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ABSTRACT

The waveforms of the radiation field produced by non-uniformly resistance-
loaded finite linear antenna excited by pulse signals are investigated by numerical
means. The antenna model considered is a thin cylinder loaded symmetrically and
continuously with resistance and is assumed to be excited symmetrically by a slice
generator supplying a time dependent signal of arbitrary shape.

Current distributions and the transfer functions of the antenna are obtained
as functions of frequency for different values of the loading. Spectral density of
the radiated waveform produced by the antenna is obtained as a function of
frequency for two different types of input pulse and for different values of loading
and widths of input pulse. Finally the radiated waveforms produced by the antenna
for the particular input pulse are obtained by using Fast Fourier inversion tech-
nique. Far field waveforms are obtained in 6=7/2, /3, 7/4, 7/6 directions
and for different values of the loading. Three selected values of the ratio of the
input pulse width to the| transit time on the antenna have been used for a Gaus-
sian pulse, while one specific ratio value has been used for a Gamma pulse.

pulse. '



1. INTRODUCTION

The waveforms of the radiation field produced by non-uniformly resistance-
loaded finite linear antennas excited by pulse signals are investigated in the present
technical note. The antenna model considered is a thin cylinder loaded symmetric-
ally and continuously with resistance. Emphasis is given to a specific type of
loading in which the amount of loading increases continuously towards the an-
tenna end-points. The antenna is excited symmetrically by a slice generator
supplying short pulse type time dependent signals.

Analytical solution of such a boundary value problem is extremely difficult.

A similar problem with step input excitation has been analyzed by Baum1 from the
transmission line point of view. Analytic results for both unloaded and uniform
resistively loaded antennas with step excitations are given by Latham and Leez’ 3
only for cases when the antenna lengths are infinite. Bennett and Auckenthaler4
reported some results for uniformly loaded finite linear antennas obtained by
applying numerical technique directly in the time domain. By applying the moment
methods in the time domain Sayre5 obtained results for unloaded and uniformly
loaded linear antennas of finite length. Taylor and his groups’ ! obtained some
results of limited application by numerical means for the case of discretely |
loaded linear antennas.

Analytic solution of the Gaussian pulse excited non-uniformly loaded linear
antenna of special kind will be discussed in a separate note8. In the present
technical note our approach to the problem has been numerical. At first the
radiation field produced by the antenna excited by harmonically time dependent
slice generators are obtained numerically as a function of frequency. The far
field waveforms produced by the pulse excited antenné are then obtained numerically

with the help of Fast Fourier Inversion technique.



2. METHODS OF ANALYSIS

In this section we give a brief discussion of the method of analysis and also
define a few terms that will be used throughout. Let us assume that the linear
antenna of length 2L be aligned along the z-axis of a rectangular coordinate
system with origin located at the center of the antenna and that it is excited by
a slice generator located at the origin. In the harmonically time dependent case
the voltage signal supplied to the antenna by the unit strength slice generator
may be represented by ej("t volts, where w is the radian frequency. Let the
current distribution on the antenna due to this source be I(z, w) ejwt . The far
electric field produced by the antenna under such conditions, will have only a

6 - component and may be written formally as follows:

F=¥e(r,w)el“’t , (1)
where,
jnwsind -jkr - jkz' cos 6
~ . 0 e ' Z" CO8 '
Fe(r,w) pyrm " fl(z,w)e dz' .(2)
-L
where,

i)
U = ,?9- = intrinsic impedance of free space,
0

1
c= = velocity of light in free space,

Y €
'“oo

k = -‘;—’- = propagation constant in free space,

(r, 6, #) = the spherical coordinates.

Let the slice generators have arbitrary time dependence such that the in-
put signal voltage envelope in time is represented by V(t). It is now assumed
that V(t) is Fourier transformable i.e.

V(t)e>V(w) (3)



which means that the following relations are true,

(00)
Vw) = fv(t)e-]wtdt , (4)
-0
0 0]
V(t)=?1- I?i(w)ewtdw . (5)
T
-

Assuming the linearity of the entire system and using the superposition theorem,
it can be shown that the far field produced by the antenna when excited by a slice

generator having arbitrary time dependence is given by the following expression:

(00)
Eo(r,t-ﬁ)r-zl—wf’fe(r,w)?f’(w)ejwtdw . (6)
-m

Notice that E_, as given by Eq. (6) is dependent on the parameter r, and also

that it is delayoed in time with respect to the input by % which is the retarded
time taken by the signal to reach the far field point from the antenna. It is found
convenient sometimes to remove both of these effects from the final result. This
can be done as follows.

