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ABSTRACT

A modified Fock function is obtained to describe the current distribution on a
smooth convex boundary, composed of a flat plane smoothly joined to a parabolic
cylinder with the join in the penumbra region. Both analytical and numerical methodq
are used to obtain the modified Fock function which now depends on the distance
between the shadow boundary and the flat plane-parabolic cylinder join. The
modified Fock function is applied to estimate the backscattering cross section of a

cone-sphere,
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INTROi)UCTION

When a high frequency plane electromagnetic wave is tangentially incident upon
a locally parabolic convex surface, the distribution of the induced current near the
shadow boundary is described by the Fock function (Fock, 1946). However, if a
portion of the scattering surface near the shadow boundary is no longer parabolic
but flat (e.g. wedge-cylinder or cone-sphere), the effect of the surface discontinuity
at the join of the flat plane and parabolic cylinder must be taken into account.
Weston (1965) has, in a previous paper, discussed an extension of the Fock theory
when the position of the surface discontinuity coincides exactly with the shadow
boundary.

It is the purpose of this paper to present a modified Fock function which pro-
vides the current distribution in the penumbra and shadow regions when the surface
discontinuity is in the penumbra region. This new modified Fock function describes
the current distribution as a function of two variables: one is the distance between
the shadow boundary and the observation point, and the other the distance between
the shadow boundary and the flat plane-parabolic cylinder join.

The method to be used is as follows: an exact integral equation governing the
total magnetic field on the boundary is formulated by Maue's method (Maue, 1949).
The high frequency asymptotic expression of the exact integral equation is a Volterra
type, and both analytic and numerical solutions of the Volterra equation are obtained.
These solutions may be called the modified Fock functions. In section 5, this
modified Fock function is applied to estimate the backscattering cross section of a

cone-sphere,
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I
INTEGRAL EQUATION GOVERNING THE SURFACE FIELDS

Consider a plane electromagnetic wave

f =gl -ivt ' (1)
1n

N>

incident upon a perfectly conducting convex cylinder whose boundary is composed of a

smoothly joined flat plane and a parabolic cylinder (Fig. 1).

Fig.! GEOMETRY OF SCATTERING SURFACE

In terms of a Cartesian coordinate system whose origin is taken at the shadow bound-

Jary, the surface of the scattering body is represented by the following equations:

2
= _L > -
X R for y>-Rtana (2)
R
x = tana (y+ o tana) for y<-Rtana , (3)

[R is the radius of curvature of the parabolic section near the origin and is assumed
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large in comparison with wavelength,
The total magnetic field on the boundary is defined as

> _ oA -iwt

Htotal zue (4)

Then the scalar function u is the solution of the following Maue's equations

(Maue, 1949):

00

. . .7
u_y, Wp) = 26 - % dsJi— H(ll)(kr)u(Q). (5)

-
r is the distance between two points P and Q, and f is a unit vector normal to
the boundary.
It was shown by Weston (1965) that on the flat section the field reflected from
the surface discontinuity is of the order L . Therefore, for the high frequency

kR
region, the reflected field contributes to higher order corrections, and u on the

flat section becomes equal to the geometrical optics term 2 elky .

On the parabolic section, let us define

u(y) = Iy) ol® fory>-Rtane, (6)

where s is the distance along the surface between the shadow boundary and the

observation point:

y
s = ‘( ’1+(%)2dy, (7
(o]

Using the relationships (5), (6), and (7), we obtain an integral equation governing

Ly):
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-Rtana A(t)-’
iky - iks (y) dat YT (1)
Ily) = - —1
(y) = 2e ik wsa T H " (k)

-0

[em {ikt-iks(y)}+0(kiR)]

00

2 \lp At).r
_ ik dtI(t)<1+-t—> — 2404
2 o2

-Rtana Iy

. exp { iks (t) - iks(y)}

with
2 2
2 _ 2 y R
r1 = (y-t) +§§ﬁ' + tana (t+ 5 tana)}
and
rg = (y-t)2 + —1-—2 (yz-tz)
4R
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(8)

