

6.1 Statement of the Problem

The following presentation is an attempt to describe the waves that
might be generated by moving and stationary sources located in an ionized
gas. Only the simplest model of an oscillating dipole is considered in any
detail because of the complexity of the equations and the lack of time. It is
felt, however, that the methods can eventually be extended to include more
realistic and practical situations. For example, a moving vehicle can be con-
sidered, as a crude approximation, to resemble a charge moving along a pre-
scribed path. Inclusion of this effect is simply a matter of appropriately
selecting the source terms to describe the motion. In addition, the general
formulation has been presented in a manner which will allow for spacial
variations in the unperturbed charged particle density. An analytic descrip-
tion of the behavior of the fields when this feature is included has not been
obtained in terms of known functions. It is felt, however, that the method is
definitely amenable to numerical treatment, and this aspect of the problem is
one which is definitely worth pursuing.

In this section we shall discuss the behavior of a macroscopically neu-
tral plasma which is bounded by a perfect conductor in the interior region and
which extends to infinity in the exterior. Since neutral particle effects will be
ignored, we shall be concerned only with the ions and electrons, whose motions
are governed by the first two moments of the Boltzmann equation together with
the equation of state and Maxwell's equations. Certain simplifying assump-
tions will be made to assist in the analysis, namely that Landau damping and
shielding effects may be ignored, that there is no external electric or magnetic
field and that collision terms may be neglected. On this basis we can obtain
two scalar equations whose solutions can specify completely the behavior of the

plasma.

73



The perturbations which take place in the plasma will be considered
as being produced by mechanical, electric or magnetic sources imbedded in
the plasma. These sources, which are located a finite distance from the con-
ductor cause the particles to move in some manner. A description of their
motion is affected by the presence of the conductor which requires, then, a
prescription of the boundary conditions to be satisfied. This is, in general, a
very delicate matter and has never been well defined to everyone's satisfaction.

In most cases, however, the conditions used by Cohen (1962), namely that the
tangential electric field and the normal components of the particle velocities, and
the magnetic field vanish at the surface of the conductor, are acceptable. Al-
though these assumptions are not rigorously valid, they do have the advantage

of simplicity. In addition, any waves stimulated by a source must satisfy some
form of the radiation condition. A more exact statement of this behavior will be
discussed when we are dealing with the appropriate Green's functions.

In the following three sections we shall discuss the manner in which the
wave solutions may be obtained. The first section will be fairly general in that it
will allow for variations in the particle densities, as well as for arbitrary sources
and conductor geometry. In the second section, we shall consider one of the sim-
plest problems, namely the oscillating electric dipole source located above a per-
fectly conducting plane. In the final section we shall investigate a somewhat more
complicated problem involving the electric dipole in the presence of a conducting
sphere. In both cases we will observe that the sources give rise to a transverse
electromagnetic wave and two longitudinal plasma waves.

6.2 The Potential Functions

The situation we are considering involves the behavior of the particles of a
fully ionized gas in an infinite half-space which is bounded by a conductor. Denoting

the mechanical, electrical and magnetic sources by F(r), S(r) and J(r), respec-

tively, the Fourier transformed equations of motion and continuity together with

Maxwell's equations
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-iwV +u  Vn = = N E+F (electron motion) (6.1)
—e “e m To= e
. 2 e . .
-iwV.+u, vp. = —N E+F, (ion motion) (6.2)
R A T e
1 1 C .
Vn =—V(V-V )+— VS (electron continuity) (6. 3)
—e iw="=—-¢ iw-"e
\ -LV(V-V)+1—VS (ion continuity) (6.4
 TETRAM R ST A n continuily -4)
YXE=""H (6.5)
iw e 4x
VxH=-—E+=(V.-V )+—J (6.6)
== ¢ c= —-e ¢~

The subscripts (e) and (i) indicate terms relating to electrons and ions, respec-
tively. The mechanical quantities Ee and Ei represent forces per unit mass,
S, and Si are the rates at which electrons and ions are introduced into the plasma,

and ye = No Y, and Yi = Nog ; are functions introduced for shorthand notation.

Substitution of (6. 3) into (6. 1) to eliminate n, yields

2 2
ue -e ue
-1 4 — . — + - ——
le,e iw Y(Z ye) = m NoE Ee iw YSe (6.7)

while similarly, from (6.2) and (6. 4) we have
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2 2

u. o ui
-y +=—V(Y- V)=——N E+F --—VS.
-l W T T 71 ml o~ 1 w — 1

From these two equations E may be eliminated to give us

2 2
u u

m [—in + gV v )] +m, [—in.+ — (V- v.)]
e -e 1w —— ~—e 1 -1l 1w —-—= "1

m_u. m.u,
=(m F +m F)) - [ X VS += VS,]
e= i=i iw =T iw -~

Taking the divergence of (6. 6) and rearranging terms, we obtain

\ |
VoV =YV -TY- gt

— V- E
e e - =

which, when substituted into (6. 9) yields

2 2
u u,

m [—in + 29V v )]+ m, {-in&# [V(v- V) -
e e iw —— -e i =i iw L= -e
47 iw

-—9YV-N+— VUV E)p =(m F +mF)-

e —= = g == = e—e  i-i
2
m u mlul
[ €€ vs + Vs]
iw =—e =i
Finally, from (6.5) and (6. 6) we have
2 .
V.=V +1—(£ E+<_:— Vx(VXE)- —J,
i e e = iwe= """ e~
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so that yi may be eliminated from (6.11) to give

2
m ue+m,ui
~iw(m +m)V + —2—=——22Y(V- V)=
e 1 ~e 1W == e
2 2
m.c w2 u,2 4xiwm. 411'miui
L Y (VxVXE)+— V- E{ - L g+ — v(VJ) +
e 2= - = = 2 = = e = we - ==
(] (]
2 2
mu mlul
(n F +m.F) —( €€ vUs +— vs,> (6.13)
e—e 1—-1 1W - e 1W -1

In (6.13) and (6. 7), then, we have two equations which are similar in

form and which may be written in tensor notation as

e
LV =
X« gJ
e (6.14)
M, V =h
a ]
where
2 2
meue+miui 82
-i + +
Lja= uo(me mi)éja o 5% 0x (6.15)
j a
m, 02 u? 82 w2 47xiw mi
g = le [(-— x ox -(J+—2)6. ] E-— 3.+
) c i%%a c X ]
41rm,u2 32J ., m u2 oS m_u? oS,
ii a e i e e e il 1
, ——+(m F, +m.F,) - (— +— )
iwe 0x . 0X ej 17j iw ox, iw  ox,
]« J )
(6.16)
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2

ue 82
M. ,=-i +—— =
B 0T Fxox (6.17)
i "B
and 2
" € e ue aSe
h, =-— R —
j m, Noéjanz Fj iw ax]_ (6.18)
Since L, and M, commute,
Jo a
M, =L h
888~ BB (6.19)

From (6.15) through (6.19), then, we obtain the vector equation

2 2
iw(me+mi) e N0 (meu§+ miui) e2 ui2
m m, 2 E- iwm m, 2 vy NoE) = -l(l- -_Z-)Y(Y' E)+
e i c e i c c
2 2 2
W Ye Ui 2 ue
iw(V2+ —z)g S V(V V- E)+ W —5 V(V* E)+X+VR (6.20)
c iwe c
In this relationship we have introduced the source terms
2 iwe i
Xz -4r%J-28(m F +m F)+ =22 (m +m)F (6.21)
= 2= 2 e~e iTi 2 e i~e
c mc .

and
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2 2 2

41re i eu
R(x) = -—(u +u ) ——22—V2V¢I+ [m \% F +mV' FJ
c 1wmc
eu2
2
L(m u's +mLL2$.)+ < [m uZVZS +m,u,2VZS, ]
2 ee e 11 i 2 2 ee e ii il
mc mw ¢

(6.22)

We now assume that the electric field is composed of a longitudinal and trans-

verse part, to wit

E=-Y¢+&:‘YXZ=-Y¢+£A (6.23)

and

H=Vx(VxZ)=VxA (6.24)

With this notation, (6.20) becomes

2
iw(m +ml)e N

[V(N §) +(YN )¢+—A]

m m,
e i
2
m ue+mu 2 .
- vy [—N V¢+&NA] =
iwm m c2— - o— c o=
2
u +u
(1 - S—i— )vv2¢+1w(v2+—) [- v¢+—A]
2 2
e Ui 4
— 5 YV P+X+VR (6.25)
iwe
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The gauge condition is thus

1w(me+m)e2N m u2+m u2
" m m, 2¢_1wmm [NV¢N¢+_NA]
e i e
2 2
u u 3
V‘rﬂ (u +u )V ¢— p+R(x) (6.26)
1wc c

where we have assumed that N o varies only in the direction normal to the con-

ducting surface. The remaining part of (6.25) yields

1w(m+m)e2 . m+m1 2 2 w2 2w2
m m 3N02¢-m i 3 Noé=-—c-( C—Z)A X (6.27)

In these two equations we observe that coupling of the longitudinal and trans-
verse waves will occur if N; # 0, so that the two types of wave propagation are
independent only in a homogeneous plasma. In addition, it can be seen that R(r)
and X(r) as defined in(6.22)and(621) are, essentially, sources of longitudinal and
transverse propagations, respectively.

It is evident that(6.26)and(6,27) can be uncoupled with little difficulty but
that solving the resulting equations analytically with variable No can be done
only for the simplest of cases. In the following discussion, then, we choose

1
Noio and write (8.26)and (6.27) as

2
v4¢+§ v2¢+;°—¢=(v2+a2)(v2+82)¢= -“"3 5 R(D) (6.28)
1 1 u u
el
and
(V+oh)a= < x () (6.28)

W
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where

l .
2, b L[Db? 4] h
« :2a ) [(a ) T a ;! (6.30)
1 1 1
>, o7
2 b 4
8 =2— [(—) f] (6. 31)

2
2 m+m e N
2,u___e 0
and (o) 2 "o 5 (6.32)

e 1 C

If we assume that the electron kinetic energy is at least as great as the ion

kinetic energy, say

2 2
meue = )umiui s A>1 (6.33)
then from (6. 26)
2 m 2 2 m w 2
b W g, e )_(1+x> o~ W E_(lﬂ)_gm ] (6. 34)
a 2 Am, 2 m 2 A m 2 :
u. i u e u, iw
i e i
and
2
¢ Te w4 (fpe +wp 2
a, Am, T[l' 2 ] xm 4[1 ] (6.35)
1 i ui ()
. b 2 , ¢ me
Since (=) is greater than (=) by the order of (except when
al al )tmi
m

2 e 2
w = (1+1) o wpe )
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- 329_)
2, C/al . w2 w2
T bfa, 2 (6. 36)
1 u (I)m w
e
Am, 2
i W
d
an 5 1 2 (I1A)m w 2
B~ — =L 1- € _pe
T a 2 Am 2 (6.37)
I u, i w -
i
Also, w2_ 2
2 172, 2 2 “pe
o= [w-(w tw )—' ~ (6. 38)
. pe pi'd c2

2
(In subsequent sections, we shall delete the subscript (e) on upe since

2 2 2 2
= + 2 i - i
wp wpe wpi wp o .) We thus have, in (6.36-6.38) three propagation constants

which vary inversely as w, w and c respectively.
Turning now to the boundary conditions, we seek to determine what effect

the vanishing of n* V. =n+V =0 will have upon A and § . From(6.7)and(6.8)

i —-e
we obtain
w2 iwe iw
. —_— 2 o —— + — -
AR A 7 NoEt o Y5, (6.39)
u mu u
e ee e
and
w2 iwe iw
. —_y =z — +=—F -
U v)+ 5y s TN Y G E -, (6.40
u, miui u,

Subtraction of (6. 39) from (6. 40) yields
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<
1<

[}

, 2 (-i —e . 1 1
Y[Y' (li"—’e)] T Lz 2]"“"6[ 3 " z] NE T
: u.