~ .
Let us define a quantity f p which is related to 'f"e in the following manner:

W
~ %{ +J?r
fo(o,w)=r e(r,w)e

Jnow sin 0

L
- . jkz'cosb . |
P f I(z',w)e dz'. (7)
-L

Similarly we can remove the dependence of r and f from Eq. (6) and define

the following modified field quantity produced by the antenna excited by arbitrary



time dependent input signals:

o IE

™
J .
L ¥ Vi) oWt
eo(e,t) ym frFe(r,w)e V(w)e’ dw
-

(04]

=_l_ ~ ~ jwt
T f f9(9,w)V(w)e dw . (8)

-

Thus, formally if the field % (6, w) produced by harmonically time dependent
excitation of.unit strength is known, then the field produced by any other time
dependent signal can be obtained with the help of Eq. (8). Of course, it is
assumed that the time dependent signal must have a Fourier transform.

From the analogy with signal transmission through linear system, we shall
call ?9 (6, w) given by Eq. (7) as the frequency response or the transfer func-
tion of the antenna and '50(9, w) = 'f'e( 6, w) A\;(w) as the spectral density func-
tion of the radiated signal for arbitrary time dependent input signal. Note that
according to this definition e 0 (6,t) and '50(6, w) constitute a Fourier trans-

form pair, i.e.

ee(G.t)H%'e(O.w) {9)

3. BRIEF OUTLINE OF THE REPORT

It can be seen from Eq. (8) that the knowledge of the transfer function of the
antenna under consideration is necessary for obtaining the waveform radiated by
the antenna for arbitrary signal input. Equation(7) indicates that the current
distribution I(z, w) on the antenna for the harmonic time dependent excitation
must be known so that ?6 (6, w) may be evaluated. In the following sections we
at first determine the current distribution I{z, w). This is done by numerically
solving a modified form of Hallen's integral equation appropriate for the antenna



under consideration. The transfer function 'f‘;(e, w) is then obtained by numer-
ically evaluating Eq. (7). The spectral density function 'é'e( 6, w) is obtained
by multiplying the transfer function by the Fourier spectrum of the input signal.
Finally the waveform of the radiated signal is obtained by numerically evaluating
Eq. (8) with the help of Fast Fourier Inversion technique. Two input waveforms
have been assumed in this work. They are the Gaussian and gamma pulse rep-

resented by

2, 2
v, (t) = o t /20 (10 A)

v,(t) = te” Mtue) (10B)

where the constants parameter o and 1/ d are proportional to the width of the
input pulse and U(t) is the unit step function. The Fourier spectra correspond-

ing to the signals given above are, respectively,

N )N

vl(w)sdzn ce V¢ (11 A)
YV (w) x ——s 11B)
Vool = o+ a)2 (1B

4. INTEGRAL EQUATION FOR THE CURRENT DISTRIBUTION I(z, w).

In this section we discuss briefly the integral equation for the current dis-
tributions on thin cylindrical antennas continuously loaded with resistance. As
before we consider a linear antenna of length 2L oriented along the z-axis of
the Cartesian coordinate system such that z =0 is at the center of the antenna.
Assuming azimuthally independent excitation, Hallen's integral equation for the
current distribution on a linear antenna excited by harmonically time dependent

slice generator of unit strength is given by:

L z

fl(z',w)G(z,z')dz' = B cos kz -j/n IEBZ(E)sink(z-E)dE
o

’L 0 (12)

5



where, Es z is the electric field on the surface of the antenna due to the induced
currents. G(z, z') is the free space Green's function and B is a constant to
be determined from the end condition I(+ L) = 0, a is the radius of the antenna
element and Eo is the free space permittivity. Since the dipole is electrically
thin, i.e., 8¢ 0. 01, we can assume the current to be located at the axis of the

antenna. This implies that the Green's function is approximately given by:

1/,
e-jk [(z -z')2+a2]

1/,
47 [(z-z')2+a2]

If the antenna is loaded with distributed resistance R_(z) ohms/meter, then the

G(z,z')=

(13)

total tangential electrical field on the surface of the antenna is given by:
E (z)=1I(z,w)R (z)=E (z)+E_(z) (14)
zZ 8 0z B2

where Eoz (z) is the field due to the externally impressed source. In the

present case the external source is assumed to be a unit slice generator with

harmonic time dependence, i.e.,

Eoz(z) = §(z) , where 6(z) is the Dirac delta function.
Under these conditions, the integral equation for the current distribution on a

symmetrically loaded linear antenna is given by:

1
. 12 2] /2
I(z',w)e-Jk (z-2')" +a

1
2
4r [(z -z')2+a2]

= B coskz --2—1n—sink|z] +
0

(o

dz'

'
=



Z

II(E,w)RB(E)sink(z-E)dE (15)
0

v L
o
Eq. (15) is the desired integral equation for the current distribution on the loaded

antenna when excited by slice generator of unit strength having harmonic time de-

pendence e Jut

In the next section Eq. (15) will be solved numerically for some assumed

values of Rs(z ). The loading function of special importance to us is of the form:

Rs(z)- (16)

L -|z|

For some special value of C, the above loading gives rise to a pure outward
traveling wave of current at a specific frequency on the antenna as discussed by
Wu and Kingg. For this reason the antenna with this special loading is sometimes
referred to as the reflectionless antenna. Balum1 arrived at the same conclu-
sion from his transmission line model analysis of this antenna. We shall con-
sider in detail the effects of the loading of the type given by Eq. (16) for various

values of C including the value correéponding to the reflectionless case.

