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ABSTRACT

Experimental measurements of the surface current on an electrically
large, perfectly conducting thin disk indicate that under certain conditions creep-
ing waves can exist on the disk surface. Though theoretical verification of this
effect is possible for the electromagnetic problem, the solution of a similar scalar
problem is expected to exhibit the same type of behavior but be much simpler to
treat mathematically. To this end, the surface field on a soft thin disk of large
radius due to the presence of a point source far from the disk is found.

Since the disk is a complete co-ordinate surface in the oblate spheroidé.l
system where the scalar wave equation is separable, the surface field can be ex-
pressed as an infinite sum of Resolvent Green's functions. The functions are
formed of solutions of the separated differential equations and these solutions are
constructed using the theory of differential equations containing a large parameter.
Except for edge-on incidence, the series is valid only on the shadow side of the
disk.

The series expression for the surface field is evaluated for various angles
of incidence, though the results are mathematically simple for only two: broadside
and edge-on. In the broadside case, the disk edge field is found to be the same as
that of a soft half-plane for normal incidence. Away from the edge, the surface
field behavior is more complicated, but can still be characterized as an edge wave
behavior. For edge-on incidence, things are markedly different. In this case,
the edge field consists of optics and creeping wave terms. The optics term at the
specular point is the same as the soft half plane edge field for edge-on incidence.
The creeping waves are similar in form to those found on electrically large cylin-
ders. Finally, the expected correspondence between the electromagnetic and

scalar analysis of the problem for edge-on incidence is verified.
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Chapter 1
INTRODUCTION

1.1 General Discussion,

The surface fields due to an electromagnetic plane wave incident on
bodies such as an electrically large cylinder or sphere are known to contain
creeping wave components. For an electrically large but thin disk, creeping
waves are also evident (Senior, 1969) when a plane electromagnetic wave whose
E-vector lies in the plane of the disk is incident on the disk edge-on, In all
three cases, the creeping waves are born in the vicinity of a shadow boundary,
but the character of their behavior is different for the disk. The creeping wave
found on the cylinder and sphere can be characterized as a slow wave; the
energy appears to travel with velocity v (the spzsed of light) just outside the
surface. However, for the disk, the creeping wave is a fast wave and the energy
appears concentrated just inside the edge. This fundamental difference in be-
havior makes a study of the wave motion on the disk of interest.

In the case of the cylinder or sphere, the surface field can be expressed
in a form where the creeping wave dependence on electrical size is readily
apparent. The series expression for the surface field convergent at low fre-
quencies can be transformed into a series convergent at high frequencies,
Through the transformation, explicit expressions for the optics and creeping
wave terms as a function of electrical size are obtained. It is desirable to
carry out this same type of transformation for a disk in the hope of obtaining ex-
plicitly the dependence of the surface wave motion on the disk size.

Such a transformation is possible. However, to avoid the complexity of
the vector problem, an analogous scalar problem will be treated. It is expec-
ted that the scalar analysis will exhibit a surface field behavior similar to the
vector analysis though the decay rates and other parameters may not be the
same. The scalar analog of the vector disk problem is the scattering of a scalar
plane wave (ui, where u is a velocity potential) at edge-on incidence on a soft

disk for which the boundary condition is the vanishing of the total field u at the



surface. However, for mathematical reasons, the scattering problem will be
formulated instead in terms of a unit point source far from the disk. In partic-
ular, the surface field of an acoustically soft thin disk with ka >> 1 (k is the
propagation constant of the medium; a is the disk radius) is to be found.

Since the disk is a complete co-ordinate surface in the oblate spheroidal
system and since the scalar wave equation is separable in that system, the sur-
face field can be expressed as a doubly infinite sum of solutions of the separated
equations. The solutions are found using the theory of differential equations
with a large parameter. The series expression for the surface field convergent
for ka >> 1 is constructed for various angles of incidence, including edge-on.
For the edge-on case, the creeping wave does exhibit the fast wave behavior and
is similar in form to that of the vector case. The results indicate that the disk
is one of the basic scattering shapes since it exhibits a surface wave behavior

as simple as, yet fundamentally different from, that of the cylinder or sphere.

1.2 Description of the Problem.

A disk of zero thickness and radius a lies in the x-y plane of a Cartesian
co-ordinate system with its center at the origin. A point source of unit strength

is located in the x-z plane a distance r from the disk center.

source 7

[ ]
(xo, O,ZO)

$=m/2

FIG. 1: Geometry of the problem.



The relationship between the Cartesian (x,y, z) and the oblate

spheroidal (§,7n,4) systems is as follows:

1/2
X = aB§2+l)(l-n2):l cos ¢

1/2
y = a[<§2+1><1-n2)] sing (L. 1)
z = afn

where 0 <& <, -1<n<1, 0<$<2r & is the radial variable, n the
angular variable, and § the axial.

The disk shown in Fig. 1 is the complete co-ordinate surface, € =0, in
the oblate spheroidal system defined above. Hence the problem of scalar scat-
tering by a soft thin disk is now easy to formulate. If u is a scalar velocity
potential, (V2+k2)u = p where p is the source density distribution, k is the
propagation constant and an e_jwt time factor has been suppressed. The boun-
dary condition is that u = 0 on the disk.

In particular, for a unit point source located at (§ o' Mo’ 0)

6(8-80)6(n-n0)6(¢)
p€ ,n.,0) = . . (1.2)
0’0 a3(&,2_'_772)

In oblate spheroidal co-ordinates, the inhomogeneous scalar wave equation with

the source term given in eq. (1.2) is

2

2 2
d 2
< (e 2] o R ‘2‘>+<ka> €40’

€ +10(1-n) o

S -
= aé(E 50)6(11 n0)5(¢) : (1.3)

The boundary condition becomes u(0,n,¢) = 0.
For £ # 80, n# Ng» OF $ # 0, eq. (1.3) can be separated (using 2

separation constants) into three equations. Assume

u = HEXnP®@) ,



then
2
d Qgé) 2
y tm =0, (1.4)

dg
2

4 oy epty 8], | 2.2 m” | _

o [(1+§ ) d‘é] + [c £ +Amn+ ngJ H=0, (1. 5)
2

4 [, BK], |22 m” | _

dn [(l-n dn]+ [c n -Amn- 1-n2j’X—0 , (1.6)

where ¢ = ka and H(E) must satisfy the radiation condition. Several consider-
ations can be used to specify m and Amn' If one demands that (I) be single-
valued in §, m must be an integer (called the axial eigenvalue). With m
specified, Amn is determined by one of two conditions, Convéntibnally, Amn
is selected so that X(n) is finite at both n =*1, Then Amn is an angular
eigenvalue. However, the series solution summed over the angular and axial
eigenvaiues is known to be poorly convergent for large c. If the Amn are
selected so that Hmn(O) =0, analogous to what Watson did for an electrically
large sphere, the series is rapidly convergent for large ¢ and the Amn are
radial eigenvalues. With this choice of Amn’ no X(n) exists which is finite at
both n = i,

The solution pf the inhomogeneous scalar wave equation in oblate

spheroidal co-ordinates is

[00) 00)
u€,n,g) = ZZanHmn(S)an(n)d)m(#) (1.7)

m=0 n=0

with the summations over the axial and radial eigenvalues and the an chosen

so that u(€ ,0) = p. Because of the disk symmetry

)
¢ @ =0 (- =cosmg

and eq. (1.7) then becomes



[$)}

0 0
u= 2;—6 cos mg ;anxmn(n)llmn(g) , (1.8)

Defining

00)
v En =Z B X H (),

n=0
eq. (1.8) reduces to
o
u= E V (E,ncosmp . (1.9)
— 'm
m=0

Putting the above representation for u into eq. (1. 3) and using the orthogonal

properties of cosmg, one gets

ov ov 2.2 2
2 [(§2+1) m]+ _a_[(l_nz) m] - € +n) AV +02(§’2+n2)V
( m m

% %1 o N1 @sna-n

S SN -
= — 6(& 50)6(77 no) (1. 10)

2, m=0
€ —
m 1, m>0

The B must be selected so that V. satisfies eq. (1. 10).
mn m

where

9
1.3 Resolvent Green's Functions and the Representation of A €,n.

Equation (1. 10) can be solved in two equivalent ways. One method, used

by Hansen (1962), is to write

00)

Vm B Zanan(n)Hmn(g) (1. 11)

n=0

as above. Putting eq. (1.11) into eq. (1.10) and using the orthogonal



properties of the H gives
mn

2
d 2, d 22 m
w—— - B + - - et
dn [( b=m )dn (anxmn):‘ [C M Amn -le] anxmn

1
H_ € /(' ;
= -2 o @ d| stn-n) . (1.12)
m 0

The anan(n) are found using standard Green's function techniques.
A second equivalent method of solution which is available is the method
of Resolvent Green's functions as used by Kazarinoff and Ritt (1959). For the

source defined in eq. (1.2), Vm can be represented as the contour integral

1 lim 1 ~
mac_ s—>0+ 2 G_(6,€,.0G_(n,n),-v)dv (L 13)

Vm(S,SO,n,nO) =

™y

where c has been redefined as ¢ = a(k+is) with s>0; this is equivalent to a
small loss in the medium. Gm(E ,€ 0’ v) and am(n, Uy -v) are the radial and
angular Resolvent Green's functions. r‘v is a straight line path in the v-plane

a distance proportional to s below the real v axis.

Imv

[ |

FIG. 2: The FU path of integration.



The radial Resolvent Green's function is

v @y, ), E<k
G_(8,80) = ——5— P O
L+l 55,0 |y, Ev,® , & <&

2
where y l(0) =0 and Vo is in . (0,00). Equation (1.5) has two independent
~ 2
solutions H(§) and H(£); only one, H(E), is in £ (0,0). Hence v, and y, are
y, & =H (O ©O-H " (0
mv mv mv mvy

(1. 15)
7,6 =H__ @)

Wi(y 1Yo €) is the Wronskian of the two solutions. The angular Resolvent

Green's function is

1 2
Em(n,no,-y) i : _11 : XTV(n)Xn;V(nO) . onzm,
(1-n )W(XmV,me, ) X X @, Ny 21
(1. 16)
where Xiw(n) is the solution of eq. (1.6) regular at n = -1 and Xrlnv(n) is the

2 1
i larat n =+1; £ try, X = -n).
solution regular at n ; from symmetry mv(n) va( n

The path Pv is completed by a semicircle of radius r in the upper or
lower half plane. If the integrand is exponentially small as r — o, the con-
tribution of the integration over the semicircle can be neglected. The contour
will contain the poles of Em if r‘y is completed in the upper half plane and a
Mie series for the disk results; the orthogonal functions in the n summation are
the angular eigenfunctions. If the path r'v is completed in the lower half plane,
the contour contains the poles of Gm. A series over the radial eigenfunctions
results. The expansion over the radial eigenfunctions is chosen for reasons dis-
cussed earlier.