FF
iw [—2— 2] -(YSi—YSe) (6.41)
u, u
i e
From (6.10), however,
iw 47
vlv o-v)]- 2w p-Tuw g (6. 22)

which, when substituted into (6. 41) yields

2 'Yi l’e 1 1 iw 4x
W |=—5 -7 |=iwe + NE-—V(V-E)+—V(V-J)+
) 2 2 2 |To= e === T o =272
m u m

u, u u,
i e ee ii
n s,
iw [—2 - ] - (YSi-YSe) (6. 43)
u. u
i e

Finally, V., from (6.12) may be used in (6. 43) to obtain

2,1 1 1 1 iw iw 02 wz
TR Sy [—T——z] ve-ven i Slewe- 5 ]
w u mu, mu u, (¢
1 e 11 e e 1
F F 2
4 Y e -1 dr w_
S V(v ._I_)+1w[ 5 "2 ] -(ZSi-YSe)+ o 21 (6. 44)
ui ue ui



Similarly using (6. 12) to eliminate ye in (6. 43) results in

2,1 1 1 1 i 2 w2
i - Ty, 3 nE -2 v p+ Sloep-Se] +
u u mu mu c
1 e i1 ee e
4r El Ee 4x w2
LT e SR R PR
ui uéa ue

If the normal components of yi and \_/e are to vanish at the surface, then the

two following conditions must hold on the boundary

F.

. 1 1 iw 9 4x 0 T Tel 98 q_q)-
“"e[ ot 2]N0En' e on (L BT 5y Yrdtia [ 2 2] o (578,)0
m.u, mu Ve u
11 ee 1 e
(6. 46)
and
(l)z (dz
lwn- [Yx(Yxl_?) iy E]’f 47 =5 J =0 (6.47)
C (¢}

It is a simple matter touse (6.23) to obtain two mixed boundary conditions for

An and f at the surface. The third condition, namely that (nxE)=0 on the

conductor, merely requires that

I e C R (6. 48)
ot ¢ t

while for the final one, n- H= 0, we have

n- (YxA)=0 (6. 49)



6.3  Vertical Oscillating Dipole Above A Perfectly Conducting Plane

For an oscillating vertical dipole we have

=i

iJ- enw sinwoté(x)é(y)é(z-zo) (6.50)

Thus, X in(g.21)has only a z- component which we denote by Z(r), so that

(6.29) may be written

(&+02)A =0
X
(V2+02)Ay= 0 (6.51)

(Fro)a = 2(p)
W

The Fourier transform of 6.51), assuming that a variable u(r) transforms

according to

@
ulk, z) = [[ a(r)e” & Lax gy (6.52)
gives us
A" -(-0%)A =0 (6.53a)
X X
' 2 2
A" -(k"-0%)A = 0 6.53b
: ( ) y ( )
" 2 2 c
Az -k -0 )Az= 5 z(k, z) (6.53c)
W
Likewise, from (6.28) we obtain
2 2 2
2 2 2 .2 i
L = [ -] [ - -2 - - 2 Ry, 2 (6.5
2 2 2 2
dz dz ue ui
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The variables AX and Ay must satisfy the radiation condition. Thus

-J k2-02 z
A (k,z)=c.e
X 1

(6. 55)

A (k z)=c e
y 2

The condition n- H= 0 requires that kycl= kxc2 . This, however, means that
n-H*0, and since this adds nothing to our solution, we may choose cl= 02= 0.

It remains, then, for us to solve (6.53c)and(6. 54) forAzand §. Taking the

first of these, we consider the inhomogeneous equation

2
1L - 6% -o%)g= o(a-8) (6.56)
dz

which satisfies the condition g(0, £)=0 and the radiation condition. Thus

2 2
sinh sz-oz Z e- o £
2 2

z< &

Jk -0

(6.57)
gz, &)=
,l 2 2

sinh {k2_02£ e- ko 2 £E<z

2 2

k -0
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Then

© 2 9

Az<z,k2>=£2 gz, E) Z(E) dE+ W)~ 'K O 2 (6. 58)

w

where the constant ¢(0) must be determined from the boundary conditions.
For the solution of (6.54) which satisfies homogeneous boundary con-

ditions, we consider the auxiliary equation

2 2
d 2 2]ld 2 2
LG= [d?-uc - ][—dzz 6] ate, 2= 5(2-8) (6.59)

which satisfies the radiation condition and the requirements

G(0,€)=0
(6.60)
oG
az (0: g)_ 0
G(z, £) is constructed from the four solutions of
2 2
d 2 2 d 2 2
L¢=[—2-(k - )][—5-(k -B )]p =0, (6.61)
dz dz
namely _
- J kz—az z m1z
¢1= e ze (6. 62a)
sz-az Z m1z
pza e 2 e (6. 62b)
- Ikz_ﬁz 2 ‘mzz
Po=e =e (6.62c)
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P e =e (6. 62d)

In order to interpret the radiation condition, we note from (6. 54) and (6. 59)

that we obtain

. 2
[#rc-0Lp) = ps(z£)+ 225 ra (6. 63)
lle ui
Integrating from £=0 to o, we have
g @ ®
¢(z)=;‘2‘*’:2 G(£, 2)R(E) dE + f [ﬂ(E)LgG—GLEy)(E)] dé (6.64)
e i Q (o]

The final term in this equation will vanish if G(£, z) varies as a linear com-

bination of §(z) and¢3(z) as z — o . Thus

alﬁl(z)+ a2¢2(z)+ a3¢3(z)+a4¢4(z) z< §

G(E, Z) = (6 65)
bl¢1(2)+b3p3(z) z>§

This, then, is the form which satisfies the radiation condition.
Using the continuity requirements at z=§ and the conditions stated in

(6.60), it can be shown that
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) m, z -m, z
Glz, &)= {[mz(mz-ml)e -mz(ml+m2)e
2(m2— ml) (ml+ mz)mlm2

+2m m_e

-m.z- -m_§ m,z -m_z
1M ]e

1
+ [ml(ml-mz)e -ml(ml+m2)e

_mlz -ng (666)
+2mlm2 e ]e

for z <€ . When z> £, the roles of z and £ in (6.66) are interchanged. Hence

9 (0 0]

p(z) = ';wcz G(&, z)R(E) dE (6.67)

u u,
e 1 (o)

is the solution of (6. 54) which satisfies the homogeneous boundary conditions.
In order to satisfy the inhomogeneous boundary conditions we merely add two
functions such that

(00}

L2
Pla): -5 | G5, 2IR()dE+B(0)G, (2 B (0G,(2) ,
u_u, (6.68)
e i 0
where Gl(z) and Gz(z) satisfy (6. 60) and
G1(0)= 1
(6.69)
G,(0)= 0
G2(0)= 0
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The three boundary conditions in (6. 46-6. 48) require that

2 2
1] [ B&_{, ZJ ! 0 +iﬁ 1+ :)E 0)=
p'(0)- |15+ | B0+ 2 (1) - 4 (0)=0 (6.71)
ue ue
2
M¢'(0)+?LA (0)=-< 7(0, %) 6.7
C 2 72 2 ’ (6.72)
C ]
¢(0)= 0 (6.73)

The last of these allows us to set P(0) on the right hand side of (6. 68) equal to
zero. The problem remains, then, to determine the other two constants. To

do this, we consider §(z) when 2<z . From (6. 22), (6. 50) and (6. 68) we have

2 2 -mz

2% enww [_-6(w+w)-6(w—w)] W m_t (z)e °

0 0 0 p 11
P(z) = - o+

2 2 m w

u, W [l-(“*) e p

A/7m 2

1 W

Z g' 1 -m.z -m,2z
Cﬂ m, Mot (z)e " ¥ “‘2(-0m1 [e tee ]
(6. 74)

For simplicity, in(6.74)wehave let G(£, z), as specified in(6. 66), be denoted
by

-ml’g" -m2€
G(E,2) = t, (z)e +t2(Z)e (6.175)
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To evaluate §'''(0) we note that

and ml
Q) =
20 m Ty
Thus,

(6.76a)

(6. 76b)

2
[860+w)-s(0-w)] o mm,

pr(0)= (m12+m m

2
+
Myt m, )¢'(O)+enwwo

m -m.z 1
I+) e 20 e °
_— -
A m,
m w
[1_1L’\_?..L]
A m 2
I w

2

WMt

(6.77)

With the aid of (6. 77), the conditions in (6. 71) and (6. 72) reduce to
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i 2 2— [ ]
m, +mlm2+m2 - —2—2 +k |, = —Lz $'(0)
u u
e e
2
iw W
C 2 2z
n ¢ L

-

2
-Mwk ,z)
(o]

c 2
- Z(0,k)

W

-
(6.78)



For the dipole at 222 , it is clear from (6. 21) that Z(0, k2)=0, which will
simplify matters somewhat.

If we denote the determinant of the matrix in (6. 78) by A, we have

w 2 2 2
A=-§L{ - w (k -a )(k -B ) +(1+)\)— (6.79)

c u
€

Thus, for example ,

2
Flw k , zo)

AZ(O) 7 (6. 80)

Acomplete analytic solution with this rather complicated expression is
very difficult and has not been successfully obtained so far. We proceed,
however, to obtain a formal solution which may be evaluated numerically

if necessary.

For z < z0 as we are assuming ,

i sinh[\(kz-oz) z]
A (z) = -4menuw < [6(w+w )-6(w-w)] X
Zz 01 0 [0} 2 2
k -0
- k2-02 z - k2—02
e +AZ(0) e (6.81)

Performing the spacial inverse transform first, we have

(00}
ik-
z = 412 A Xy
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, 2 .
Since k appears in Az(w, k, z) only as k , it is more convenient to let

k =kcost

X

k =ksint

y

X =rcos f

y =rsin f
8o that

k- r=krcos (p-t)
and

dk dk =kdkdt
Xy

Thus, (6.82) becomes

® 2%
2 ; .
Ar, z)='1—'/ kdkA (,k , z) ¢ Ikrcos(t-f) ,
z | - 2 Z
4‘ (0] [o)

Q

1 2
o% Az(w, k,z) Jo(kr)kdk
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(6.83a)

(6. 83b)

(6.83c)

(6.83d)

(6.84)

(6.85)

(6.86)



Substitution of the expression (6.81) into (6. 86) yields

@ -(ZO-Z) k2-02 —(zo+z)\l k2-02
e

e }
2 2 2 2

o k -0 k -o

A (0.5, 2)= -emn X [s(0rw)- 5(0-0)]

0 l 3 2
J(kr)kak+i/ A e Y¥ % Z5tokdk = —emow T x
o 27 z o o1
(o)
ic Jr2+(zo- z) 2 io Jr2+(z0+ z) 2
[Blotw)-8(w-u) |§2 -2 +
Jr2+(zo—z)2 Jr2+(zo+z)2
> , 2 2
1 -Vk -0 =z
2'/ AZ(O)e Jo(kr)kdk (6.87)
(o)

To obtain the time dependent expression for Ar(g, z,t), we perform

the inverse transformation of (6.87) which yields



2 e
A (r,z,t)= enw sinw t
/7 (o] (o]

io ‘lr2+(z —z)2 io Jr2+(z +z)2
0 0] (0] 0

g +

Jr2+(z —z)z Jr2+(z +z)2

0 )

(00)

1 2 -iw
('2; /dwe
-

In this equation ,

®
l 2, 2
/AZ(O)e_ kro ZJO(kr)kdk (6.88)

t

0
L7

o - wp (6.89)

is the plasma propagation constant for this two-fluid plasma. The first

two terms in(6. 88), then,correspond to the spherical waves which are gen-
erated by the source dipole at 222 and its image dipole located at z= -z
The third term is more difficult to analyze exactly, owing to the complicated

nature of the integrand.

