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I
INTRODUCTION

The problem in question consists of determining means of solving the inverse
scattering problem where the transmitted field is given, and the received fields are
measured and this data used to discover the nature of the target. First, the set or
sets of necessary and sufficient measurements required to specify the size and
shape of the target are to be determined, followed by a study of the degradation of
the size and shape determinations due to a reduction in the number of necessary

and sufficient conditions.
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il
REVIEW OF INVERSE SCATTERING TECHNIQUES

There seems to be a variety of problems that are named ""The inverse scat-
tering problem" and what follows is certainly not a complete account of the existing
literature on the subject.

Connected with the inverse scattering problems is the question of to what ex-
tent knowledge of the far-field from sources of finite extension determines the dis-
tribution of the same sources. The relationship has been investigated by Muller
(1954, 1956) for the scalar and vector case respectively. The results are that the
far-field determines the radius of the smallest sphere such that the far-field can be
generated by sources all of which are inside the sphere. Furthermore, if the far-
field vanishes the total field is identically zero outside every region, such that it
contains all sources. These results also follow from an expansion theorem given
by Wilcox (1956). The statements are also true in two dimensions where an expan-
sion theorem is due to Karp (1961). It should be noted that the smallest sphere
mentioned above does not necessarily determine the extension of the real sources.
For instance, if the sources are distributed over a certain volume in such a man-
ner that the far-field can be expanded in a finite number of surface harmonics, an
identical far-field can be obtained from a number of mulipoles, i.e. from sources
inside an infinitesimal sphere around the origin.

Some acoustic and electromagnetic scattering problems can be formulated in
terms of the Schrodinger equation. A group of one-dimensional problems has been
treated by Moses and deRidder (1963), and a three-dimensional scalar problem by
Kay (1962). The physical problem considered by Kay is to find the variation of
electron density in a weakly ionized gas from a knowledge of the scattering ampli-
tude resulting from the incidence of a plane electromagnetic wave. However, his

results seem to be applicable to scalar scattering by a plane wave from an arbitraxy
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isotropic body, Instead of the ordinary time-independent Schrodinger equation, Kay

considers the integro-differential equation
Autklud v(x x"ux', dx' = 0 (1)

which takes the form of the ordinary Schrédinger equation, if v is a distribution of
the form v(x, x")=V(x) 6(x-x') . He required knowledge of the scattering amplitude
over a hemisphere from a wave incoming from the same half-space in an arbitrary
direction for all values of k to determine the function v(x, x'). The question of
uniqueness and existence of v(x, x') under any general condition is not touched upon.
Instead, a particular condition on the solution u(x, k) is introduced which leads to a
unique v(x, x").

An extensive bibliography, to the date of publication, of the quantum mechanics
inverse scattering problem is given by Faddeyev (1963).

A three-dimensional scalar problem is also treated by Petrina (1960). The
scattering body is there assumed to be homogeneous and isotropic so the Helmholtz
equation with a wave number k1 is satisfied inside the body and the same equation
with a wave number k, is satisfied outside the body. Petrina gives the following

relation between the scattering amplitude and the shape of the scattering body.

af(k, ky, 7)

5 eTLgy . (2)
d(ky) . B

The integration is to be performed over the volume of the scattering body and

k

0
I=k_o‘g X,
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where k; is the wave vector of the incident plane wave and x is in the direction of
observ;t_ion. The integral on the right hand side of Eq. (2) can be considered as the
Fourier transform of a function which takes the value 1 inside the scatterer and
vanishes outside. Thus, knowledge of the left hand side for all 7 determines the
shape of the scatterer. However, this means determination of the behavior of the
scattering amplitude when the wave constant of the surrounding medium is changed,
which is not measurable in a physical situation.

Some results for two-dimensional acoustically soft or hard obstacles is given
by Karp (1961). He forms determinants whose elements are fij where fij:f(ei’ 6).) is
the scattering amplitude at an angle of observation 6; for an angle of incidence 6]- of
the plane incoming wave. Necessary and sufficient conditions for a point to be on
the surface of the scatterer is thus derived for the special case that det(iij)
vanishes, where 61=81, 62, e Gn are n different angles., Furthermore, it is
shown that if £(6, 60) only depends on the difference 6-6), the scatterer must be a
circle,

