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ABSTRACT

(U) A unified approach using the generalized concept of angular spectra for
thé study of the radiation received at any point in space from a fransmitter due
to multipath propagation effects is formulated. The various mechanisms contri-
buting to the multipath effects, such as scattering by discrete objects, and by
extended objects such as grouhd, are formulated in general. Although the formu-
lation is based on CW transmitter and stationary receiver, the results may also
be applied to other transmitter signals, scanning and moving receivers (and

transmitters) with slight modification.
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I
INTRODUCTION AND SUMMARY

(U)The objective of this research is to carry out a general study of the multipath
propagation effects on the radiation received at any point in space from a transmit-
ting source. Anticipating the fact that the polarization and distributional charac-
teristics of received signal are important in utilizing the received signal fo estimate
the range or position o'f the source, a unified approach using the generalized concept
of ‘angular spectra of fields is suggested here. |

(U) In Chapter II the characterization of radiation by angular spectra is introduced.

The electric field strength at any point r associated with radiation coming from a

o) T

small solid angle d in the direction may be expressed as

A A A
4E@)=C (x9S +C,(x e, _ (L.1)
A A . . . . e g
where € 1 and e, are directions of horizontal and vertical polarization and 1 and é

are the two components of angular spectra of radiation. From the far zone approxi-

mation, the directed radiation from a frangmitter located at I, may be expressed
as .
A
¢, F (@ ikiz-ry
A :
- S s8-Q, ) (1.2)
A L"Itl dr
ol Fo(Q)
direct
where ( )
A I

er= !r-gtl

F 1 and F2 are related to the antenna pattern and gain.
(U) In Chapter III the scattering of the directed signal by discrete objects is
discussed. In terms of a scattering matrix, the contribution of the angular spectra

due to a scatterer at I, may be characterized by a scattering matrix

1
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A A
[S(Q’ Qdii] ’
where r-r
A .
i = I—z'l-_:l (1.3)
=i =

is the direction of the incident radiation seen by the scatterer. The scattered field

at any point in space can then be represented by the angular spectra

trr) e
AN
] [S(Q 02, )-] A jl e|r -l Tr-rl 5(&, LU 1.4)
F(e)- =5 =5
scattered '

where rer
A __ o

Q = — (1.5)
i (r-r.)
- 1

is the apparent direction of the scattered radiation seen at any point. Theoretical
models for the approximate calculations of the scattering matrix are also presented
| in Chapter 1 |

(U) The reflection due to a rough ground i\s investigated in Chapter IV. Using the
geometric optics approach, the contribution of the angular spectra due to ground
reflection may be expressed in terms of an integral such as given by Eq. (4.50). If
the transmitter is far from the ground, then this angular spectra may be expressed

in terms of ground reflection matrix [Ia such that

C" F (Q) lklr -r
1] (] ] i-x [R] o o ° 7 udlr (1.6)

t
reﬂected d1rect

where r, is some chosen center of.the illuminated region of the ground, and

(1.7)

2
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is the apparent direction of direct radiation relative to the center. ‘

(U) A study of the ground' reflection matrix for a slightly rough ground, using
the geometric optics approximation is carried out in Chapter IV. For a slightly
rough, random ground, the formulas for the statistical average, and correlations
between the elements of the reflection matrix, including the effect of finite index
of refraction of the ground are investigated. In Chapter V, a preliminary study on
the effect of shadowing on the ground reflection matrix is carried out.

(U) In principle, the radiation at any point in space can then be obtained by

adding the direct signal, scattered signal, and reflected signal given by

A |
6‘:1(15 2| ¢ K1 R

) A = + + (1. 8)
¢, &, ¢ <

direct cattered reflected

For a receiver at any boint with any receiving pattern, the received signal can then
be obtained by integrating over the angular space.

(U) Due to the uncertainties involved in the problem, especially the ground
reflection for which various statistical models of ground can be chosen, no specific
calculations wére made on the theoretical model proposed in this work. It is felt
that before meaningful nuﬁ;erical analysis can be made, some experimental results
characterizing the statistics of ground reflection are necessary.

(U) 1t is to be noted that although the present formulation is presented on the
basis of CW transmitter and stationary observer, thé extension of the formulation
to FM and moving observer is relatively uncomplicated. By assuming the trans-
mitted signal to be of the form

-iw t

f(t) e o

where W, is the carrier frequency, the angular spectra may be expressed in the

form

3
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Jl @’ L t) -iwot

e
fz(?z,z,t)

5o, that the time variation of the power spectra of the radiation may also be included
in the formulation.

(U) For a moving detector, the point of observation changes with time, so that

r=r(t),
describing the trajectory of the detector may be used in the angular spectra. The
angular spectra then takes the form

¢ @,z it
‘ e
&,@ xvy

Thus the effect of a moving receiver may also be investigated using this formulation.
(U) Other corrections, including moving and scanning of the transmitter, the
tropospheric or meteorological effects may also be incorporated in this formulation.
(U) In summary, a unified approach stitable in the investigation of the radiation
at any point from a transmitter due to multipath propagation effects is formulated.
This approach, incorporalted with experimental results that may yield a reasonable
statistical model or models of the ground may be employed to obtain a detailed
characterization Qf the received radiation by a stationary, as well as moving,

detector.

4
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II
CHARACTERIZATION OF THE RADIATION FIELD

2.1 Introduction

(U) The radiation observed at any point from a transmitting source generally
consists of several components due to the mulfipath propagation effect. This multi-
path effect is illustrated in Fig. 2-1. If the transmitter is a low anglg radar such
that the ionospheric reflection may be neglected, the received radiation may be
roughly classified into three categories: i) the direct signal whenever the point of
observation is in the illuminated region of the transmitter (main beam or any side
lobe); ii) the scattered signal, due to the presence of obstacles in the illuminated
region, and iii) the ground reflected signal.

(U) In order to infer from the received signal at any point, the possible con-
figuration of the transmitting system and its surroundings, it is necessary to have
a unified, detailed characterization of the radiation at any point.

(U) The basic characteristics of the radiation received at any point that may
be subject fo detection and analysis are; a) the temporal variation of the signal,

b) the angular distribution of the signal, and c) the polarization of the signal.

(U) For CW transmission, the temporal variation may be accounted for by the
phase variation of the sigt‘lal. To incorporate both the information of angular distri-
bution and the polarization of the radiation, which is necessary when ground reflec-
tion is important, it seems most natural to employ and generalize the notion of
angular spectrum to characterize the radiation. The idea of angular spectrum has
been successfully used in the study of ionospheric reﬂeétions (Booker, Ratcliffe and
Shinn, 1950) and are therefore adapted and generalized in this report for the charac-
terization of the radiation.

2,2 The Angular Spectrum

(U) For a simple introducti(‘)n of angular spectrum and the notations involved
in this work, we shall choose a fixed coordinate system, with the average level of

ground taken as the z-plane, as illustrated in Fig. 2-2. Any point in space is then

5
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represented by a vector

£=,)\{x+§r\y+/z\z (2.1)

A
and any direction may be denoted by a unit vector 2. In terms of the latitude angle
a and azimuth angle f the unit vector Q is

A .
Q=§sinacosB+’)>sinasinB+’z\cosa . (2.2)

(U) Since the radiation reaching r may be distributed in all directions, one
may define the electric field of the radiation reaching r from a small solid angle dQ2

A
in the direction 2 by
aE= & (e ' 2. 3)

A o
where é (r, ©2) may be called the angular spectrum of the electric field. For CW
transmission, the angular spectrum may be expressed in terms of a complex ampli-

tude and phase, so that

e DA s, ™0 2. 4)

where d(r) is the total path travelled by the wave from the transmitter to the point
of observation, and A(g, ﬁ) is the complex v\ector amplitude.

(U) For the radiation (far zone) field, the electric vector must be 'normal to the
direction of propagation so that A must be a two-dimensional vector normal to ﬁ .
Following Green and Wolf (1953), one may define two mutually perpendicular unit
vectors 8, and €y both normal to o by

A ﬁxf. A

, A
el-m-xsmﬁ y cos B (2.5)
and
€2= Ox gl=§c\cosacos B+§r\cosozsin B-:’z\sina . (2. 6)

These vectors are illustrated in Fig.2-2 . The complex vector amplitude A can

then be decomposed in the directions 31 and 32, such as

8
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A, ) & A (D8 A,z 0, : 2.7)

In other words, the radiation reaching any point may be expressed in terms of
two scalar amplitudes (Al and A2) and a phase delay ( elkd(-l:) ) by the angular
spectrum | |

A &% lkd(_)
2

ikd(r)

Cle =a (2 68, D1 @ 2.8)

Evidently, A1 is the electric field of the horizontally polarized component while A2

is the electric field of the vertically polarized component of the radiation.

(U) In most problems, the phase factor due to time delay is relatively easy to
determine, Thus, apart from the phase factor, one may describe the radiation field
by two scalars, or a two-dimensional vector such as

A
Cwd ~ A : (2.9)
(represented by) AZ(Q, 1) ‘
Representation of the incident field from the transmitter in the components A 1 and
A2’ and the study of change of A1 and A2 due to various scattering processes
shall be of prime importance in the present investigation,

\

2.3 Direct Signal

(U)The direct signal seen at any point in the far zone approximation is generally

represented locally by plane waves. For a plane wave travelling in a direction ﬁo’

the electric field is given by
E= [E 8 +E ez-J : | 2. 10)

Since the radiation for a plane wave appears to come from one direction only, we

may represent its spectrum by
E-[e6E e] T ) (2. 11)
: 1%179% ) )

A A '
where 6(9—90) is the Kronecker delta function in the angular space.
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(U) For a transmitting antenna, the field seen at any point may also be rep-
resented by the form of (2.11), but the amplitudes and phase factor,of course,vary
with direction and distance. To express the direct signal in terms of the radiation
pattern, gain, and the transmitted power of the transmitting antenna, let us consider
a horizontally polarized antenna with gain G and the power pattern P(ﬁ). If the
total power radiated is W, then the Poynting vector in any direction 6 is given by

. N\
WtG P(Q)
pE—— | (2.12)
47r

where rb is the distance measured from the antenna. The magnitude of the electric

field is then

- ZpF 2409 =Je0 = W, & . (2.13)

Now let the transmitting antenna be located at position r, , then the radiation re- .

ceived at any point appears to be from a direction -
r-r
==
(2. 14)

Q = : .
t I E'Etl . \
The magnitude of the electric field is given by

/‘Vt Je ,/E(ﬁt) : | (2. 15)

For a horizontally polarized antenna and if the phase of signal at the antenna is

E = /60

lz-rtl

assumed to be zero, we have

£=61/£/c? (szt),_r_fje

Thus, for a horizontally polarized antenna, we may represent the angular spectrum

r-r|
Tt (2. 16)

of the radiation by

10
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ik|r-r ,
F (Q) '1'] 5(?2, ?zt) (2.17)

E =2 —J

where

Fl(fz) A )W, 2.18)

(U) In general, the direct signal may be expressed as

é‘ a —[ ﬂdr -1yl
(xr,=| & F (n)+e F (n) e " 5@, m (2.19)

in order to specify the angular and spatial variation of the radiation.