6.4 Vertical Oscillating Dipole Above a Perfectly Conducting Sphere
As in (6.50), we have

6(r—r0)6(0) 6(r-r0)6(6)
J=1i ensinwot — =_izensinw0t-———-—- (6.90)
T 2xr sin 6 2xr sing

where we have assumed the dipole to be oriented along the z-axis. This pro-

vides us with cylindrical symmetry and it develops, as in the previous section,
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that Ap = A¢ = 0. Thus, we again have to deal only with AZ . There will,

then, be r and 6 components of A, which are given by

Ar = Azcos 0
(6.91)
A¢ = Azsm 0
We introduce now the Legendre transform
T
T =27 [ dg sin g Pn(cose) (6.92)
o

such that T: f(r,0) = fn(r) . The inverse of T, applied to fn(r), is found to be

Q
-1, 1 2ntl | [(VE ypplreosO), ) )
T fn(r)-f(r,o )= oy Z > Pn(cose)fn(r)z-gf

cos TV
n=0 c (6.93)
For the purpose of solving (6.28) and (6.29) we note that
i d , n(ntl)
Tvzf[ =200 L. g ]f() (6.94)

and

A1 d 2d n@))[Ll d 2_d__n(n+1)]
T°Vf-[2dr(r dr) r2 ][Zdr(r dr) r2 fn(r) (6.95)
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We thus have to solve the equations

2
1l d 2d {2nmt)f|})1 d 2d, [,2 nntl) _iwe
{rz ar " dr)+[°’ 2 ]}{rz ar dr)+['8 "7 ]} P g R

r u lli
(6.96)
and
2
1d,.24d 2 n(ntl) _c_
{rz dr(r dr)+[a —r2 ]} wn(r)- o Xn(r) (6.97)

where we will let y(r, 8) = Az(r, ) in order to avoid subscript confusion.
The four independent solutions to the homogeneous equation corresponding
to (6. 96) are

(1)

0 (ar)

p,(r)=h

_+(2)
p2(r) ) hn

(ar)

(6.98)
p3(r) z hél)(Br)

(2)

n

p4(r) =h "'(Br)

while for (6.97) we have

q, (r) = hél)(o r)

(6.99)
(2)(0 1)

q2(r)=h

n
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The constriction of the Green's function for (6.96) which satisfies

the two conditions

Gn(a) =0
(6.100)
oG

n
g(a)=0

is a straightforward, though complicated, process. It develops, after

several pages of algebra that will be omitted, that

2
G (&, r)= xig {x (r)p, (€)+x_(r)p (g)} (6.101)
2
n 48 -02)[pl(a)p'S(a)-ps(a)p'l(aﬂ 1 33

for £<r, where
A, (r)= [pz(a)psl (a)-p,(alp) (a)] p(r)- [pl(a)pé(a)-p3(a)pl'(a)] Py (r)

+ [pl(a)p?: (a)-pz(a)pl'(a)] p,(r) (6.102)
and

Ay(r)= [p,(alp (a)-p,alpi(al] b, (x)- [p, (a)p j(a)-p (a)p|(a)] p,(r)
+ [;Jl(a)pé(a)-DB(a)pl'(a):l P4(r) (6.103)

When £ > r, the roles of £ and r in the bracketed expression of (6.101)

are interchanged.
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The corresponding Green's function for (6. 97) satisfying gn(a)= 0

is given by
xt ql(E)
6T @ a,(a)q (r)-q, (a)q,(r)] (6.104)
when r < £, while
q (r)
g, (€, r)'41 (a) [qz(a)ql(’é) ql(a)qz(EJ (6.105)

for r> § . The complete expressions for ¢n(r) and wn(r) are obtained in

manner analogous to the one used in treating the planar case, and it may be

shown that
) [0 0)
P (r)- LU / G, (& TR () + P ()G r)+p ! @G r) (6. 106
ue ui a
where
(1) p3'(a)p1(r)-p1'(a)p3(r)
Gn (r)= @)pa)-p(a)p (a) (6.107)
p,(alpgla)-p,(alp;(a
and (a)p, (r)-p. (a)p.(r)
2 Pgia)p,ir)p,(alp,
n ¥)= - p,(a)p.}(a)-p,(a)p'(a) (6.108)
1'7%3 3]
Likewise ,
( )(ar)
¢/ (r)=-— fg (€,r)z (€)+ (1) Wn(a) . (6.109)
(0a)
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From (6.22), (6.90) and (6. 92) we note that

e Y
- 2 R(S) ey 7 [6(uﬂw) 6(w-w]{44r1w(-—+—5) -
u uoou ‘é’
e 1 e i
6'(€-r )
él 1.d 2d, nntl) 0
A xR 1= } (6.110)
3 g 3
so that

? riena , [slat)- 6w )]
f (€, I‘)R (E)dE=-
(F -d ) [pl(a)%(a)-ps(a)pl(a)]

ml"'

2 2
o ' n 1.1 B, n
{[ + -;2-] pl(ro)xl(r)+[ 2+ 3 " 2]p3(r0)7\3(r)}

u w W
e 1

(b=
F o |~

n n n n
= cl(a. ro)ll(r)+ 03(3’ ro)k3(r) (6.111)
Similarly ,
2 2 6(E-r )

7 (€)e - enw [lwr)-slww)] —5 (6.112)

W n 1 0 o o g
whereby

o2 3 q (r)

= / gn(E, r)Z (§)=7 emay [b(uﬁwo)-é(w—woﬂ ql(a)

[a, ek (r)-a(@)ay(r)] = K[(a, 7 )aj(x)-K(a, r )a(r) (6.113)
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Using the definition

®
p(r, 9)=Z2r;+1 Pn(cose )¢n(r) , (6.114)

n=0

we have, from (6.106) and (6. 111) the result

©
P(r, 6)=zg-;-ﬁ'—l P (cosf) {cll));l(r)+ cg)g(rﬂ ¢n(a)G:11)(r)+¢r'l(a)G:l2)(r)} (6.115)

n=0

Similarly , we obtain from (6.109) and (6.113)

® (1)
h™ (o)
2n+l n n n
Wr, 9)=Z—-2-— Pn(cose) {lqc&(r)+l§q2(r)+ m wn(a)} . (6.116)
n=0 n

Equations (6. 115) and (6. 116) represent a formal solution. The problem re-
mains, however, to determine the arbitrary constants ¢n(a) , ¢;1(a) and
z//n(a) . This may be done by considering the boundary conditions stated in
(6.46) through (6.48). Substituting in the functional expression for E from

(6.23), these requirements reduce to

2
")
&92+-2-c039A =0 at r=a (6117)
¢ or 02 zZ
w2 w2
200 iw 2 _ P2 - -
v g Ei- L] s s0 atrea  (6.118)
u W
e
19 WA =0 at rza (6.119)

sin@ 90 ¢ Z
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9
The term which causes the most difficulty is V %g . After some algebraic

manipulation, we find from (6.107), (6.108), (6.111) and (6. 115) that

- zi Z 2otl o > (cos 0){ %(Bz-az) E:?pg(a)‘*%pl(a)]
xa

dr
1 2 ]
(3 -a*)p '(a)p'(a) (szlps'a PRy
1 r=a
( p la)- - T p'(a) =
r=a r=a
2n+l
21__1r n+ P (cosO) [F (a, r )+b p (a) - d ¢ (a)] (6.120)

where F (a,r), b (a,r) and c (a,r ) are known quantities.
n o n o n o
Turning nowtotheboundary conditions and taking (6. 119) first, we

note that if x = cos 0 ,

(n—_l-), n odd

("‘-l) n even
oP (cos 6 OoP (x)

— (x)
sinf ae : Z [2‘1 (4m+1]P ~@m+1) (6.121)
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Thus

_Loflag) LN Aty (g bn-(4m-3)|P  (X)  +
' { - 2 ! Z_{)[ ] 2n-(2m-1)
n= ms=

3 4 (a) Z [4n~4m-1)] P (x)} -

2ntl 2n-2

ME
w|§

[00)
{Z B2 (a) Z(4s+3)p (x)+zé‘ﬁ¢ (a)Z(4s+1)%s(x>}
n=0

b2 o 25+l 2n+2

4n+5 4 3
{Z (45+3)P (X)Z oo 4 ()+Z(4s+1)p <X)Z s 2 | }

520 2S+1 s 2n+2 i
(6.122)
Thus, from (6.119) together with (6.116) and (6.122),
(0]
+ +
Z{(4s+3)P (x) Z B (a) +(as+)P (X)Z Ly G )}
25+1 on+2 2n+1
S=0 n=8
0 0]
iwa 2S+1
e X (6. 123)

S=0
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From the orthogonality of the Legendre polynomials, we obtain the first

recursion expression, namely

@
ﬁ:—;’-é-c//m(aH Z(4n+5)¢ (a) =0 m odd
2n+2
pe Bt
2
¢
o (6.124)
L-li::—awm(aﬁ Z (4n+3)p (a) =0 m even
2ntl
n=m/

To show that the two sines expansions do indeed converge, we note that

[00)
1
P(a, 0) + P(a,x) = o Z (4n+1) pz (a) (6.125a)
n=0 n
and
[0 0)
1
fa, 0)-P(a,7) E;Z (4n+3)p (a) (6.125b)
n=0 2n+l

Thus, in place of (6.124) we could have written

()=~ 7= 20 [ $(a, 0 - pla, )] (6. 126a)
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m
(? -1)

wm(a)s - Ef: {2:[¢(a, 0) - f(a, 1r)] - Z (4n+3)p (a) (6.126Db)
n=0 2ntl
for m even, m#0
(&
) (@)= - = {Z:[jb(a, 0)+f(a, )] - Z (4n+1)p2 I:a) (6. 126¢)
n=0

for m odd

The condition in (6. 117) is handled in much the same manner, although

the situation is simpler. Omitting the details, we find that

2

. )

l:-’ﬂ(; (a) +;p2_ ¥ (a) = 0 (6.127a)
L2

Lp @+ 2= @ +mty @] , m>0  (6.127)
c m-1 m+l

Using the expressions from (6. 126) we thus obtain

2
W
¢'O(a) x - -2-2- {2: [p(a, 0)+ p(a, fﬂ- ¢o(a)} (6.1284a)

2w a
2

W
¢i(a) = - "Lz' {Zr [ﬁ(a, 0)- P(a, 1)] —2¢1(a) (6.128b)

2w a
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2 (3--1)
(a)
pi(a)= -2~ {21[¢(a 0+p(a, 5] -(m+ 1p_()- > t4n+ 1) (a)}
2w a

n=0
m even, mf0 (6. 128c)
m-3
w 5 =
B (a)e-—2- {21[¢(a 0-pla,x)] -(m+1)P_(a)- > | (4n+3)p (a)}
2w 2n+l
n=0
m odd, m#l (6.128d)

Finally, from (6. 118), together with (6.116), (6.120) and (6. 127)

we have
2
02 w
F(a,1)+b p (a)-[d + =55 (1+2)1- = pi(a) = 0 (6.129a)
ue W
2 2
F_(a,x)+b § (a)- [a + & (141~ -L)]p (a) = 0 (6. 129h)
W

Substitution of the expressions for ﬂ;n(a) from (6. 128) into (6. 129) thus
yields a recursion scheme for ¢m(a) in terms of known functions. Once these
values are determined, we can obtain wm(a) and ¢;n(a) from (6. 126) and

(6.128), respectively.
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We have thus been able to establish a formal solution for $(r) and
Y(r) which may be evaluated for particular cases of interest. It is not too
difficult to understand that the process for any given situation is not particu-
larly simple. Nevertheless, it should be possible to obtain solutions in the
shadow region for example, by using a Watson transformation, or a near
zone solution by retaining just the first few terms of the Legendre polynomial
expansion.

6.5 Discussion of Result

Two points are worth noting in regard to the preceding discussion.
In the first place, it is quite evident that the difficulties encountered in the
analysis were due to the fact that ion motion was taken into account. This
effect served to give us a fourth order equation in § rather than the second
order equation we would have obtained had we considered the ions to be station-
ary. More devastating from the standpoint of a rigorous treatment, however,
was the fact that the boundary conditions were vastly more complicated. It
was illustrated in the third part of this section, for example, that even in the
case of an oscillating dipole above a perfectly conducting plane, we obtain a
solution which cannot be integrated in any simple manner.