The inverse scattering problem in geometrical optics has been investigated
by Keller (1959). If the scattering amplitude and reflection coefficient are known,
explicit formulas determining the illuminated part of the surface can be obtained
for two dimensional problems. In the three - dimensional case the bistatic
radar cross section is proportional to the reflection coefficient and the product of
the principal radii of curvature Ry, Ry at the point of reflection. The problem of
determining a surface when its Gaussian curvature, G= 1/ (Rle), for all directions
of the normal to the surface is given, is known as Minkowski's problem. It has a
unique solution for any sufficiently smooth convex body (c. f. Nirenberg (1953) ). If
the differential scattering cross section is known for two different incident waves
coming from opposite directions and the reflection coefficient is also known, the

Gaussian curvature is determined everywhere and the inverse problem has a
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unique solution. It also follows that the problem of determining the shape of the
scatterer from knowledge of the backscattering cross section in all directions has
a unique solution in the geometrical optics formulation for a smooth convex body.
The geometric optics method no longer applies of the scattering body has

any section where one principal radius of curvature is infinite. For a body of
revolution where this is the case or where the radius of the cross section varies
slowly along the axis of revolution an approximate method due to Blasberg is des-
cribed in Altman et al (1964). Using the physical optics approximation the back-
scattered far field is shown to be proportional to the Fourier transform of the

function r(x)e_lkr(x)

at the point ksind, where r(x) is the radius of the cross
section as a function of a coordinate x along the axis of revolution. The relation
is valid for small values of § where 7 /2-6 is the angle between the direction of
propagation of the incident plane wave and the axis of revolution of the body. Con-
sequently, if a substantial part of the backscattering is confined to small angles,
the inverse Fourier transform of the scattered far field with respect to d=ksin6
integrated over §=-7 /2 to 6=r/2 will be a function which is close to r(x)e—ikr(x)
for x values inside the body and close to zero for points outside. According to
Brindley (1965) the Blasherg approximation has been successfully used to determine
the shape of objects from empiric data.

Another theory of high frequency scattering is employed by Freedman (1963).
There the incoming wave consists of a modulated pulse and the scattered field in an

arbitrary direction in the lit region is a superposition of pulses of the same form.

Each discontinuity in

d"A(R)

(n=0,1,2,...)
dr"

where A(R) is the projection towards the transmitter of those parts of the scatterer
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which are within distance R, is assumed to generate a component towards the scat-
tered signal. The magnitude of each scattering component is proportional to the
size of its generating discontinuity. A more sophisticated treatment of the im-

pulse response from a finite object is given by Kennaugh and Moffatt (1965).
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THE EQUIVALENT SOURCES OF THE SCATTERED FIELD AND THEIR
RELATIONSHIP TO THE SCATTERING BODY

The scattered field can be thought of as arising from an equivalent set of
sources located in the interior or on the surface of the scattering body. Their
precise location is not determined as yet. The question then arises as to how much
can be inferred about the possible equivalent source distributions if the complete
radiation pattern of the scattered field is known (i.e. both phase and amplitude)
for a fixed frequency.

The far-zone scattered field will be represented in the form

. ik
~ el%' E, (6, f) (3)

- r>w

where (r, 0, §}) is a spherical polar coordinate system, with the origin in the vicinity
A A N

of, or in the interior of, the body. Using the notation that l—r ,1 o 1_¢ are unit vectors

associated with the coordinate system, then

A 2 A 3

=1 E+i_E
By Ly Bot iy By @

From Wilcox (1956) it is seen that the fields can be uniquely determined in the

region outside the smallest sphere enclosing a set of equivalent sources. To be

more precise, let r=c by the radius of the smallest sphere (with the center at the

origin of the coordinate system) enclosing a set of sources. The E can be ex-

pressed in the form

(00
E_(0,9)

rn

, r>c+e (5)

n=

where € is an arbitrary small number greater than zero. The higher order
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coefficients E‘n are uniquely determined from the following recurrence relations

ol )
1kE1— rV ]_53_0
ZiknEl =n(n-1)E1+DE1 n=1-2-3
n+l n n’
2iknE2=n(n—1)E2 ~I~DE2 +D E n=1-2-3 (6)
n n-1 n-1 6—n-1

92iknES=n(n-1)E3 +DE° 4D E n=1-2-3
n n-1 ~ n-1 "¢~n-1

where the operators D, D 0 and D¢ are given by the relations

2
Df- —2= —S(sing he L 21
Sin sin“6 8¢

2

96 00

20F1 1 9 2cosf OF @

sin~0 sin29 8¢

1 2
2 OF
DgE= Sine o9 * 20036 gg - 12 P’
sin 6 sin 6

Thus, complete knowledge of the far field pattern implies the determination of the
field outside the smallest sphere enclosing an equivalent source.