(U) It is obvious that; i) for a horizontally polarized antenna, F2=0,

ii) for a vertlcally polarized antenna, F. = 0, and iii) for a circularly polarized an-

1

tenna Fl— -1 F2

(U) Elliptically polarized antennas can be expressed in different combinations

of the two complex factors, F1 and F2 . For mathematical simplicity, we may

represent the direct signal by the two-dimensional vector;

F (7 ikir-r)
1‘.-
< i@ O~ ! R :l 'er—_r—’—-— 5(6—3@ - (2.20)
| - F @4 = |
(represented by)

2.4 Scattering Matrix

Any obstacle in the beam of the transmitter scatters the incident radiation into
different directions. As illustrated in Fig. 2-3, the incident radiation may be as-
sumed coming from the direction 60 with the electric field Eo , while the seattered
radiation is distributed over all the directions ﬁs and with different electric fields
Es . The relation between _ES and Eo’ due to the linearity of the Maxwell's equation,
may be expressed in terms of a scattering matrix for plane wave scattering (Saxon,
1955). Mathemetically, one may deduce, from Maxwell's equation, that the scat-

tered field in the far zone approximation may be expressed by

11
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Incident Scattered
E
=0}
Direction of 1 —

Polarization

FIG. 2-3;: GEOMETRY FOR THE SCATTERED
SIGNAL ‘ '
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ikr
A N A A e
: . e __ 2.21
ES(QS) g(ﬂs, Qo) E_O(QO) m ( )
where .
A A
g(ﬂ, ) is ‘known as the scattering matrix.
(U) Explicitly, if one represents the incident field by
i '
32| Alo) A (o)AZ] Y
Enmo) A1 el+A2 e le (2.22)

and the scattered field in any direction by
olkr i
E (Q ) [A(S)A (S)AZ] T e ¢0 (2. 23)

then the scattering matrix may be represented by

| s, B, 8)  s,@08)

A A 11'"°°s’ 127 s o
§_(Q,Q)=[: A® A° AT A :‘ (2.24)
=8 "0 821({2 , ) SZZ(QS’ Qo)

such that

s .0
A 11 P12 Al 2.25)
A5 |7 s A2 .

2 21 S22 2

(U) If the incident field appears to come from direction ﬁo with phase angle
¢o’ and if the scatterer is located at 21’ then the scattered radiation seen at any

point r appears to come from a direction

A A E'-Ili
Q =0 A , . (2. 26)
S i = |r-r)

e |

In terms of the scattered amplitudes, one may easily repi'esent the scattered signal

by the delta function distribution
: iklg-r.l

1 1¢o A A
& - [:A N TFET e ® 8(@a) . 2.27)

13
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(U) In principle, if the sca‘.ftering properties of various objects, including
ground are known, the composite signal that is seen at any point originating from
a transmitter can be obtained by summing over all the components. The discussion

on the scattering matrices of discrete objects and the groimd are given in Chapter

I of this report.

14
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I
SCATTERING FORMULATIONS

3.1 Inti'oduction

(U) In Chapter II, it was shown that if the ‘radiation field is represented by
two scalars or a two-dimensional vector associated with the angular spectrum, the
scattered field may be expressed in terms of a scattering matrix. The description
of the scattering properties by a scattering matrix is the natural extension of the
ordinary concept of scattering cross section., For example, from Eq. (2.25), for

a scatterer located at the origin, the scattered field is given by

S . 0
E1:\= e [Sn S12‘-_} El] G.1)
S r 0. )
E, , 591 S92 E,

Hence, the conventional bistatic scattering cross section for a horizontally polarized

incident wave is given by —_

2 2
5| + |E°
.o=r1i;-noo drr? |—1|I§—0||22—|-‘=41r |511|2+[s21|2 . (3.2)
A B

Thus, the knowledge of the scattering matrix contains all the information about the
conventional cross section. The inverse, however, is not true. Therefore, it is
necessary in the present work to discuss the means of evaluating the scattering
matrix.

(U) Just as in the case of calculating the scattering cross section, the exact
solutions of the problem are only possible in a very few cases. In most cases,
approximate methods developed in the evaluation of scattering cross section such
as physical optics, Rayleigh approximation, etc., must be used. In this chapter
only a general formulation of thes:e approaches are given. For a detailed appli-
cation of these approximate methods in the calculation of radar cross sections

the work of Crispin, Goodrich and Siegel (1959) may be referred to. Extension of

15
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their results in the form of scattering matrices seems to be straightforward but
in most cases, very detailed.

3.2 The Sphere
(U)Perhaps the only possible shape of finite scatterer whose scattering matrix

may be formally written down in relatively simple exact form is the sphere. To
‘illustrate the derivation of scattering matrix from the exact solution of Maxwell's
equation, the scattering matrix for a sphere is derived here, .

(U)The standard problem for the scattering of a plane wave by a sphere is sum-
marized in detail by Stratton (1941). Refer to Fig. 3-1, a plane wave whose electric
field is polarized in the x-direction is impinging on a sphere of radius a and dielec-

tric constant N (the permeability is assumed to be uo).‘ Since

A ikz '
go—Exxe. (3.3)

the scattered field may be expressed in spherical wave functions as

®
i} .n- (2nt+1) (3) (3)
E5 Z:;n= Y oaltD) [ nMo1n 0 Noj (3.4)

where the spherical wave functions are expressed in terms of spherical Hankel

functions, associated Legendre functions, etc., by
(3) 4 (llcose) (1) A dellecose) (1)
_Oln -—éTnT COS¢ h (kI‘ -¢ -——d-e———- sm¢ hn (kl') (3. 5)

dP(l)(cose)

N 4| pM n(n+l) o n 10 (1), o]+
Noin rltP (cosB)cosf —— (kr)jl —a cosf k_r[krhn (krﬂ

pi
(cosG)
-¢ ———— sinf — |:kr h (kr:l (3.6)

The scattering coefficients in (3. 4) are expressed in terms of the spherical Bessel
functions and the normalized radius of the sphere

a=ka (3.7)
16
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Eo

)_. H, Incident Field
X ’ \

FIG. 3-1: GEOMETRY FOR SCATTERING BY A SPHERE
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by i, (Ne) ajn(aﬂ '-jn(a) [Najn(Naﬂ'
% ORREI P el @8
jn(Na)[:ahn ("‘ﬂ -hn @ E\Iahn (NQE]
and : [ . _— ,
j_@|Naj (Na)|'-N°j (Na) aj (a)
b n n ] n n ] (3.9)

n hfll )e) ﬁ“a i (N “’]"szn(N %) [a hfll ) (aﬂ |

In the literature, the scattering coefficients have been calculated for various sphere
sizes and indices of refraction.

(U) For far zone fields, the asymptotic form of the Hankel function

ikr

may be used. This yields

P( )(coso) | dP( )(cose) |
(3) (i)n+1 ekr 8[ v }cosfé a[ JSin¢ (3.11)

"Oln

and \
e KT} A dPS)(cose) ()(cose) |
Nopr (0 S O —gg— |cost ¢[ ey J sinf (3.12)

Using these relations,,K we may express the scattered field due to a plane wave

polarized in the x-direction by

~ eﬂq‘ A A ’ .
E SE = 6 cosf Sl(9)+¢ sinf 8,(6) (3.13)
where . -
@ P(l)(COSO) dP(l)(cose)
s.(o)=-i S enth) L LI (3. 14)
1 < n(n+l) ) n 8ind n de * |
and

18
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() (1
: (cose) P “(cos6)
. (2n+1) n
SO 2 S (e P e - BB

n=1

Both S (9) and S (0) can be calculated for any sphere from the correspondmg scat-
tering coeff101ents
(U) From Eq. (3. 13), it is easy to infer by symmetry that the field scattered

by a sphere from an incident wave polarized in the y-direction is given by

ikr '
E“E ‘il-{— {e sing § ,(0)- Beosg s 5(0) . | (3. 16)

Thus, if the incident field is expressed in terms of the amplitudes

E, ~ x] , | (3.17)
g
y
while the scattered field is expressed in terms of the amplitudes
E> . | |
o] .
E ~ ] , (3. 18)
S 8 ‘
¢ \
one may have ,
s . ' .
EO ellﬂ‘ COS¢SI(9) S1n¢Sl(9) EX
s | ° T _ (3. 19)
E¢ singls, (6) -cos¢Sz(9) | Ey

(U) In order to adapt (3.19) to the present convention for the d1rect1on of
polar1zat10n one shall assume that the incident field comes from a direction

Qo(ozo, B ) instead of the z-direction. The direction of polarization of the incident

radiation can then be assumed to be, respectively
Q x%

ml- :?sin B 0—9 Ccos BO (3 20)

19
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and

A A A A A . A
= = - .
€y 0 Qoxe 10 X COS aocos Bo+y cos aosm Bo Z sin ao (3.21)

' : A
Moreover, the scattered signal in any direction Qs(as, Bs) should be expressed in

terms of the componénts in the two directions

A A
st Z A A
€5 g - Xsin Bs-y.cos BS (3.22)
s
and
A A A - A . A .
O stels-x cosa cos Bs+y cosa sina -z sin Bs (3.23)
instead of the § and 3 components.
(U) Mathematically, this means that one must re-express
A_S A S
= .24
CE OE +§ E¢ (3.24)
in the form '
A S A
B % E1 T s Ezs - (3.25)

\

by a rotation of reference coordinates. It is easy to verify from (3. 24) and (3. 25)

that the vector components are transformed according to

A A
Eq [0 @ P E
1] _ 1s 1s 0
s:‘ = A A A:] S (3. 26)
Now, if 31 o @2 0 ﬁo are identified, respectively, withthe x, y, z directions used in the

derivation of (3. 19), one can rewrite (3. 19) in the form

E§]=£—{r[(318-6) (gls-ai][:os¢sl(9) sin¢sl(6);J E
E: ke (328-3) (st-a in¢92(0) -cos¢sl(6 E

(3.27)

N|OHO

20
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(U) To express the matrix relation between the scattered and incident fields in

A A A
terms of Q , 2 , and the derived directions © s 3 , 3 and e, , one notes that
o s 100 20’ "1s 2s ,
A A ‘
QOXQS
6=T—T' | g (3.28)
20X S
& @G- 8)-a
8_6‘ A B 0 s 0 (3. 29)
X s_ A A *
R xQl
0 8
and
A A, A A
| Q_=e, ,sind cos ;IH—e2 o106 cosf + Q cos6 : (3. 30)
It follows, therefore, '
A A ‘
Q-Q =cosb (3.31)
s "o :
AN :
‘QO X Qslf sinf (3.32)
. - . A
sinf cosf = (310 Qs) _ o (3.39)
A
sind sinfl= (. - Q2 ) (3.34)
2%, ®
A - 0" "ls _ A
®1s 6- sing 28 ( (3. 35)
\
e A A f\20'2;2.3 A A ‘
R P4 (3.36)

(U) Using the above relations in (3. 27) the components of the scattering matrix

may be expressed explicitly by

A A -1 AA A A A
8,,(2.,9) — HQ e, )2 e )8 (R Q)
‘11 8’ 0 E_(Qs-_?zo)z-]k o 1s''s 10018 "o
A A A A A A
.-(Qo' 28)(95' elO)sz(Qs' Qo) } (3.37)
21
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@, 0)- [_I-(ﬁj-ﬁf]k @2 )@ ¢ s @)
H - e, )@ em>s2<ns 2 (3. 38)
A
TN 5 @< Js (@ 2)
B8 )@ e, )8, 0) I (3. 39)

and

A A
QQ

5220 [1 @. 8) ][ ] {(ao' 28

A A
)52(95' 90)} . (3. 40)

3.3 Dipole Scattering
(U) For obstacles with d1mens1ons much less than the wavelength the Rayleigh

approximation may be used in calculating the scattering matrix. Roughly, when a
static electric field is applied to an isotropic body, the-body is polarized. In the
low frequency approx1mat1on (wavelength large in respect to the dimension of the
body), the dominant terms of the scattered field may be approximated by the field
rad1ated from the induced oscillating dipole. From the solutions of electrostatic
pro_blems involving spheres, spheroids, etc., one generally recognizes that a small
body has three mutually perpendicular principal axes of polarization In referring
to a fixed coordinate system, these directions are denoted by n,, n2 and n,, then the

induced polarization caused by any incident field are given by

A A :
P= li;l (E," Dy oy (3. 41)
where ; are known as polarizability of the body (vande Hulst, 1957).
() 1f
_ A A
E,=E; € tEy & (3. 42)
22
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o A ¥y 100 * 3 (06 )E (3. 43)
B_§a1n1( ; a (n 20 20 .