To simplify the expression for Gm, only the field on the surface of the

disk is found. Since u =0 on the disk, du/0n is nonzero and, in particular,



0
on an o an Zm=0 o8 '
where n = Iz depending on which side of the disk is being considered. The

presence of 1/n in the field term is a consequence of the edge condition

1/2
ou/dz < 1/r / where r is the distance from the edge. From eq. (1.13),

0 1 lim 1 0 ~
—_ 0 = —— _—\ = -
by (1. 18)
with
H ()
0 mv 0
—_— 0 = e c—————— s s
agGm( ,So,v) r—Y (1,19
my

For a hard disk, u is the non-zero field and aGm/ 0% is replaced by
G =H_ (§)/H' (0).
m my 0" mv
From eqs. (1.18) and (1. 19), it is apparent that the radial eigenfunction
expansion of 8Vm/ 0f is the residue series defined by the zeros of Hmv(o)'

Since the zeros are simple ones, the residues are given by

9
—H_(0)
ov mv _
V=
n

Finally

2y 0.8 ) = —= Soo -—-———Hmn(go) G mn,-v). (120
6§Vm’0’n’n0—7ra€ £\~ @ m 0 n’ '
m n=0 —H (0)‘
oy my

V=V
n

Equation (1, 20) is valid if the contour l"V can be closed. When the
behavior of the Resolvent Green's functions is known precisely for all values of

v (as in the cylinder and sphere cases), the conditions for closing are easily
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established. Unfortunately, as will become evident later, the asymptotic
expressions for Hmv and va are not valid for all v and, in particular, are
not valid as v—>o with c fixed. Hence, mathematical justification for closing
the contour is not possible through investigation of the properties of the asymp-
totic solutions for large v. For a discussion of some of the problems involved,

see Goodrich and Kazarinoff (1963).

1.4 The Mathematical Problem,

To construct the Resolvent Green's functions, solutions of eqs. (1.5) and
(1. 6) having the right properties must be found, Since c is a large parameter,
the theory for the solution of differential equations containing a large parameter
can be used to obtain asymptotic solutions of (1.5) and (1.6) valid as ¢ =y 0.
However, the application of the theory is not straightforward since A and m2
may both become large. Regardless of the size of Amn and mz, eqgs. (1.5) and
(1. 6) can be put in the general form

2
Z—Z;—[ +|:)L2f0(z) ), (@) + fz(z)] Y =0

where X is a large parameter.

The first work on this type of equation was done by Birkhoff (1905) for the
case f1 =0 and fO(z) > € > 0 over the interval of consideration. In 1931,
Langer solved the case where fO(z) was allowed to have a zero, called a turning
point. During the next 30 years, Langer's simple turning point theory was ex-
tended by Langer himself and several others. Now, asymptotic solutions of
equations containing higher order turning points, multiple turning points in an
interval, or transition points (points where f_, f 1’ or f2 have poles) exist. Of
particular significance to the present work are the works of Mckelvey (1955) and
Olver (1954, 1956).,

It is important to remember that solutions obtained using turning point
theory are asymptotic in character and thus approach the exact solutions only
as A—=>m. Nevertheless, the use of these solutions for finite but large A gives

valid results.
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1.5 Determination of the Surface Field.

As noted in Section 1.3, the determination of the surface field requires
that solutions of eqs. (1.5) and (1.6) with the correct properties be found. In
Chapter 2, the asymptotic solution of the radial equation which satisfies the
radiation condition is found and evaluated at the surface £ = 0 and the source
point., Then the zeros of Hmv(o) as a function of v are determined. The
analysis is broken up into several parts depending on the size of m compared te
to c.

In Chapter 3, the angular functions are constructed in a manner
paralleling that for the radial functions. The asymptotic solutions of the angular
equation are found only in the interval 0 <n<1; n =1 is a regular point. The
specification of the needed angular functions is completed with the determination
of the angular Wronskian.

The Resolvent Green's functions are formed in Chapter 4 from the
functions constructed in Chapters 2 and 3. The contour integral is evaluated and
the expressions for the surface field on the shadow side of the disk are given for
various angles of incidence (excluding grazing).

The development of the surface field for edge-on incidence is carried out
in Chapter 5. A highly convergent series for the edge field is obtained in terms
of the radial and angular eigenfunctions. From this series, an expansion of the
edge field in terms of creeping waves and an optics component is possible.

Chapter 6 gives a physical interpretation of the results of Chapters 4 and
5. The surface field in the shadow is constructed of surface waves launched at
the disk edge. For edge-on incidence specifically, the structure of the disk
edge fields is found to be similar to that measured by Senior (1969) in the elec-

tromagnetic case.



Chapter 2
THE RADIAL SOLUTIONS

2.1 Development of the Differential Equations.

As a first step in determining the residue series for the surface field
du/ 9z, asymptotic expressions for Hmn(S) and the eigenvalues Amn defined by

H__(0) =0 are found. H_(§) is a solution of the radial equation
mn mn

dH 2
d 2 mn 2.2 m _
T i:(l+’§ ) & ] +E 1 +Amn+ 1+52:I Hmn 0o . (2.1)

Equation (2. 1) must be transformed to put it in a form suitable for
application of the theory of differential equations having a large parameter. Let

H ©® =0+ (). Then
mn mn
2

d“w RITIUN 2
ot Tt |W
dE 1+& (1+&)

=0 . (2.2)
mn

The asymptotic theory developed to solve equations such as eq. (2.2) is
in terms of only one large parameter, in this case c. To successfully apply the
theory, each term in eq. (2.2) must be expanded in powers of c, e. g.,
f= arc2 +Bc+ v+ 6/c +..., where the coefficients are O(1) and terms of like
powers of c grouped together. Depending on the magnitude of m, m2-1 can be
written as ozc2 or ac. Thus, no one asymptotic solution is valid for all m. In
fact, for m in [0, 02), three asymptotic expressions are necessary, one for m
in [0, V¢, one for [JE c) and one for [c, 02).

We consider the case for m in [0, \[6__] called Region 1, first. In
this case, m2 is never larger than ¢ and thus is grouped with the ¢ terms.

It is assumed that Amn = ¢f. Collecting terms having like powers of c, eq.

(2.2) reduces to

11
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2
d°w 2
2
d& 1+& 1+8° (1489 mn

2
where d = (m"-1)/c. In Region 2, m in [{E c), m can be as large as ¢ and

2 2
thus the m term is placed with the ¢ term. In this case, we assume that

2 ~ -~
A =-m +1+A with A =fc. Then
mn mn mn

2
dw 2
2 +1=-
e () (]
dE (1+£%) 1+E moa
2 2 . 2 . . .
where b = (m"-1)/c”. For m in [c, c"), Region 3, 1-b is negative and eq.

(2.2) is written as

2

¢ W n 2,2 l-b-S2 B _

- -|¢ 13 —— 59 | -C 5 Wmn—O .
d§ (1+&7) 1+&

2
For m > ¢, no asymptotic solution satisfying the radiation condition and the

boundary condition is available.
Asymptotic solutions of the above equations are found. Region 1 results
are similar to those of Goodrich et al. (1963) and Hansen (1962). The Region 2

and 3 results are new,

2.2 Region 1 (0 <m <(T).
In Region 1, Wmn satisfies the differential equation

2

dw 2 2

- mn+l}2<s 2>+C<B2+(m-géc>]w -0 (2.3)
a2 1+ 1+8° (1489 mn .

If B is found to be of O(1) in order that Hmn(O) =0, the assumption, Amn = cf,

is verified.

Making the substitutions A =ic, o =i, eq. (2. 3) takes the form
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2
d“w 2 2

— -&2 : 2+x< "2-(‘“ 'zl)éhﬂw L=0. (2.4)
dg 1+ 1487 (1+£%) m

Since eq. (2.4) has a second order turning point at & =0, Mckelvey's (1955)

results are used and

\\Y =uV+TV' (2.5)

where

V =y(E)nlx, ),

o =x e

3
_ sds _ _ o, [ 2 _:]
X 2\ i r—-——2-1+S 210[ 1+§ ’
W) = [Vw;’z - J1/4[§2/(1+82)T/4 ;

Mo = cosh [9(5)] ,

2
b = —J%g— stnh[6()]

8 (%) _.1 G- m2-1 1 1+\/1+§’2 _m2-1 1 -1
4 x )8 2 2N

W-I(X) is related to the Whittaker function (Whittaker and Watson,
1963). In general,

(2.6)

-ymif4 vrif4
ww= oLy e oWy 0 @
Vrdow PR -m ©

with y = (-1)" and v an integer. Hence
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3mif4 mif4
e M(-1/2 N
W= ————3—‘1@—Mk ICECY
( Z +k) (= +k) ?
4
Mk u(x) and therefore WV(x) are solutions of Whittaker's equation (see
Mckelvey, 1955)
1 2
2 ~-u

d

-——2W [Z+z+4 2:’w=0. (2.9

dx X

The power series expansion for M, (x) is easily obtained from eq. (2. 9) and

k,u
is

1

1
—+u —+tu-k
_ .2 x/2 2
Mk,“(x) X e [1-1—————2#_}_1 x+...i] . (2. 10)

Using eq. (2.10), it can be shown that for x <<1

vm/4 z/rri/4
WV(X) r(1/2) 1/4 r(-1/2) X3/4

i P(Z-?’k) i F(—“Yk)
and
iy s S ircyz) 3/
W_l(x) = 3 x '+ 7 X . (2.11)
F(Z-l-k) ( Z+k)

One other property of W (x) will be needed. For |x|>> 1 and

(v —)7r+e<argx<(v+—)7r €, with 0<e <1,

1
——’m _ .
W =e 2 e VMK 1, 9—?—] . 2. 12)

Thus in order that Hmn(E) satisfy the radiation condition, v is selected to be
-1 in eq. (2.6).
To complete the specification of Hmn(E), o must be chosen so that

Hmn(O) = (. Using the small argument expansion of W_ l(x),
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/4
-1/4 r(1/2
W (0) =V(0) =2 / [9—-3—‘—/—’] . 2.13)
(= +k)
4
Since (y) has simple polesat y =-n, n =0,1,2,3,...,

4n+3
4 3

W ©0)=0 if k= -
mn
and it now follows that

m -1

oc=4n+3+ (see Appendix)

and

2
A =-m +1-ic(4n+3) . (2. 14)
mn

The assumption made earlier concerning the nature of Amn is thereby con-
firmed.