5. EVALUATION OF THE CURRENT DISTRIBUTION I(z, w).

Standard numerical technique10 is used to solve Eq. (15) for I(z, w).
For this purpose the integral equation is reduced by moments method to the

following set of N simultaneous algebraic equations:

N
Z f I(z!, w)G(zj,z')dz'
Az
n

n=1

= Bcoskz, - —— sink
cos zj 2%sn Izjl



+j/noz'f I(z',w)Rs(z')sink(zj-z')dz'

n Az
n
j=1,2,...,N (17)
where the summation on the r.h.s. of Eq. (17) is interpreted as:

N/2

ZL - z , forj_<_N/2
n n=j

j

= z for j > N/2

n= N/2+1

(18)

and it is assumed that N is an even number and z'e Azn . Eq. (17) implies
that the antenna of length 2L is divided into N sections, the numbering of the
sections increasing from 1 to N along the antenna length from -Lto L as
shown in Fig. 1.

z=-L z=0 z=L
[ e | — = === = == ° ® | = - = = e— = - L
n=1 n=2 n= N/, n=N

FIG. 1: Division of the antenna into N-sections.

It remains now to make an appropriate approximation to the current dis-

tribution I(z') in each of the sections Azn . When the antenna length is small



1
electrically the usual pulse approximationl to the current in each section pro-
vides sufficient accuracy. Since our preliminary results have been obtained by

this method we give here a brief discussion of the appropriate expressions used
in this method.

Pulse Approximation Expressions

In this method the unknown current in each section is assumed to be a rec-
tangular pulse, i.e.,

I(z') =1 z'e Az n=1,2,...,N
n n

(19)
=0 elsewhere

Using Eq.(19) it can be shown that the general integral equation given by Eq. (15)

can be transformed into the following N simultaneous equations:

N

' = -
zln G(zj,z )dz Bcoskzj N sink(zj)+
n=1 Az o

]
+ j/nog In f Rs(E)sink(zj-E)d’g' ,
Az_n (20)
j=1, 2,...,N

]
where the meaning the summation 2 is as explained before. In general the
n

unknown current I(z) and the unknown constant B are complex quantities.
Let us assume:

I(z) = IR(z) + jIC(z)

(21)
B=B_+jB,



Separating Eq. (20) into real and imaginary parts we obtain:

'71/2
% f cosk[(zj-z')2+a2
IRn :Wl/z dz -BRcoskzj
n=1 Azn . [(zj _ z')2+az_‘
-1 _
7 /"ozlc f Rﬂ(&)sink(zj E)dE
n 1 Az
n
r 1/2
i sinkL—(zi-z')2+a2]
+ I = = qz' = 0 (22)
x] Cn A ) 2 1/2
a ST, i_(zJ.—z') +a
~ 1/
2
N cos k (zj-z')2+a2]
z ICn - 1, dz'= B, cos kz,
n=l AZ)  4a L_szj—z')2+a2
T 1/n z IR f RB(TE)sink(zj-g)dg
o n %,
L
2
i sink[(z -2') +a]
- I dz!
R 1
n=1 [Z-z') +a] /2
= - sink| | (23)

1
2n
"o

10



where the upper (lower) sign is used for j < N/2 (3> N/2) respectively.
The above sets of equations along with the end conditions have been solved
numerically for the unknown currents. The results will be discussed later.
Pulse approximation niethod provides farily accurate results for small antenna
lengths. However, if the antenna length is long electrically, to obtain suffi-
ciently accurate results, N must be chosen very large. Hence to obtain
accurate results without taxing the computer capability a different type of
approximation should be used. In the next section we discuss such a method.

Quadratic Approximation Expressions

As mentioned before, when the antenna length is large, the computer
capability makes it inappropriate to use the pulse approximation method. For
the present problem of resistively loaded linear antenna, it is known from theo-

retical considerations ’ " that the current amplitude decreases linearly towards
the ends of the antenna.
For this reason, we make the following quadratic approximation to the

unknown current in each section:

2
)= A + ez )+ '- !
I(z'") An Bn(z zn) Cn(z zn) s for z eAzn

(24)
=0, otherwise,
where An, Bn’ Cn are three unknown constants. These constants are determined
by requiring that the continuation of I(z') expressions given by Eq. (24) into the
centers of the adjacent sections give the appropriate current values there. Thus
we obtain the following:

I(zn) = In = An

2
I(zn--l) B In-l-An+Bn(zn-1- zn)+ Cn(zn-l-zn) g (25)

2
I(z

n+1)' In+1= An+Bn(zn+1-zn)+Cn(zn+1-zn) )