(U) Since the far zone field due to an oscillating dipole located at the origin
is given by (Stratton 1941),

ei [?28 x(ﬁs xp)] | (3. 44)

T S A '
Bl o™ Tre T PO, (3.45)
and
E, =E-6, = S - (3.46)
28 = ‘28 dre. T 2% - g
Substitution of (3. 43) in the above, yields
.2 . 3
_ ‘1 ikr AA A
Es"fre ¢ ‘_.g "’(310 ;e JE
o 1= '
1Z=; RS UL R '
.and ‘
E =-—E--1‘ eikr ; a(e n)(ﬁ
28 4m€ r 10
() 1= ‘
3 A A |
* ;“iézo' n)@, ®9s'F20 (3.48)
The scattering matrix for small bodies are therefore given by
2 3
A kKW 1 ‘
, sij(Qs’ Qo)_ 41r€0 r é k(AIS 1s)(n ]o) ’ (3.49)

23
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(U) For the special case of a sphere, o,=_=o_=a, one has

1273
ikr .2 )(e )
A A
s(Q,0)= 2— k—f{(m 18’ 20 ls} . (3.50)
8 o 47e r
' o ) (6, -

10 Zs 20 Zs

(U) For most regular bodies such as ellipsoids, spheroids, cylinders, etc.,
values of polarizability are known, so that (3.50) may be used to calculate the
scattering matrix. For bodies of other irregular shapes, approximate values of o

may be obtained by using the Born approximation which yields
g EvE (5 -1) (3.51)

where V is the volume of the body and CS« is the dielectric tensor. The limitations

of such an approximation have been discussed by van de Hulst (1957).

3.4 Physical Optics Approximation

(U) When an obstacle of infinite conductivity is illuminated by an incident
wave, currents are induced on the surface of the body. The scattered field can then
be interpreted as the fields i'adiated from th\e surface currents. In general, the
| surface currents are not known unless one can solve the scattering problem involving
the obstacie exactly. In the physical optics formulation, the following two physically
plausible approximations are made regarding the surface currents (see Fig. 3-2).

(U) a) For a body of finite size, a part of the surface is in the shadow region,
where the field is small, Therefore, for a first order approximation one assumes
that the surface current is zero in the shadow region.

(U) b) To calculate the current on the illuminated surface of the obstacle;
one assumes the local radius of curvature of the obstacle to be much larger than
the wavelength, Under this approximation, the surface currents may be approxi-
mated everywhere by the currents that would be induced on a plane tangent to the
surface, This approximate current may be expressed in terms of the incident mag-
netic field strength by

24
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. Illuminated Region

FIG. 3-2: GEOMETRY FOR PHYSICAL OPTICS
APPROXIMATION
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-2 2 ‘
K =+2ng x H amp /m (3.52)

where ﬁs is the normal to the surface, .
(U) Using this approximate value of surface currents, the scattered magnetic

field due to any surface element is given by

1k|r rl
dH (_) + 5 n xH, (r ] da . (3.53)
If |r-rglis large,
ikh‘_-gs‘ ik\g_—;_s' .
e v e ‘
VS —@-— = -ik —_—_E‘Es' QS (3. 54)
N :
where Qs is the direction of the scattered field. Thus,
iklr-r!
dH_(m)- K ¢ an(r)_JxQ da (3. 55)
=S 27 |r—r | 5 ' '

(U) If the incident field mtercepted by the area comes from the direction Q
then (3. 55) may be expressed in terms of the electrlc field by the relations,

djn.‘_s(__)=d§$j T sz - (3.56)
and °
A %
go(gs)=ﬂix§0(_x;s) Be (3.5%)

Using these relations in (3. 55) one obtains

ikl;_—_x_'s |
e A AA
dljs(__) 27r —E'_—r_s—l (ng Eo)[ﬂs(ﬂo Q) -Q(;]
[ |
-(n Q) Q5(02 N da . (3. 58)
In terms of the horizontally and vertically polarized component,
dE (r)=6, dE. +6, dE
E ()=e B, teo 2s ' (3.59)
: 26
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and
E,lzs)= 2 10E10E 50 Fa0E) | (3. 60)
one finds that
A A A A A
g ikr-r By Cxey) Ay Eyxey | By
=..j__1§ e a (3. 61)
27 |r—gﬁ| A A A A A A
—_— ) . - E
dEzs | | n (eZSxezo) n: (e Sxe ) )
_ A A A
(U) For any arbitrary incident field and an extended surface, € 0’ 20 61

A
€ are not constant vectors, so that the integration of (3. 61) over the illuminated

region of the obstacle is somewhat cumbersome. In most calculations, one assumes

that the incident field is a pla.ne wave, thus the vectors Q A A are constant

10 ! 20
and
E. () E 1k§/\20
‘T
10—s} 10] s 0% . (3. 62)
EgoLs) 20
Moreover, if the far zone approximation is introduced into the scattered field, then
\
A
Q Zr, (3.63)
ik|r-r '\ A
o =s Qeﬂcremﬂs_x_'s 5. 64
Erj  x 04
A
and the vectors le and ezs are constant, Thus
E, (z) b (@x60 ) -ho@ %8
1s . ikr s “W1s% 720 s 18" 710
-ik e ‘
' =§; T da A A X
A A A A
EZS(I_‘) it =% (eg X €90) D (eZSxem)
region
ey (A A E1o
Iy (2,-0) |
Xe . (3. 65)
Ea0
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Therefore the scattering matrix of the obstacle is given by

A A :
ikrg: (QO Q,s) n (e xe -n (e xe, )
S( Q)_..1k dae [: 420 As 1s 410 (3. 66)
it g’ (82sxe20 -ns-(eZSxelo)
region

(U) As an example, consider the scattering matrix of a plane defined by

a a b b
"5SXs; » T3SV <5
and oriented in the z-direction, The scattering matrix is easily calculated to be

8’78’ 0’0o 27

Sl ,B,a,B)= ik Asmc[ (smaocos B -sina cosB )-:]
sinc [g (sin aosin Bo-sinaosi.n Bo):' X

[COSQOCOS(BS —BO) -Sin(ﬁd'ﬁs) ]
)

cosaogosa881n(Bo-Bs) .+§osascos(Bo-Bs . (3.67)

where A is the area of the plate and

A siny

sinc y = 7
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v

GROUND REFLECTION

4,1 Introduction
(U) The reflection of waves by a rough surface such as the ground has been a sub-

ject of investigation by many authors. The approaches used by various investigators
and their results have been summarized by Beckmann and Spizzichino (1963). In
general, most formulatioﬁs deal with the scattering of scalar waves using the Kirch-
hc;ff approximation, In the case of reflection of electromagnetic waves, the scalar
forrﬁulation has been applied individually to the vertically and horizontally polarized
components of the electromagxlgtic wave, A practical, explicit formulation which
considers the inter-polarization lcoupling ( depolarization effect due to the non-planar
nature of the reflection) has yet to be developed.

(U) Only recently (Fung, 1966) the vector reﬂectien problem has been formu-
lated in terms of the vector ‘form of the Kirchhoff-Huygen principle, In this work,
however a different formulatidn of the problem using the concept of angular spectra
is given in order to study the polarization as well as the angular distribution charac-
terlsucs of the ground reflected wave, Approx1mate boundary conditions using geo-
metric optics are then used to deduce the reflection matrix of the ground.

4.2 Angular Spectra of the Reflected Radiation

(U) The ground reflected wave may be considered as the radiation due to
'induced sources' on the ground as a ;'esult of interaction of incident fields with the
ground. Thus, the reflected field satisfies the source-free Maxwell equations
everywhere above the ground.

(U) 1t is well known that at a single frequency w = 2 7 f (or each Fourier com-
ponent of a time varying field), the solutions of the homogeneous Maxwell equation
may be represented by two scalar functions, Those functions, @(r) and y (r) satisfy

v’-{ o | |90

w(D) +k. () =0 , (4.1)
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where

27
A’ .

(U)To conform with the geometry appropriate to the problem of ground reflection,

k2 (4.2)

ol€

it is convenient to choose some reference plane z = 0 near the ground, and describe

the ground profile by a function
z= z, xy) . (4.3)
The reflected fields, therefore, exist in the region of space defined by

2 Sz<® . (4.4

In terms of the two scalar functions, one may express the field in the following formsg

E=Vx (g¢)+ ll< Vx Vx(?lp) ‘ | (4. 5)
and ‘
1 1 A ‘
H-= Ton, VXE = un, [Vx Vx('z\¢)+k Vx(z;//)—J . (4. 6)

(U) By taking the spatial Fourier transform of (4. 1) with respect to x and y

coordinates, one finds that §(r) and y(r) may be represented by
; 2.2

1kx 1ky 1k2-k-kz ,
¢dek fdk B k)e X e Ve d 4.7

and :
iiox ik y 1 i2H2K

b1eS f fdk Iy, ke

respectively, In the above, we choose ' '

m /{?—1&2— 250 (4.9)
in order to satisfy the radiation condition as z —» oo. Although, mathematically, the
integrations in (4. 7) and (4. 8) extend from - to + for both kx and k_, physically

y
meamngful solutions for the field far (several wavelengths) from the ground plane

(4.8)

may be obtained by carrying out the integration over the range of IS{ and ky such
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that /kﬁ-k,%-ky2 is real. Thus, we may denote

, l&=ksina cos fB (4. 10)
ky=ksina sin 8. ' (4.11)

d
- Vﬁz-li-kf, =k cos a | | (4.12)

A
where @ and f are real angles. Physically, if we denote by 2 the unit vector
in the direction defined by the latitude angle o and the azimuth angle 'S, then
(4.7) and (4, 8) may be reduced to more meaningful terms

7 [2 27 A
¢(§_)=k2/ sinada[ dBcosa §(a, B)elk @z (4.13)
0 Y0 |
T [2 T A
2 . ikQ-r
Y(r)=k"| . sinade| dBcosafie, fe = (4. 14)
0 . 0
()] Subsﬁtuting these equations in (4. 5) and (4. 6) yields
7 [2 2T A
a3 2 \ A A vz
E(r)=ik sin“a cosada dBEal @ (@, B)+1e2 Jla, B)] e (4. 15)
Y 0 |
A
and 3 /2 ) T ) . kQ r
g@):ﬂol‘k ./ sin“a cos adx dB’;e2 @(a, B)-ie 1 U(a, B;Je (4. 16)
0 0
where
[% 1 .
no B ;Z S 1207 ) (4.17)

These expressions for E(r) and H(r) may be interpreted as the angular spectra rep-

resentation of the radiation. It is easy to see that

c l(a, B = ik3 @ (o, B)sin a cos a » (4. 18)
and :
6 2(0', P = k3 ¥ (@, B)sin @ cos a : (4. 19)
31 '
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are, respectively, the ‘components of vertically and horizontally polarized electric
fields of the radiation coming to a point r from a small solid angle d 2 in the direc-
tion ©) . Mathematically, one may rewrite (4. 15) and (4. 16) as

- . A
dg@:[él(a, B)é\l+é(a, 3)3;] KL g9 (4. 20)

and

A
‘ dg(g:no[cfl(a, B)éz-é(a, 3)8;] X Lyg (4.21)

From (4. 20) and (4.21), it is easy to see the advantage of using angular spectrum
in the characterization of the radiation. In the calculation of ground reflected
radiation, the angular spectrum expressed in the form of (4.20) and (4. 21) are func-
tions of direction only and are independent space coordinates.