In summary,

Ho©=0+)"y @
mn mn

with
Ql+§2 d -1/4 J1+g2 V2
Wmn(g’) = éosh [9(8)] -isinh [6(5)] oF d_’§'> [EZic) —§_> W_l(x)],
(2, 15)
where
X = 2ic <\fl+§’2 - >
and

6() = -

in+3 o 1+\]1+§’2 +i(m2-1) 1 1
g o8 2 2 /'—‘ng -

d
In Cha 4and 5, H , —H
pters mn(0) . mv(o) , and Hmn(go), 50 >>1,

v=v
n

are needed. From eqs. (2, 13) and (2. 15),
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. ST iﬂu
mn

((-n) ' (2. 16)
and

K] _ 3711/4 9/4
ov Hmv(o) T

F(1/2) t(-)" (2.17)

V=v
n

2
where v = -m +1-ic(4n+3) and n=0,1,2,3,... . For ’g"o > 1,

X = 2ic(§0- 1),

v (2ic)'1/ 4ex/ 2(-x)'k
3 i(mz- 1)
g, = - > log[g J2] - EE=H
and
5 1
22n+ ch+§ i . -
Hmn('é’o)'"— —'—'—go-— exp[ic'éo-ic-é'c' (m-1)-(n+2) 51:] . (2,18

2.3 Region2 (yJt<m<e).

For m in Region 2, eq. (2.2) is written in the form

dW
[2 2( £ 41 b) :l =0 2. 19)
(1+£%) mon

~ 2
where Amn "A +m -l and b = (mz- 1)/c”. Equation (2, 19), like eq. (2.3),

has a second order turning point at § =0, so Mckelvey's (1955) theory can be

used here as well, Let A =ic and Ao = -Kmn’ then

2
4 Wi _-!}282 <§2"‘_(L_.‘b)> .y _9_._:] W =0 (2.20)
d§2 (1+§,2)2 l+§'2 mn

and
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!
= V+ — V! s
Wmn “0 A v

v=co s e e w

_ 3 )
X = 210{\/§2+1-b - [i-b - b <sec-1 f“}: - sec lﬁ/;)] )

o = cosh[é)(«‘i)] , (2.21)
_ gy 2 12 [
wy= ———-—S (§ +1-h) sinh 9(5):] s
o) = - +3 | |VT7h + Je2+1-b | 4n+3<1 [i]
R 2vi-b 2 \°8|2ic

o5 )

In order that Hmn(O) =0, itis necessary that ¢ = (1-b (4n+3) and

A= —m%+1- icln+3) {1 % . 2. 22)

Using an analysis similar to that in Section 2. 1,

H (0)= Y 4 -b)“l/ 8e7‘1/ 4 L,fiz—) (2.23)
mn (-n)
and
a—iHmV(O) - = -2'9’ 4e3”i/ 47r1/ 2c’1n1 (-1)“(1-b)'5/ 8 (2.24)
n

] >>
For SO 1,
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X = 2ic [s‘o- [1-b - ﬁ(%‘sec-lmﬂ ’

3
n+=
V’-“(Zic)'l/ 4ex/ 20 ° ,
~ +3 32 X

06, 4 <l°g 2(1-b) ]'log[zie]> ,

and
1
cn+ g—n+§ 2n+~2
Ho (€)= > (1-b) 2 expl:ic%’o-ic\[——l-b

_icﬁ(g-sec'V%)-(nm)%i] . (2.25)

Comparison of eqs. (2, 6) and (2.21) shows that despite the difference in the
forms of the two differential equations the Region 2 results approach the Region
1 results as m—>0,

A problem develops in the Region 2 results as m—>c. To use
Mckelvey's (1955) theory to find a solution of eq. (2.19) asymptotic in ¢, 1-b
must be bounded away from zero. This is indeed the case if m = cl/ a, a>1,
but not if m = c+Bcl/ a, a > 1. In the latter case, the solution is asymptotic in
cl/ Y, v> 1, rather than c. <+ is related to a and the magnitude of Kmn' For

m = c+constant, the use of Mckelvey's (1955) theory cannot be justified.

2
2.4 Region3 (c<m<c).

Since b > 1 for m in Region 3, eq. (2.2) takes the form

2 ~s
d°w 2 A
mn {czgz(s -<1;;1)> N ng]W —0 . (2. 26)
dE (148 g7 ™

There is a first order turning point at § =\b-1 as well as the second order

one at £ =0, The problem of an isolated first order turning point was initially
solved by Langer (1931). His method was generalized by Olver (1954). The

case of two first order turning points in an interval was also solved by Langer
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(1959), but the problem of first and second order turning points both occurring
in an interval has not been solved exactly.

Fortunately, if the turning points are far enough apart, there is a simple
method of solution. Asymptotic expansions valid about the two turning points
are constructed so that they are identical over some finite region somewhere in
the interval between them, Together, the expansions make up an asymptotic
solution valid throughout the interval between the turning points.

To find the asymptotic solution valid in Region 3, we must solve two
turning point problems. Since the behavior of the solution at infinity is known,
the asymptotic expression valid about £ = (b-1 and satisfying the radiation
condition is found first, If c ﬁ)-:T >> 1, the asymptotic expansion valid about
£ = 0 can be matched to the one about £ = {b-1 through the use of a constant,
The eigenvalues Kmn are specified by the condition Hmn(O) =0,

Olver's (1954) theory is used to find the asymptotic expression about
£ = \[B_-_T ; the resulting expression is valid in the interval (0,). However,
before the theory can be applied, eq. (2.26) must be transformed. To this end,
let

S (x)=€'1/2w 3] (2.27)
mn mn

with € = d€/dx. Then

2
£2 <§-—+—1§'—2‘3> S 2. 29)
(1+&)

and x is found to be

2
Vet +1-p - JEsec'l/ Eb“ , £>\b-1
. (2.29
. 2
i[\/b-l-Ez - fb’log(b+ b-1-% )J , 0<E<b-1

V1482

2 3/2 _
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In terms of x, eq. (2.26) takes the form

2
s 2.2
2
r;n+&x+c£éz<_(_1zj_€)_+f2®]3 =0 (2. 30)
ax £°E"+1-b) o

where f2(x) is independent of ¢ and co = A " From Olver (1954),

BO(X) v
Smn(x) A x)V+ o (2.31)
where
_ (1) 3/2
v \rx—Hl/3< >
and
A0 = cos[ ""]
BO(X) = x—l/2 sin [%)] ,
ba-l sec-1 \/bg—-i , £>\b-1
h(§) = (2.32)
-io \/b-1+\jb-l-§2 0<€<Jb—-—1
B-1° 3 | =0

Using eqs. (2.27), (2.31) and (2. 32), Wmn(S) can be written as

) 1/2 h(E)J
Wmn(%’) = <—'—§'—ﬂ—> xl/ 4 cos [h(E) . (2.33)
EVE +1-Db

In the far field,

ilcyb + % - 2\/%)] . (2. 34)

For 0<&<|b-1 and !c%x3/21>> 1,

_ e
Hmn(so) =

— exp|-



21

1/2 C\]—b—
U W L

wmn(8)= —F— (m

gVE +1-b J1+§'2
g
2 \2yb-1
x<\lb-1+\§/b-l-€ > exp!:_c /b_l_gz _i%ﬂ]

(2. 39)

Since the turning point at § = 0 is of second order, Mckelvey's (1955)
method is used to find the asymptotic expression valid for 0 <& < \/b-l . Then

73
_ "1 4dv
wmn(E)—A<u0V+ palre (2. 36)

where

. 1/2
V= (2e)'1/4 <———§—ﬂ—§> LA
Eyb-1-§

} 2
x=2c{:\/b-l-§2-\[_blog Vb +¥b-1-¢ +\/_510g<‘/_b_+ b-l

‘/1+’€2 exp(yb-1)/b|/ ’

by = cosh [9('5)] )

(2. 37)
2
“1= ——E—tl—‘gsinh[e('é’)—_l ,
Eyb-1-&
o) = Bt T5=T +Vb-1-£ _int3 < b-1 .2
- Tg 8 2yb-1 s 8\ 2

+ 4n4+3 log [_x_"

In order to satisfy the boundary condition at § =0,
~ - — + )
Amn cyb-1 (4n+3)

The constant A in eq. (2. 36) is selected to make the asymptotic expression

defined in eqs. (2.36) and (2. 37) identical to eq. (2.35) for 0 < £< {b-1 and
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|x|>1, namely

5 3.9
\ ey 2n+> )c-n-l(b_ ) (5n+ 8)e-i21r/3(3/7r)1/2<\/F + Jp=1 )cﬁ
exp | {(b=-1)/b
2. 38)
From eqs. (2.36), (2.37) and (2. 38),
3 3 5
-(2n+3) -(zn+=)
H @=2 2% lpoy 204
mn
. Vb
-i27/3 (1/2) 1/2( _ )c
S o T
(2. 39)
and
7 37
-(2n+7) -(zn+-)
—(?-H o =2 2 -y 2
Y
V‘Vn

e-izw/331/2n, 1)° <\f5 +\Vp=1 §VP
' exp [ /(b-1)/b ]

(2. 40)

As was the case for Region 2, the expressions are not truly asymptotic

for m = c+constant. However, the validity of the expressions is assumed here

and in Region 2 as m —»c.

Finally,the ratio of the radial Resolvent Green's function of Region 3
to that of Region 2 is considered:

Hmn(go) -g— +—2—
Hmn(O) 3 (bs- 1) exp W ]
Hmn(go) ) 3 n+ 2 \/_ ¥ \[b > 2. 40
ENON PN
where 0 < b2 <1 and b3 > 1. Analysis shows that the above ratio goes to zero

as c—>o. Thus the contribution of a mode m > ¢ can be made arbitrarily small

compared to the contribution of a mode 0 <m <c. Except for the case when
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the contributions of the 0 < m <c modes almost cancel, the contributions of the

higher modes, m > ¢, need not now be considered.

2.5 Large n.
One of the assumptions made in Sections 2.2 - 2,4 was that
A =ac.
mn

In Section 2.2, X was found to be
mn

A =-c (4n+3)
mn

and the assumption is correct as long as n is independent of ¢c. However, for
n = éc the assumption is no longer valid and a different asymptotic expression
must be used.

To simplify the equations involved, m will be taken to be unity. Then

eq. (2.2) has the form

2.2
dzwln c§ +A1n
5 + 5 W1 =0 . (2. 42)
dg 1+& n
From eq. (2.14),
A, =-ic(4n+3)
In
For n = éc+v,
2
Aln = —iEléc +(4’y+3)c] . (2.43)

2
On collecting the ¢~ terms, eq. (2.43) becomes

2
dw

2 {"2< _146> < ] =0 . (2. 44)
dg 1+& 1+§

An asymptotic solution of eq. (2.44) can be constructed following Olver's (1954)

theory using Parabolic Cylinder functions. Unfortunately for m in Regions 2
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and 3, no asymptotic solution is available which satisfies the boundary condition

at & = 0 and the radiation condition at infinity.