(9)

(10)

In order to obtain an appropriate high frequency asymptotic form of I(y) near

the shadow boundary, we shall set

R)B = m,
ky = m2§
kt = m2§, and
Iy) = 38

(11)

When the surface discontinuity lies in the penumbra region, mtane is of the

order of unity or less, and can be replaced by me for large m. The asymptotic

expression of (9) becomes
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ma
3E) = _e r (& +ma)? dg
- (E- §)
2 2 3
(§+ma) ., ma . mo 2 &
.exp{ SE-T) +1i 5 (E-C)_-lT(§+ma) -1?}
(E §’)
d§J(§)(€ 0% 2 Lomd . (12

When mea goes to infinity, the second term in (12) disappears, and the
solution becomes the so-called Fock function (Cullen, 1958). This means that
when the position of the flat plane-parabolic cylinder join is far away from the
shadow boundary, the current distribution is given by the Fock function. Otherwise,
the Fock function has to be modified. The solution J(£) of (12) will be called the
modified Fock function. When « is identically zero, the solution of (12) was
obtained by Weston (1965).

In the following two sections, the solution of (12) is obtained when me is

finite but is not identically zero.
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ANALYTIéHSOLUTION
In this section the solution of (12) is derived when the distance between the
shadow boundary and the position of the surface discontinuity is small, so that
m3a3 is negligible.
In order to solve (12) by the Laplace transform method, it is convenient to
modify (12) by setting

§ = 6-ma,
c = ¢-ma:
and J(0-ma) = j(0). (13)

Substituting these new variables into (12) and taking the Laplace transform of
both sides of the integral equation, we obtain

2N(p)

jlp) = > (14)
e 2
1+ 7 EM(p)
where

®

p) = J a0eP%500, (15)
0
(03] _pb _i93

M(p) = J dé e 2 9]/2 , and (16)
0
® 0 ,(6-ma)3 -i% 0

N(p) 0o -8 2 4 d

p) = - - 3J.

. 4 T 6 -(D(o-¢) 2
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. . 64 _I_.mzozz(6 ¢) . ma 92 1
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M(p) has been evaluated by Weston (1965) as

37
- . ! — i
M(p) = 47 |27r [Al(q) {Al (q) - 1B1(q)} + %} e % (18)
1
with q = -ip2 /3, where Ai and Bi are Airy functions of the first and second kind,

respectively, and the prime denotes differentiation with respect to the argument.

The denominator of (14) becomes
271 Ai(q) d [Ai(q) -iBi(q)] (19)
dg ‘

3
N(p) is evaluated in the Appendix under the assumption that (ma)  is

negligible. We obtain

0|

ip) = - — 2 , {2%2 %+ L [Ai(x)—iBi(x)] dx){
[Ai (q) - iBi (qﬂ 0 (20)

, 2 L ogZmZd o %} rots 2,2 {[Ai(q) - 1Bi(q)+ o[ Ai(q) - 1B (q)]}J

The desired solution J(£) is obtained by taking the inverse transform of (20)

and using the relationships £ = 6 - me and j(6) = J(6 -ma) :

-¥3 Tl exp iq2—]/3(§'+moz)§ -
i) = 2— dg i ; Il-q2m2a22 %
m wl(q)

- -ic

wl(x)dxg - i2“[y3 mzaz Zwl(q) +qw1' (q)} (21)
0
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with
w'(@ = iy [Ail-Bi'@)] .