(U) To evaluate the angular spectrum in terms of the boundary condition, let
the ground be defined by

L, = §xs+9ys+2 z ' (4. 22)
and the %-component of the reflected field oh the ground is given by Ez(g_s) and
Hz(gs). Then, integraﬁng the '%-component of (4(%})‘ and (4. 22) yields
1k6 r
E_(r_)=-|sinode |dBsin e —Sd’z(a, )

. . ’ 2 2
1 ( g\ & s 6‘2(0”6) kexg ikyyg 11"‘2"15c‘kyzs ,
_-;2- dle, ysma.' = © e e . (4.23)
and f (o, Bsin ik x ik isz—li-kaz, Z
-1 1 Yy
H (e T, Ff i o, L KV T e

(U) Equations (4.23) and (4. 24) may be considered a two-dimensional Fourier
transform involving the functions Gc 1 and 6”2 . For slightly rough ground, where

Zg does not differ g'reétly from zero, one may argue that the inverse transforms
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are approximately given by
o H (r ) -ik Q
¢ e, B)— cos J‘dx e (4.25)
and
2 -ikQ-r
_-k" cosa =8
Cﬁ;,(a’@'(;)g s d.xgs‘dyS Ez(gs)e . (4. 26)

Thus, approximately, the knowledge of the z-components of the electric and mag-
netic field strength of the radiation determines the angular spectra completely.

4,3 Ground Reflection Matrix
(U) From the results of the last section, it is seen that a study of the ground

reflected wave may begin with the knowledge of the z-component of the reflected
electric and magnetic field at the ground, or at some reference plane, In general,
these two components are not known, so that approximate evaluations, or even
direct postulations concerning these components (in the case of randomly rough sur-
faces) must bé used. ‘Three possible approaches to the estimation of Ez(]_.'s) and

H,(rg) are given below. '

a) The Layer Approach
(U) Borrowing the idea 'from the random screen approach for wave propagation
through the ionosphere, we may postuiate directly the phase, amplitude and polari-
zation variation due to a plane wave reflected from the surface layer of the ground.
Such a model has been used successfully in ionospheric diffraction, but a great deal
of measurement is necessary to determine the parameters involved in such a model.

b) The Multiple Scattering Approach >

(U) Assuming that the surface of the ground is composed of a random distri—
but ion of scatters of appropriate properties, the reflected waves due to some plane
wave incident on the ground may be calculated by the method of multiple scattering.
Such a model has been used successfully for the transmniission of solar radiation

through the atmosphere, However, the correct model of the scatterers, and mean-

ingful solutions for engineering use are both difficult to obtain,
; 33
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c) The Reﬂection‘Approach

(U) Assuming that the ground is locally smooth so that the law of plane wave
reflection is applicable locally, then for any ground surface defined by zs(xs, Ys)s
the reflected waves may be obtained. A postulated statisﬁcs of the surface (and the
electric properties of the grouhd) would then suffice to specify the problem,

(U) In the present ‘Work we shall follow approach c) due to its successful
application in scalar wave reflection,

“ (U) Referring to Fig. fl-l, the radiation from a source located at x, (xo, Yo 2 0)
is reflected by the ground surface defined by

277X, Vg (4.27)
At any point of reﬂectmn as indicated in the figure, the radiation appears to come
from a direction Q This s‘l is given by

A A
Q= .__l_ [x(xs'xo)"'i}(y s-yo)+z(zs—zo.)] é;E:sinog:os B°+3¢ simosinBo+£cosao
s

0" |r-rl
(4. 28)
where
s(xs, ys)-zo
COSQO = m—i——— \ ) ‘ (4. 29)
=20
and
Xs"'x \
0P~ izz st (4.30)
=0 0
The incident radiation, except for a phase factor, may be represented by
E,(xy)= E10‘310+Ezo 20 (4. 31)
A A
whereA , 90 xz . |
€0° s - X smBO-y cos Bo (4. 32)
A A A A A .n AL ‘
0" Qox € X cos QOCOSBO'*‘.VCOSQOSIDBO zZsing (4. 33)

and E1 0 and E2 o are the complex amplitudes of the vertically and horizontally polari-
zed components, respectively, of the incident radiation.,

34

CONFIDENTIAL



CONFIDENTIAL

THE UNIVERSITY OF MICHIGAN
' 8003-1-F '

Source go(xo, Yo Zo)

Point of Reflection
Ig| X Vg Zg(%g V)| -

FIG. 4-1; GEOMETRY FOR REFLECTION APPROACH

35

CONFIDENTIAL



CONFIDENTIAL

THE UNIVERSITY OF MICHIGAN
8003-1-F

(U) At the point of reflection, L, the normal to the surface is given by

-1/2
,( i 2% 4% 4
0Xg ° Oyg
A ‘ 0
a xsmalcosﬁl-fy smalsm31+z cosa; (4. 34)

therefore, if
Q- 'n_< 0,

the incident field is reflected. The reflected field is now assumed to be that reflec-
ted by a local tangent plane at rg. The direction of the reflected wave is therefore

Q.-a-8da) . (4. 35)
(U) In order to express the reflected radiation in terms of the local reflection
cbefﬁcient for plane waves, one may resolve the incident field in the direction of
perpendicular and parallel components. Represent these directions associated with
the incident radiation by

. .
Qox n1 ﬁoxh (4. 36)
oL IQ xﬁ I sin v

A
8 =Q xe | (4.37)

where

A

A . .
cos v = -Qo- n,=- E:osaocosa ﬁmaosmalcos(ﬁo-ﬁl)] (4. 38)

1

By simple rotation of coordinates, one may have

[(eoL 10)E MCTRC ] [oll T C 20)E2(;_] 011
(4. 39)

Similarly, the reflected field at the point of reflection may be resolved in the paral-

lel and perpendicular directions of polarization defined below!

fxn

A _,é .
®ra” 'anl oL

(4. 40)

36

CONFIDENTIAL



CONFIDENTIAL

THE UNIVERSITY OF MICHIGAN
' 8003-1-F

/\

A A A A :
e Q l—e”Zn e, s . (4. 41)

The fields of the reflected radiation at the point of reflection are therefore given by

E(ry)= RJ. ['(A e o.l. 2O)E2(;] /I[jdoll +2n1xeoj_cos 7-]

Beoll 10)E +(eo// 20)E20] (4.42)
and

. A A A
H(r )= n R_‘_[(e e )E +(e ezo)Eza [eoll+2n1xeo lcos 'y]

+n R,, e [ ) e )E +(e ol 620)E20] | (4. 43)

where R L and Ry, are the plane wave reflection coefficients, given by

RJ'_ _ cos 'y-/Nz-sinz 0% : (4. 44)
cos 7+JN2-sin2 %

Nzcos '}»-JNz-sinz'y \

L N2cos ')f-J-Nz_--;in~2'}7 .4
whére N is the index of refraction of the ground.
19)] From‘Eqs. (4. 42) and (4. 43) it is easily seen that
_Hz(-l:s ) 7 o FR.L a.c+R,/b2 R, be-Ry ab | Elo(gs)"
n o - 1 - | (4. 46)
~E, (z ) | sine sin” vy | Ryjab-R e R, b +Ryac E, (c,)]
where
a = cos al+cos Y cos o (4. 47)
b = sin ¢ sina, sin( 31-’30) (4. 48)
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and
c= —cos'ycosa'o+cos afl(l-Zcos2 2/ (4. 49)

Introducing (4. 46) into (4. 48) and (4. 49), one finds the angular spedtra of the

ground reflected radiation to be related to the incident radiation (approximately) by
the following,

-1kQ
1(‘1:3) = K2 cos a .
C (B ~ (2r)2 sinegsine dxg | dyg ———‘
27 _

[R_L ac+R,,b R J_bc—R//ab‘J Elo(gs)]

. . (4.50)
Ryab-Rybc ~ Ryb“-Rpac E, 0(1'5) :
(U) If the incident field is a plane wave, then
o A
Enl - Ey ik * Q
)
= e (4.51)
Epolrg) Eo2

where'E01 and E 02 are respectively the complex amplitudes of the electric fields
\ .
of the horizontally and vertically polarized components of the incident radiation.

For plane wave incidence, one may then characterize the reflection properties of

the_'g'round by a ground reflection matrix such that |
& E
c’l ,\] - [] 01] . | (4. 52)
Q E
2( ) 02

(U) This reflection matrix is then given by
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_ A A
'kz cos «a elk—r-S ( QO—Q)
I:R__] = - - dx_ |dy
2 sina sin ] s . 2
(27) 0 : sin” vy

RjactRy, b° R Lbc-Ryab
[ ] (4.53)

Ryab-Rybc R, b*+Ryac

(U)For any given definitive ground profile, this reflection matrix, in principle,
may be evaluated by integration, In general, however, due to the uncertainties in
the exact ground profilé configufation, one has to use statistical approaches, and
obtain the statistical description of [R] . The statistical study of the reflection
matrix [R] shall be treated in Chapter V.
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4,4 Reflection Matrix for Plane Ground

(U) The approximate form of the angular spectra for the ground reflected wave
and the reflection matrix discussed in the previous section is basically deduced
from the geometric optics approximation. In order to investigate the accuracy of
such approxi'mations,: the limiting cases of reflection of a plane wa{ve by a plane
ground are carried out using this approximate formulation for coxﬁparison with the
known results. | |

(U)For the case of a plane ground,

cos @) = 1 (4.54)

coé Y =-cosa (4. 55)
hence | '

2= = sin2 @ (4. 56)

b=0 .. | (4.57

Equation (4.53 ) then becomes

A A ‘

2 cos asina ikr » (Q -0 R

K L

[R] - 2 sina - ? gdxs gdys e © ° (4.58)
(27) ‘ Ry

For an infinite plane, one notes that

‘ ikr (?2 ?2)
[0') ® (O -
1 =s "0
5 / dXs / dyse
27) J-o0 -

1 @ @ ilx (sina 0cosBQ-sin;o:cos B
- 2 ] . dxs dyg € :
(27)" Y- -0
ikys(sina sinf_-sinasinp)
o "o
e | =6 [ksimocosﬁo—kj 8 [ksinaosinﬁo-ky]
1

g 6 (0"71"*010)6(3-30) . (4. 59)

k sinacosa .
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sing |
== sla-mia )5(B-B,) . _ | (4. 60)
sma

[®] -
This indicates that the reflected wave is indeed a plane wave given“ by

N A
ik Qer o A ik Qp
(_) =Ry elOEloe +R” eZOEZ 0° (4.61)

A
where ©, is given by the angles (m-), BO (which of course is the specular direction

of reflection). Therefore it is seen that the present formulation reduces to the
known form of speculdr reflection in the case of an infinite plane ground.