Chapter 3

THE ANGULAR FUNCTIONS xl (n) AND X2 (n
mn mn

3.1 Formation of the Asymptotic Solutions.

As the next step in determining the residue series for the surface field
1 2
du/ 0z, asymptotic expressions for an(n), an(n) and the angular Wronskian

are found. X1 (n) and X2 (n) are solutions of
mn mn
dx 2
d 2 mn 2 2 m
-— - -+ - -— = . .
dn El n) dn] [:C g Amn l_n2:] an 0 3.1)

As in the radial case, eq. (3.1) must be transformed to apply the

asymptotic theories of Mckelvey (1955) and Olver (1954). To that end,

2,-1/2
X m=Q0-n) / S (n) where S  is a solution of
mn mn mn
d2s 2P -A 2
o - sl s =0, (3.2)
dn 1-n (1-n) m

The form that eq. (3.2) will take in each of the m regions defined in Chapter 2
is similar to that of the radial equation. However, because of the presence of
the poles at n = £1 ineq. (3.2), the asymptotic solution is more complicated.

In Section 2.4, the presence of two turning points in the interval of
consideration required the use of two asymptotic expressions, one valid about
each turning point, to construct a solution valid over the entire interval. These
solutions are matched in the interval between them through the use of a constant.
This is also true for the angular solution; but because of the presence of the
transition point at n = +1, an additional asymptotic expansion is necessary.
The transition point at n = -1 need not be considered since the interval of con-
sideration is 0 <7n < 1. Knowledge of the angular solution in this interval is
sufficient to find the surface field in the shadow of the disk.

As in Section 2.4, convenience determines the order in which the turning

and transition points are considered in forming the asymptotic solution. Since

25
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Xrlnn( 1) must be finite, the asymptotic expression valid about the transition
point at n = 1 is found first. If there is a turning point somewhere in the in-
terval 0 <n <1, itis considered next, and the asymptotic expression valid
about it is matched to the one about n = 1. The turning point at n = 0 is con-
sidered last and the expression valid about it must be matched to the one closest
to it. Any asymptotic expression valid about a turning or transition point is

valid only out to the next turning or transition point.

3.2 Region 1 (0 < |m] < V).

Following Section 2. 2, eq. (3.2) is written as

21

d Smn 2 2 A n mz-l 1

— "+ e 1 5 )- m2+ 23 )|S., =0- (3.3)
dn 1-n 1-n" (1-7m)

In Region 1, only two asymptotic expressions are needed to construct the

asymptotic solution since there is only one turning point (at n = 0) in addition
to the transition point at n = 1.

For reasons discussed earlier, the transition point at n =1 is
considered first. The asymptotic expression valid in the interval (0, 1] is
found using Olver's (1956) method. To put eq. (3. 3) in the appropriate form,
let Rllnn = h'l/ zsrln | with 7 = dn/dz and

. _1
n - (3.4)

d Rmn {02 l-m2 Camn 3 j] 1
_— - + R =0 (3. 5)
2 z 4z2 z(1-4z) (1_42)2 mn

where A = -m2+1+a cand a = -i(4n+3). Hence,
mn mn mn

sin | 4]
1 _ h(z) |, dV 2
Rmn =V cos [——-2 + ™ ——-—gl/z , (3.6)
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with
1/2 1/2 : oo .
V=z Jm(Zcz ) where Jm(x) is the cylindrical Bessel function
of order m;
g =1/
and

h(n) = i(4n+3) log

et

1/2
The solution of eq. (3.3) for 2cz / >>m (and n>0) is

2 1/4
1/2 (1- 2
Srlnn = (-1/n) /2 d=n) " 1/2 cos[c\h- m+1 h(n)] (3.7)

(mc)

To complete the specification of the asymptotic solution in Region 1, an
asymptotic expression valid about n = 0 is found using Mckelvey's (1955)
method. The resulting expression is valid in the interval [0, 1). To this end,

eq. (3.3) is written as

91

dS 9 2 1 B 1

— 1 1<) +or +—B-)ls" =0 (3. 8)
2 2 2 2,2 mn

dn l-n 1-n (1-n)

-0\ = mz- 1+ic(4n+3) ,

where

oAB = m2-1 ,
m

A =ic .
Then

Srln = Vcosh [e(n)] + M (3. 9)

icp(n)

and
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V= A1V1+A2V0 ,

VV = (Zic)_1/4(l-n2)l/4n-1/2W (z),

z = 2ic(1- 1-n2) ,

_ 4n+3 (3. 10)
4 3
$(n) = n(1-n? -1/2 ,
,f 2 2
_ 4n+3 1+V1-n"| . m"-1 2,-1/2
6(n) ==7 log[ 5 J-ﬂ S [(l-n) -1]

A . and A_ are specified by the fact that eqs. (3.9) and (3.7) must be identical

for c(141-n°)>>0, in which case

3 1
2n+= n+7
-1/2 om +
A =2 4 2_ 1/ expl}ﬁ m+1

mi+is (3n+-7-)] ,

1 4 2 2
(3.11)
Sty el -1)2 2m + 1 1
A =2 T ic - i-iT (n-=
5 c T exp[lc z mitig (n 2)]
3.3 Region 2 (V€ <m < c).
Writing eq. (3.2) in the form of eq. (2.19), one obtains
21 ~
ds 2 A
2 1-b-
————Iznn +E; n2< b 2”2>- mnzj Srlnn =0 | (3. 12)
dn (1-n) 1-n

2 2 ~ 2
where b=(m“-1)/c” and A=A +m" -1. InRegion 2, there is a first
mn mn
order turning point at n = (I-b in addition to the turning point at n = 0 and
the transition point at n = 1. Thus, three asymptotic expressions are required
to construct the asymptotic solution.
Using Olver's (1954) method, the asymptotic expression valid in

1 .- .
(V1-b, l] is first obtained. For Rmn =n 1/2Srlnn with 7 = dn/dz and
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2
2 2(n +b-1
nn< >=1,

(l-nz)2

z is found to be

" 2
zZ =-\}b+n2-1 +\/-l_)log[b+\/_l)_:_12+ﬂ_}
l-n

. 1 _ -uz
Since Rmn(n) A0 e ,

1

2
R (T)) A (TI)( \/——__2> b+n-l] (3.13)
b-1+n

2 2
with u =c¢ <1+ ; >and
m -1

i(4n+3) -1 —]
A= exp[ ! sec ‘
ool ™ T

m -1

To find the asymptotic expression valid in (0, 1), Olver's (1954) method

-1/2 1
7Y

1 .
is used. In this case, let R = S o with 17 = dn/dz and

22 (1- b-n)
(1- n)

It is easy to show that

— 2
—Jl-b-n +\[-l;sec-l I—:-BH- , 0<n§_\[1_'5
2,8/2 _
3 = N
2 +\Vb-14+
-iyb=1+n +1\/Elog[b b ; 1l J JF=1<n<1.
l-n

Finally,



1 h(g) ] dv S [‘éﬂj
Rmn(n) = VCOS[—ZB{I +-d'z" —;gT/z—- (3.14)

where

_ . 12 (1) (g 3/2) _

V = Az H1/3 3CZ s g=2z
and
,/ 2
-i(4n+3)log[“-b+n1-b-n] , 0<n<\1-b
h(n=
(4n+3) secm1 I , ,ll-b <n<l1,

7T-b

Though the most general expression for V would also contain H(12/)3, only the

(1)
Hl/ 3
(3.13) for y1-b <n<1. A is selected so that eqs. (3. 13) and (3. 14) are iden-

tical for n such that c\lb-l-nz > 1, (b=1<n<1:

term is used since eq. (3.14) must have the same exponential form as eq.

_ -
A = \[rc/3 expli TR

The matching is slightly in error since u appears in eq. (3. 13) and ¢ appears
in eq. (3.14). However, for our purposes, the difference can be neglected.

To complete the construction of the asymptotic solution in Region 2,
Mckelvey's (1955) theory is used. The resulting expression, valid in [0, V1-b),
is

dV sinh{6(n)

dn icﬁ(n) (3.19)

srln (m =V cosh[6(n]] +

. where
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v =acio Y44 ‘mw_ @
z—210&-1_?-\[1—b_—n—+;/_€e0 F-sec E ,
_ o \i- Vicb-r2
1-q? ’ (3. 16)
K 4n4+3 ,

2 .
o(n) = 4n+3 log[ 1_b2+(—-—11_;,b_n ]* 4n4+3 log[}_—_ - 1-b-n’

+\[_éec-1\/— -sec” \/Tj 2\5—3——; .

In order that egs. (3. 14) and (3. 15) be identical for n such that

c\/l-lo-n2 >>1and z>> 1, 0<n<|I-b,

w
+
o

7
2n+-— -n
+1 2
a=2 M-

— )
expEiC\/l-b +ic b sec \}l/b +i 2(3n+2>].

As in the radial case, the matching can be accomplished only if the
turning points at n =0 and (I-b are far enough apart, i.e., ¢ JI-b>> 1.
Although this is certainly not the case as m—> ¢, the validity of the solutions

as m—> ¢ will be assumed.

2
3.4 Region 3 c<m<c).

For m > ¢, b is greater than unity and eq. (3.2) is written as

2 1
d Smn _I: IL+(b 1)> mn:] (3.17)
an’” (1 -9 mn

Only two asymptotic expressions are necessary to construct a solution valid

throughout the interval 0 <n < 1. The first order turning point present in eq.
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(3. 12) has moved out of the interval of consideration. The second order turn-
ing point at n = 0 and a transition point at n = 1 remain.

The asymptotic expression for 7 in the interval (0, 1:] is found using
Olver's (1954) theory. For ernn = r';-l/ 2Srlnn'With 1 =dn/dz, z is found to
be

z = -\/b-1+n2 + \[Elog[mﬂb'lmj )
Vi-n

The resulting expression for ernn is

R. =4 () exp[-cz]

where

A0 (n) = -(4n+3) log 0

[\/B—-l' +\/n2+b—1]

Finally
4n+3

12, —5  \eVvb
h (n)=<___n_l_‘1- 1-p’ (BT + I’ +h-1 ) 2
mn n

2
-n
m’b-l-}'nz \[B +\/b-1+n
X exp[c\jb- 1+n2 ] . (3.18)

J 2
Here, no distinction is made between u = c\{1+1/(m"-1) and c¢. For m>c,

the distinction is unimportant in practice, though necessary for theoretical

reasons (see Olver, 1954).