11



After eliminating An, Bn' Cn from Eq. (5) with the help of the relations given
by Eq. (6) we obtain the following recurrence relation for the current in each

section:

1) = t ! ] t
zh=1 X (z')+1Y (z')+1 2 (2') , forzledz (26)

where
z'-zn (z'--zn)2
X (z')= =~ + - , z'eAz (27)
n 2Az 2A22 n
(z'-z )2
Y (2')=1- i z'eAz (28)
n 2 n
Az
z'-zn (z'-zn)2

1) = ! o 29

Zn(Z) o + 5 , z'edz (29)
2AzZ

where it has been assumed that each subsection is of equal length Az. In view
of the fact that in Eq. (26) the value of the current in section Azn is related to

the currents In+1 , In__1 in the centers of the adjacent sections Az o+l and Azn_1

respectively, the current values at the center and hence the entire two end sections

Az1 and AzN should be treated separately. For this purpose we make use of the

two sets of current coefficients I_ Il’ 12 and I -1’ I.N, IL for obtaining the
currents in the sections Az1 and AzN respectively. Using these two sets of

current coefficients we obtain the following from Eq. (24) to determine the currents

in the two end sections:

1) = V(! 1ot '
I1(z') IlY1 (z )+I2 Zl(z ) ., for z eAz1 (30)

I(z')-I Y! (z')+IN 1XI[I(z') . for z'eAzN s (31)

where,

12



(z'-zl) (z'-z. )

Y'(z'")=1+ -2 , z'eAz, , (32)
1 Az Az2 1
(z'-zl) 2(z'-z1)2
z'l(z')- 3A% + 5 , z'eAz1 ) (33)
3Az
z'-zN 2(z‘-zN)2
Y! (z')=1- - , z'eAz,. , (34)
N Az A22 N
(2'-2y) 2(z'-zN)2
X! (z') == + , z'eAz . . (35)
N 3Az 3A22 N

After substituting Eqs. (26) - (35) into Eq. (17) the following set of N simul-

taneous equations are obtained:

11 fY'l(z')G(z', zj)dz'+ fxz(z')G(z', zj)dz'

Az1 Az2
+12 f Zl'(Z')G(z', zj)dz'+ sz(z')G(z', zj)dz'+ fXB(z')G(z',zj)dz'
Azl Az2 | Az3
N-2
+ z In f Zn_l(z')G(z',zj)dz'+ fYn(z')G(z',zj)dz'+ f Xn+1(z')G(z',zj)d:
=<3 Azn__1 Azn Azn+1
+ IN-l f ZN_Z(z')G(z', zj)dz' + f YN_l(z')G(z', zj)dz' +
Azy o Azt

+ th(z')G(z',zj)dz' +

Az

13



+IN [ f Y'N(z')G(z', zj)dz' + f ZN_l(z')G(z',zj)dzJ
Az

N Azn1

jV
| = B cos kzj - -5-;]—- sin k| z | +-]— {Hl,jll \i f Y'l(z')F(z')dz'+ f Xz(z')F(z')dz]

0
Azl Az2

+‘H2112 [f Z'l(z')F(z')dz'+ sz(z')F(z')dz'+ fxs(Z')F(z’)dz}

Azl Az2 Az3

N/2
+Z Hn,jln {f Zn_l(z')F(z')dz'+ fYn(z')F(z')dz'

=3 Az Az
n

n~1
+ f X n+1(z')ls*(z')dz'} } for j < N/2

- Azn +1

j
+ j/n(,< 2 Ho il n{ f Z _q(z')F(z)da'+ f Y, (2")F(2')da'+ f X n_'_l(z')F(z')dz}

n’l—;'+1 Azn-l - Azn Azn+1

i

+HN-1JIN-1 |:f ZN_Z(z')F(zl)dzw f YN-I(Z')F(Z'MZ'
Az

N-2 A2yl

+ f Xh(z')F(z')dz'J

AzN

+Hy Iy [ f 21 (2" )F(z')dz" + f Yk(z')F(z')dz‘jl ,» (36)

Azy 1 Az

14



for j>N/2 ,
j (as the subscript) = 1,2,3,...,N

where

1, for j>m

",
m, 0, for j<m

F(z')= sink(zj-z') . (37)

C
L-|z'|
The above is a set of N algebraic equations involving the N unknown current
coefficients Il’ 12, cee
determined by applying the end condition I(-L)=0. By using Taylor's expansion

. IN and the extra unknown constant B which is to be

for the currents at the centers of the first three sections we obtain the following:

(zl+L)2

—1I"(-L) , (38)

I(z1)= Il=(zl+L)I'(-L)+ >

(z2+L)2

——1I(-L) , (39)

I(zz)-12=(z2+L)I'(-L)+ 5

(23+L)2
= LN el LLY S
I(z3) I3 =(z3+L)I (-L)+ 5 "(-L) , (40_)
where we have already used the fact I(-L) = 0. The derivative terms in (38),

(39), (40) can be eliminated and we obtain the following extra equation:

3%-m5+w5=0. (41)

Thus Eqs. (36) and (41) constitute a set of N+1 equations for the N+1 unknowns
(i.e., Il’ 12’ ceee, IN’ B). The system can now be solved by standard means.
If the end condition is applied at the other end of the antenna, i.e.