(U) In general, if a transmitter illuminates a part of ground defined by an
area Ar, then the contribution of the transmitted radiation to the angular spectra of
the reflected radiation within the geometric optics approximation for a plane ground

.can be expressed in terms of the reflection matrix

: A A
i - 12 cosozsma Ry 0 o | ikrg (2,-9
T2 sina s | Vg ©
A

(27) 0 R”
2 R, 0
A A | Ra
AT w_% F(Q Q ) ) . (4. 62)
sino 0 R//

For the special case that Ay is defined by the region

b b
‘QSYSS'

L\'nm

SXg <

B TR
-

(O]
-

one finds that

F(Q Q ) smc‘:k—a (sina cosB —smacosB)] smc[kb (sm 0C08B, smacosB)-J
(4.63)

(U) In terms of this reflection matrix, the ground reflected wave is given by
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- A
2 7r/2 27
Blp) = Asina | docose | dB F (@) 2 )elE €

refl. (21)2 T o 0
R_L 0 E ‘
[ 10] (4. 64)
0

Ryl Ey

In the far zone approximation, if a receiver is far from the illuminated region,

and whose coordinate is given by §2;r, then one may use the asymptotic expression

-ikr 1kr
i A A AA
-g]:'—l 8(Q+ 9)——— -Eﬂa(n-n )— : (4. 65)

Thus, the scattered field observed at a point far from the reflection area is gi\)'en by

ikr sinaocosas A A A
A sina_ (S, Qo)[e 1E1 ZsR//EZO-] (4. 66)

(U) From (4. 66) it is easﬂy seen that the scattering matrix for a plane ground

within geometric optics, is given by

sine cosa 1' 0
[s]- LA 2@ 8 (4. 67)
0 Ry

l

In the case of a planar rectangle, this becomes

[S] = -ZEA smc[ (sina cosB -sina cosBﬂ smc[—(sma sinfB -smozssmB ]

[cosa_ sine 7
sinag
(4. 68)
cosa sino
0 o R
sina ]
" o N
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(U) This equation does not agree exactly with the result of physical optics as
given by Eq.(3.67). The primary reason for the discrepancy is due to the fact that
the surface current aséumed in the physical optics approach is inconsistent with the
result predicted by the geometric optics approach, using local tangent plane ref-
lection even in the case of infinitely conducting flat planes, as pointed out by Fung
(1966). Insofar that both approaches are approximate, it is difficult to argue pre-
cisely which is the moré correct one. In the present work, therefore the geometric
optics approach and the resulting ground reflection matrix given in the previous

section shall be used throughout because of its relative simplicity. *

It is to be noted that the scattering matrix given by (4. 68) contains singularities
in the normal direction @g=0. For distributed radiation, where one has to carry
the integration of angular spectra over all directions, this singularity does not
cause any trouble in the integration. For the calculation of scattering matrix, this
singularity, caused by the simple formulation of using z-components of the fields,
may be avoided by an alternate formulation|using the tangential components of the
electric field. This alternate formulation is given in Appendix B.
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\'
REFLECTION FROM RANDOM ROUGH SURFACES

5.1 Statisﬁcal Averages

(U) In general,;vmost surfaces such as terrain, sea surfaces, etc., are either
too complicated to be characterized by a simple contour, or are time varying such
that characterizing by a single contour is inadequate. For such surfaces, it is com-
mon practice td consider them as random rough surfaces specified by their stochas- |
tic properties. For a random rough surface, the contour of the surface may be rep-

resented by a random function in {two dimensions, such as

2 = § (xg,v5) - (5.1)

Since each element of the reflecting matrix is a function of & and its derivatives,
it is therefore necessary to consider the reflecting matrix as a random quantity. In
most practical cases, based on physical grounds, one may assume the function & to
be second order stationary. - In such case, a statistical investigation of the reflection
matrix may be carried out by evaluating some of the statistical average quantities .

A (U) To carry out formally some of the statistical averages, consider each

element of the reflection matrix given by (4.53). These may be written as

L}

] 12 cos @ J‘dx ﬂccs(smaocosﬁ)-siml cosBl)
ij (27r)2 smaosma S
S emys(smaosmﬁo-smlsmﬁl) . 6.2
Vs ij '
where
{i, j} -1,2
and the coefficients
1 ik(cosao—sim)E 9
0" —5— e [R‘Lac+R”b] (5.3)
sin Y :
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ik(cosa -sina)E
~ 1 o .
Clp= 5 © [R_Lbc-R//ab] (5. 4)
sin vy
- ik(cosa -sine)E&
1 o] ,
Co1 = 5 € . [R_J.ab_R//b(ﬂ (5.5)
sin vy
ik(cosa -sinw)g
1 0 2
Con” —5 [Ry ab+R b?] (5.6)
sin” v :

are functions of the random variable £ . Explicitly, if one denotes ‘the partial
derivatives of £ with respect to X by Ex and the partial derivative of £ with respect

toyg by Ey, then the quantities

: -1/2

A 2 .2 Ao N A _

n,= E:FEX +§y] [—x'g‘x-y’g"y+z] (5.7

o2 22
cosa, -[1+gx+§y] | (5.8)
_1/2

cos, cos Bl= - Eiﬁf’] ’g"x ' (5.9)
2.2 “if2 :

smalsmB =" [§x+§y] Ey \ (5. 10)

contained in Cij are all random variables. Functionally, therefore,

0=y 8tx, v .8 v )8 v )] (5. 11)

x 878y s

(U) The mean reflected field and the correlation of the field components are
' ,
therefore dependent on the expected values 6 [Bij-.] andf E{ij ] Here, we use
the symbol & [x] to denote the expected value of the random variable x instead
of the conventional E to avoid confusion with the electric field. Formally, one

2
k
5 [Rij]= e 2 sixfsssfm
T) o

ik(si spB -si s
g‘ ( ina_co BO inaco B)xs

dx
8

8 dysc'[cij] (5. 12)

5 ﬂ{(sinaocosBo—simsinB)y
e
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and

4 2

vl k cos a
¢ [Rij’Rij]' 4 .2 2
(27) " sin @ sin

ﬂc(sinaocosBO—sim(cosB)(xs-xs')
( dx ( dxs' e ‘

N o . o N ]
' 1k(smaosmBO-smasmB)(ys-Ys)
dy \dy. e
s S

& [oe8,8)c, €. 58] (5. 1)

where, for simplicity, the prime is used to indicate that the function £ , ete., are

evaluated at x's, y;. For example,

E'.i £xl,y) .
578 ‘

(U) Equations (5. 12) and (5. 13) can be somewhat simplifed from the assump- .
tions that & is a second order stationary random variable. In (5.12), since§ rcij]
is not a function of X and Vg (due to stationary) one may carry out the integrals in-
volving x¢ and Vg separated. Just as in the case of plain, smooth ground, one may
| carry out the integral over the area of illumination, and denote

C -
2 cosa ik [smao osp sinxcosf]
- - dx (dy |e
2 sine sina s| s
7)" "o

drea of

. . ik [sinaosinBO-simsinB]
illumination e .

Aar(da) . (5.14)

where A is the area of integration. Thus, one may express

A A
& [r)- AF@ Qo)f, [ c,] - 613
(U) In (5. 13) if one denotes that
] - - ] - .
X X TK T 'ry (5. 15)
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due to stationary assumption, functionally, one may denote
1 ' 1 1 -
& [C8 508 )0 € ELEN gy, 1 (rymy) G
Thus (5.13) may be reduced to

[R R ,] _ k4 cosza dx P
G‘ij’ij" i~ 2 2 s\ Vs

- (27)" sin aosin a

ik(sinx cosf3 -sincosP)T
g (sine_cosf_ AT,
dr e

' ik(sinozosinBo-sinonsinB)'ry
gd'r e gij, ij' (’Tx, 'Ty)
(5. 18)
(U) The evaluation of the integrals involved in the average values of reflection
matrices for any arbitrary stationary random surface is extremely complicated. Re-
duction of these equati'_ons for a relatively simple case of a slightly rough surface with

gaussian statistics is described in the following section.

5.2 Slightly Rough Surfaces

(U) The expressions for the average values of the reflection matrix }is not use-
ful in practice unless some approximations are introduced so that one may have a
scheme to evaluate these %nteg‘rals numerically, Some approximations introduced
in reducing these equations are given in the steps below.

(U) _A. The surface is slightly rough, so that in all the expressions, it is
only necessary to'retaix.1 terms up to an including the sepond power of 'g"x and Ey'

Thus, from 9
A - Eﬂszﬁsz ]1/ [?c(-s 1y(-8 )+2:] (5. 19)
1 X'y X y .

one may hé.ve approximately
A AlA. A, A1, 2 2
n~ zZ+ [—x&x-y&’y-z 5 (§x+§y)] | (5.20)

Within the same order of approximation one has
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N 1 2 .2
= - -si i -si i += +
cos vy cosar smaosmBoEx smo:osmBoi;’y 5 cosozo('é’x gy) (5.21)

. ~n .2 . . .
smz'y =sgin @ -2cose sinx cosf € -2cosa sine sinP £
0" o o 0°X o o 'oYy

2. .2 2 2 2 .22 . 2 2
+|cos @ -sin @ cos B;] gx +[cos @ -sin @ sin B;] Ey

-2 smzaocosBosinBOEXEy . (5. 22)
, 2 2. .2
a? sin ao-cosa smoz cosB &’ -cosa sino smB E --s [E +£ ] (5.23)

Y sine smB E +sino cosB S (5.24)
and

~ 2
¢= sin @ -3cosa_sinx § -3cosa sinx sinf
o 0 oEx o o) oEy

: 5 2 1_.2 2 2 |5 2 1 .2 .2 2
+[ 5 cos‘a -5 2sin @ cos B;] §x+[§ cos'a -5 2sin @ sin Bo] Sy

L2 '
-4sin ozosmBocosBosxgy " ‘ (5. 25)

'(U) B. The index of refraction of the surface is ﬁigh, i.e. INI>> 1, Then

one may have

~ 9 Cosa
R|=R (ao)+I_\I cosaocosBo'g"x+si1nosinB0§ -——(E +E ) (5. 26)

’—R (o)+Nc

5 cosx, o o |
[sma cosB E +sina smB E - (§’ +E )] (5.27)
5
where R (ao) and R,/ (ozo) are respectively the plane wave reflection coefficient for
the incident wave if the reflecting surface is smooth, i.e. £ = 0 .