When & is sufficiently large and positive, the contour integral may be evalu-
ated in terms of the residues at the zeros of wl'(q). For numerical calculation of
the residue series, it is convenient to substitute the following relationship:

T

LT
i—

i— i-3-
wl(q) =¢ O 2™ Ai(qe ), q=e 33 . (22)

The high frequency asymptotic expression of the total field in the shadow

region for a small mo is

LT
1§'y % T
_ ks eXp{‘BJze d . "B 13
uly) = e A(B) exp({imaB,2 “e
=1 BAR,
2 ! 2 397 15
‘113 +2 Ai(-x) dx 1-B, m 22 e
0
'i% 2 2 _%
te m a2 Ai(—Bl) (23)
AR® ¥
with d = (——ﬂ—) 3 . When a goes to zero, Eq. 23 becomes equal to the solution

given by Weston (1965), except for a factor two. The reason for this is that when
a is identically zero the amplitude of the total field on the flat portion is taken to
be unity, while it is taken to be two in this paper. Numerical values of BZ s

Ai( -BI) and ﬁl Ai(-x)dx are given by Weston (1965).

Therefore, when kRoz3 is negligible, each mode of the creeping waves given
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by (23) is different from the Fock solution by the factor (Goodrich, 1959)

-l il ] _9 i271'
exp %iﬁzz 3 mae 3% -§-+2 Ai(-x)dxl gl-Blzmzarzz 3 e 3

T 2

+e 3m2af22 3 Ai(-Bz) . (24)
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NUMERICLVL SOLUTION

In this section, a numerical method is described to obtain the solution of (12)
without the assumption that m3oz3 is negligible.

The high frequency asumptotic expansion expansion reduces Maue's integral
equation from that of the Fredholm class to that of the Volterra type which is much
easier to handle numerically.

Several methods are available for the solution of the Volterra integral equatior].
When a high speed digital computer is available, the simplest approach is to expand
the unknown in a set of algebraic functions J ERRE Jn’ and to require the
integral equation be satisfied at n different points. The solution of (12) may be

approximated by setting

J = J(E=nA-ma) . (25)

A is the distance between two adjacent points on the contour of integration.

Insertion of this expression in (12) gives

A
=H += i+ + + + +4K
Jn Hn 3 [Knojo 4KnlJl 2Kn2J2 2kn,n-2Jn—2 4 n,n-lJn-l]
(26)
with
(nA ma) -1— 5
- 6 (nA
H = 26 1- _— 3]
n (nA—ma-() 2
(27)
4 2 2
. expdi — o8 Fi22 A-me-8)-i 2% (na)
8(nA- ma-¢) 2 2
and

7
4 33
.(n-m) A
Kn, { 54 } . (28)

10
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As shown in (26), the current at the nth point (£ =nA- me) can be obtained by
simply substituting the previously known currents between the Oth to the (n-1)th
points. This is the reason why, for high frequency scattering, the asymptotic
expression of the integral equation governing the surface is simpler to solve numer-
ically than the exact (Maue's) equation.

In Figs. 2 and 3, numerical solutions of the modified Fock function are com-

pared with the regular Fock function.

11
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FIG. 2. Amplitude of J in the Penumbra Region.
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FIG. 3.

Phase of J in the Penumbra Region.
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APPLICATION: ESTIMATIO‘I{I OF THE BACKSCATTERING
CROSS SECTION OF A CONE-SPHERE

It is known that a good approximation to the nose-on backscattering cross
section of a cone-sphere can be had by adding the contribution of a sphere creeping
wave to the physical optics estimate of the scattering from the cone-sphere join
(Senior, 1965). Nevertheless, Senior reported that there is evidence of a small
but systematic discrepancy between the amplitudes of the creeping wave contribu-
tions from a cone-sphere and a sphere alone. This phenomenon may be explained
by results obtained in the previous sections. When a plane wave is incident upon a
cone-sphere at nose-on direction, the cone-sphere join lies near the shadow boundary
We have to take into account that the geometry of the scattering surface near the
shadow boundary is no longer entirely spherical but a portion of it is conical.
Fock has shown that when a high frequency plane electromagnetic wave is
incident upon a three-dimensional conducting body, the dominant mode of the creep-
ing waves may be described by the two-dimensional solution (Goodrich, 1959).
Therefore, we may apply the results of the previous sections in analyzing the dif-
fraction problems of a cone-sphere. At nose-on incidence, the distance between the
cone-sphere join and the shadow boundary is very small in many practical cases, and
the result given by (23) may be applied.
For example, when the cone angle (2a) is 25 degrees, Senior (1965) gives the

formula for the backscattering cross section of a cone-sphere at nose-on incidence as

(29)

cr/k2 = 0.02190|A(1. 916 - 0. 05593 kR) + exp?in (1.45410 - 1. 16335kR)§

A is the ratio between the amplitudes of the two dominant creeping waves; one is
rsupported on a spherical portion of a cone sphere, and the other on a sphere alone.
Senior (1965) has obtained an approximate expression of A on the basis of physical
reasoning.