Using Mckelvey's (1955) method, the asymptotic expansion valid in

[0,1) is

1 dV sinh|6(n)
Smn(n) =V cos[6(n)] +E;1 SI—C"E—BJ . (3.19

In this case,
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-1/4

v=aca P w o

[ 2
z-—20<\/n tb=1 +Jb=-T1+/b lo [J_:;Z—lf (l-nz)_1/2}> ;
Vn +b-1
= ==

1-n

n 9 o8 ,1/2 g

b~ 1)3/ 4 4

A is selected so that eqs. (3.19) and (3. 18) are identical for z >> 1;

2+Z 3 9
n4n+1

8 -c\Vb
A=2 b- 1)° (/b + yb-1) O‘/_exp[c\/b-l].
3.5 Wronskians,
To complete the determination of the angular Resolvent Green's
1 2
functions, the Wronskian of X (n) and X (n) must be found.
mn mn

For any two functions V_ and V_ of y, their Wronskian is defined as

1 2
vy Yy
= = ! 1
W(Vl, Vz,_y) S V1V2 \% 1V2 (3. 20)
1 2

IfVv ] and V2 are independent solutions of the Sturm-Liouville differential

equation

%[p(y) %‘ﬂ +[g(y) +Ar(y):]v =0,

then p(y)W(V 1,V2,y) is a non-zero constant, Thus, the determination of pW

at any point in the interval where V1 and V_ are defined serves to determine

2
it throughout the interval.
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As discussed in Chapter 1, the two independeﬁt solutions of eq. (3.1)

that we are concerned with are

1 _ 2,-1/2 1

X m=0-n) Smn(n) ) -1<n<1
X ) =x" (n 1<p<1
mn"" mn' " ’ “tins< it

From the above relations, it is easy to show that

2

2 2
(1-n )W(X1 , X
mn’ ~ m

el
o’ n = W(Smn, Smn, n . (3.21)

1 2
The Wronskian of Smn and Smn is evaluated at n = 0 using Mckelvey's (1955)
results, Suppose

1 #1 4
S M= <u0+ T Eﬁ) (AVl(n)+BV2(n)> :

Hence

M
2 = 14 :
smn(n) = <u0+ x dn) (Avl( n)+BV2( n)> .
In particular,

v, = 4 2o @,

k,1/4

v, = e Y4 5720 @

k,-1/4
where A, ;S, uo, 7 ) and z are defined in the Appendix and Mk, +1 / 4(z) in
Section 2,2, After some algebra,
1 1 _
W (0,5 (1), n) = -24BW(V ,V,,n) (3.22)

and since

W(VI’VZ’n) = -(k/2)1/2 ) (3.23)
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we have
2 2 1/2
L-wxl x> m=apen? . (3. 24)
mn mn

The values of A and B in Region 1 can be obtained from Sections 2.2

and 3.2 and are

Alegﬁi/4P(-l/2) A2 m(-1/2)
AT Traey Y 1
' [ (-n-3)
Ale”i/4r(1/2) A,T(1/2)
B = +

Fm+§) Fn)

where Al and A2 are defined in eq. (3.11). Thus the Wronskian is

2 1 2
1-nWEX_ X ,n) =
mn’ mn

3
6n+4 2n+2
c c

- 2m+1 7] i
1/2 (1) exp [—210- Z—i +-E-—L7€1 + & . (3.25)
7' (2n+1)! 2 4

Similar results hold for Regions 2 and 3.

Region 2

2 1 2

(1-n )W(an, X o n) =

5 9

+.... -

6046 2n 2 3n+4

2 c (1-b) . . -1
Y5 exp| -2ic\T-b +2ic\b sec \1/b

T (2n+1)!

+ m(sml;—)] . (3. 26)
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Region 3
2 1 2 _
(l-n )Wo(mn; an: n) -
5 9
2n+— 3n+-—
6n+6 2 4
2 -1 =2 2¢c\b -
c G-l (b +{B=-1) cvb 2e/b-1. (3.27)

-1/2
m 1/ (2n+1)!
This completes the determination of the angular Resolvent Green's

function.



Chapter 4
SURFACE FIELDS FOR NON-GRAZING INCIDENCE

4.1 Summary of Procedure.

Using the results of Chapters 2 and 3, the contour integral representation
for the surface field 0u/dz can be evaluated. For convenience, the pertinent

equations are repeated here:

IR R S E cosm,rS--'-—-an (4.1)
oz an o€ an =5 o€
where
ov
m _ _1 lim _1 9
o€ e s—0+2m | % % @5 MG M Mg -V v
m r
Y (4.2)
with
H (§)
a9 _ mv_0
P G (OE V) H OO (4. 3)
mv
and
1 2
>
~ -1 va(n)xmv(no) » M2y
G (n,T) :-V) = . (4. 4)
1
m- 0 (1'”2)W(me’ xfnv, . 0 > o N
my 0 my "V TIO__T)

Henceforth the Wronskian (1-n )W(X ” sznv’ n) will be written as
(1-n )W oy’

As the first step in finding 8u/ 0z, the known expressions for Hmv and
me are inserted into eq. (4.2) and the integral evaluated. This process is
complicated by several factors. As shown in Chapter 3, the va are made up
of several asymptotic expressions each valid in a different n interval. The

intervals do overlap and though the basic forms of the asymptotic expressions

are different in each interval, in the region common to the intervals, the

37
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expressions are the same. Another problem is encountered in the evaluation of
the integral itself. For certain values of n and Mo’ the integral defined in eq.
(4. 2) can not be evaluated as a residue series but must be treated as a line inte-
gral, and for n = U =0, even the line integration technique fails.

The final step in determining ou/0z consists of performing the m
summation in eq. (4.1). Unfortunately, for most source and observer positions,
the sum cannot be expressed as a simple analytic function. To keep the expres-
sion for the surface field in as simple and useful a form as pbssible, only the
fields in certain regions of the disk are found. These regions are the center
(n = -1), the edge (n= 0), and the annular region where c 1-n2 >> 1 and
c 1—\/ 1- nz >>1, n<0, Determination of the fields elsewhere requires no
new mathematical techniques, but is not necessary to an understanding of the
surface field behavior.

This chapter is concerned with the determination of the surface field in
certain regions of the disk for various source positions. In all cases, the

source is far from the disk, i.e., & 0 >> 1.

4,2 Point Source at (EO, 1,0), Broadside Incidence.
4,2.1 The Field at (0,-1,8), the Center of the Shadow Side of the Disk.
From eqs. (1.20) and (4. 1),

[00) 00 1 2
Su _ Z cos mp Z Hmn 0 an(l)an(-l) 4.5)
oF — ' mae — 9. 2 : :
m=0 "‘m 20 H_©| . (L-nIwW__

It is easy to show (see egs. (3.4)-(3.6) ) that

1, _ _ 1/2
X: (1) =X, (-1 = (-1/2) (4.6)
and
x! =x> (-)=0 , m>0.
mn mn

Well within the shadow of the disk, the residue series is expected to be highly

convergent for ¢ large. We therefore assume that only the first A <<c terms
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contribute significantly to the sum in eq. (4.5). Then from egs. (2. 17), (2. 18)
and (3. 25)

ic . A .
e 0 e . nm/2(2n+1)¥ )
€ - afy 52 <4 i,
and as ¢ —> o,
icEO ic
29. ~y e < e > (4 8)
5 .
% a80 25/ m

which is identical to the result obtained by Goodrich et al. (1963).
4.2.2 The Field at (0,0,4), the Disk Edge.

As before, we form a residue series for 0u/9€ hoping that it will be
highly convergent. Since Xllnn( 1) =0 for m >0, only the m =0 term contri-

butes. From eqgs. (1.20) and (4. 1),

(00) 1 2
u _ 1 Ho &) X0 1%, ©
% 2m 5 2 ' (4.9)
n=0 E‘/HOU(O) ) (1-n )WOn
V=V
n
It follows from eqgs. (3.9) and (3. 10) that
2n+l n-i-l
2 2 20 2 i 1
X (0) = —mm————— exp[—ic+— (3n+—):] . (4. 10)
On 3 2 2
Mo+=)
2
Therefore,
ic€ A
o 0 -Tr1/4cl/2z o
o€ a%’o 3/2 21/2 ey

This summation does not converge for any finite but arbitrary A <<c and a
simple analytical expression for the edge field can not be obtained using the

above residue series.



40

To find the field at the edge, we resort to the integral expression for

du/ 8€.
1
Ou__1 lim _1 HOV(EO) XOV(I)X(?v(O) v
0 2 + 2mi 0 '
£ 2m s—>0+2m | Hy, @ - Aw
v Ov
Two functions fv and gy are now defined such that
1 2 2
= + -
XOV(I)XOV(O) g, fv(l n )WOV
Since
3
. yin+3 c2n+ 2 .
(1-n )WOn = 3 exp[—Zic-l-%i+n7ri:]+l s
("(n+1)l"(n+§) T

2
where v = -m +1-ic(4n+3), it follows that

M@+l [ T, ]
fn— 5at3 il CXP 1c+21(n+1)
2 c
and
-1
- Loty [c+£n]
gn 2n+3 n+16p1 2 ! ’
2 c
and hence
ow_ om0 P&
oE 2ra s =—>0+ 27 HOV(O) (1-n2)w
r Ov
v
L1 lim 1 Ho, &) ¢
2ma s => 0+ 27 H 0 v °
Ov
ru

(4.11)

(4.12)

(4. 13

(4.14)

(4. 15)

The first integral, denoted by I 1’ can be evaluated by closing the contour and

summing over the residues of H_  (0). The integral becomes

Ov
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00
HOnGO) gn
I = D 2
n=0 EHOU(O) ) (1-n )W()n
v=v
n
which is equal to
ic§ . A
0 2ic
- 2n+1)!
L= % <-‘; >E e L) = . (4. 16)
= + -
0 n ot 6n 5
c 2
For ¢>1,
eng( ) eZic
I .~ . (4.17)
1 SO o 27/2

The second integral, 12, is evaluated by carrying out the line integration

over [ .
v

[ = lim 1 HOV@O)
2  s—0+ 27 HOV(O)

r..1/

fdv.
v

Making the change of variable from v to n,

L = lim (_ _2_g> HOn(EO) ¢ do
2 s-50+\ 7 H (0) 'n
On
i
n
e“’go (T4 12
= M(n+ 1) (=n) dn
S 21/2,%2 |
Mn

where Pn is a straight line path a small distance € << 1 to the left of the

imaginary axis in the n plane. Since
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i00 =€
MFMa+1)(-n)dn =7i ,

~-im ~-€
we now have
ic&
-ir/4
e 0 ir/ C1/2

I, = (4.18)
2 N 21/2 7T1/2

and hence

ic§ . .
o elC 0 6-17/401/2 ) e21c 19
oF  afy 23/2W3/2 C7T229/2

4,2.3 The Field in the Annulus, -1 <n<0.

. (e / 2
n must also satisfy the conditions ¢V1-n >>1 and c\l1=-\l-n />>1.
From egs. (4.1) and (4.2),

00) 1 2
o _ 1 Hon(%’o) XOn(l)Xon(n) (@.20)
8  2m L o 2 ‘
n=0 ™ HOI/(O) ) (1-n )WOn
vay
For the interval considered (see eq. (3.7) ),
< () = i(1-n2)'1/4 ln]‘l/z S[ 2 _£+£@] @ 2
On'" /2 12 COS|CVI=M =4 T Ty '

with

h(n) =i(4n+3) log{: In]

Then
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ic§

0 ic 7i/4 /2
u _ e e e 2,-1/4 icV 2 / 2 -
o~ af, 12 3/2,3 (1-n) EXPE“’ a K” 1'”>3 I
- _3/2
-iexp[iC\/l-anG’“\/l‘nZ) } (4.22)

This result is identical to that of Goodrich et al. (1963).