The next problem is to relate this result to the scattering body. Consider a
body composed, at the present, of arbitrary material. Let the exterior surface of
the body be given by S. A plane wave of harmonic time dependence exp(-iwt) will be
assumed to be incident upon the body generating a scattered field. The scattered
field at a point X outside the body can be represented in terms of the total field

generated on the surface as follows,

E(x) = “Z%‘]EWO(EX@W(QXE)XV‘(D +n- E)V'¢] ds' (8)
S
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where n is the unit outward normal to the surface and

ikR

f=¢ /R (9)

with R = 1x-x'1, and x' being a point of integration on the surface,

Employing the expansion
00)
elkR/R = ik E (2n+1)jn(kr')hn(l)(kr)Pn(cosv) s (10)
n=0

one can derive the following expansion for §§ in terms of r, where r is the distance

from the origin to the point x,

eikr @® An
o 2 y
n=0 r
where
1 2 I (2n+p+1)
A = —— Z (2n+ 2p+ 1) ()P L 1BTPT L i (kr')P_ . (cosy)
n n - o (pt1) n+p n+p
(2k) (n)! p=0
(12)

with

cos Y = cosficosf' + sinBsinb'cos(f - ¢') (13)
The angle v is the angle between the two vectors X and x',

In particular it can be shown that

A0 = exp [-ikr'cosv] (14)
and

2knd = [an-1)+ D) A (15)

where D is the differential operator defined previously Eq. (7),
Investigating the behavior of An for n—>, one can show that the expansion given

by Eq.(11), is uniformly convergent for r>r'., From the following relationship
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v g=-v¢ (16)
where the prime indicates differentiation with respect to the source variable x',

one obtains

eikr [04) 1_3n
ety ok w
n=0 T
where
B =i [-ika +
-n ‘lr [:lkAn I.An-l:‘
8An )
4 - 18
29 00 (18)

0A
4, Lol
=@ sing o
Interchanging the order of summation and integration it follows then, that

expression (8) can be represented in the form

eikr [0¢] En
n=0 r
with
Eo-- / [iwu (nxH) A +(nxE)xB +(n-E)B ]dS' (20)
~n 47 o~ —" n -~ n n
S

provided that r>r', for all values of r' associated with the points of integration,
This means that Wilcox's expansion is uniformly convergent outside the minimum
sphere enclosing the body, and represents the scattered field only outside this
sphere,

However, it is possible that expansion (19) may be uniformly convergent

part way inside the minimum sphere enclosing the body, in which case it will

10
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represent there, the field produced by an equivalent source. The radius of
convergence of expansion (19) determines the radius of the minimum sphere
enclosing anequivalent source. If the scatteredfieldis singular on sufficient portions
of the surface of the body, then the radius of convergence of the expansion in this
case will determine the radius of the minimum sphere enclosing the body. The
fundamental question between the shape and material characteristics of the
scattering body and the equivalent source distribution remains to be considered.
What is required is the relationship between the radius of the minimum sphere
enclosing an equivalent sources (determining the radius of convergence of
expansion (19) ), and the properties of the scattering body. This is being
investigated.

It was shown that for a fixed origin, Wilcox's expansion represented the
scattered field only outside the minimum sphere (with center at the origin)
enclosing the body. By changing the origin of the coordinate system, one will
get a new minimum sphere enclosing the body, outside of which Wilcox's
expansion will represent the scattered field. Thus by considering a sequence of
translations of the origin, a sequence of minimum spheres enclosing the body will
be obtained, such that the envelope will be a convex shape enclosing the body.
Thus on considering the sequence of minimum sphere, Wilcox's expansion will
give the scattered field outside the convex envelope enclosing the body. Thus
only for convex scattering shapes, can one obtain by Wilcox's expansion, the
scattered field everywhere outside the body.

Since the expansion may be convergent in the interior of the convex envelope,
additional information will be needed to determine the shape of the scattering body.
For perfectly conducting bodies, one would have to look for the surface for which,
the sum of the tangential components of the scattered and incident fields vanishes,
A similar technique could be used for bodies whose material properties could be

represented in terms of an impedance boundary condition of the form

11
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E-(E-nn=n — nxH (21)

m

where n is the unit outward normal to the surface of the body, and n is a parameter
depending upon material characteristics.

Thus it is seen that if the body is convex, its shape can be determined under
the assumption of perfect conductivity, or impedance type boundary condition,

The question of uniqueness has to be considered.