The second point that should be mentioned regards the matter as to
just how realistic the boundary conditions really are. The assumption that the
particles undergo elastic reflection when striking a perfectly conducting object
has been used by practically everyone treating this type of problem. The fact
remains, however, that an electron striking a metallic surface might either be
absorbed or undergo some diffuse reflection. An accurate description of the
actual phenomenon has never, to our knowledge, been described in a satisfactory
manner. This is one facet of the problem, then, that definitely bears further

investigation.
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INHOMOGENEOUS MEDIA

7.1 Introduction

Although the propagation of waves in an infinite homogeneous ionized
medium has been extensively investigated in the literature, the excitation of
waves and their subsequent propagation in an inhomogeneous media, such as
the ionsphere, has been scarcely touched, due to the complicated nature of
the mathematics involved. In this section we shall discuss possible methods,
approximate or exact, for treating such problems.

If the local dispersion relation (and propagation constants) are known
as a function of the spacial variables, the excitation problem may be solved
approximately by considering the fields excited in the vicinity of a source and
extending these fields to other points in space by ray tracing techniques. A
general discussion of ray tracing in ionized media is given in Section 7.2 .

For drastic changes in the properties of the medium, the ray tracing
technique may not give accurate results due to the neglect of intermode coupling.
For these regions the reflection and refraction of the waves should be used.

A general discussion of the reflection and refraction of waves, due to discon-
tinuities in the medium, is discussed in Section 7.3 .

For a general variation of the properties of the medium in one direction
(i.e., stratified) the recently developed technique of invariant embedding,
probably would also apply. The application of this technique to wave propaga-

tion in ionized media is discussed in Section 7.4 .
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Our primary goal in this work is to develop a unified approach to deal
with excitation and propagation problems in both homogeneous and inhomo-
geneous media. The generalized operator transform technique developed
during the course of this investigation is designed to accomplish this goal.

The application of this technique to excitation problems in homogeneous media
has been demonstrated but due to lack of time and the complexity of the mathe-
matics involved, the application of this method to problems involving inhomo-
geneous media remains to be investigated. In Section 7.5 a general discus-
sion of the application of the operator transform method to problems involving
inhomogeneous media is given.

7.2 Ray Tracing

If the propagation constants for different '"modes' of propagation are
known as a function of space, the propagation of disturbances initiated at any
point may be approximately calculated by the well known technique of ray tracing.
The application of ray tracing techniques to anisotropic (propagation constant
depends on direction) and dissipative media has been discussed in detail by
Brandstatter (1963). If the propagation constant does not change appreciably in
a wave length, and the inter-mode coupling is negligible, then knowing the intital
amplitude and direction of a ray at one point, the ray path and amplitude can be
obtained by numerical integration.

In terms of the propagation constant written in the form (assume real,

for the time being)
s=9n(r, g)
c L

A
where o is a unit vector indicating the direction of propagation, the standard

form of the ray equation may be easily shown to be
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dr 1 9G(r, g)
dr = 2 00 (7.1)
n a
gﬂ=_i 9G(r,g) (7.2)
dr 2 or ’
n r
where
g 26 n(r, o) (7.3)
G(r, '6)=%[g-g_-n2(g,’c})] (7.4)
and

T is the time of propagation.

Equations (7.1) and (7.2) are a set of six (6) coupled equations. Knowing the
initial position r, and direction o , these equations may be integrated numeri-
cally in steps to yield the ray path in the parametric form r(r). The direction
of phase propagation at any point along the ray path is also obtained in the para-
metric form ¢ = a(r) .

For a stratified medium such as the ionosphere, the ray equations can
be simplified further. Following our discussion on the propagation constants

for each mode, we have a value of n in the form
n(r, u)

where u =cosf is the cosine of the angle between the d.c. magnetic field and
the direction of propagation. In order to adapt these results to the ray equation,
we shall choose a new coordinate system such that the medium is stratified in the

2 direction, while the d.c. magnetic field is in the direction

N A A
b=zcos® +ysinb . (7.5)
0 o
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'If the direction of phase propagation is designated by

A A A . A . .
0 = z cosatx sina cos B+ y sina sin B
“then

U= COS @ Cos 90+ sin o sin B sin eo (7.6)

Introducing these equations into (7.1) and (7.2) , and simplifying,
one finds that

B = constant (7.7)
d 1 on(z,u)
dr n2 oz (7.8)
(;g .1 nsinacos B +usine cosBa—n (7.9)
T n2 ou
dy =-1— nsina sinB+(u sina :~zinB-sin9)?—n (7.10)
dr n2 u
and
dz 1 on
& -nz {ncosa+(ucosa-coseo)a#} . (7.11)

With some initial values of o and B these equations can be integrated in a
straightforward manner. If several rays are traced so that the variation of
the cross section of a tube of rays can be calculated, then, by conservation of

energy, in the lossless medium, the amplitude of each field component can be
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computed from the fact that they are inversely proportional to the cross sectional
area of the ray tube.
When collisions are not neglected, the propagation constant is, in general,

complex. We may write the real and imaginary components of s in the form
w .
== ) x(z,
s=2 [n(zutix(z,u)] (7.12)

Then, approximately, the ray path is obtained from the real part of s,
[i.e., n(z,uﬂ . The fields, however, are now attenuated. The attenuation

along a ray may be approximately given by

St
d
exp [—f x(z,11)G -éds

where the integration is along a ray path.

In general, the ray tracing technique is valid when n does not change
drastically, such as near a discontinuity. Near the discontinuity, intermode
coupling necessarily exists, and the investigation of such reflection phenomena
shall be treated in Section 7.3.

The ray tracing technique is also not valid near the regions where n is
near zero or infinity and changes sign. Near the infinity of n, the wave is
totally absorbed, while near a zero of n, the wave is reflected (Budden, 1961).

7.3 Reflection and Refraction

The technique of ray tracing, applicable when the properties of the medium
do not vary appreciably in a distance of one wavelength, neglects the coupling of
the various modes due to the inhomogeneity of the medium. For strong changes

in the properties of the medium, especially for large gradients of temperature
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or density, such that the medium may be idealized by means of a discontinuity,
the intermode coupling may be investigated by the conventional methods of re-
flection of waves. Assuming that the surface of the discontinuity can be repre-
sented by a plane, the calculation of the reflection and refraction of plane waves
can be carried out, in principle, by assuming the forms of reflected and refrac-
ted waves at the discontinuity, and determining the amplitudes of these waves

in terms of the incident wave by use of the boundary conditions. Although such
methods are standard for acoustic waves and electromagnetic waves (in di-
electric medium), their application to an ionized medium becomes very involved
due to the existence of several modes simultaneously. Existing investigations
have been carried out only for the case of a plasma without a d. c. magnetic
field, such as reported by Kritz and Mintzer (1960), Haynes and Kahn (1965),

etc. In this section, the general formulation of the reflection and refraction
problem in the presence of d.c. magnetic field is given. However, due to the
complicated nature of the expressions involved, no attempt is made to derive
explicit formulas for the reflection coefficients.

Consider the discontinuity of a medium to be in the plane z=0. For
clarity, we shall use the superscript (+) to denote all quantities in the region
z> 0, and superscript (-) to denote all quantities in the region z< 0. When
a wave is incident on the boundary, say from the region z< 0, waves would
be partially reflected in the region 2< 0, and partially transmitted into the
region, z> 0. The amplitude of the reflected and transmitted waves are deter-
mined by the boundary conditions at z=0. Assuming that the velocity com-
ponents associated with the waves are small (in conformity with the pertur-
bation approximation), so that the effect of the distortion of the boundary is

negligible, then the following set of boundary conditions is sufficient to determine
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the reflected and refracted amplitudes :

a-The electromagnetic conditions,

v =V
ez ez
+ -
V. =
12 12
+ -
\' =V
nz nz

c¢-The dynamic conditions ,

+ - -
wH - )
e e e e

114

(7.

(7.

(7.

(7.

(7.

(7.

(7.

(7.

13)

14)

15)

16)

17)

18)

19)

20)



2+ -2 -
(Ui ) n - (Ui ) n, (7.21)
(U +?n+ = (U —)zn T, (7.22)
n n n n

Explicitly, let us consider the case where electron motion is dominant
and collisions are negligible. Then, assuming that the magnetic field is in the

y -z plane, such that

A A A
b=2zcosf +ysinf , (7.23)
0 o
the propagation constant in any direction
A A A A
8 =zcosa+xsinacosvy+zsina siny
may be determined through the dispersion relation
2r2 ,2 2ar2 ,2 2 2 2 r2 ,29r2 ,2 2 22
Bo [s -Be (l—wp )][s -Bo (1--u)p )] - cos 6 [s -Bo][s —Be (l-wp )]Bo
2.2 ,29r2 ,2 249,2,2
+¢T'si - - - =
S;sm ] [s Bo ] [s Bo (1 wp )] Bo Be 0 (7.24)

where

cos 0 =cos Gocos a + sin Gosin a sin v (7.25)

By algebraic manipulation, the field quantities associated with each mode,

i.e. each s satisfying Eq. (7.25), are determined within one constant.
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This means that for each s, we have

EX i:l hX EX Vez ne
—f-—:f =f_=f =T=‘£"" (7.26)
1 2 3 4 5 6

where the functions fi are given by

sinf cosa - cosf sinasiny

fl(a, Y, 8, wp B e)- [sz—Bez(l -wpz)] [sz-Boz(l —wpz)] 802

cosf
o}

-iQsinrcosy( 52-802){cos0 s% %2( 1 -wp2 )] 602+s in6 Esz-Boz( 1 -wp2 )] Bez}
(7.27)

cosf sinxsinvy 9 9 2

[s-8 (i )][43 (1-w ] X

fy@.v,s, Wy Be) ~osb

+1'Sl(sz-32){(sm9 smasm'ycosa[s (l—w )]B —smozsm'ysmo[s (l-w )]B }

0
(7.28)
2
fla,v,sw,B )=B£-s- -iQ(sinf cosa-cosh sinasin'v)[s2-{32] [sz-Bz(l-wz)]
3777 e WH () 0 0 e p
. 2 .2 2
-smacos‘y[s —Be (l—wp 2”: —B (l-w ]} (7.29)
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2
B”s

f (@,v,s,w,B )=—9—{—1Qcos9 smasm'v(s B )[ B (l—w )]
4 p e W

(o}

sin@ sinasiny
0 2 2 2
cos 6 [S ‘30 (1""p )] [S B (1"U ]} (7.30)
9 sineosinacos'y 5 9 5 5 o )
fe,v.s, W B -wm wz (s -B) [ vy [s -Bo(l—wp )][s -Be (1-wp )]
p

-ﬂcoseo -cosacosf) 82_%2 ) [sz— Bez( 1 —wp2 )] -1Qcosasing Esz- 302(1 -wpz )] Bez}

(7.31)
WS 9 99r2.2. 29,2
fglev, 8,08 ): -2 Qs sind [s -Bo] [s 8,1 )] B (7. 32)

where we have explicitly written down the arguments of the f's to indicate
their dependence on the properties of the medium. For any mode corresponding
to a propagation constant s, , the associated field E , E, h , h, V and

i X 'y X y ez

n, can then be represented by a column matrix

isi(cosa 2t simricos-vix+ sinaiam-viy)

Ai[:f(ai,'vi. 8, wp,Be)] e (7.33)

where Ai is the "amplitude" of the wave, and
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[f] - (7.34)

are the appropriate components. Across any discontinuity, the total field
must be continuous.