4,3 Point Source at (§ LgG,O), 0 <n.<1, Oblique Incidence.
0 0

To simplify the expressions for the surface field, no will be further
constrained to satisfy cy1- N >> 1 and c(l - 1'TI§>>> 1.
4.3.1 The Field at (0,-1,4).

Only the m = 0 term contributes, giving

[40) 1 2
X (X (-1)
1 On 0 On
—_F — E . (4.23)
2ma n=0 % (0) (1'"2)W0n

V=V
n

Equation (4.23) is the same as eq. (4.20) since Xﬁn(-l) = X(l)n(l). Thus Ou/ &
is given by eq. (4.22) with n replaced by Ny

4.3.2 The Field at (0,0, ¢).

Because of the complexity of the expressions for the surface field, the
result will be left in the form of a summation over m.

From egs. (4.1)-(4.4),

00 1 2
ou _ N mé lim 1 Hmv(go) va(nO)va(O) g
o8 4_4 s—=>0+ 27 H_(0) 2 v
m=0 "m mvy (1-n)W
r, mv

Since the asymptotic expressions for Hmy(E) and va(n) are different in two
overlapping regions of m, the m summation is divided into two parts, a sum
over m in the interval [0, Ve ] and a sum over m in (€, c]. For reasons

discussed in Section 2.4, the contribution of modes with m > ¢ can be neglected.
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The expression for the surface field is broken up into two terms:

I I
u_Bu  Ou
o8 = o8 + ok (4. 25)
where
VC
Qu_I_ _ cosm BVm
3 — 7ae o€
m=0 m
and
[c]
__I_I_ _ cos m¢ aVm
o ; : Ta o
m =[,['c‘ +1

[x] is the greatest integer n such that n <x .

I) Region 1 (0<m < yT).
As was done in Section 4. 2. 2, the integral in eq. (4.24) is expanded into
2
two terms. If X (0) is written as
my
2

2
= + 1-
Xmu(o) gmv me( n )Wmv ’

the expression for BuI/ 9€ becomes

]
ou Zcosmé @ 41 )
:0 m

BE - ae 1 m2
m m
where
00] 1
_ Hmn(SO) an(no)gmn
Iml a 0 2 ’
n=05l; Hmv(o) ) (1-n )Wmn
V=
n
[ = lim 1 Hmv(go) Xl (n.) dv
m2 s->0+ 27i Hmv(O) my* my 0 ’
r

v
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After some algebra,

i 1
elcgo XmO(n )
I L i g 3 expl:21c- (m -l)-— i] (4. 26)
m 0 2 me

with

h(n,)
- 3 2m+1
X:IlO:i(l-(z) 1/4 /( ) /cos[c\)l-no- ‘2+ T+ 20]

(4.27)

and h(no) defined in eq. (4.21). As before, only the first residue contributes

significantly.
For Im2’ one gets
18, _rif4 1/2 .
1 =2 2 < exp[- -I—(mz- 1) -zmi:]
m2 & 3/2 2¢ 2
0 g
1
- +
X M(=n)I"(n 1)an(n0)dn
Cn
and
icg -1/4
Y 1) N E_i_(m2_l)_2m+1m]
m2 £ 1/2 PI™ 2 4
0 m™m
0
Rk — 2 2mtl 32 . 2 . 2m+1
X 2exp1c 1- no 1 T+ _2exp-1c 1-n0+1 7
lta 1+ a
(4.28)
where
"o

II) Region 2 (Yc <m<c)
In this case, because of the form of the Wronskian, the integrand is

treated as a single function.
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[C] 1 2
@E B Z cosmp  lim 1 Hmv (EO) va(nO)va(O)
o

mos>0ter | H_©® 2.
m=[Ve +1] r, my IR
(4.29
Since
3 3 .
on+S 3
. o2t 2t o
X 0= 3 exp|-icV1-b +icy/b sec {1/b
"(a+3)

-l-i'3—27E (n+1)] ,

it is easy to show that

1 2
lim 1 Hmv(§0) Xmu(nO)va(O) d
s =>0+ 27 H (0) 2 d
my (1-n)W
r mv
v
ic§ 1/2 =iV L
=i& (1-b) e 2 Fo+1)r(- )x1 (nddn (4. 30)
& 2 Ve mn'o :
Pn

where v = -ic(4n+3) |/1-b . For m in &E , c:] (see eq. (3.14)),

h(n.)
1 2-1/2.1/2 Bl av Sinl_z—g']
an(no) = (1-n0> ’;'o V cos [———} +=— . (4.31)

2 dz Cg1/2

Only h(no) depends on n, and the n integral is evaluated for three different

regions.
i) J1-b = o
Pt DREXE (1 )dn = -ri(1-r2)" Y2 ;Y 2y (4.32)
mn 10 0 o : ¥

T
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i) yT-B 21,

Fla+ 1)”'“)Xrln (7 )dn =

I—1n
_ 2,-1/2 .1/2 riel?  ria 2
==-(1-n)) "n st )V
l+a 1+a
7ra/3'/2 7701-3/ 2 dv/dz
+ - (4. 33)
2 -2 1/2
1+a 1+« cg
where

iii) \1-b <,

Mo+ 1)f*(-n>xlln (9 )dn

rTn
32 -3)2
1+ 1+8
7rﬂ3/ 2 n3'3/ 2 dv/dz
1+8 1+ cg
where

n
B = exp Esec-l<—~l—(_)-g>]

4,3.3 Field in the Annulus, -1 <n<0,

The residue series for the surface field is highly convergent in n.

However, interest in the field here is not sufficient to warrant the complicated
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development that would be required because of the m dependence. Thus the

surface field in -1 <7n <0 is not found.



Chapter 5
SURFACE FIELD FOR GRAZING INCIDENCE

5.1 Discussion of the Analysis.

A point source is located in the plane of the disk at (EO, 0,0) where
§0>> 1. From Section 4. 1, the surface field of the disk is then

du _ 1 &
9z an o€ 6.1
where
1 2
= lim H ()X (X" (n)
E 1 my 0 “my my__ g, (5.2)
— s—>0+ 27 H (0) 2 ' ’
m=0 " my (1-n" W
("V my

For edge-on incidence, 0u/0E is the same on both sides of the disk.

As in Chapter 4, the disk surface is divided up into 3 regions, the center
(n =-1), the edge (n = 0) and an annulus such that ¢ (1- \/1_-?> >>1 and
c \/1—-_;72_ >>1, When n=-1, du/% is the same as that found in Section 4. 2. 2
and when 7 is in the annulus, 8u/ o€ is the same as that found in Section 4. 3.2
with M replaced by n. Hence, further computation is required only for the
field at the disk edge.

At the edge, n =0 and

X L ox2 o
ou _ cos mé lim 1 Hmu(go) va( )va( )
— = — dv . (5. 3)
o8 — qae s—>0+ 27 H (0 2
=0 " m my (1-n" )W
r, mv

Using the results of Sections 2.3 and 3. 3, the v integral is found to be

_ lim F(n+1)r(-n) 3/2,2 -TI’i/Z:r
Im—Am S —>0+ ——-————-r( R [1 b) ce dn

n

where Am is a constant independent of n and r‘n is described in Chapter 4.

49
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The integrand is such that the path of integration can be closed by a semicircle
to the right. The integral can then be expressed as a sum of residues of the
poles of M(-n) and

lim

_ . i 3/2>
I =A< o 4mm(1, 3/2, ic4(1-b)

where M(a,b,z) is the Kummer function (NBS, 1964). However, the fact that
the asymptotic expressions for Hmn and an are valid only for n << ¢ must be
considered. In Chapter 4, we found that the first n << ¢ terms alone contribute
significantly to the residue series and the breakdown in the asympotic expres-
sions for large n caused no problem. Unfortunately, the contribution to the
residue series for Im of terms of order n~c cannot now be neglected and the
method which was used in Chapter 4 fails here.

To get a highly convergent series for the surface field at high frequencies,
the radial and axial or angular eigenfunctions are used. For the source and
observer positions considered so far, expansion over the radial and axial eigen-
values has resulted in useful residue series. To get similar convergence for the
edge fields for edge-on incidence requires an expansion over the radial and angu-
lar eigenvalues.

Because of the unknown nature of the asymptotic expressions for Hmn

and X  for large complex m and n, certain assumptions are unavoidable in
mn

the analysis that follows.

5.2 The Watson Transformation and the Angular Eigenvalues.

Equation (5. 3) is in the form of a summation over the axial and radial
eigenvalues and must be transformed into a sum over the radial and angular
eigenvalues.

From eq. (5.3),

(0]
ou _ Z cosmé I (5. 4)

o¢ o waem m

where
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1 2
H ) XX (0)

lim 1 n dv)
= - e — )d . 5.5
In™ s—>o0+ 2m " (0) g an/ " (5.9)
mn (1-n)W
r'rl mn

A transformation equivalent to that of Watson (1914) is performed on the m
variable in eq. (5.4). For this to be valid, Im must be exponentially small for
m =a+ie as a—>T o with 0 <[e |<<1. An assumption to this effect is made.

Equation (5. 4) can be written as

©
ou _ 1 E cosmé
- = 5 I
o0& 2 ma m

m=-0

since Im =1 for m an integer. Then

_mB
ou _ _1 e
08  47ai | sinaB °°SB¢IBdB (5.6)
r
B
where F’B is shown in Figure 3.
y ImB
axial poles B-plane
-0 t+1i€ \ oo t+i€
o” - N
¢ \
:,,;,\“r .,;:,;:,-x; =R€B
LN /
-0 ~i€ | \ "o -ie
[‘l
B

FIG. 3: The FB path of integration.
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Using the properties of the trigonometric functions, eq. (5.6) can be

put in the form

- +i€

w1 os 3¢ 'IWB 17rB

o€ 4rai smByr B I_B]dB . (5.7)
w +ie

The integral is to be expanded over the radial and angular eigenvalues which are

specified by the zeros of HB (0) and (1-n )W(XB Xz , M), respectively.

The Wronskian is zero if and only if X and Xz are not independent.
1 1 2
If m is selected so that X s lar at th —i‘l =
is selected so () is regular bo n s X =X (0

2 1 2
and (1-n )W(an, an, n) =0, Thus the solution of eq. (3. 1) regular at

=11 must be found.

