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I. Introduction

The classic three-dimensional scalar scattering problem consists of
determining a function ¢s exterior to a smooth finite boundary B, which function
is a solution of a scalar Helmholtz equation, satisfies Dirichlet or Neumann

boundary conditions on B, and obeys a radiation condition at infinity, i.e

A ]

(F+K) §° = 0 )

8 i
¢S=_¢i or %;L = —%;L on B, (2)
im o 2= ¢% -mg® ) = o, (3)

or
r—> 0

where t is the incident field which is known everywhere including the
boundary G.

The study of the relation between this problem and potential problems
(boundary value problems for the Laplace's equation, V2 § = 0) goes back to
1897. The general problem is one of generating solutions of the Helmholtz
equation (vector or scalar), which satisfy prescribed conditions on a given
boundary in terms of solutions of 1.aplace's equation. Physically, this
amounts to an attempt to infer the manner in which an obstacle perturbs the
field due to a source of wave motion from a knowledge of how the same
object perturbs a stationary (non-oscillatory) field, e.g., determining an
electromagnetic field from an electrostatic field. The advantage of such a
procedure derives from the fact that stationary fields are physically simpler
than wave phenomena, and the -associated mathemdtical problems; thought often

still formidable, are always more easily handled.
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Interest in this problem has gained new momentum in recent years.
The major drawback in most of the methods heretofore proposed ig in their
intrinsic dependence on a particular geometry. That is, the techniques
result from the exploitation of the geometric properties of the surface on
which the boundary conditions are specified. For those shapes where the
Helmholtz equation is separable, of course, the low frequency expansion
may always be obtained from the series solution provided sufficient knowledge
of the special functions involved is available.

Most low frequency techniques, however, have as their starting point
the formulation of scattering problems as integral equations using the Helmholtz
representation of the solution in terms of its properties on the boundary and

the free space Green's function; i.e.,

1 9 9
¢B(p) iy I { ¢s(pB) 5;u(p, pB) - u(p, pB)SE ¢s(pB)} dB (4
B
where
ikR(p, pB)
e
u=-=—"-"——r ’

R(p, pB)

the integration is carried out over the entire scattering surface B, the
normal here is taken out of B, p is the general field point, and pB a point
on B whose coordinates are the integration variables, and R is the distance
between them. This formulation is also vital to the proof of existence of

(7

solutions for a general boundary. Noble ° shows how the integral formulation
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(49 may be used to obtain a representation of the solution of a scattering
problem for a general bounday as a perturbation of the solution of the cor-
responding potential problem. Each term in the low frequency expansion

is the solution of an integral equation which differs only in its inhomogeneous
part from term to term. However, this formulation does not yield an ex-
plicit representation for successive terms in general except as the formal
inverse.

Long sought has been the development of a systematic procedure which
will generate the solution of the Helmholtz equation, satisfying a particular
boundary condition, from the solution of Laplace's equation which satisfies
the same boundary condition.

In this connection Kleinman(s) has made the following key observation. If

1(a) V is the volume exterior to a smooth, closed, and bounded surface. B,

1ty 1

G(pp) = -m tu (p,p)
is the potential Green's function of the first kind ( G0 (pB, po) = 0), and
Yo tkR(p, p )
G (p. p) = -%;ﬁ(-;;;)- + u (p,p)
is the Green's function for the Helmholtz equation, also satisfying a :Dirichlet:
condition on B, then the scattered field Uy (p, po) satisfies the integral equation
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_ 0 1 0 1
wlp,p) = - 2ike I r,  on [rle u (P, p)J av,

ikr e'“‘rB + 1R (pg, p ) )
Rip_ ., p ) on GoPpg) do (5)
B B "o

Here dv1 is a volume element in coordinates P, " (91, ¢1, rl) and do is a
surface element and 9/3n the normal derivative directed out of V expressed
in coordinates Py R(p,po) is the distance between the points p and Py
The origin of the spherical coordinates p = (r, 9, ¢) is situated inside the
body.
H: Background

On the basis of Kleinman!a(s) work the investigation of the following
problems was proposed:
2(a) Rigorous solution of the integral equation (5), thereby providing a low
frequency technique for the scattering problems ‘for . acaustically soft objects.
2(b) Derivation of a similar integral equation for the Neumann problem and
its rigorous solution.
2(c) Solution of the-non-separable problems, e.g., those problems which
are unsolved due to the non-separablity of the Helmholtz equation.
2(d) Extension to vector (electromagnetic) problems.

2(e) The abstract mathematical results which include functional analytic

aspects of the problem and the new existence proofs.

N
\
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2(f) Extension to two dimensiomal low frequency scattering problems.
2(g) Studies in connection with the radius of convergence of the low

frequency expansion.

II. The Progress

3(a) The integral equation for the Neumann problem has been found by Ar
12).

and Kleinman With the geometry and the notation indicated in the

Introduction, if Go is the static Green's function of the second kind and Gk
the Neumann Green's function for the Helmholtz equation then the integral

equation in question is given by

G (p,p -ikr
i ikr 3 1
ulp = -2ike f r arl [rle 'uk(plil v,

v 1
‘ —ikl{
+ikeikr f G (p,p ) nvr -e """"ui{(p (6)
B
. 0
N (PRI B kivg) ©
€ 0 p,pB on
B

3(b) The rigorous solution of this equation (and of that for the Dirichlet case)

has been found by Ar(4).

This is done by defining a certain function space
with a proper norm in which the Neumann series arising from the equations

(5) and (6) is convergent to the solution sought.
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3(c) A surface for which the Helmholtz equation is non-separable is an
ogive. However, the Laplace's equation V2¢ = 0 is partially separable
(and 4ews solvable) in the exterior region of this body. Applying the above
mentioned techniques the Helmholtz equation has been solved in the 'closed"
form (for sufficiently small wave numbers) for this case by Ar(l).

3(d) The solution of electromagnetic scattering problems invo(h;ing a smooth
8

finite three-dimensional scatterer was presented by Stevenson' ~ in terms of
solutions of standard potential problems involving the same boundary.
Kleinman(s) has shown that Stevenson's gemeral procedure leads to erronous . -
field expressions, and in the case when the scatterer is perfectly conducting
he has provided a modification which corrects this heretofore-unnoticed
deficiency.

IV. Continuation and the Anticipated New Areas of Investigation

4a) The function spaces for the Dirichlet as well as the Neumann problems
mentioned above, though sufficient to solve these problems, are not complete.

(3)

However, it has been recently discovered by Ar' ~ that a Banach space can
be found which provides new existence (and Uniqueness) proofs and rigorous
low frequency techniques as well. The preliminary work on this has been
completed.
4(b) Another body for which the Helmholtz equation is unsolvable due to its
non-separability is the torus. The solution of the torus problem by means
similar to that used in ‘"solving the ogive problem mbntioned dbové -~ =
is being found.

These problems are being given the immediate attention at the present,

while the other areas mentioned in the original proposal still remain under

consideration.
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