I(+L) = 0, then the following equations should be used instead of Eq. (41):

15



- + =
151 - 101 +3I_, =0 . (42)

Eqs. (41) or (42) will be referred to as the 3-point end condition formula. In
order to estimate the accuracy of the results, computation has also been done

by using 4-point and 2-point end condition expressions. These have been obtained
by applying the end condition I(+L) =0 and retaining 4 and 2 terms in the Tay-

lor's expansion respectively. The relevant expressions for these two cases are:

5Ly g+ 210, -35L  +351 =0 , (43)

31 -1

S ST (44)

The above completes the theoretical discussion on the numerical procedure
to be followed in the determination of the current distribution for the loaded

linear antenna.

6. EVALUATION OF THE TRANSFER FUNCTION ?9( 6, w)

In the previous section we discussed the numerical method of obtaining the
current distribution I(z, w) on the antenna for the harmonic time dependence
case. After introducing the sampled values of I(z,w) in Eq. (7), fe( 6, w)
is obtained numerically with the help of the following equation:

~ w1, sin 0 j%zncoso
fe(O,w)=jT ey ZIne Azn , (45)
n

where we have used the notation I( zn) = In and z'= z is the coordinate at
the center of the section Azn. The pulse approximation is good for transfer

function calculation because the current distribution is linear as mentioned before.

7. PRELIMINARY NUMERICAL RESULTS

In this section we discuss briefly some preliminary numerical results

16



obtained for a few simple cases. The motivation behind this section has been
mainly to ascertain the correctness and accuracy of the numerical technique used
for later investigation.

7.1 Uniformly Loaded Antenna L =)/2.

For the case of uniformly loaded dipole of total length 2L =2, there is no
variation of loading along the antenna, i.e., R_ (z)= o ohms/meter. Fig. 2
shows the real and imaginary parts of the current distribution on a uniformly
loaded dipole for two values of ri . These results have been obtained by using
Egs. (21)-(23) with N=30, In Fig. 2 we have used the notation ¢i = 2>¢ri/no
where A is the wavelength and M is the intrinsic impedance of free1 2apace.
The results shown here compare very well with those of King, et.al.~. Thus
it proves the correctness of the computation followed here.

7.2 Non-Reflecting Loaded Case L =AX.

Here consider a one wavelength long linear antenna non-uniformly loaded
according to Eq. (16). The radius a of the antenna element is chosen such
that Q = 24n 2_aL_= 11.5 . This value of © is chosen so that our results may
be compared with some available published results. Wu and King9 predicted
from theoretical considerations that a purely outgoing traveling wave of current
is sustained on the antenna loaded according to Eq. ( 16) provided the constant
C is chosen to be equal to 60 Yo with Yya=5.3. In other words the antenna

considered in this section is loaded as follows:

60 Yo

RS(Z)' L-]zl !

(46)
with Yya=5.3. The Ya notation is used here to correspond to that used in

Wu and Kingg. Fig. 3 gives the amplitude of the current distribution on the
antenna as obtained by numerical computation using pulse approximation with

N =30. The current distributions obtained for the same antenna by Taylor13 and

Shen14 are also shown in Fig. 3 for comparison. The results of Shen have been

17



FIG. 2: Real (I ) and imaginary (Io) parts of the current distribution
on unifbrmly loaded dipold. L=x /2,  0:9.92, f= 2Ar'/n,.
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obtained experimentally and those of Taylor have been obtained by numerical
solution of Pocklington integral equation for the current distribution. Fig. 3
indicates that our computed results agree fairly well with Shen's experimental
values.

7.3 Exponentially Loaded Case

Fig. 4 shows the current distributions on a one wavelength long monopole

loaded exponentially. The loading function used is

Rs(z)-c'ealzl , (47)

where c' is a constant and o is another constant which determines the rate

of loading. In order to compare the results of Fig. 4 with those of Fig. 3 the
constant c' is chosentobe c¢'=6040=60x5.3. Fig. 4 shows the current dis-
tributions obtained numerically with the help of Eqs. (21)-(23) with N=30 for
two cases with «=2.2 and a=-2.2. The case with a=2.2 corresponds approx-
imately to Shen'ez14 and it clearly shows the existence of a traveling wave type of
current distribution. For o =-2.2, the loading decreases towards the end and
the current distribution obtained is of standing wave nature.