To this end, let Rmn(z) = (1 -4z)1/4zl/2

X_(n) with z = (1-12)/4

Equation (3. 1) then becomes

2

dR c2 1_m2 A +m -1 3

—R - 2% + R__ =0 (5. 8)
mn

where Rm (z) must be zeroat z = 0 (n=211), A solution of eq. (5.8) valid

12 2 A
/ J (2vz 1/2 ) where y=\c -A and J (x) is the
mn m

near z =0 is Rmn
cylindrical Bessel function (Watson, 1922). This solution is regular at n =1
and using it as a guide, a function fmn(z) is defined such that

Rmn(z) = zl/sz(Z'yzl/z)f N is a solution of eq. (5.8) for 0<z < 1/4. If

zl/sz(Z'yz 1/2) #0, f o RSt satisfy

[:l/ZJ @z 1/2):] &
o +2 +E mn 3 2:]

mn [I/ZJ o 1/2)] mn

(5.9)

No elementary solution of eq. (5. 9) is possible for all z, 0<z < 1/4.
However, near z = 1/4 (n =0), eq. (5.9) can be approximated by
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J;nw) men 3

" +4 |14y —— ' +|- + f =0. (5. 10)

mn J (®) | mn 1-4z 2 { mn
m (1-42)

Making the substitutions x = 1-4z and y = ox where o = 1+vy J;n(‘y)/Jm('y) ,

eq. (5.10) transforms to

A
v __mn 3/16 _
fmn fmn+[ 4ay * y2 fmn 0. (5.11)

The solutions of eq. (5. 11) are well known and are

_.y/2
S— [AMk,-1/4(y)+BMk, 1/4(y£] (5.12)

where M (y) are the Whittaker functions defined in Section 2.2,

_ k,T1/4

k= -Amn/ 4, y =om , and A and B are arbitrary constants.
Assuming for the moment that the angular eigenvalues are such that
\C §|m| < ¢, the asymptotic solution of eq. (3.1) near n =0 is (see eq. (3.16) )
1 _ L =12
an(n) =Cn W-l(Z) (5. 13)
2

with z = ic ,/1 -bn for n<K< ll -b]. The form of the asymptotic expression is
independent of m and for that reason cannot be used to find the angular eigen-
values. However, from eqs. (5.8), (5.9) and (5. 12), Xinn(n) can also be approx-

imated by

1

_ . -l/2
X, = [ 0B 0] (5. 19

near n =0. For egs. (5.13) and (5. 14) to be the same, the constants A and B

must be
3 {eﬁ/ 4_&[_2)] _ F”’i/ 4 F'(-I/Z)]
A=c|&—| B=C -
w7 *k r(Z+k

with
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J]'m(v)
J m('1/)

icy1-b =1+y (5. 15)
Equation (5. 15) is the defining equation for the angular eigenvalues and since
v=c for ¢c>>1, eq. (5.15) can be approximated by

J;n(c)
T © =ic\1-b ) (5. 16)
m

1+c

For convenience, another assumption is now made: m =c¢ - arcl/ 3. Then,
eq. (5. 16) takes the form
1/3

Ip(mtaem ) 2/3
l+c 73 =if2a ¢’ | (5.17)
J (m+om™ ")
m
For |v|>>1 and |argu|< /2,
1/3
J (v+zv1/3) a2 Ai(-21/3z)
v 1/3
v
2/3
1/3, . 2 . ol/3
J,',(V+ZV )= - ——V2/3 Ai'(-2"' "z)

where Ai is the Airy function (NBS, 1964). Using the above approximations for
the Bessel functions, eq. (5. 17) becomes

/3
Ai'( 21/3 a) _ V2% | (5.18)
Ai(-2" "a)

The roots of eq. (5. 18) were first found graphically using Fig. 4 (see

Logan, 1965). The approximate locations of the first two are indicated by stars.

/3

computer, the first root was found to be ao = 2,21-0.87i. The second root is

located at a = 3.53-0. 82i and the third at @, = 4,64-0,77i,

1
In general, there is a root associated with each zero of Ai(-2"' "a). Using the
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Unfortunately, the imaginary parts of the roots get smaller as the order
increases. This effect is surprising. From previous experience with the cyl-
inder and sphere, the imaginary part of the roots was expected to get larger
with increasing order. Although it is impossible to say whether the unusual be-
havior is physically valid or is a consequence of the fact that eq. (5. 18) is con-
structed of approximate solutions of differential equations, we assume the latter
since the results obtained in that case agree rather well with theory and exper-
iment (Senior, 1969).

The location of the first root is approximately correct since small
changes in eq. (5. 18) will not shift it much. However, the higher order roots

1/2 +
/ 2+e n

.
—901*/2 as c¢=—> w; but the roots, for |oz|>>1, of eq.

are much more sensitive. For example, if o
1/2 +e

is replaced by a
€ = -1/c, then a
(5.18) for € =0 and € = -1/c are not the same.

With this knowledge of the first angular eigenvalue, the wave motion on
| the disk can be determined. As in the case of the cylinder, it is convenient to
break the analysis up into two distinct regions: the front half of the disk
(-m/2 < § < m/2) and the back half (/2 < § < 37/2).

5.3 Back Half Analysis (7/2 < ¢ < 37/2).

Using the fact that I, =1 g, eq. (5.7) can be written as
-00 ti€e i T : ﬁ )
ou _ 1 I -iBr/2 eXpl:lB(¢‘ 9 )-_l+exp[1[3( > ¢)]
of  2mi B © 4 sinfr
o tie
1 cos[B(7+9)
T2 " sinpr }dﬁ (5. 19)

which after some manipulation becomes

w1 (7 ipeya((exe[iB8- 5]+ exoli66+ )
Sg = 4rai IBe sinBr & .
o tie (5. 20)

Inserting the expression for IB and reversing the order of integration (the
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integrand is assumed absolutely convergent), we have

- tie
B ic B (& ) XB (0))55 (0) ~iBr/2
&~ 2 V1 <o) P ¢
27 a ) B (1-n )W
Pn o tie
exp[iB(é-g J+exp 1B(— -¢)] 6,20
X sinBr '

where b = (BZ- 1)/ 02. Assuming that F‘B can be closed in the upper half plane,
the [ integral can be expressed as a sum over the residues of the poles within
the contour. As discussed in the previous section, the poles are located where
(1~ nZ)WBn =0,

The angular eigenvalue with the smallest imaginary part will dominate
the field behavior well away from the shadow bourdary (4 = * 7/2). Summing

over the residues,

1 2
. 2. H (5) X, (0% (0)
du’ 1 jin 0 jn___jn .
—_—= .= exp(-if, 7/2)
%€ 2a n=0 j=0 2y (0) —8[(1-n2)W ] in
w jv v 9B Bn-|B=R.
n jn
: T 3 (3T
exelif, - 3 )rexn 8,5 -9 (5.22)
sinf. « ’
jn
which, far enough into the shadow, simplifies to
1 2
5u 1 H (S ) X (O)X (0)
= =-s xp (<iB_ 7/2)
o€ " 2a 8 (0)' [(1 )W ] e 00
vavy 88 L7 g0 ‘B-B
. g ST
exp 1BOO(¢- 5 )] + exp IBOO( ) 55)1
nh (5.23)
sinf,
where the first eigenvalue has been denoted by BOO' For convenience, Z 8. n
jn

has been written as Z'n'
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Since

3n+-9-

9 4  ic -1 2 2
(1 n)an] [ + & sec Jfﬁa];gu-n)wﬁn. (5. 24)

and since BOO = c-aocl/3, eq. (5.23) becomes
icf, 3/2,3/2 1/3 : T 3r
u_ e [(2 a) exp 16, (4 - 5)] + exp [Boo( 5 9]
o€ a& ( 9 ) 1-exp(27ifB, )
— _i[2
0 L 8a W%, 00 (5. 25)
With ozo =2,21-0.87i, eq. (5.25) is
. 3 3
ic& exp |if (gS-E)}exp B (=£-4)
0 . 00 2 00 2
u e @ ge-o.sgm)cl/B T=oxp@riB)
€ af, P00
(5. 26)
Equation (5. 26) is valid only well away from the shadow boundary.
5.4 Front Half Analysis (-7/2 < ¢ < /2).
Equation (5.7) is now written as
- tie
ou _ _1 cos
o 27ai B sin Bm cos . (6.27)
+ie

In a manner similar to what is done for a cylinder, an integral representing an
"optics' term is separated out of the integral in eq. (5.27). After some manip-

ulation, eq. (5.27) can be written as

(0] -0 ti€

u _ 1 1B¢ 1B7r cos @é

213 2ma B dg+ 27ra1 B sin B7r (5.28)
-  tie

The second integral can be evaluated using the techniques of the previous

section. Well away from the shadow boundary,
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- tie€
1 iBr cos B

2rai IBe sin 7 dB

w tie

ic§ : 3 n (3T _
e O _o.6om 1/3/ Plfy® " )] + exp[18( 5 -4)]
~ (4.9e )e -
a& 0 1- exp(27r1[30 0)

(5.29)
where again only the BOO residue contributes significantly.

The first integral can be written as

100) 1 2
I= e ' dBdv
2 . H_ (0) 2
47 ai Bv (1-n" )W
-0 Jr Bv

For B8 in Region 1 (|8]<y€), a reversal of the order of integration and a trans-

formation from v to n gives

ic'g"O
(=8 c M(n+1)(=n) (220 e—7ri/2)n
a8, 21/27r5/2 |"(n+§)
n
® 2
X exp [-ic <1+ é—zzl - Qé)] dBdn . (5. 30)
2c ¢
-0

Since c is large, an approximate value for the 8 integral can be obtained using
stationary phase methods. In this case, the stationary phase point is at B = cg

and thus

® exp[_ic<1+%2§2—l - %é ]dB =exp[_ic<l_¢2_2 N ;?)] (75 o4

-0

2
valid for ¢~ < 1/c. Using the above expression, eq. (5.30) becomes



ic§ .
0 -ir/4 3/2 2 .
1= e c exp [—ic (1_ % _ lz)jl F'(n+1)l"?f-n) (2zce_m/2)ndn
2¢c r'(n+§)

n

Evaluation of the n integral (see Gradshteyn and Ryzhik, 1965) gives for
2
8 <1/

ic€ |
0 -im/4 1/2 2
_e e c : g- 1
1= 2% 3/2 exp[‘“’Q' 2 " 202)1 : (5.31)

0 27

A similar analysis can be carried out for the ranges 1/ <¢ <7/2 and

-1/2 <$ <-1//c using Region 2 expressions. We have

o ic§
. 0 -mif4 1/2, 1/2

elB¢dB = eag g 002/2 pe exp[-iccos¢] . (5.32)
0 2r

1

o Ly
-0

T
2
positive real quantity which is a function of ¢ onlyand e—> 0 as ¢ > ». Com-

which is valid for 1/ve <¢ < %-e and - - +e < <-1/yc where € is some

parison of eqs. (5.31) and (5. 32) indicates that eq. (5. 32) is also valid for
¢2 < 1/c with negligible error. We can therefore combine eqs. (5.29) and (5. 32)

to obtain
©f) rLinfa  1/2, 12
u =& l:e cos _ e exp —iccos,ﬂ
% 2% 27/ 2
x4+ 220] + exo 8, (22 - ]
14 9g0-697 1/3 00¥ " 2 00' 2
: 1- exp(27ri[300)
(5. 33)
T T
for -§-+e<¢<§-e .