12
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THE CONICAL HARMONICS A;IVD ALTERNATIVE APPROACH

For the case where the radius of convergence of expansion (19) is given
by the radius of the minimum sphere enclosing the body, the question comes
up as to how one can proceed beyond the mimimum sphere to portions of the
scattering surface inside. As is seen from the set of recurrance relations
(6), if the scattered field is known completely (phase and amplitude), only in some
angular sector (such as 6, < 6<6,, ¢O< ¢ < ¢1) one can obtain the scattered
field everywhere in a conical region formed by this sector, outside the minimum
sphere, The question then arises, can one obtain an analytic continuation of
scattered field into the interior region bounded by the conical surface, the surface
of the body and the minimum spherical surface, using conical harmonics?

Let C1 be a sphere centered at the tip of the conical surface, with radius just

greater than ¢ min, the radius of concentric minimum sphere enclosing the body.
Let C_ be a concentric sphere with arbitrary radius r which is less or equal to

2

¢ min, Further restriction will be placed on C_, namely that it lie outside that

2’
portion of the scattering surface enclosed by the conical surface. Let S be the
portion of the conical surface between C 1 and C 9* Let Z ) and Z 9 be the
portions of the spherical surfaces C. and C_ contained in the conical section

1 2
(see Fig. 1). Let E, H be the scattered field and En’ gn be the field components
corresponding to the nth conical mode, the conical modes so chosen that their
tangential components of E vanish on S and Z 9° These modes will exhibit

orthogonality properties. Using the Lorentz Lemma, it follows that

13
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FIGURE 1

f n- (ExH -E xH)ds =0
Lxf b Xb

n+ExH ds = —/ n- (ExH )ds+/ n-(E xH-ExH_)ds
- ~n - ="=n = ~n'— =""n

2 1 (22)

By letting r vary from ¢ min, we obtain a functional relationship in terms of r.

If the right-hand side is known, then the component of E tangential to Z 5 can

be determined as a linear combination of the conical modes; and furthermore, by
varying r, the coefficients are obtained as a function of r. Unfortunately, only
the second integral on the right-hand side of the above equation is known explicitly,
Thus, the conical mode approach cannot be used unless the scattered field E and
Hare normal to the surface S, in which case the first integral on the right-hand

side of the equation vanishes, This requirement that Eand Hbe normal to the

14
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conical surface S is very stringent. However, it can be achieved in the limit of
vanishing wavelength, where geometric optics or ray theory approach can be used.
If the generators of the conical section are along the rays, then E, H will be normal
to the conical surface. Thus, the conical mode approach is useful only in the
limiting of vanishing wavelength and, in this case, is equivalent to the ray theory
approach,

The above argument and other reasons, which will not be gone into here,
suggest an optimum approach to the inverse scattering problem for large com-
posite shapes should be as follows:

(1) From the far-field data, use Wilcox's recurrance relations to obtain the
scattered field in the near-zone of the body. In practice, only the first two or three
terms in the recurrance relations may be needed, since the scattered field ex-
pression will only be required in a region close enough to the body, so that the
various components can be separated out as indicated below,

(2) In the region (outside some sphere) for which the scattered field is
now known, separate out the various field contributions, In other words, decom-

pose the field in the following form
_ ikyp = (23)
E=) e E where Vy +E =0

and En is, in most cases, a slowly varying function compared to the rapidly varying
phase function wn. Each of the components will arise from various contributors,
such as the reflected wave, edge diffracted wave, creeping waves, and spherical
waves arising from isolated perturbations, such as antennas, and thus each com-
ponent will arise from different portions of the scatterer. The surfaces gbn corre-
spond to the wave fronts and their orthogonal trajectories, the rays. However, a
note of caution should be mentioned, in that there most likely will exist narrow angu-

lar sectors, transition regions, where the components may not be too easily sepa-

15
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rated. These transition regions separate scattering or diffraction regions such as
would occur for example between the illuminated and shadow regions of geometric
optics.

(3) Identify, if possible, each component as to type of return (i.e. reflected
wave, creeping wave)., This may be done by tracing back the individual wave points
to the caustic surface (the envelope of the rays). The caustic surfaces corre-
sponding to the reflected wave from convex and concave portions of the scatterer,
will lie, respectively, inside or outside the body. The caustic surfaces for the

creeping waves lie on the surface of the body. Caustic curves on the surface will

occur for waves arising from wedge type singularities. The wave arising from a
discrete scatterer, such as an antenna, will appear to come from a point.