7.4 Phase Distribution of the Current

Fig. 5 shows the phase variations of the current along the length of the an-
tenna for the different non-uniformly loaded cases considered above. The pro-
gressive linear variations of phase for the non-reflecting case indicates the exis-
tence of a pure traveling wave of current in the antenna. It is interesting to ob-
serve from Fig. 4 that for the exponentially loaded case with ¢'=60x 5.3,

@ =2.2 the antenna may be considered to be approximately non-reflecting. This
observation may have significant implications for theoretical analysis of such
antennas. No such conclusion can be made from the phase variation for the
exponentially loaded antenna with a=-2.2.

7.5 Results for a Long Antenna 2L =5

In the previous sections numerical results have been given for an antenna

20
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FIG, 5: Phase variation of the current along the antenna.
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having total length 2L=2X. During the process of obtaining the transfer func-
tion of the antenna as a function of frequency, the effective length of the antenna
becomes very large at the high frequency end. The computer capacity as well

as the accuracy of the numerical results restrict the highest frequency for which
the transfer function can be evaluated. For long antennas, the computer program
should be modified for retaining satisfactory accuracy of the results without tax-
ing the computer. For small antenna length the usual pulse approximation for
the current in each section Azn provides sufficient accuracy as has been found
in the previous sections. As discussed in Section 4, for long antennas we use the
quadratic approximation to the current during the numerical evaluation of the
current. We study the accuracy of this procedure in this section. In addition

to this we also investigate the use of 4-, 3- and 2-point end conditions for the
long antenna case. The results of a sample computation done for the case with
2L =5X with different values of the loading parameter in Eq. (16) are discussed
in the present section.

Figs. 6, 7 and 8 show the current amplitude distribution, the current phase
distribution and the transfer function respectively of the non-reflecting loaded
linear antenna of length 2L =5 with the loading parameter C=60x5.3. All
these curves have been obtained by using Eqs. (36) with N=30. In each case
the results obtained by using 4-, 3- and 2-point end condition expressions are
also shown in Figs. 5-7. It can be seen from Figs. 5-7 that the results are
not appreciably different among the three cases. However, near the end of the
antenna the results are found to differ with each other slightly. From a study of
Figs. 5 and 6, in particular, the phase variation near the end of the antenna as
shown in Fig. 6 it is concluded that the 4-point end condition expression given by
Eq. (43) is more accurate and hence should be used during the numerical com-
putation of the transfer function of the antenna for high frequencies. Fig. 9 shows
the amplitude of the current distribution on the antenna as a function of the loading
parameter C =60ya obtained by Eq. (36) with N =30 and the 4-point end condi-

tion.
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FIG. 6: Current distribution on non-reflectively loaded antenna, € = 11,5
kL =57, ya =5.3, R (z) =60 Ya/L -|z|.

24



X=X 4 point

4 phase
o ® 3 point

o . ,
- 180 OA——=A point
r

\

[ ]
. 100
e
_ Izl

0.3 0.5 0.6 0.7 0.9 1.0 L
| | 1 ]

| -180°

FIG. 7: Phase variation of the current along the non-reflectively loaded
antenna, 2 =11,5, kL=5%, Y =5.3, Rs(z) = 60ya/L - \z|.

25



¥——x 4 point

o ® 3 point
A-——-A 2 point

600

500

400

300

200

100

l | ] ] | | | | 1 > 0

10° 20° 30° 40° 50° 60° 70° 80° 90°

FIG. 8: Transfer function ’f; (6,w) of the non-g-eﬂectively

loaded antenna. £2=11.5, kL=57%, y @ =5.3,

R (z) = 60ya/ L - | zl.

26



e
X—X 6011
0-==-0 603
$ 1| o bmmm-d 6014
- —=-0 6015

AN ot 6017

] I I | | ] ] | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG, 9: Amplitude of the current distribution on resistively loaded dipole
antenna as a function of loading. € =11.5, kL =5, yu variable.

27



It is interesting to observe here that on the basis of King's work, the ex-
pansion factor ¢ is a fixed value for one particular size and frequency. That
means only at this specific value of loading (60ya) and specific frequency, we
can have a reflectionless current wave on the antenna. For C < 60x 5, the
reflection effects on the current distribution become quite appreciable as expected.
While C >60 x 7, Fig. 9 tells us the nonreflection nature. The higher value of load-
ing on the antenna supresses the small amount of reflection that occurs due to the use
of a value of ¥ slightly different from the specific value referred to above.

On the basis of the results given in this section, we have decided to use the
4-point end-condition expression during the numerical computation. Six subsections

per wavelength to divide the antenna is required to guarantee the accuracy.

8. CURRENT DISTRIBUTION I(z, w) ON THE LOADED ANTENNA

In this section we give the numerical results obtained for the amplitude of the
current distribution I(z, w) for the harmonically excited loaded antenna. The
loading used is of the form given by Eq. (16) with C variable. Figs. 10(a)-
10(d) show the amplitude of the current distribution on the antenna with antenna
length as parameter for different values of the loading.