Chapter 6
DISCUSSION OF RESULTS

6.1 Edge and Creeping Waves.

As is apparent from Chapters 4 and 5, the surface field behavior is very
different for different source positions. The simplest results are obtained for
broadside incidence; the problem is mathematically two-dimensional since
there is no m dependence. For edge-on incidence, the surface field at the disk
edge is also of simple form. Here, it is the n dependence that drops out, the
BOn being independent of n to first order in c. In both cases, the surface field
can be accurately approximated by only the first term of the residue series.

The mathematical simplicity evident in the two cases discussed above
has a physical basis. For broadside incidence, the surface fields are made up
solely of waves launched at the disk edge. These waves are radially directed
and similar to the edge waves found on an infinite half plane due to a plane wave
incident normal to the edge. However, for grazing incidence, the edge field
exhibits a creeping wave behavior similar to what is found on a cylinder. In
other cases, the surface field behavior is a combination of the above effects and

for that reason is much more complicated.

6.2 Broadside Incidence.

For an electrically large (c >> 1) disk, the Geometrical Theory of
Diffraction (Keller, 1962) predicts that the field on the shadow side of the disk
is due to waves launched at the disk edge. The field incident on the disk edge
excites waves which carry energy across the disk. Further, the waves that
arrive at any point on the surfacé were launched at the two points where the
diameter containing the observation point intersects the disk rim.,

For a point away from the edge, Goodrich et al. (1953) show that the
surface field can be made up of a sum of waves. Those arriving directly have
the greatest strength, but there are also contributions due to waves reflected
back from the opposite rim and so on. Thus, the surface field is in the form of

a series in increasing inverse powers of ¢. Such is also true at the edge. The
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first two terms of the series expression for the edge field are

. 2ic
EZC/W)I/z e_m/4- "9—57'5] . (6. 1)

cm2

1080
e
4ma 0

ou
an o

lnzo =

The first is an optics term; this is the only term where c¢ has a positive power.
Since the disk edge is locally plane, the edge field should look similar to that of
an acoustically soft half plane for a normally incident plane wave., (The plane

wave solution for the disk can be obtained by removing the elc 0/ 4rag 0 factor.)
For the half plane, a local transformation from a Cartesian co-ordinate system

to an oblate spheroidal one gives

1/2e-7ri/4

an -guz— = (2¢/7) (6.2)

n=0
at the edge and the leading terms of the disk and half plane edge fields are seen
to be the same.
The second term is due to a wave launched at the opposite point on the
rim, It travels across the disk and is incident on the rim at the observation
point. As is evident from its negative power in ¢ dependence, the second term

is a diffraction term.

6.3 Edge-on Incidence.

Whereas the surface fields for broadside incidence are characterized by
an edge wave behavior, for grazing incidence a creeping wave behavior is evi-
dent, particularly on the back half of the disk. Creeping wave effects are also
found in the front half of the disk though their magnitude is greatly decreased.
These waves are of primary importance in determining the field scattered by the
disk. Since most of the energy associated with creeping waves is found near
the disk edge and since the fields in the interior are too complicated for simple
analysis, only the creeping wave behavior at the disk edge is analyzed.

Though the results obtained in this work are for scalar scattering, we
expect a great deal of similarity between these and Senior's (1969) results for

electromagnetic scattering. Senior's eq. (1) is



63

Jyﬂ = Aexp[:i(ch%ﬂ pr EB(%E -¢i] +expEB(¢-TZ'):D (6.3)

-7 1/3
with B = c~-(e i/ 3/ 2)c / . Our result for the same region of the disk

37 T
—_— -+ :
<2 e<95<2 G)IS

N 1c§0 0.7m, 1/3 exp[lﬁoo(l-z— "S] Jr.ex" B0 - g)]
exp|2rify, |

% ~ w47ra§ (61.6 e

(6. 4)

Equations (6.3) and (6.4) are similar, as expected. However, it is important
to note that 8 # BOO' Though both are of the form B = c-acl/ 3, the a's are
markedly different: o = 0.25-0.43i and %0 = 2.21-0.87i. Nevertheless, our
hope that the scalar analysis would give results similar to Senior's (1969) is
fulfilled.

As in the broadside case, a physical interpretation of the disk results is
possible in terms of simpler geometries, e.g., the half plane and cylinder.
Geometrical Theory of Diffraction is usable only in a limited way since it can-

not predict the creeping wave behavior present on both the front and back halves

of the disk. On the front half, the surface field is

ic’g"0
an % ) = :Tra’g‘ (2¢/ )1/2 7r1/élcosl/zgé exp [—iccosyﬂ]
n=0 0
. expEBoo(wz—ﬁ)] +exp[ 00('.'2' - )J
+61,6e-0-77r101/3 (6.5)

1-exp [27ri300:]

The second term is a creeping wave term and its magnitude decreases with in-
creasing c. However, the magnitude of the first term increases with c since it
is an optics term. Dividing the optics term of eq. (6.5) (§ = 0) by the optics
term in the edge field for normal incidence, eq. (4.19), one obtains V2 , the
same ratio exhibited by the half plane edge fields for edge-on and normal inci-
dence. Thus the similarity with the half plane behavior which was found in the

broadside case is also valid in the edge-on case for the front half of the disk.
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A shape similar to the disk is a cylinder. Though the cylinder fields
are nowhere infinite, they are of the same form as the disk fields. The surface
fields for both hard and soft cylinders due to plane wave incidence can be found
in Bowman et al. (1969). The E-polarization result is mathematically the same
as that for a soft cylinder. The H-polarization case is equivalent to the hard
cylinder. A comparison of eqs. (6.4) and (6. 5) for the disk edge fields with the
surface field of the cylinders indicates that the disk field is not the same as that
for either the hard or soft cylinder, but lies between them. In all three cases,

the expressions for the field are of the form
f=Ac" cos™ ¢ exp[iccos $]

o exp[iﬁ(ézz -¢):l +expEB('357£+¢)]
. |

* 1-exp [?wiB] (6.6)
for the front half of the bodies (|¢|< 7/2) and
3
exp [iB(g - 2 )| +exp|if(Z -¢)
f=Bc [ 21 2 ] (6.7)

1-exp[27if]

1/3
for the back half of the bodies (!75 -7r| <7[2). Here, B =c+ac / . Assigning
the subscripts h, s, and d to the hard and soft cylinders and disk respectively,
it is easy to show that nh<n <ns, m <m.<m,

d ho g "M Py
Im(ah) < Im(x d) < Im(as). However, the creeping wave is a fast wave for the

<pd<ps, and

disk, Rela d) <0, butis a slow wave for the cylinders, Re(ah, S) >0,

The similarity and difference between the cylinder and disk surface
fields can be further illuminated. For the cylinder, the o are related to the
zeros of Ai or Ai' for E (soft) and H (hard) polarizations respectively. If, in
the H-polarization case, an impedance (mixed) boundary condition is imposed at

the cylinder surface, the equation for « is
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a3y

-1/3
- = Dc
Ai(2 1/3e2m/3 Q)

(6.8)

where D is a constant that depends only on the surface impedance Z. Equation
(6. 8) is very similar to eq. (5.18). In fact, a realizable Z can be selected so
that at a given frequency, the attenuation constants, Im(a), for the cylinder
and disk are the same. However, the creeping wave on the cylinder is still a
slow wave. If Z is selected to make a the same for the cylinder and disk, it
is found to have a negative real part; the surface is an active one and imparts
energy to the creeping wave. Thus the creeping wave behavior on the cylinder
and disk, though similar in form, is as fundamentally different as positive and

negative resistances.

6.4 Final Comments.

Since the results of Chapters 4 and 5 were rather complex, a compre-
hensive explanation of the surface field behavior was not possible in any simple
way. Except at grazing incidence, we had to be content to consider only the
field in the disk shadow. Nevertheless, from a study of the broadside and
edge-on incidence cases, we were able to get some physical understanding of
the interaction between the incident field and the disk. Our analysis showed
that the surface field could be made up of edge and creeping wave terms.

Most of the assumptions in our analysis were a result of the unknown
nature of the asymptotic solutions of the radial and angular differential equa-
tions for certain ranges of parameters. Some of the assumptions made could
have been removed through a more extensive analysis, but some are inherent
in the use of asymptotic theory and would remain as long as we considered only
the first term in the asymptotic expressions. Yet the use of an asymptotic
analysis did not appear to greatly affect the accuracy of our results. Only in
the case of the angular eigenvalues where we are concerned with second order

effects did our asymptotic analysis cause problems.



APPENDIX
McKELVEY'S AND OLVER'S ASYMPTOTIC THEORIES

In this appendix, the works of Mckelvey (1955) and Olver (1954) on which
the asymptotic theory used in this work is based are briefly discussed.
Mckelvey's (1955) theory is concerned with the asymptotic solution of the

equation

2
dw 2
4 [\ 00420 ) +Qéx, V| =0 (A.1)
2 0 1
dx
for large values of A. Here, x is a real variable and po(x) has a second order

zero in the interval where x is defined. Q(x,)) is of the form

& g, &)
Qlx,\) = -1
i=0 A

The first term in the asymptotic series for W is

Hy
W= u0v+ Y A (A. 2)

where

v=ywe e @B 146

k,1/4

with A and B arbitrary and M ’ (€) defined in Section 2.2, Also

k,

bix) = pé/ 2x) |

X
E=21\ gls)ds ,
0
b 1/4
yix) =[ ¢(s)ds:l 20
0
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and
1 4

Olver's (1954) theory was not directly applicable to the equations in this
work. He was concerned with equations of the form
dZW
T 4 awy+ate 0| w =0 . (a.3)
0
dx
However, only a slight modification of the theory is necessary to make it suit-

able for equations such as

2
g;x% + [Azpo(x) +)\p1(x) +Q(x,?t)] wW=0 (A.4)

where pO(x) has a pole or zero at x_. Following Olver (1954), eq. (A.4) is
.1 .
first transformed. Letting W = x / V with x = dx/d€, eq. (A.4) becomes

2 w2 .
dy +G\25<2p0(x) +)u’:2p1(x)+l:5(2Q(x,)\)- -3-"—-352-"—’5]>v =0 (5

dg? 4%

.2
with € related to x through the equation x pO(x) = g(£). The particular g(£)
used depends on pO(x), but in general it must satisfy two criteria:
1) g(€) must have the same order pole or zero at § =0 as po(x) does
at x = xo;
2) g(&) must be simple enough in form so that

&’y
2
d§

+ >~2g(§)J =0

is solvable in terms of known functions.
The leading term of the asymptotic series for V is

B() dJ§)

V = J(E)AE) + T



68

where
X 3
g pO(s)ds =S g(s)ds
x0 0
Then
_ .12 Bx) dJ(€)
W) = x [J(S)A(x)*' N dE ]
with
A(X) = cos [E'(x—):l
2
_ ~1/2  |h&x)
Bx) =g sin | =~

and

" pl(x)
hx) = dx
pé/ 2(x)
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