(4) Depending upon the identification of the particular wave component,
various methods may be used to identify the portions of the scatterer from which
that wave originates. As an example, the curvature of the wave front associated
with the reflected wave arising from a convex section of the surface, coupled with
the assumption of perfect conductivity, should specify the convex section of the
surface. (This introduces the additional problem of ascertaining the material
characteristics of the body. Some techniques that may be used for this will be
discussed below.) For the field component arising from an isolated singularity,
it may be best to re-employ Wilcox's recurrance relations, where the origin of
the coordinate system is taken to be at the scattering center obtained by tracing
the rays back.

The above general approach has several advantages, among which are:

(a) Additional information, such as is given by the time dependent far
field response, can be used to separate the various contributions to the scattered
field directly.

(b) The Bistatic-Monostatic Theorem may be used when information is
lacking, to get additional information on the amplitude of the reflected wave com-

ponent,'

16
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(c) If information of the scattered field is available only over a finite
range of bistatic-angles, those portions of the scattering surface that contribute
to the far zone scattered field in the observed angular region, can still be obtained.

(d) The technique is such that the degradation due to lack of various
types of information with respect to the far-zone scattered field can be easily esti-
mated,

The process indicated above essentially is a means to determine the various
scattering centers. Associated with it, one must incorporate techniques to deter-
mine the material characteristics of the body, Some preliminary ideas on this
subject are given as follows,

Some Means of Determining the Material Characteristics of a Scattering Body.

For a class of perfectly-conducting bodies, the monostatic-bistatic cross-
section theorem stated as follows, is well known: In the limit of vanishing wave-
length, the bistatic cross-section for transmitter direction k and receiver direction
ﬁo is equal to the monostatic cross-section for the transmitter-receiver direction

k + ﬁo with k # ﬁo for bodies which are sufficiently smooth,

FIGURE 2

This theorem may be amended for non-perfectly conducting bodies, thus

yielding information on the material characteristics of the body.

17
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Let 260 be the angle formed by the vectors ﬁo and k (i.e., the bistatic
angle). Let the surface of the body be sufficiently smooth, and let its electrical
properties be characterized by a voltage reflection coefficient R, which is a
function of the angle of incidence (@) and polarization; i,e., R = R" (o) for
polarization in plane of incidence and R = R J_(a) for polarization perpendicular
to plane of incidence. Denote O'J_(li, ﬁo) as the bistatic cross section where
both transmitting and receiving antennas are linearly polarized perpendicular to
the plane formed by the vectors (k, ﬁo). Let o“ k, ﬁo) denote the bistatic cross-
section where both antennas are polarized parallel to the plane (k, ﬁo)'

The bistatic cross-section o k, ﬁo) is a product of two factors, a geo-
metrical factor depending upon the radii of curvature of the surface of the body,
and a material factor depending upon the reflection coefficient. However, as im-
plied by the monostatic-bistatic theorem given above, the geometrical factor for

or(k, ) and of(k +8 , k+3 ) are the same, Thus, it follows that
L L
=’ =o =0 =0

op (k, &) Ry(60) | 2
= —= (24)
G_L(li+‘_ﬁ_oa .12+ﬁ.0) R_L(O)
Similarly, it follows that
k, &) R, (6) | °
IR I (25)
oy k+f,k+10 ) R,,(0)
=" =" o I

Consider the case where the body is a lossy dielectric (non-magnetic) with
relative permittivity given by € = €' + i€"", The ratio of the bistatic cross-
section (bistatic angle 26) and the appropriate monostatic cross-section yield

the ratio

18
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2 2
l R_L(e) cos6- Je—sinze 14/ | _ C4 (26)
R_]_(O) cosB+/ €-sin 6 1 —/?

where C is the constant determined from the measurements of the cross-sections,

In particular, if the loss tangent is small €" <<¢€'and €' <1,

then
J€' -sin29-cos(9
C~ (27)
Jer-1
yielding
1-2C 6+ C2
[ = 22 (28)
c -1

Thus, the two measurements o l@ 0+l§, ﬁ0+l§) and o -L(lg, ﬁo) yield the appropriate
value for €' in this case.

In general, it will not be known apriori whether the material composition
of the body is non-magnetic or homogeneous. The body may be comprised of a
perfectly conducting inner shell, coated with one or more layers of dielectric or
magnetic materials, such as would occur with ablative coatings or absorber coat-
ings. Thus, in this case, the bistatic cross-sections will have to be measured at
more than one angle. This leads to the problem as follows, Given the ratio of
the bistatic cross-section to the monostatic cross-section for a set of bistatic an-
gles (i.e., given ]R_L(G) /R.L(O) ] 2 and IR“

much can be inferred about the material properties of the body. Consideration of

(6)/R”(O) l 2 for a set of 6) how

this problem is being undertaken.

19
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