(U) With these approximations, one has,
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To simplify notation , one may write
c llg exp [ik(cosao-cosaﬂ [R.L (ao)sinzao+d1cosﬁo’€x
mlsmﬁosyngx§y+d3§§+d £ ] (5.32)
clzg exp [ik(cosao-cosa)] [clsmﬁogx-clcosﬁo’éy

2, . g2 “
te,8 8 toflh 4§’y] _ (5. 33)

Y . , ‘ 2 2
o= exp[:k(cosaocosa)] EblsmBog-’x—b1cosﬁ0§y+b2§x§y+b3§x+ b 4§y]

(5. 34)
' t:22g exp [ﬂ{(cosao+cosa.)] [R //(ao)smzaoﬂlcosﬁogx
. 2 2
+a lsmﬁogy+a2§x§y+a Fot Ay ] (5. 35)

to show the explicit dependence of Cij on the random variable €. The coefficients

a,, bj’ etc., of course can easily be identified from (5. 9) through (5. 12).

(U)_C. Inorder to carry out the expected values of Cij and their products it
is necessary to use the joint probability distribution densities of &, g Ex’ etc.
In order that all these high order joint probability distribution functions can be
written down with relative' ease, one shall assume that the surface is isotropic and
obeys gaussian statistics. For such surfaces, the statistical description can be

expre ssed in terms of one correlation function defined by

B(r)-¢£ [E(s+rE(s) ] (5. 36)

where s, s+7 are distances measured along any straight line. For such surfaces
the statistical average for the variables involving'g",gx, Sy and their products can, in
principle, be carried out explicitly. In Appendix A explicit formulas necessary for
evaluating the expected values of Cij and their products are deduced.

(U) Using these approximations and the formulas in Appendix A, the statistical

averages of the reflection matrix can be written down explicitly.
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(U) For the expéctation value of the reflection mati‘ix, one has

plicit results are given in Egs. (5. 39) to (5. 42) inclusive.

Ce [Rll Rlz] AA kz(cos ao—cosa)zB(O)
n  |FAF(2,92 ) exp [ ]
R21 R22 ) 2
B"(0 _B"(0
[ R (a)- ) -2 (o)
.8in“ sin“a,
B"(O) B"(O)
-—5—(bath,) Ryl )- ——(a +a,)
_sinzao 374 ™o s1n20:0 %3
- - (5.37)
(U) For the products involving Cij Cij' , if one represents
' = 7 sing (5. 38)
yS ys =TsmoT > | .
then their expectation values may be expressed in terms of T and 7 . Some ex-

Due to the systematic

representations of Cij given by (5. 32) to (5. 35) it is easy to write down the expected
value for the products-between any other two Cij 's . For example,£ c 1© 1]]

can be obtained from & E:zzcg?] by replacing R,,(ao) and a, ‘\with R .L(ozo) and di .
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(U) In general, to carry out the integrals involved in (5. 13) one may represent
the function

_ _é ! L
8,1 ¢ [CyE 5 E)C, €188 )]
by the form

1] 1]|(‘T T ) exp%—k (cosa -c0sa) [B(O) B('rﬂz

[A.O(T)+A1(T) coseT+A2('r)s1nGT+A 3('r) smBTcoseT
2 2
+A 4('r)cos 97+A5('r)sm 97] (5. 43)
where for each set of ij,ij' , the functions A;(7) can be obtained from (5. 39) - (5.42).

Using this representation the correlation between the elements of the reflection .

matrix may be represented in the integral form

i 2
cos @
é[]k]k] 2 .2A‘ Tdr
(27r) sin @ sin @ 0

{Jo(l‘é-r) [24 (1144, )+ (r)] -25 (er)A (r)cost

Y o' .2
=2iJ l(kr)Az(T)smGO-Jz(kT)A3(7)sm 60

—Jz(‘lv{ﬂ [A 4('r)+A5('r]

exp I-kz(cosao-cosa)zﬁB(b) -B('r]

(5. 44)

‘| where

~ 1

2 2
k = kpin @ +sin @-2dinasine_cos(B-B,)

in0cosBogi
sinacosf3 smazocosB0

cose0 = = Y
Jsm a0+sin a-2sinasimocos(B-Bo)

and Jn 's are Bessel functions.

(U) Thus, within the approximation of slightly rough, high index of refraction,
and guassian statistical description of the surface, the statistics of the field ref-
lected from the surface may be obtained by carrying out a set of integrations, If a
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suitable model for B(r) is chosen, such integrations can be carried out at least by
numerical methods.
5.3 The Shadow Effect

Q)] The statistical description of the reflection matrix given in the previous

section neglects the effect of shadowing, i.e. a part of the ground that is being
shadowed by other parts. These parts therefore have negligible contribution to the
reflected radiation. To the first order approximate solution of the shadow effect,
Beckmann (1965) ihtroduced the notion of shadow fraction, i.e. the average fraction
of the nominally illuminated part of the ground that is actually being fllurm‘nated by the
incident wave. In terms of this shadow‘fraction, the reflection matrix such as de-
rived in the previous section can then be corrected appropriately. For a more
sophisticated treatment, the statistical averages given by Section 5. 2 should be
carried only over the illuminated part of the ground. Hence a study of the statistics
of the illuminated part of the ground becomes necessary.
| (U) Due to the complicated nature of the statistical problem involved in the
shadow problem, even the estimation of the shadow fraction becomes controversal.
Beckmann (1965) derived an expression for the estimation of the shadow fraction.
Due to some ovérsight in his statistical anafysis, his result does not seem to be
correct. Brockelman anq Hagfors (1966) computed the shédow fraction by computer
simulation and found that their results do not check with Beckmann's formulation.
In this section, a general study of the problem of shadowing is carried out, but due
to lack of time only some preliminary results are reported.
(U) In the last stages of this contract, the report by Wagner (1966) was made
available to us. In that'report some preliminary results on the theoretical investi-
‘gation of the shadow effect are given. Our approach seems to be different from
that work, but it is interesting to note that both approaches yield the same first
order correction to the shadow factor,
(U) A study of the shadow effect can be carried out by generalizing the classi-
cal approach of investigating the zero crossing of random variables (Rice, 1954),

Referring to Fig. 5-1, consider the cross section of a random surface given by a £-1
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curve. If a ray inclined at an angle 6 to the vertical (€-axis) reaches the point
(14 &) 1. €. the point (7, € ) is not shadowed, this ray must not intersect the £-7
curve at finite 7. For simplicity, this ray shall be hereafter referred to as the

ray a. Mathematically, for a ray not to be shadowed in the range ('r 1, T1Hd7T 1)
Er)2 g, < & Hry-7)cot 6 (5. 45)
7= 51 o 17 ] *

This condition may be written as

gi—-rla <€,"To (5. 46)
-where for simplicity, we denote « A cot @ , If one introduces a new variable

y & &n)-ra o (5. 47)
then (5. 46) may be reduced to

¥y <y0 . - (5. 48)

‘Interms of thé random variable y, the fundamental problem of shadowing therefore may
'be reduced to: giveny=y,at 7=7,=0 , find the probability that y in the range of 7 given
by (r 1 -rl+_d'rl) crosses the level Yo - For the crossing to occur, one must have

for.small d7q ,

Y1 ' (5. 49)
i ,
yi =l:-d-,5; ] >0 (5. 50)
T=T1.
and
dy;=y4 dry - (5.51)

If one denotes the conditional probability that given y=y, at 7=75=0,

y1 <Kyl <y;Hy;

and
1
Yy < ar <yl + dy1
T=T1

by - . ,

f(y1, y,)dydy,
.62
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then the conditional probability that given Y=y, (or E=E 0) at 'r='ro=0, the ray a would

cross the level £  in the range 79 <7 < T,tdr| is given by
m -
_ - [N ' ‘

which of course is the familiar result of the crossing problem.
(U) If £ is a second order normally distributed random function, then joint
prdbability density distributions such as fO(S o8 (;), fl(g od (;, £,€ 1' T) e
! !
fn(go: S(;:Elagl, ..... En, En, 'Tl, 'Tz. . .'Tn), etc for
1 1 1
g <E(rp)<E +dE , E <E'(r)< Ep+dE

'rl> 72 >73. LD 'rn

can be formally written down. Then the conditional probability density that given
€ E(; at 7=7 ,
' 1 ! !
g HdE, >E(r)>E,, £1+E > E (> &,
is

fl(Eo,S(; LELE) T =i /E (5.53)

since by definition, yl= S'l-v'la , y1' = Sl' -, it is easily seen from (5. 52) that
given -So, € (; the conditional probability that the ray o is shadowed in the range

TL<T <'7'1+d7-1 is
‘ 1
gl('rl) a: /go:‘go )d71
Ad mf[ (& AT Lo 'dy !
= Tl 1 Eo: EO(EO la), (Y ):Tﬂ yl yl ) (5-54)
70

(U) Similarly, given £, &, the conditional probability density that £(r,) is in
the range (El, €,+dr,), £(r2) is in the range (§9,E9+d79). ..., etc., is

LB B ELE L BB LT LT T ) S R . (5.55)
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Following arguments similar to those used inderiving (5.55), it is easily seen that given
€008 (;, the event that the ray @ would be multiply shadowed at('rl,'rl+d'rl), (r 2+d-r 2) e
(T,+d7,) has a probability

!
8 (7 Ty T @[5 E M dr...dT_

where

( 1 @ ld 1 ® 'd 1 @ 'd t
gn'rl,'rz,-..Tn,a/Eo,So)- ¥4y, Yo y2...[ Yy
0 0 0

E (£ 88 rom) 9L (B dr ), (v e ), 7T, ] (5.56)

(U) Using (5. 55) and (5. 56) and following Lonquet-Higgens (1962), it is then
obvious that given EO, 13 (; the event that a ray from Eo is being shadowed the first

time in the range (7 v 'rl+d'r 1) has a probability given by the following infinite series

gr,aff § )T, =g (r),eff & )ar,
71
d7,89 (r 1Ty aft o’ 3 ('))'d'rl

\

T

1 T2
]
, ¥ / de f d'7'3g3('rl, 72’ 7'3(1/ Eo’Eo)d'rl
0 0

o ‘ (5.57)

(U) In terms of g, one may deduce that given So, E(; the conditional probability
that the ray o is being shadowed at all is
1 © 1
Ps(shadOW/E o 5o f gy, afg 05097 . (5.58)
0

It follows therefore, that given & o £ ; the ray a illuminates the point & o is
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Pi(ﬂlgminated/E o g 0)= l-PS(shadow/E o g o ) . (5. 59)

The probability that any point on the surface is being illuminated by the ray o ,

therefore, is given by

200 ®
s(a)= / dE_ / dg(; P (illuminated /£ , g(;)f(go,g';) (5. 60)
~o -a

which should be the correct form of the 'shadow fraction'.
(U) Equation (5. 59) also yields some statistics of the illuminated region.
Since Pi(illuminated/'g’ ot o)fo(S ot 0) is the joint distribution density of height (£ ),
slope (& (;) and the event being illuminated by ray a the height and slope distribution
for the illuminated region is evidently
. 1 '
| € & L) P(illu. /& £ )1 (5,5 )
fo (illuminated) €0 §o/ill.)= s(a)

(5.61)

(U) Owing to the complicated multiple integrals and series involved in the
expression (5. 57), the rigorous, formal solution of the shadowing problem, is
difficult to apply. In order to obtain some ;.cceptable numerical results, approxi-
mations simplifying the numerical process seem to be necessary. The simplest
types of approximation involvel the use of approximate joint distribution functions fn

or Fn . For a first approximation,

T e e EE 8D (5. 62)

which neglects the correlation between height and slope distribution at different
values of To: For a second approximation, one may take into account the correla-

tion between two adjacent values of 7, so that
' 1 ] 1
fl(go’ SO, 81, E )fl(gl El: g E ) (gn 1: Sn 1: E E )

n n’ °n

R

B
n

(5. 63)

£(E BN ELEDE (€ 8. L (E L& 1)
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Such processes may be continued indefinitely. The advantage of such an approximation
lies in the fact that the distribution densities are now approximated by aproduct involving
factors with less variables, and thereby simplifying the integrations involved.