We may obtain A from (24) as

14
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1 2/ 3
3
A=|{242 ] Al(waxy -2l (R)P e
3 1 2 9

T

- 2/ 1 H=
+e 3(k__213)302Ai(_Bl) exp{iﬁl(}{—g)@ae 3} .

(30)
Insertion of this expression in (29) gives the backscattering cross section of a
cone-sphere with the cone angle 2a = 250, The result is shown in Fig. 4. In
order to assist the computation of the backscattering cross section of either a cone-
sphere or a wedge-cylinder at nose-on incidence, the numerical value of A asa
function of both kR and « is shown in Fig. 5. This figure provides a reasonably
accurate means in estimating the creeping wave contribution when kR is of order 5.
For a smaller kR, a more refined evaluation of A is necessary, which may be
achieved by including higher order terms in the asymptotic representation of Maue's
equation (5).

When a plane wave is not incident along the nose-on direction, the distance
between the shadow boundary and the cone-sphere join is not necessarily small.
In this case we may use the numerical method described in the previous section to

obtain the creeping wave contribution.

15
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VIl
APPENDIX A

EVALUATION OF N(p)

In this appendix the integral

(G-ma

-p(6) -i z

N(p) = dé e

9¢

94 m 9 2 2
.« exp {1 e = 6 +I— (6-¢) (A.1)

is evaluated when mo is small so that (maf)3 and higher order terms are negli-
gible. The integrand of (A. 1) may be further simplified by making the change of

variable 6 - § = x and using the relationship

o0 T .ma 2
4 2 2 i—i—286
d 6
sz—)fyé{exp 5 +il—1-12—a—x}=2j2_7?e4e 2. @2
OX

We obtain

_,(6 - moz)3 -i— 0
ma

e e 1-— 2 f do exp(i 04 - — 92+‘i mzaz -0)
7 \r PSR R 2
0 0]

i— -ir
_ e ° _492 dX oxp i9—4-ie—3+i—mz—°’2(x-6) (A.3)
K X ' '
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Neglecting terms involving (moz)3 and higher order in (A.3), N(p) may be

written as a sum of the two functions:

-i lr. i T
4 4
Np) = S— N(p)+m %2 & N, (p) + O(m°a) (A. 4)
2@? 42r
with
K
N (p) pe 2 dX el-—;{ -1—6 (A5)
;72—
and
- -6
Nz(p)=J do e p992J dx (—xg7-) Bx 6 (A.6)
0 0

N,(p) was evaluated by Weston (1965) [Nl(p) is equal to 4 \1—2_' F(p) where

F(p) was evaluated in the appendix] as

iz 5/ 3
Nl(p) = 4 82 6 T 2 Ai(q) B ;'— {Ai(x)—iBi(x)} dx] (A.7)
0

1

/
with q = -ip2 3 .

Nz(p) can be evaluated by integration by parts:
‘4 2

N, (p) +2 ié- Mip) .

d i d
N (p) = ——N(p)+—.7 (A.8)
2 dp 1P Tk i

M(p) is given by (18).

20
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Using (A.7) and (A.8) we obtain

q

Y 11 25 "B,
N(p) = m 42 = Ai(q) 37 —2—J {Ai(x) - iBi(x)% dx [[1-m"a” 2 q
0

_1/3 22 ' 1
+72  ma Ailg) | ¢Ailqg) - iBi(q){ +q {Ai(q) - iBi (q) (A.9)
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