If a wave is incident from the negative region on the boundary, and
the incident field is given by mode i, corresponding to si; , ai; , -vi;
then we have the following reflected and refracted fields.
Incident field:
is_ (cosa z+ sina;cos ¥, X + sinai_ sin'vi-y)

[f(aio’ Y0’ %10’ wae)] ©
Reflected fields: corresponding to j=1,2,3:

is (cosar z+sina.cosv, x +sina,siny,y)

- ) J J J

R f(a v . s] W, B )Ne

and the transmitted (refracted) fields, corresponding to j=1,2,3,

+ + + +_+

[f(a,'v,s]wB)]

C+ + o+ o+ o+ o+
1sj (cosa, z+ smafj cos'vj x+ smozj co:s'vj y)
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The continuity of fields at z=0, therefore, yields the following relation

on the direction of the reflected and refracted waves

- - -+ o+ 4

s sina cosv. - S.sina.cosv. = s.sina.cos ™, (7.35)
io i i) J J ) J J
- . - . - - . - . = + . + +
s. sina.siny. = s sina sinvy, = s sina, cosv, (7.36)
io 1 1] J ) ] ) )

where Si;’ aio’ 'vi; are fixed by the incident wave and j=1,2, 3, corre-
sponding to three reflected and refracted waves. From Egs. (7.35) and (7. 36),

it is evident that v is the same for all waves, while the a's are related by

- - - -+ 4
s, sina, = s, sinca,=s,sinc, (7.37)
io io 7j i i j

where on physical grounds, we restrict

7
a, < =
2

and (7.38)

T

For the particular j= i, we have immediately

(7.39)



for other values of j, Sj , arj have to be determined by the dispersion
relation. After the values of s, and @ are determined, the following
vector equation enables us to determine the coefficients of reflection

and refraction

3
- - - - + : : - - - -
j=1

3
+ + + +=
: ZT.. [t~ ,s,0,8)] (7.40)
1) ] 10 ] p e
j=1

Since there are six component equations in Eq. (7. 40), the six coefficients
Rij’ Tij may be solved by inverting a 6x6 matrix. This can be done by
a computer with relative ease.

Extension of this formulation to a collisionless two-fluid plasma is
straightforward. In this case, the dispersion relation has four roots, and
the column matrix has eight components. The general form of the result

should be the same as that discussed above.

7.4 Invariant Embedding

The effect of the intermode coupling on waves propagating in a region
where the properties of the medium are changing rapidly, can be investigated
by the familiar principle of invariant embedding. This technique has found
wide application in the fields of light and neutron scattering and can be applied

to the present problem. In this method the region. where the properties of the
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medium are changing rapidly is considered as a layer rather than as an
idealized discontinuity as discussed in Section 7.2. The mathematical
formulation of "invariant embedding" has been summarized in an'article
by Baily and Wing (1963). In the section, the problem of evaluating the
reflection and transmission coefficients of a layer of stratified, inhomoge-
neous electron plasma will be formulated in a manner suitable for numerical
computation. The formulation may be extended, in a straightforward manner,
to include the case of ion and neutral particle motion, but, of course, the
numerical computations are much more involved.

For some background on the principle of invariant embedding, con-

sider the set of coupled differential equations given by

S’(%EL = A(z) U(z)+ B(z) W (2)

(7.41)

dw(z)
dz

= C(z) U(z)+ D(2z) W(z)

where U(z) and W(z) are nxl column matrices, while A,B,C and D are

nxn matrices. If we interpret U(z) as the field quantities associated with the
forward propagating wave, and W(z) as the field quantities associated with

the backward propagating wave, then the reflection and transmission character-
istics of a layer in a region 0< z< z0 may be investigated by solving

Eq. (7.41), subject to the following boundary conditions
U(0) = Uo

(7.42)
W(z)=0
0
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where UO is the vector, whose components are the amplitude of the
incident wave. The overall effect on wave propagation, due to the presence
of this layer, can then be expressed in terms of a refleciion matrix R and
a transmission matrix T . In terms of these matrices, we may evaluate
the reflected wave at z=0 and transmitted wave at z= z by the relation

U(zo) =T U0
(7.43)

W(0)=RU
(0]

By using the principle of invariant embedding, it can easily be shown
that, in order to obtain T and R, it is not necessary to solve the linear

boundary value problem (Eq.(7.41) and Eq. (7.42)) . Infact, T(z) and R(z)

satisfy the first order nonlinear differential equations given by the following

a%R(z) = R(z)B(z) R(z) +R(z) A(z) + D(z) R(z) + C(2) (7. 44)
dizT(z) - T(z) B(z) R(z)+ T(2) A(z) (7.45)

This set of nonlinear Eqs. (7.44) and (7.45), can be integrated from 222
to z=0 to obtain the reflection and transmission matrices. The obvious
boundary conditions, for the integration, are R=0 and T-=1 at z:zo .

To apply the above formulation in the calculation of transmission and
reflection matrices for an inhomogeneous slab, let us consider an electron

plasma with non-uniform properties in the region defined by z > z>0.
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The regions for z< 0, and z> z , are assumed to be filled with electron
plasmas of uniform properties (or free space which can be considered as an
electron plasma with zero electron density). Let waves be incident from the
region z< 0. From the discussion of the reflection and refraction of waves
in Section 7.3, we note that the propagation constant in the x direction

(s sinacos ~) and in the y direction ( s cosasinv) are constants, There-
fore, each field component, such as Ex’ may be represented in the form

isx')t is y
E ~E (z)e e
X X

where the amplitudes of the field components are functions of z only. The
source free equations for the collisionless plasma, where the direction of the
d. c. magnetic field is the same as given in the Section 7.3 , can then be re-
duced to a set of coupled differential equations. The explicit forms of these

equations are:
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All the field components in Eq. (7.46) are continuous across any boundary.
To reduce the above equations to a form that is adaptable for use in

the principle of invariant embedding, let us assume that for the region 2z<0,

the propagation constants of the three modes have been calculated and denote

their values by 8 8 and S, respectively. For any fixed direction of the

b
incident wave, sX and sy are fixed. If we denote

U =+,,s2-s2-s2 , (7.47)
a a x 'y

and similar expressions for U, and Uc, then the amplitudes of the incident

b
waves may be written as

iU z

iu z i A
+ Pc[f(Uc)] e

2’ 'Y,
P [f(Ua)J e ©+ Pbl:f(ub)] e

(7.48)

where the f's are the column vectors for the field quantities. The explicit
forms of the f's are given in Eqs. (7.26) through (7.32), and a simple alge-
braic substitution will yield the expression for f in terms of the U's, instead of

s, @ and v . Similarly, the reflected waves are represented by

1Uaz -isz -iU z
QH-u)e *+qftyle "+q[t-u))e © (7.49)

The "amplitudes' of the reflected wave can, then, be expressed in terms of

the reflection matrix, such that

Q

a [_ a
Q |-[’] P, (7.50)
QC PC



Note that [R] in Eq. (7.50) is not the same [R] given in Eq. (7.43). Simi-

larly, for the region z > z, we may denote the values of the propagation con-

b
by the incident field, we can calculate

stants as 's';, § and E'C, respectively. From the values of s and sy, fixed
X

~
U=+ Ez-sz-s2 ) (7.51)
a a x y

The transmitted fields in the region z > z are, therefore, given by the

general form

» -ial(z-z ) —i~ (z-z) -iE (z-z)

QiG)e * °+q frije b °+ac[f“(+6;)]e © % (1.52)

a

where the f{'s are the appropriate functions for the field components corre -
sponding to the properties of the medium in the region z > z . In terms of a
transmission matrix, the "amplitudes' of the transmitted waves can be cal-

culated from

Qa Pa
Q| - [T(Zo)] B (7.53)
QC PC

The transmission and reflection matrices may be calculated by the

principle of invariant embedding, if we can reformulate the set of Eqs. (7.46)
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" in terms of forward and backward propagating waves. Utilizing the property
that the field components must be continuous, we see that the boundary con-

ditions for the differential Eqs. (7.46) are

(i)atZ =0,

X : Paf(Ua)] * be(%)] * Pcf(Ucﬂ +Qaf( -Uai] +Qbf( -ubﬂ +ch( _Uc):]
y (7.54)

and (ii)at Z=2z ,
o

x| = fia?(ﬁ )]+6b'f(ﬁ'b)] +ch'f'(6’c )] (7.55)

a

We may eliminate  and R from Eqgs. (7.50), (7.53), (7.54) and (7.55),

by forming linear combinations of Ex’ Ey’ hx’ hy, Vz and n that may be
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identified as the forward and backward propagating waves. Such algebraic
derivations are somewhat complicated, but are, nevertheless straightforward.
The procedure is stated here:

a) Form the determinant

tl(Ua) fz(Ua) f3(Ua) f4(Ua) fS(Ua) fB(Ua)
fl(q)) fz(Ub) f3(Ub) f4(Ub) fs(Ub) f6(Ub)

fl(Uc) f2(Uc) f3(Uc) f4(Uc) f5(Uc) f6(Uc)

A= (7. 56)
fl(-Ua) fz(-Ua) f3( -Ua) f 4(-Ua) f5(-Ua) f6<—Ua)
fl(-Ub) fz(-Ub) f3(-Ub) f 4('Ub) f5( -Ub) f6(-Ub)

fl(-Uc) f2(-Uc) f3(-Uc) f4(-Uc) f5(-Uc) f6(-Uc)

and obtain the cofactors corresponding to each of the elements of the first

three rows and denote these cofactors by 2 bi’ ci (i=1,2,3,4,5,6).

b) Form the determinant
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R

N f,(-0)  1,(-U) £(-U) t£(-u) 1(-U) f6(-Uc)

A= ! B ~ (7.57)
; £,(U) £,(0) £.(0) f4(Ua) f5(Ua) f6(Ua) \
v e |
AUREEEEAUS @) 1) f5(ub) Q) |
fl(LL) fZ(U') 2.(0) f4(Uc) f5(U) f6(UC)
i

and obtain the cofactors of the elements in the first three rows. Denote
these cofactors by ;i’ gi’ Ei (i= 1,2,3,4,5,6) .
c¢) Define [U], [W] by the transformation,

a, a2 a3 a4 a5 a6 Ex
bl b2 b3 b 4 b5 b6 Ey ,
Ul & % % % % % Py
7 ; (7.58)
N 3y a2 a3 2, a5 2 hy
fbl by by b, bs b V2
I - ¢ ¢ ¢ n
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d) It is easily seen that, at z =0,

-
a
[U] -A P (7.59)
P
C
and
. ~ ] ] 7]
Ala Alb Alc Pa Qa
[w] - |la A & p| +2 (7.60)
* 1% B %] B Q :
A3a A3b A3C 1:‘c Qc

where, Kla is the determinate formed by replacing the first row of

. The oth
Eq. (7.57) by fl(Ua), fz(Ua), f3(Ua), f4(Ua), f5(Ua), f6(Ua) The other
determinants are similarly defined.

The boundary conditions at z = z are

W] - o (7.61)
and
[ A-—' ~ ]
Ala Alb le Qa
[v] - 8. B % S (7.62)
A A q
B3, By B3l L

where Ala is the determinant formed by replacing the first row of A by

?1(6;), ?Z(Ea) “ . fs(ﬁa) . The other determinants are similarly defined.
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e) From the transformation given by Eq. (7.58), the differential equation

for U and W can be obtained. This set of equations is in the standard

form of Eq. (7.41), with the same type of boundary conditions as Eq. (7.42).

Thus, Egs. (7.44) and (7.45) may be integrated to obtain [R] and I:T]
appropriate for [U] and [W] .

f) For the reflection and transmission of the actual fields, we see that from

Eq. (7.62)

Thus,

]

Similarly, from Eq. (7.60),

b
b

3b

lc
B¢

3c

la

3a

I b

1b
Bob

3b
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-
a
a [T P,
PC
[1]
p
a
= A (1] P,
P
d

(7.63)

(7.64)

(7.65)



Thus,

t

>y )
>
>

M -2 05 |8 & & (.66)
Z§‘/3a K3b ’A\1’3cA

The procedure outlined above seems to be complicated, but numerical
results can be obtained in a fairly straightforward manner.