The amplitude of the current in general increases as the frequency is in-
creased. The value of the magnitude at the same frequency is surpressed by the
higher loading as expected. The current distribution is not strictly linear as
those of the transmission line found by Baum. It is due to the factor { which is
a function of the thickness ratio of the antenna and the frequency used. So it is
not possible to excite a traveling current wave for all frequencies on an antenna
of fixed size.

e

~
9. TRANSFER FUNCTION OF THE LOADED ANTENNA f 9( 6,w).

In this section the magnitude and phase of the transfer function of the antenna
are given as functions of wL/c for different values of the loading parameter C.
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FIG. 10a: Amplitude of the current distribution |I(z,w)| vs z/L on the loaded
antenna with kL (= wL/c), as the parameter, C = 60 x 4.
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FIG. 10b: Amplitude of the current distribution |I(z, W) | vs. z/L on the loaded
antenna with kL (=wL/c), as the parameter C =60 x 5.
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These have been obtained numerically with the help of equation (45) and the sam-
pled values of the current distributions discussed in the previous section. Figs.
11(a)-11(d) give the variations of the magnitude and phase of the transfer func-
tion in the broadside direction (6= 7/2) of the antenna and for four values of
the loading parameter c¢. Similar results are given for 0=7/3, 0=1/4,
6=7/6 in Figs. 12, 13, 14, respectively. Each figure contains four different
values of the loading factor C. In all the curves shown,l‘f:)( 0, w)| approaches
zero as W approaches zero, which corresponds to the fact that there is no
radiation at zero frequency. For higher frequencies, rf;( 0, w )l appears to be

an oscillating function and tends to decrease with increase of the frequency. The
phase of ?;(6, w) falls steadily to a positive constant. Wu and King9 proved that
the asympotatic value of the transfer function is a constant. However, within

the range of the computations covered here the transfer function in Figs. 11-14
does not reach its asymptotic value especially for 6=7/6. For an unloaded

thin linear antenna, we know that the transfer function would be zero for L =nA
at the broadside direction (where n is an integer) when the current is sinu-
soidal. Fig. 11(a) shows that the values at kL =2, 47, 67, 87 are minimal.
For higher values of C, the loading reduces the ringing which is due to the
reflection from the end.

It is appropriate to mention here that the impulse response of the antenna
may be obtained by numerically carrying out the inverse Fourier transform.
However, the data for ?;(0, w) obtained so far is not sufficient to get reasonably
good results. Taylor6 has shown that the transfer function reaches its asymptotic

value at a certain frequency which is beyond the value wL/c =25 considered here.

10. NUMERICAL RESULTS

In this section we discuss the numerical results for two different shapes of
voltage input. Spectral density is obtained by multiplying the transfer function
with the input pulse spectrum. The waveform of the radiated signal is then
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obtained by using Fast Fourier inversion technique.

10.1 Spectral Density %‘e(e, w) and the Time Domain Solution e 6( 0,t) of the

Radiated Field Excited by Gaussian Type Pulse

In this section, results are given for the spectral density 'é‘e(e, w) and the
time domain solution 3’6(9, t) excited by a Gaussian pulse input. The form of
the input pulse and its Fourier transform are given by Egs. (10A) and (11A). For
the time domain results shown here, the antenna length is taken to be L =1 meter.
This implies that the transit time on the antenna for centerfed case is 7= L/c =3.33
nanosecond. The radius a of the antenna element is chosen such that
Q=2In 2TL= 11.5 in all cases.

The spectral density 'é"e( 0, w) of the radiated waveform shown here has
been obtained by multiplying the transfer function of the antenna by the Fourier
speétrum density function of the input signal. The waveform e 6(9, t) of the
radiation field produced by the antenna excited by the Gaussian signal has been
obtained by numerically carrying out the integral in Eq. (8) with the aid of Fast
Fourier inversion technique.

The results shown here have been calculated in the directions 6 = 7/2,

7/3, 7 /4 and 7 /6 from the antenna, where 6 =7 /2 corresponds to the broadside
direction. Three different values of the width of the Gaussian pulse have been
considered for 6 =7 /2, while only a narrow pulse has been obtained for the other
directions. These pulses are chosen such that the spectral density will converge
to zero at high frequencies. Four different values of the loading constant are used
in each case. Figs. 15-17 show |%¥( 7/2, w) versus kL and ee( 7/2,t) ver-
sus t for these cases with 0=0.471 nsec., 1 nsec., 3.33 nsec. respectively.
From the frequency domain results, we observe that for a wider pulse only the
low frequency portion of the transfer function is responsible for the overall
response. For example, when o =3.33 nsec., we only have to consider the
frequency spectrum up to kL = 3. 5 as shown in Fig. 17. For a narrow pulse,

a wider frequency domain of the antenna transfer function has to be considered.