(U) As an example for the first approximation, one notes that

n
W1 fo &)
) T 1 exp | - - ek (5. 64)
" /27 BOTETOR 3B(0) ~ 215 (0}
1
g

D (om® (Bo)B (oY

n_ - 2/ 21B0) | (2 1B

TT e dy,y, e

k=1
0

(5. 65)

It is easy to verify that X

© (y1;+,a)2
‘{ dyk yk €xXp| - 2|B"(0)' .
2

" a - 1" Zr a
= [B (0)l exp [‘ 2_]3"(_0-5] JlB (o J; a erfe l:m} (5. 66)

To simplify notations, let

A a

vV =
/2 1B"(0)

so that g, may be expressed as

n/2 n ( 2
oy - (& _+r.2)f2B(0)
g, " L l:'—%(%)!] |re—v2-ﬁr' V erfc VjJ TTe ok / ‘ (5.67)

n
2m) k=1
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Therefore, from (5.57), (5.58) and (5.59) one finds that

P (illu. /5, sq)= i

® e 1 n-1
1+ Z 1) / d’Tl‘[ d'rz. . [ d'Tn gn (5. 68)
0 0

0

(U) To find P;, one has to evaluate the integral
o 1 "n-1 D (g i)’/ 2B(0)
In= / drq / d'rz.. . d'rn TT e (5. 69)
0 0 0 k=1

If one denotes

- m/2B0) »
F(r)= / e dr (5. 70)
. 0 .

so that
-' - (£ ;+1)%/2B(0) |
F'(r)=e ' (5.171)

Equation (5. 69) may be evaluated easily. The result is
\
T T

© 1 n-1 1 n
1= /0 F'(r;)dr, /O F'(rg)dr,. .. 4 Fir)dr, = 7= [F)]”  G.7)

Now

2
o -(& +ra)” [2B(0)
F(w) = / e dT:“;iBZO)erfc[ E°] (5.73)
o V2a J2B(0)
Hence, one has
67
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| 1 - n 1
Pi(illu. (8o €y =1+ . (-1) Jn
. = .
" _ 3
B0 [e v =T erfc‘a erf —
227 2B(0)
[~ T
texp |- (RO VZ[—V erfc V)erf o }
- L2fr @ v2B(0)
. r Eo ' .
= exp |-A erfc (5.74)
L JZB(O)_J
‘where 2
A Ja -JT VerfcV (. 75)
' 41 Vv
Using (5. 74) and (5. 60) one may express the shadow fraction as
00 exp 82' -A erfc 50 ]
! () / . / 2B(0) " 2B"(0)] JB0) (5. 76)
| -0 27 fB(O) /IB"(0)l

|
|

lEquation (5. 76) can easily be integrated by using these two relations
2
!

© 1 1 Eo
€ BrmEon P |” TR
-0

/i me'—xzdx= % [1+eer]
-V
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and o . : : o 2
/o‘o dgb/z-;%—(o-‘)exl)l; ﬁf{T)'Aerf/-z—ﬁg(O—)__] =‘,;-r-"4; eXPE-X -Aerfx dx]

? v -2A

X(; exp[-Aerfx] d‘:% Erfx] = 2%[1-e ]

Using these relations, one finds that

!
(NG R

s(a) = i [1 + erf v]- [1 - e'zA] ) | (5. 77)

(U) This expression has been derived by Wagner (1966) and was shown to
check closely with the simulated computer results of Brockelman and Hagfors
(1966). In this feport, this result is obtained as a first order approxifnation of the
rigorous result, expressed in the form (5.57 - 5. 60). Higher order approximations
to the shadow fraction within the present formulation, in principle, seem to be

possible. Due to lack of time, these are ndt completely carried out.

'
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APPENDIX A

NOTES ON STATISTICAL AVERAGES
(This Appendix is Unclassified)

The reflecting surface defined by the random function £(x, y) will be assumed
to have the following properties.
a. The mean value is zero
G ®=0 (A.1)
b. The surface is isotropic, i. e. the statistics of § are invéria.nt to a rotation
of coordinates about the z-axis. Thus, the statistics of £ may be specified by £(s)
where s is a straight line in the_ Xy-plane.
c. ' The function is stationary and thé correlation function given by
B(r)=¢ [E(s+7)5(s) (A.2)
is known. In most physical problems we may assume that B(r) is an analytic function
of 7. 1t is obvious that B(r) is an even function of 7 to that

B'(0)=0 ‘ (A.3)
B"(0)< 0 (A.9)
and
' \
9—(7—)| - B'(0).. (A.5)
T
T=0
d. £ is a Guassian'random variable and the probability density function is
()= —— exp |- —gz—:l (4.6)
J27B(0) 2B(0) - '
The statistical averages evaluated in Chapter V, Section 5.3, are
& (Cyp) | - (A.7)
and : '
. P .
(: (Cij’ Cij ) . . (A.8)
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C,, may be written as

1§ |
=exp(-ia£) 2 i Gy A

n=0 m=o0
where
a = k(cosa+cosa,) - | (A. 10)
™ .95. | ‘ )
X 0x (A.11)
o€ .
B o— . .12
g oy _ (A.12)

and the _Ciy are yven in Egs, (5 32) tnrough (5. 35) inclusive.
For the conditions discussed in Chapter V of this report , only the
terms wp to the second order in §, and ¢ neod be considered in (A.7) and (A.8).
In order to evalqate G(Clj) the joint probability density function£(§, &, Ey)
is :eqxﬂred! 1t is easy to see that

CE) =&(E,d" 6(5) 0 (A.13)

eGheB0 | - (A.19
G = &R ) = &L L) =0 - (A.15)
and . | |
‘ 2 22\ = _qn ' '
&) = &) = -BY0). | (.16

Therefore, the joint probability density is

2
if(EEE)- 1 m:p-§2+€2x+§y§
Xy (2,r)3/3m | 2B(0) 2B"(0) 2B"(0)
_ (A.17)
From (A.17) 1t 18 clear that | . -

foew] e[ 20) o aw

A
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(A.17) and (A. 18) and are

and

¢ [exp(-1a5)5x)= 0
& [exp(-1a8)g,] = 0

& [exo(-1a5)5,8,] =0

al
& [ot-1a0)el ]- "E’m(-ias)ez] - -B"(Oexp(-S2)

The -tn.tilt.lol.l averages n«un.ry to evaluate (A. 7) can be obtnnod from

(A.19)
(A.20)
(A.21)

(A.22)

- In order to evaluate Gcﬁ Cu |) we consider a general term of the form

exp [- (e-e')] (§x) (§y> €)™ (GRS

(A.23)

where §' =§(x-r y-r ) and E' andE' are the partial deriviatives of § evaluated
at XT and y-'ry respectively To simpliiy the evaluaﬁon we introduce the
notation ' ‘

The joint probablity density f(§-£',§

T =T CO8 6@
X T

T =r86ing., v \
y T

(A.249)
(A. 25)

E E' E')canbeobtainedfromthe a

correlation matrix. The elements of the correlation matrix are determined by
the following averages which are obtained by straightforward differentiation: -

-G (Ey, 0= 6('s'x. §H)= -

&(E, 5D = - &(E,,E" = -B'(r)cos 6,
E(E, Ey) = -&(€',§ _)=-B(r)sin 6_

y '('r) 2
£ ED= -B"(r)cos? 6_-—"sin%6_
é (EyEJ',) =fB"('r)008 ---Ii,r'-(—-)-cos2 0,
92
y o

The oorrelation matrix M is of order five with elements P

2 me

B(r)= [13-;(—7-)- -B"('r)] sin §_cos 6_

1j
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Pu =2 B(O)-IE(T)

- ™ U '
Pag ™ P33 = Pyy = Py5 = B"(0)

P1g = Pyq = Pgy = Pyy = -B(r)cos6

= B'(r)siné
| T

P13 = P15 ™ P31 ™ P51

Pgg = P3g ™ P45 = Pgy =0

A - 2 BY(7) ., 2
Pog ™ Pys B"()cos 97" - sin 97

- - = = -BM- g
Pos ™ Psg = Pge = Pyg - B'(1) sinO‘roosO_r

2 B'vg'r) 2
- N e J -
P35 p.53 fB'(T)a‘n e‘r 7 0% e'r

S13
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Although in principle, we niay always evaluate the expected values from the
joint probability density of these five variables, the average values for the first
few terms of the expansion when any one of the m, m', n, n' is zero can be .
evaluated in a less complicated manner. In Chapter V, when we take the powers
of expansion in Ex etc to the second power, some special cases for the average
can be deduced as follows: |

(a) ¥ m=n=m'=n'=0, we need only the distribution density for ule h,

u 2

m .

I 2 J‘ | vf(ul)e:li“?‘lllll du, * e:@ '[-az [B(O) - B(‘r)]]‘ (A. 26)

f(u

(b) if any of the powers m, m', n, n' is non-zero, we may consider oniy

the correlation matrix M between u1 and u2, where u, is the variable
2)

(€., &, ¢ , ¢ ). Denote the determinants of this matrik by M.~ and its
XYyl (2) ,. 1
cofactors by 0 M *then '
. iju |
o1 oL @ 2, (2 (2) 2
£, u,) ; ©XP [ T My oyt 2Myy iU, + Moy )
V (2) 2M
- - 27 |(M : ,
. ' . (A.27)
The integral ‘
o @ | -au
L I ‘dul j‘ u, " f (ul, u2)e
) -

can be evaluated as follows: If we write the exponent in (A.27) ag '
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2) [ (2)\1 +2M (2)11 u +M(2) 2] -iaul

1927 Yo
[ (2) @1
| 1 ) M12 u2+iaM
"t | Myt
2M (2)
' My
. -
1 (2) 2
;—1;[—(-57 ( iarM12 - a [/HO) 3(7)]
11 .

The integration over "!Il ylelds

(2072 |
| ) [ -laMp, ] .
f &gy M N OREY
(2)
rv&m |
qu n=1, we have \ \
ib - iaMl(z). exp [ [B(Q)-B('r)]] (A.28)
and for n = 2, we have
— 0 ) '
1 = [Ml‘f) a2 1 ] exp [-4 [B0) - Br)] | (4.29)

using these expressions, it is straight forward to obtain the following integ'rals
that are used in the statistical averages,

@

(v
-iah
f Exdexj‘ dhf(h,Ex)e

- - -0
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() v @
£ 'y ~1ah
j e‘dsxj dh £(n,€) e

—m —m

= {apB' (7) cos 97 ‘exp {-az [;B(O) -B'('r)]}

00 Lo9]

’ -iah
f ' Eyd&y s dhf(h, Ey)e .‘

-0 -0

(o'} ) (v} .
: -iah
= ! ' d . '
j Eyd&'y j‘ h f(h Ey)e

-0 )

=iapf (1) sino.r exp {_32 [B(O) °B(‘T)]} .