7.5 Operator Transform Method

A general and, perhaps, more basic approach to the investigation of
the excitation and propagation problem in an inhomogeneous, ionized medium
is probably the generalized operator method outlined in Section IV. It is
shown there, that for the most general excitation problem, this formulation

reduces to the solution of an integral equation of Fredholm type, i.e.,
@l(u) = F(u)+ § k(u, s) 5271(8) (7.67)

where the kernel k(u,s) is a 6x6 matrix. For stratified media, this equa-
tion involves only a one-dimensional integral, so that a numerical solution

of such an equation may be within the reach of presént day computer capacity.
Additional simplifications obtained by taking advantage of the symmetry of

the sources may further simplify the problem. In this section, some possible
approximate solutions obtained by utilizing this formulation are discussed.

a) The Perturbation Method. If the excitation problem in a medium is solved,

for example, for the case of plane waves in a stratified media, then the effect
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of a slight disturbance of the medium on the resulting wave can be investigated
approximately by perturbation methods. Mathematically, this means that if

the solution _@O(u) of
7 ()= Fl) + § & (w, )7 (s) (7.68)

is known, then for a slight perturbation of the medium, the kernel k(u, s)

may be written as
k(u, s) = ko(u, s) + Ak(u,s) .
Assuming a solution of the form
¥g(u) = _!(70(u)+ A¥u)
and using the familiar Born approximation Ay(u) is given approximately by
A¥(u) = § Ak(u, s) ¢ (s) . (7.69)
b) Series Solutions. If we rewrite Eq. (7. 76) in the form
B) = P +2f Ku, 5)7(s) (7.70)

by either considering Eq. (7.67) as a special case of (7.70) for X\ =1, or by

scaling k so that )\ is a small parameter, then a series approximation for
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obtaining the resolvent of the integral equation may apply. Formally, we

may write the solution of Eq. (7.70) as,
¢(s) = F(u) + 1 $ H(u, 5,1) F(u) (7.71)

The formal procedure of obtaining the resolvent H(u, s,)\) has been discussed
by Diament (1963). Following the derivations for a one-dimensional integral

equation, it is suggested that if we write

H(u,s,)\) - %‘%‘5—*—"—) (7.72)

where p(\) and c(u,s,\) are entire functions of A, and expand p(\) as

[00)
pQL) =anx“ (7.73)
n=0
and c(u, s,\) as
a
c(u, 8,2) =z cn(u. s (7.74)
n=0

then a numerical scheme may be employed to obtain the various coefficients

of Eqs. (7.73) and (7. 74) by the following recurrence relations,
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=1
P)=

¢ (u,s) = k(u, s)
0
-np_- $ Tr c,.1(88)

e (u.s) = k(u, s)p + $ k(u, v) ¢y-1(v>8)

where Trc denotes the trace of the matrix ¢ . The rate of convergence of
this scheme, however, has not been investigated.

Other possible approaches for obtaining approximate, numerical solu-
tions of integral equations, such as the variational technique, Gelerkin's
method, or the approximation of the equation by a linear algebraic equation,
which have been used in solving one-dimensional equations, in principle, can
be applied to Eq. (7.67). However, unless the equation is further reduced,
the labor of computation is, perhaps, prohibitive.

In order to take full advantage of this formulation, perhaps, the most
realistic approach is to obtain complete solutions for some ideal kernels,
which closely approximate actual physical problems, where the solution may
be carried out, in part, analytically. Solutions of a variety of realistic prob-
lems can then be treated as perturbations of the solutions of these standard
problems.

Due to limitations of time, no computations were made for inhomoge-

neous media.
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VIII

CONCLUSIONS

The primary goal in this work was to investigate the excitation and
propagation of wave like disturbance in the ionosphere. As a necessary step
in carrying out such an investigation, a realistic three-fluid model of the
ionosphere was developed. The fundamental modes, which can propagate in
an infinite homogeneous media, have been investigated and a computer pro-
gram developed to compute the propagation constant corresponding to param-
eters appropriate to the ionosphere.

Various approaches to the problem of the excitation and propagation of
disturbances in an inhomogeneous medium have been investigated. As a re-
sult of this investigation, it is suggested that there are two realistic approaches
to this problem.

1. Solution of the excitation problem, if the medium is locally homog-
eneous near the source. From the known field excited near the source, the
fields in other regions may be obtained by using the appropriate formulation
for a stratified medium.

2. Solution of a set of standard problems, using the operator transform
method, by idealizing the kernel of the integral equation so that the complete
solution of a set of standard problems can be carried out, at least in part, by
analytical methods. The solution for a real problem can then be obtained by

perturbation methods from the known solution of an appropriate standard problem.
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APPENDIX A

MA CROSCOPIC PROPERTIES OF THE IONOSPHERE

A.l1  Discussion of the Model

For the purpose of this report, a three-fluid model of the ionosphere
containing an electron gas, positive ion gas and a neutral gas was developed
which would contain parameters appropriate to an average ionosphere in the
altitude range of 100 Km to 700 Km. Since this model was not intended to
represent the real ionosphere at any particular geographic location or time,
sdme assumptions were made which would simplify analytic procedures based
on this model but which would maintain the salient features of the real iono-
sphere. For example, the ratio of the specific heats, v, for the neutral gas
was assumed to be constant and equal to the sea level value of 1.4. Similarly,
the magnitude of the earth's magnetic field was assumed to be constant and
equal to 1/2 Gauss. In addition, thermal equilibrium among the gases was
assumed. Both theoretical and experimental evidence is available which
indicates that the electron and ion temperature, in some cases, may be greater
than the neutral particle temperature and thus, for example, the electron and
ion "acoustic velocities" predicted by this model may be lower than corresponding
values for the real ionosphere (Nagy et al, 1963).

A brief description of source of the parameters used in the model iono-
sphere follows. Since the acoustic velocities and the collision frequencies were
computed from the parameters of the model ionosphere, these quantities will
be discussed separately.

A.2 Macroscopic Properties

a. Neutral Gas

The properties of the neutral gas were taken from the U. S.

Standard Atmosphere (1962). Since the ionosphere is weakly ionized, it was
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assumed that these parameters would provide a reasonable representation
of the values for the neutral gas. Curves of the temperature, molecular
weight, neutral particle density and collision frequency are shown in Fig. 1
through 4, respectively.

b. Electron and Ion Gas

Single ionization was assumed and thus, the number densities of
the electrons and ions are equal. In addition, the molecular weight of the
positive ions was assumed to be equal to that of the neutral particles. Also,
thermal equilibrium was assumed and thus, the electron and ion temperatures
are taken to be the same as the neutral gas temperature. The curve of electron
density versus altitude is a composite curve taken from recent data appearing
in the literature and is the same curve asused by Wu (1965). This curve is
shown in Fig. 5.

c. Acoustic Velocities

Cos t
The acoustic velocities for the r b gas were computed from the

usual equation

where 'yr is the ratio of the specific heats, R is the gas constant with the
value 8314 joules (OK_I)(hg- mol)-l s Tr is the temperature in degrees
Kelvin and Mr is the molecular weight.

The value of v for the neutral gas was taken as the value given by the

U.S. Standard Atmosphere (1962) for the altitude between 0 and 90 Km.

i.e., 1.4. The motion in the electron and ion gases is supported by electric
forces involving 1 degree of freedom only, and thus, v for the charged particle
gases was taken as 3 (Spitzer, 1962). The acoustic velocities in the electron,

ion and neutral gas are shown in Fig. 6.
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d. Collision Frequency

Since the ionosphere is weakly ionized, the value of the ion neutral
collision frequency, v, was taken to be the same as the collision frequency

given in the U.S. Standard Atmosphere (1962). The electron-neutral and

electron-ion collision frequency were computed from the following equations

due to Cowling (1945).

1

- 8 1,5
Ven® 1.8x10 (300)2 Nn
3
3. T -2
=6.1x1 -
Vi 6.1x10 (300) 2Ni

where Ven and Vei are the number of collisions per second of an electron
with neutral particles and positive ions, respectively. T is the temperature
in degrees Kelvin and Nn and Ni are the number density per cubic centimeter
of neutrals and positive ions, respectively.

Since collisions are a momentum transfer process, conservation of
momentum requires that the following equation be satisfied

Nmvs=Nmvr
rrr s §8

Thus, the ion-electron, neutral-electron and neutral-ion collision

frequencies are given by the following equations, respectively.

Zlmz
B

e
ol 4
m,

ie . ei
i i
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The values of the ion-neutral, electron-neutral and electron-ion
collision frequencies are shown in Fig. 4 and the neutral-electron, neutral-
ion and ion-electron collision frequencies are shown in Fig. 1.

e. The Electron and Ion Plasma Frequencies

The electron and ion plasma frequencies were computed from the

usual relation

where Nr is the particle density per cubic meter, q is the electronic
charge in coulombs, m is the mass of the particle in Kg and eo the di-
electric constant of free space in farads per meter. Values of the electron
and ion plasma frequency are shown in Fig. 8.

f. The Electron and Ion Gyro Frequency

The electron and ion gyro frequencies were computed from the

equation

gr

28
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where q is the numerical value of the electronic charge, Bo is the mag-
nitude of the earth's magnetic field and m is the mass of the particle.

Since the magnitude of the earth's magnetic field was taken to be constant,

the electron gyro frequency is a constant with a value of 8. 76 x 107 cycles/sec-
ond. The ion gyro frequency which varies with the mass of the positive ions

is shown in Fig. 9
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APPENDIX B

COMPUTER PROGRAM FOR NUMERICAL EVALUATION
OF THE PROPAGATION CONSTANT

Due to the complicated nature of the dispersion relation, Eq. (3.11),
the problem of evaluating the propagation constant was programmed for
solution by a digital computer.

The data read in was taken from the ionospheric model in Appendix A.
Calculation is then done in single precision to find the elements for two dis-
tinct three-dimensional matrices called A and B. The third dimension is to
allow for each element being complex and in double precision. Matrix B has
two complete columns of zeros. Each element of a determinant is of the form
a+bs2 , where a is an element of the matrix A, and b is an element of the
matrix B. When this determinant is evaluated it will give a fifth-degree equa-
tion in s

To obtain the constant term of the polynomial the matrix A is evaluated
as a determinant. All determinant evaluations are done using a Gauss-Jordan
pivotal matrix inversion with the diagonal elements used as the pivotal elements
and the value of the determinant found by taking the product of all the pivotal
elements. The method is further described by Arden (1963). The computation
is done in double-precision complex arithmetic and the value returned is in
double-precision complex form. To introduce 32 into the determinant, one
column of the A matrix is replaced by the corresponding column of the B matrix
and then used as the determinant. The coefficient of the s2n term of the poly-
nomial is the sum of the values of all possible determinants with n columns

of A replaced by the corresponding columns of B.
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The roots of the polynomial are found by a specialized version of
Newton's method. All computation is done using double-precision complex
arithmetic. Synthetic division was used to find the values of the polynomial
and its first derivative. As each root is found, the equation is reduced. When
it is reduced to a quadratic, the quadratic formula is used to find the last two
roots. The initial approximations used for roots, the order in which the roots
were extracted and the decision,in some cases, to extract the inverse of the
root from the inverted polynomial, were all obtained as the result of previous
analysis and hand computation done by Harold Hunter.

The external routines used were: DCXINV previously described which
evaluates the determinant; PROP, which does double-precision complex multi-
plication; DIV, which does double-precision complex division; ADD, which form
the double-precision complex sum of two products of a real single-precision
number and a double-precision complex number ; DPMOIV, which raises a double-
precision complex number to a real single-precision power; NEWT, an almost
separate program linked to the main program by program common which, as
previously described, finds the roots of the polynomial; QUAD, which finds the
roots of a double-precision complex quadratic equation.