However, if the width of the pulse is too narrow, then the computing time re-
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quired becomes excessive. For practical consideration of the computing time, we
we have chosen ¢ =0.471 nsec. such that the upper frequency spectrum limit
corresponds to kL = 25.

Fig. 15(a) shows |e9(7r/2, w)| for o=0.471 nsec. For values of C =60x 4
and C =60 x 5, the ringing phenomenon enters the picture. For C exceeds 60 x 8
the ringing disappears.

From the time domain results shown in Fig. 15(b), it appears that the
initial part of the waveform represents predominantly the time derivative of the
input Gaussian pulse. The general shape of the waveform depends on the radio
o/7 as expected. It is also seen that after the second zero crossing, e(=/2,t)
remains positive for all positive values of t and the magnitude decreases with
the increasing C of the resistive loading.

Corresponding results are shown in Figs. 18-20 for three other directions
with ¢ =0.471 nsec. and for four different resistive loading. The general charac-
teristics are similar to those discussed above. Due to the difference of the path
length, the reflection occurs at different frequenciesl'é’e( 6, w)l . The strength
of the far field is maximum at 6 =7 /2 and decreases as 6 deviates from the
broadside direction. In every case, the effect of loading in general reduces or
eliminates the ringing.

10.2 Spectral Density ?3'6(9, w) and the Time Domain Solution e 6(9’ t) of the

Radiated Field Excited by a Gamma Pulse

In this section, we consider an input voltage function represented by a Gamma
pulse. The equations which define this pulse and its transform are given by Egs. (10B)
and (11B). Unlike the Gaussian pulse, the Gamma pulse is defined here for positive
values of t only.

The spectral density 'é’e(o, w) shown here, again, has been obtained by
multiplying the transfer function of the antenna with the Fourier Spectrum of the

input signal. Then Fast Fourier inversion technique is used as before.

The results shown in Figs. 22-25, correspond to one particular pulse width
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at four different directions. For each direction in space, four values of loading
have been considered. The width d of the gamma pulse is chosen to be
1.7x10° / sec. which approximates the same width as that of a Gaussian pulse
with ¢ =0.47. Fig. 21 shows the input gamma pulse reproduced by using the
Fast Fourier inversion program. This computation is to show the round-off
error involved in the F. F. T. program for sharply rising pulse. The truncation
of the high frequency portion of the spectrum also induces error. The error
results in the oscillating portion for negative value of t and the shift of the
starting point to the left instead of at zero. Similar error would be introduced
in computing the time domain solutions based on Gamma pulse input.

Since gamma pulse does not converge to zero as fast as Gaussian pulse,
the spectral density shows small oscillation at high frequencies as shown in
Figs. 22-25. The truncation of a Gamma pulse also introduces a larger error
than that of a Gaussian at the same truncation frequency. Except for these minor
variations, the general behavior of the time domain solution presented previously

for the Gaussian pulse also applies to the Gamma pulse.

11. CONCLUSION

The waveform of the far-zone field radiated by a non-uniform resistively
loaded linear antenna excited by a voltage pulse has bgen investigated by numeri-
cal means. Results have been obtained for a Gaussian pulse with three different
pulse width and for one particular Gamma pulse at four directions of observation.
Various values of the loading parameter have been considered.

In general, the resultant waveform corresponds to the convolution of the
harmonic response and the input signal. The initial portion of the resultant wave
however, appears to be proportional to time derivative of the input signal.

The result shows that the amplitude of the current distribution on the har-

monically excited antenna is almost linear, being independent of the loading resis—~
|
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tance when the latter exceeds certain value. The phase of the current represents
the characteristics of a traveling wave. Thus, the analysis of Baum1 based on the
transmission line model appears to be a valid description of the current for a
resistively loaded antenna too. Our study also verifies the work of Wu and

King9 who examined the problem only for one particular loading at a single
frequency. In the broadside direction, the waveform exhibits a compression

in pulse width as the loading resistance is increased. No general trend is ob-
served in other directions.

For a Gaussian pulse, our numerical results check very well with the
analytical solution which indicates that the computing program has been properly
executed. To simulate practical preblems, we have considered the excitation
to be presented by Gamma pulse. In general, much of the result obtained using
the Gaussian pulse also applies to the Gamma pulse. One significant difference
concerns the computing error involved in the two cases. For a Gamma pulse,
the truncation error appears to be prominent. As a whole, it appears that a
"criticai" damping can be achieved when the loading resistance attains a certain
sufficiently high value, corresponding to C > 60 x 10.

In the Appendix, we have attached a computing program used in this work.
The program with some minor changes can be applied to any loading.
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13. APPENDIX
COMPUTER PROGRAMS ( FORTRAN IV)

1. Programs for I(z, w), ?’O(O,w), %'O(O,w).

2. Fast Fourier Transform Program for e 6( 0,t).
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