0 a0 '
2 . -iah
j £ dE s dhf(h, §)e
- -00

\

(0 0) (¢ 0] :
12 ' ' 1y o-1ah
J‘ ' Exdgx j' dgx dh f(ho Ex)e .
' - -

| —2
= [—ﬁ" (0) - 32 B'(7) cos 2 67] exp {-az. [iaf(fa) -ﬁ('r)] }
© Y ) '
2 -fah
I Ey dEy j dhf(h, Ey)e
-0 -0

- |

(¢ 0]

(¢}
12 g o 1) o iah
Ey d‘c‘y I dh f (b, Ey)e

- -0
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: [—B"(O) -a® 5?_7)2 sin2 07] exp {-az [@v(O) - gv(-r)]}.

(c) If any two of the exponents m, n, m',n' are non-zero, we have to
evaluate the expected values by using the correlation matrix of the three variables,
2 =h, u, andu, and u, respectively for the two values of E §' " E»y' Y

! 2 3
whose exponents are non-vanishing. Denote the elements of the matrix by

pij and, the determinants by M, and cofactors by - Mi(J) then,
. 3 3
e pZ; 1; nEk
f(ul, u,u) = exp |- @) . (A.30)

2’ 3 -
| (27r)3/21,M‘3) 12 M

To evaluate the integral

@ © Q

_ n m -
Ic = f du1 j u, du2 I Uy du3f(1;1, Uy u3)e

-Q =00 -Q0

-iah

v \

we expand the exponents in A. 30 in form,

\

o
1 - (3)
2

Jeiiet 3K

uju.k + iau1

<3) (2) 2

V—E'v u +iaM '
(3) 11 (3
11

(2 u --iaM13
b 22 @
22

M
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b o [u -iap 2 + 2 p . | (A.31)
2p2 ' 12] . 2 11
2
where
@ Paa P23 |
N = . | (A.32)
- P3a  Ps3 |
If we substitute,
u, = 2 .y .+’l']29 @ y, -1lap
3 N(z) 3 22 p22 2 13
‘ 22

uy = Vz”zz Yo *lap,

then after integrating over u, we obtain

' . \

(00)
I = -1- --a.i ( 2N(2) +1/2 12_3 -{a )nd :
P =5 P Y3 T\ “Pog 5 Yo = 18P13) dys

(2) 22
@ N22
(0] - . _yz_yz
: m . 2 .73
j' . ( 2p22.y2-1ap12) dyze
-00

These integrals can be carried out explicitly, the results are:

Q (o0} (*]

ey
du1 uzdu2 u3du3 f(ul, u2, u3) e £ \
-© - -0 '
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L2 3] i .
[”23+ 8 pgPia] &P |- 3 ' (A.83)
© o . 0 .
9 -iau1
du1 u2 ) usdusf(u u2, u3)e X
- -0 -00
» . a p
¥ ]
- ‘[‘il P13~ BPoPizt 2809 "23] exp [‘ ) (A.34)
® Jos 00 '
du j u2 Sm u2 du f(u u,)e mul
1. 2 3 2' 3
-0 - -

(2) 2 2 2 a2 2| .
[ +3"23 8 ["13 Paa™ P13 P33 4”12"13"23] Mot "13]

. \ 2
‘ & Py
| cexp |- —

. (A.35)
d, if any three of the exponents are non-zero, we use the correlation matrix ¢
between 4 variables ul, u2, u3, and u4. .Denote determinant of this matrix
(4) : :

by M, we have, .

4 4
, (4) :
£, Uy Uy, ) = S S exp[-;‘ Z M k] (A.36)
‘ . . M(&) =1 k=l

To evaluate the integral

7qQ
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(4] (¢+] . ® [0’} '
-iau1 a
Ias S dule S u, du2 S usdusj u4du4f(u Up Ug, U ) , "

- - -00 -0

we expand the exponential in(A. 36)

‘ 4
ﬁkz; O, +

i=1
(4) (4) (4) 2
1 @) Mg upgtMpgu gt M, “4+“M
@ [Ma %"
2M . ’V 4)
(3) (3) - 4) | 2
1 3) Nig UgtNog ug-iaM,
Y| Nas Yt
2N NE)
‘ \ 33
N(Z)u iaM(S) 2
1 ) 12 %9 13
+ ————2) N22 u +
2N 8 @
| 22
2
1 .- 2 a
T [“2’“‘"12] Y5 (A.37)

where N(S) is the determinant ¢’
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[Pog Pa3 Poy]
@
N P3g P33 P3y (A.38)
| Pa2 P43 Pag
By change ‘of variables,
up ® vz"zz Yo+ 126
(2) P
ug = yg * 2"22(’"22) Yotiap,
"22 P2
, ~ (3
| 3) @ N o
l2x V2n 23 —
Uy (3) Vg- V——v (3) Pa2tp ) Y27 s

and after the u1 mtegral is carried out,

Q Q@ (00} @

) -lau, s‘
du, e | u, du, I ug du, j‘ u,du, fu,, uy ug, u,)

-00 -0 - -
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-

2

ap
3 1
‘{“‘. Prg PraPra18[PaPay * Pr3Poyt p14‘°23]}°"p [’- 2 ]

(A.39)

For n = 2 we have,
. © 00 00

-ia.u1 J’ 9 ‘[
I du1 e u2 d‘u2 u3du’3 u4du4 f(ul. u2, u3, u4)
- ' -0 -0 -0

9
= {["22 Pyg* 20pPp] * 2 ["12"14"22* 2p19P14P23 = 2P 3P 3P,

a”p
2 4 2 11
TN R ”14} exp [‘ 2 ] (4.40)

(e) For the expectated values of the functions involving all the powers, we need the

complete correlation matrix between the five variables. Denote the determinant of

the matrix by M(s)., and its nth order sub-matrix involving the second n rows

and columns by N(n). the integral
® 0 © o)) ©
-fau
Ie = j dulj u2du2 f u3du3f u4du4 j‘ usdusf(ul, Uy Ug, U, u5)e
-0 =0 -0 -0 -

can be simplified by substitutions simildxr' to those given previously. If we
‘substitute, |

-
)| 209, v, ¥ 180y,
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(2) P
2N 23
ug S V3 T 2pp (5 ) ¥y riargg
22 22
(3)
u - 2x? EI-ZE- y, t42p (f-g‘ii)y +1iap
4 Pog N(S) 3 22 Pog 2 14
33
(4)
on® N3y .+ an(® (PyyPs3 = PsaPog)
(3) (4) “4 P (3)
Nig Ny, | 22 Noq
yotiapg o
the integral, after carrying out the u - integration is reduced to
\
' [azp ] @ (o) 00 o |
11 2 2 2 2
I, =exp|- —5— S dy, S dyss dy4S dyg exp[y2 Y3-Y, ys]
-0 -0 - -0

azp
= [. - 11] + +
&P [F ™2 P34Po5 ™ PogP3s ™ PosPys

2
-8 [”14:"15"23+ P13P15P24 T P12P15P43

+
P14P13Ps52 T P14P12Ps3 " "13"12"54]

\ |
* 8 p15P13P 1405 } | (A.41)
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APPENDIX B

ALTERNATE FORMULATION OF GROUND REFLECTION

(This Appendix is Unclassified)

In the derivation of the angular spectra of the ground reflected radiation
given in Chapter IV, the z-components of the incident field at the ground were
used in the interests of simplicity. Howevér, the employment of the z-components
of the field causes some difficulties in the limiting case of normal incidence, since
in this case the values of E, and H, are zero, although the angular spectra is finite
by taking limiting valués. In order to consider such cases, an altemate derivation
of the angular spectra, based on the tangentia.l components of electric and mag-
netic fields, are given here.

Starting from

aE@=[C @ 8 +6 A3, | ok I (B.1)
31=§ sin B -3 cos B (B.2)
~ and '
‘ 32= X cos acos B—I-gr‘cos @ sin B-Qsinoz (B. 3)
one finds that . | \
E (_) [[G’(a B)smB+¢' (@, B)cos acos B:] aQ (B. 4)
Ey(g)=[[-c°l(a, B)cos B+6’2(oz, B)cosa sin B eikQ' L. (B.5)

Let r >~ r,, and consider the above approximately as a two dimensional Fourier

transform, then one finds that

l:é' 1(0, B)sinﬁ'f(f (@, Bcos acos é] —_

A
(2 )2/ [y E (r e le . (B. 6)
T
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[_ { @, B)Cos&fz (@, Bycosa SinB]coLsa

2 A
k -ikQ- r
=(27r)2 / dxg / dys Ey(zs)e ® (B.7)

From the above it follows

A -
f(a B= — .y f:iy [E (rg )smB-E (r )coslﬂ cosa e SV Ls (B.8)

and

2 -ikQ-r
f (@, B)= o ) J‘ s J:iys[Ex(gs)cos&Ey(gs)sinL{‘ e - (B.9)

' A
Now, for an incident field approaching the ground in a direction Qo, the incident

electric field may be expressed as
+1kQ r

r
E, ()= [E10 e1o+Ezoezo] (B. 10)

where E1 0 and E2 0 are respevctively the amplitude of the perpendicular and pai'allel

polarized components of the incident field referring to a plane ground z = 0. The

amplitude of the reflected field on the ground is therefore given by

A .
Ex(rs )= [EIO J_smB +E2 OR 7 cosozocosB(J e (B. 11)
A
and ikQ - rg
Ey(;S )= [— E1 OR J.cos BO+E 9 OR / cosaosmﬁq:l e (B. 12)
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A
Ex(_x_'s)cosB+EysmB = [ElOR Lsm(BO-B)+E2 OR//cosaocos(Bo-BE’ e
(B. 13)
and |
Eix(gs)sinB-Ey(_x_'s)cosé‘ cosa
A
' i r
-R)- i - 0 =S
) OR.L cosozcos(Bo B) E2 OR/ /cosacosaosm(Bo }e (B. 14)

Introducing the above to (B.8) and(B.9), one obtains the following matrix form for

the reflected angular spectra of the reflected radiation.

¢ e B ik(8 -
G" @, 3) (27r)zf [ |
[Bycosacos(®,-f)  -Rycosacosa,sin(B, -] E,
Rysin(B -f) | Rycose cos(B-H) | E,
: o | (B. 15)

This result seems to be closer, but not identical to the physical optics results, but

the singularities in the scattering matrix are avoided.

v
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