System routines used but not displayed are: DPFA, DPFM, DPFDV,
which perform, respectively, double-precision addition, multiplication and
division; SIN and COS, which find the single-precision sine and cosine; ZERO,
which zeros out a specified block of storage; MOVER which copies a block
of storage into a second block of storage; FTRAP which sets to zero floating
point underflows; DPSIN, DPCOS, DPEXP, DPELOG, DPSQRT, ATAN],
which find, respectively, the double-precision sine, cosine, power of e,

logarithm to the base e, square-root and single valued arctangent.
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The coding is done in MAD, a compiler similar to FORTRAN. A
manual for the MAD can be obtained from The University of Michigan Com-

puting Center.
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APPENDIX C

MATRIX ANALYSIS

C.1 Discussion of the Method

In this appendix a method for the piecewise inversion of matrices
of large order will be developed. The result obtained will be similar to
the method of "tearing" large scale systems developed by Kron (1963 ) but
the work presented here will begin with a system of linear algebraic equa-
tions which, it will be assumed, have been obtained as the result of the
analysis of a physical system where as Kron's technique begins with a con-
sideration of the system itself and the applicable basic physical laws
(Kron, 1963, Branin, 1959). The reason for the different approach is that
in some cases of interest, such as the analysis of the plasma source problem
discussed in Section II, a direct approach, such as Kron's, may not be
fruitful.

A simple example of Kron's approach to the problem of piecewise
analysis of large systems will be given in terms of electrical network
theory and results of the two methods compared.

The technique discussed in this section will be applied to the exci-
tation of disturbances in a homogeneous plasma and the extension to a
stratified media discussed.

C.2 General Formulation

Consider the system of linear equations given by

= + ceee
Y1725 T %t 2, n¥n

(c.1)

= + +oeeet
Y™ 2n1%1 3% 3 n*n
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where a_# 0 .
ii

The systems of Eqs. (C.1) can be written in matrix form as
Y=A X . (C.2)

The matrix A of order n can be expressed as a product of

matrices as follows

A= PBQ (C.3)

where B is a diagonal matrix and pij and qij have values of +1, -1 or 0,
and the indices i and j take all values from 1ton.

From Eq. (C.3) an element of As is given by

= E E b . .4
aij pir rsqu (C.4)
r s
Due to the fact that B is diagonal matrix, Eq. (C.4) reduces to

3557 PirPrr (c.5)

A particularly useful form of the matrices P and Q can be obtained

by arranging the first n elements of B such that

b..=a,, (C.6)
11 11
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where

a_=f +0 . £.40 (C.7)
11 11 11 11

P, B and Q can now be partitioned so that Eq. (C. 3) has the form

A=[U,G] F+L 0 | U
s =0 (C.8)

0 B K

where the elements of F’o and L are fii and Iii defined by (C. 7) and
the elements of B2 are the aij s Un is a unit matrix of order n and
0 is the zero matrix.

Equation (C. 8) can be written in terms of P and Q as

= +
As Fo PM Q

M=[L o:I
0 B,

At this point it must be recognized that some of the entries in M

(C.9)

may be zero. Since, in later analysis, it will be necessary that the inverse
of M, or some submatrices of M, exist it will be convenient to eliminate

the zero entries at this time. This can be done easily, since M is a diagonal
matrix, by partitioning M in such a fashion that all zero entries on the main
diagonal of M appear in a submatrix of M. The resulting expres.sion is as

follows
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M Q
Mg Q
[Pl, P, .. .,pm] | . (C.10)
Mm Qm
- el

Equation (C. 10) can be written as a sum as

m
szyﬁi' (C.11)
i=1

Performing the multiplication indicated in (C. 10) or the summation in
(C.11) the zero entries contribute nothing to the product and the following result
is obtained.
m

GHK = E PiMiQi (C.12)

i=1

Where H is obtained from M by deleting the appropriate rows and
columns of M corresponding to zero elements on the main diagonal. Thus,
H is a diagonal matrix with no zeros appearing on the main diagonal. G and
K , of course, are obtained from P and Q by deleting the columns of P and

the rows of Q corresponding to the columns or rows deleted from M.

Equation (C. 12) can now be substituted into Eq. (C.9) and the following

equation obtained
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A =F +GHK (C.13)
] (o]

H in Eq. (C.13) can now be partitioned into s submatrices, all of

which are diagonal, and the matrix product written as a sum as follows

S
A=F+ E GHK, . (C.14)
S (6] 111
i=1

Summing over j of s terms (j<s)of Eq. (C.14) an expression for

Aj is obtained as follows

j
A=F+ E GHK, . (C.15)
j o iii

i=1

From Eq. (C.15) it follows immediately that

A=A,
j -

J 1+GJ.H,K, . (C.16)

1]

C.3 Matrix Inversion

One method of inverting the matrix As is to make use of the following

matrix identity (Branin, 1959)

-1 -1 -1, -1 _-l-l 1
(F+GHK) "= F - F G(KF "a+H ) 'KE (C.17)
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Applying the identity (C.17) to Eq. (C.16) the following result is
obtained.
1-1 -1

-1 -1 -
-A. G(KA, G*+H, ) KA
-1 g j ]

-1 1 (G148

-1 -1 -1
A =(A, +GHK) =A,
j -1 j-1

Equation (C. 18) expresses the inverse of the matrix Aj in terms of the
inverse of Aj-l and Hj’Gj’Kj . Therefore, repeated application of Eq. (C.18)
will yield the desired inverse of As'

By means of Eq. (C. 18) the problem of inverting a matrix of order n
has been changed to that of inverting a matrix of order r, the rank of Hi and
multiplication and addition of matrices. Two extreme cases are of interest.

If r=1, the inversion indicated on the right side of Eq. (C. 1) amounts to taking
the reciprocal of a number,while if none of the aij in Eq. (C.1) are zero,

Eq. (C.12) with no partitioning becomes

1 R B S S I T
A +erk) ea oA oa terr ) ke ! (C.19)
S (6] (o] (0] (o) (o]

2
and thus involves finding the inverse of a matrix of order n . Thus, as is
usual when the inverse of a matrix is desired, the technique to be used for the
inversion process is dependent on the form of the particular matrix to be inverted.

C.4 Physical Interpretation

Assuming that the system of Eq. (C.1) is related to a physical system,
the ajj may be considered as the sum of the self impedance or admittance of
the ith portion of the system plus the coupling impedance or admittance from

other parts of the system. Thus, fii refers to the self impedances and lii to
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sum of the coupling impedances. The alij , of course, refer to the coupling
impedances or admittances between the various parts of the system. This
interpretation can be easily extended to the matrix Eq. (C.14). If the systems
of Eq. (C.1) are related to a coupled mechanical-electrical system, for
example, and the coupling effects between the systems are to be studied, F0
of Eq. (C. 14) can be partitioned into two parts

F0= Fo

+F
0

1 o2

Where FO refers to the mechanical system and F0 refers to the electrical

1 2
system. Similarly, the summation on the right side of Eq. (C.14) can be

considered to be composed of three parts, that is

3
E GiHiKi=G1H1K1+G2H2K2+G3H3K3
i=1

where Hl contains all the mechanical coupling terms, H2 contains all the

electrical coupling terms and H3 contains the electro-mechanical coupling terms.

Thus, if G3H3K3 is not included in the summation in Eq. (C. 14) the mechanical
and electrical systems are not coupled and their behavior in the absence of
coupling can be determined by repeated application of Eq. (C. 16) or any standard
matrix inversion technique. The effect of coupling the two systems can then be
determined by adding G31-13K3 by means of Eq. (C.16). It should be noted that
H3 can also be partitioned and the effect of any coupling term or any group of

these terms determined by repeated applications of Eq. (C. 16).
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C.5 Kron's Method

The result of the analysis of the preceding sections is similar to that
obtained by Kron (1963). However, Kron's method of dealing with large systems
begins with fundamental physical laws and yields the equations of the system in
the form of (C.13) as a natural result. Because of the basic importance of
Kron's technique from the standpoint of the physical laws involved, a brief
discussion of this method will be given in this section. The development is
couched in the terminology of electric networks, primarily because of the ease
with which the final result may be obtained. This in no way implies a limitation
on Kron's methods and for a more detailed discussion of the application of this
method the reader is referred to references given above. The development of
electric network theory is, of necessity, brief and includes only material
necessary to achieve the final result.

C.6  Graph Theory

Several excellent treatments of linear graph theory as applied to electrical
networks exist in the literature and thus only a brief summary will be given
in this report. The development given here will follow roughly that given by
Reed (1961) or Reed and Seshu (1961).

It is assumed that the reader is familiar with such terms as oriented
graph, tree, tree complement, node, etc.

The number of elements in the graph will be denoted by e and the number
of nodes by n. Elements in a tree of the graph will be called branches and ele-
ments in the tree complement will be called chords. Thus for any connected
graph there will be n-1 brances and e<(n-1) chords.

It is well known that the connectivity relations of a linear oriented
graph can be specified by various matrices formed according to different rules
(Branin, 1959). For purposes of this report, three of these matrices will be of

particular interest and will be defined in the following paragraphs.
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In all cases the columns of the matrices will correspond to elements of
the graph, and the columns will be arranged such that reading from left to right
the first n-1 columns will correspond to branches and the last e-(n-1) columns
will correspond to chords. Thus, all of the matrices will contain e columns.

The incidence matrix a with elements aij . The rows of this matrix

correspond to n-1 of the nodes of the graph, one of the nodes, called the
reference node, being omitted.

The elements aij are defined as follows :

th
aij= (+1, -1, 0) if the j element is positively, negatively, not in-
h
cident upon the it node.

The matrix A can be partitioned according to trees and chords as

A= [ATAc]
where AT has an inverse (Reed and Seshu, 1961).

The segregate matrix S with elements s,j. This matrix contains n-1
1

rows corresponding to the branches of a tree. Each row of this matrix corres-
ponds to a set of segregate elements defined as follows. If the ith branch is

removed the tree is divided into two subgraphs denoted by Gl and G2 . Let

the ith branch be positively incident on Gl (directed toward Gl) contain the

nodes al, bl’ Cl kl ar:g G2 contain the nodes a2, bz, 02 ces k2 . Then the

i chord belongs to the i~ segregate set if it is connected between nodes
J and Jo " "
Thus, Sij=(+l’ -1) if the j element belongs to the i  segregate set

and is positively, negatively incident on G, and zero if does not belong to tne

.th 1
i segregate set.
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Because of the manner in which S is formed, it may be partitioned
S - [UT sc] (C.20)

where UT is a unit matrix containing n-1 rows or columns.

The mesh matrix B with elements bij has et;l(n—l) rows corresponding
to the chords of the graph. When all chords but the i are removed from the
graph a single closed path is formed, the ith path, and the orientation of this
path is determined by the ith chord. Thus, b, is b, = (+l'-l) if the jth
branch belongs to the ith path and is positivelyll(negatilxjrely) ;riented with re-
spect to this path and is zero otherwise.

Because of the way it is formed B can be partitioned

B: [BT Uc] (c.21)

where Uc is a unit matrix containing e-(n-1) rows.

Although other connectivity relations may be defined (Branin, 1961), the
above are sufficient for the purposes of this report. Indeed, the matrices
A and S are closely related, and it can be shown that one can be obtained from
the other by simple transformations which can be obtained from the graph.

A very important relation which exists between S(A) and B is as follows:

SB'=0 (C.22)

AB'=0 . (C.23)

The proof of this relation is well known and given in many references

in the literature (Branin, 1959) (Reed and Seshu, 1961).
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C.7 Electrical Network Theory

The mesh and node equations of electrical network theory can be de-
veloped in terms of the graph theory discussed in Section C.6. In order to do
so, however, it is necessary first to define the elements of an electrical network.

In general, three elements are necessary to describe the behavior of an
electrical network. These are:

1. Arbitrary voltage source denoted by the symbol e. For this

element there is no relation between the terminal voltage of the element and the
current through the element. The terminal voltage is an arbitrary function.

A one column matrix containing B of these elements will be denoted by the symbol

2. Arbitrary current source h. In this element the current is an

arbitrary function and there is no relationship between the terminal voltage and
current. A one column matrix containing k of these elements is represented

by the symbol H, i.e.

by

o —

3. Impedance or admittance elements denoted by z, or y. . For

these elements the voltage A and current ; for the ith element are related

by
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or
11: yivl
where
=1
¥
A matrix representation of these elements is given by
V=21 (C.24)
or
I=YV (C.25)

where ZY = U and where U is a unit matrix. It should be noted that the use
of the terms impedance or admittance implies 'steady state'" or the use of a

Fourier or Laplace transform.

It is evident from the definition of the incidence matrix A that

Kirchhoff's current law may be expressed as:

Al =0 (C.26)
e

where Ie is a column matrix representing the currents in the elements of the
network. From the fact that A= [A TAcJ and A__ has an inverse, we can

T
multiply (C.26) by AT ! to obtain

- -1
AlAI=0=UA A 1-=U
e c e

= =z . 21
T AT Sc SleO (C.27)

T

176



Thus the segregate equations may be considered as a generalized
form of current law which may be stated as follows: the algebraic sum of
the currents in a segregate set must be zero.

If the matrix of the element voltage is represented by Ie , then

Kirchhoff's voltage law is given by

1]
o

BV (C.28)

It is convenient to petition the element voltage and current matrices

as follows:
- - ’—— -
£ Ig
T IT
- = .29
ve v Ie I (C.29)
c [¢
\Y, H
i H_ L

where the symbols € and H have been defined previously. When these symbols
are used as subscripts, they refer to the matrix of the currents of an arbitrary
voltage source and the voltage of an arbitrary current source, respectively.

In addition, the subscripts T and c¢ refer to impedance or admittance
elements located in the tree or tree complement, respectively. Thus, ohms law,

Egs. (C.24) and (C. 25) may conveniently be written as

z (C.30)
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and

(C.31)

C

13 14
(C.32)
0 Up S5 8y
where the first ne rows correspond to arbitrary voltage sources.
Also, the mesh matrix B can be partitioned
B B U 0
1
B - l 12 C (C- 33)
B21 B22 0 U1

where the last n, TOWS correspond to arbitrary current sources.

The incidence matrix A can be partitioned in a similar fashion except
that unit matrices do not necessarily appear. Since the S matrix can be con-
sidered as associated with a generalized form of Kirchhoff's current low the
A matrix can be obtained as a special case of a particular S matrix and thus
will not be discussed further in this report.

The mesh equations can be obtained from (C.28) as follows. The par-

titioned form of this equation is
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- -
&
By By U O Vi
= .34
B B 0 U v " (€3
21 ©22 11 ¢
VH
From Eq. (C. 34), we obtain
A%
T
B, £ + [:Bl2 a] = 0 (C. 35)
v
c
Using ohm laws in Eq. (C. 35) we obtain
+
By &+ [Bp U (2 0 ML
=0 (C.36)
0 Z I
calc
At this point we assume
I =B'I (C.37)

e a

where the currents Ia are as yet unknown. Writing Eq. (C. 37) in detail

- .
] 1
I E u  Ba
1] 1]
Il B2 By
. [1 ] (C.38)
I U 0 a
C (]
| |o U,
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From Eq. (C. 38) it is obvious that

I
[la] = | ®| thus (C.39)
H
thus
1 1
IT B 11 B 22 Ic
- (C.40)
I U 0 H
c c

Using this result in Eq. (C. 36) the following equation is obtained

07 B
T 12 _I
+ + 'Y -
B¢ +[B,0] | [1.]+ B2y, H - 0

0 Z 4 LU (C.41)
C (¢

The only unknowns in Eq. (C.41) are the chord currents Ic of which

there are e-(n-1)-nh in number and thus the Ic may be determined if

[~
i 1
By Uc] z, 0] [y,

0 Z U
c c

-1
- 1
. [zc+Blzz+1312] (C.42)

exists. The above sets are the so called mesh equations of ordinary network
theory. In order that the equations be valid, it must be shown that Kirchhoff's
current low is satisfied. This can be shown easily by premultiplying (C.23) by
S thus

SIe = SB' Ia

Since SB' = 0, Kirchhoff's current law is satisfied.
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Segregate equations. The segregate (and thus node) equations may be

developed as follows. The partitioned form of Eq. (C.27) is

c 13 14

T|=0 (C.43)

c 23 24 |

From Eq. (C.44) we obtain

T
+ = 0. .
[UC s23] 5, H = 0 (C.44)
I
c
Using Eq. (C.25) in Eq. (C.44)
v o[y
T T
+ =
[UC 823] S24H 0
0 YC \' (C.45)
Assume Ve= s Va in detail
£ U 0
v 0
T UT
= Vv (C.46)
1] !
Ve S13 853 a
] 1
Vh | Sla Sy
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From the above it is obvious that

V- e
Vo
Thus
Vo 0 Uy
Ve : 513 Sa3 Vi

Using Eq. (C.48) in Eq. (C.45)

-
v 0] |ug

o, 53] Vot 893Y S13t SggH -
0 vd sy
S

Equation (C.49) can be solved for the VT providing

_ o
Y1 T -1
[o, 53] - [t Sa¥ Sy

0 Y S!
- c 23 _

This result is the usual form of the segregate equations.

(C.47)

(C.48)

0

(C.49)

(C.50)

The form of the inverse required for the mesh and segregate (node)

equations, (C.42) and (C. 50) respectively, are of the same form as Eq. (C.13)

and, thus, the same inversion technique will apply. There is one significant
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difference between the network equations developed in this section and the
development in Section C.2. This difference lies in the coupling terms

wij and Fij(Yij) . In the case of the electrical network theory it has been
a\ssumed that Fij= Fji' Thus, if the matrix product B, F,_B'_ is partitioned

1217712
contains only Fi' and the matrix product taken Fij will appear

th h

such that FTl

ilb four positions. It will appear as the coupling term between the i
th th

and j t

mesh and also in such a
th

mesh, as the coupling term between the j= and i

position that it is added to the self impedance of the i"" and jth meshes. The
condition the Fij = Fji is not always true in network theory. Consider, for
example, the mesh equations for linear analysis of a vacuum tube or transistor.
(Lo et al, 1955). This situation is usually accounted for by the addition of a
vbltage source at an appropriate place in the equivalent circuit. In contrast

td this situation, the general development presented in Section II adds each
e]lement in separately, regardless of whether it appears as a self impedance

or admittance or as a coupling term. This allows somewhat more flexibility
|

in the way the terms are added to obtain the final result.

C.8  Application to the Excitation Problem

The method for the piecewise inversion of matrices can be applied to
thg excitation problem discussed in Section V. The system of Egs. (5.1)

through (5. 18) written in matrix form is given by Eq. (5.19) which is

[L(s)]1(s) = S(s) (5.19)

where
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where

a=1+iv  + iv
e ei en
a:=1+iv. +iv,

i ie in
a=1+iv +iv

n ni ne

Denoting the matrix [L(g)] , for simplicity, bv L, the matrix

L can be written as

= +L +L_+L + .51
LL0 LT LE LQLV (C.51)

where L0 is a diagonal matrix composed of the elements on the main diagonal
of L with the exception of the collision terms contained in ae, ai and an
LT is a matrix containing the thermal velocities Ue’ Ui and Un ) ,LE is
the matrix containing the electric force terms, LQ is the matrix containing
the magnetic force terms and Lv is a matrix containing the collision terms.
These matrices are obtained in straightforward manner from L .

Each of the matrices LT, LE, LQ and LV can now be written as a
product in the form

where the subscript d has been used to denote a diagonal matrix. These

matrix products are easily formed although somewhat tedious to write in detail.
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In order to illustrate the procedure, consider the matrix LQ . Examination

of the matrix L shows that there are eight entries which contain the electron
and ion gyro frequency, thus, the matrix LQd will be a diagonal matrix of

order 8. Therefore, GQ will be an 18 x 8 matrix and KQ will be 8 x 18.

The arrangement of the elements in L_ . is usually determined by the results

d

can be partitioned and thus, L_ ex-

desired but is not critical since L Q

Qd
pressed as a sum. In this case, LQd will be arranged as follows

i2 cosb
e
-iQ2 sinf
e
-iQ2 cosO
e
i sinb
L e
—iQicose
iﬂlsine
i©2.cosf
i
-iQ2 sinb
i

 — pu—

The algebraic signs of the entries in L have been preserved in LQd and thus

the entries in GQ and KQ will be +1 or zero. The matrices GQ and KQ

can now be determined by inspection as follows. Consider the element in the
third row and columnar of Lﬂd’ l.e., —iQecose . This term was obtained
from the eleventh row and tenth column of L, hence, 8,1’ 3=1 and k3, 10=1.

Similarly, the non-zero entries in GQ and KQ are
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1=1 K, 11=1

1o 1

g 2=1 K10,12:l
g, 371 K, 10:1
g)q 471 K, 10=1
g3 5=1 K5, 14-=1
83 6=1 K6’ 15=1
g, T K, 13-1
g, 1371 K5 131

The matrix L in the form of (C.51) can now be inverted by application
of Eq. (C. 18) or the terms in (C. 51) can be partitioned further. For example,
again considering the LQ , since Qe>> Qi the matrix can be partitioned such
that the Qe and Qi are separated. In this case, a solution could be obtained
neglecting Qi and then this solution modified by the addition of Qi and, thus,
the effect of the ion gyro-frequency determined.

Another useful result can be obtained from (C. 51) by neglecting the
collision matrix LV . The matrices LT, LE and LQ can then be partitioned
in such a manner that all terms belonging to the electron plasma are in the first
part of the partitioned matrix, all other terms are in the second part of the matrix.
The matrix for the collisionless electron plasma has been inverted by Wu and,
thus, is known. The inverse of this matrix can then be modified by use of
Eq. (C.18) to yield the general case of a three- fluid plasma including collisions.

One additional remark should be made at this time about the collision

matrix Lv . Since ae, ai and an contain collision terms it is evident that the
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matrix LV also contains entries on the main diagonal. These main diagonal
terms are, of course, coupling terms which appear in the "self impedance"
and correspond to the lii of Section C.1. More specifically, these terms are
the attenuation collision terms discussed in Section 3.3 while the off diagonal
terms are the coupling portion of the collisions. Thus, the method of piece-
wise inversion of matrices allows these two effects to be easily separated.

The technique for the piecewise inversion of matrices is, perhaps,
most useful for numerical work. Assuming that appropriate numerical values,
including w and 6, have been inserted in L, this matrix is still a function
of the Fourier space transform variable s. Because of this, the work in-
volved in finding L—l has been magnified considerably and the process of in-
version can be carried out by one of two different methods.

a. The inverse of L can be evaluated for a sufficient number of
discrete values of s to achieve the desired result.

b. The coefficients of the powers of s can be computed and thus
L~ obtained as a function of s.

The method selected would depend, of course, on the form in which
the result is desired and the number of mathematical operations involved.

A relatively simple example of the latter procedure is discussed in
Appendix B in connection with the computer program for evaluating the propaga-
tion constants. In this case, the coefficients of the polynomial were evaluated
directly from the determinant defining the dispersion relation.

The procedure for the piecewise inversion of matrices can be formally
extended to the case of a stratified media as follows. Assume the medium to be
stratified into n layers in the Z direction and the boundaries of the layers

located at the points Zo’ < Zl’ < Z2 ces .<Zn . The solution to the set of
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th .
Egs. (C.51) can be obtained for the i~ layer (zi_lg Z< Zi) in the form of a
matrix equation. This equation may then be evaluated at the edges of the

layer, i.e., at Z-= Zi— and Zi . I this procedure is carried out for each

1
layer and the boundary conditions matched at Z- Zo’ Z, ... Zn a matrix

1
equation in the form of ( 1 ) would result. The matrix inversion technique
discussed could then, in principle, be applied and the solution obtained. How-
ever, the complexity of the system of equations obtained in this manner is
such that, in all probability, this type of analysis may be prohibitively expen-

sive.
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