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INTRODUCTION

(U) This final report culminates a 21-month investigation spanning two
Contracts (F33615-72-C-1439, F33615-73-C-1174) on methods of reducing non-
specular scattering. The major tools used in accomplishing this objective were
computer programs that numerically solve the integral equations governing the
surface fields on two-dimensional structures, but laboratory experiments were
also carried out for the purpose of verifying the programs. Much of the experi-
mental work in the present (second) Contract was performed by AFAL parsonnel
at WPAFB, who generously supplied the data appearing in this and other reports
issued during the study.

(U) The computer programs determine the surface fields at discrete sampling
points distributed over the profiles of cylindrical bodies, then calculate the scat-
tered field from the surface field distribution. If the surface sampling were fine
enough, and if a laboratory experiment were to be carefully and accurately car-
ried out. the resuits ot the computations and the measurements would be indis-
tinguishable. Thus, although the investigation focussed on the use of the pregrams
and the interpretation of the results, the conclusions drawn are largely based on “
"experimental' data. That the data were produced digitally is of no real. conse-
lquence, and the reader will perceive that we occasionally refer to computed results
as "'digital", or '"numerical" experiments, or simply "experiments'’

(U) Non-specular scattering is quite literally any that is not specular and is
produced by electrical or geometrical discontinuities, or by discontinuities in the
illumination of the surface. Edges and shadow boundaries are examples of each
kind. The surfaces of non-specular scattering can be resolved iﬁto two classes, one
due to surface waves and the other due to direct diffraction from discontinuities
such as edges. Surface waves include creeping and traveling waves, and one is dis-
tinguished from the other according to the surface illumination: traveling waves

build up over lit surfaces while creeping waves decay along shaded surfaces. Edge
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CHAPTER I
ELECTRIC RESISTIVE SHEETS

2.1 Introduction

(U) The non-specular backscattering from thin metallic structures, such as the
fins of a missile or the wings of an aircraft, is dominated by the returns from the
edges, and the aspect angles over which this scattering is significant typically
range out to 40 or 50 degrees from edge-on incidence. Both the leading and the
trailing edges participate for arbitrary incident polarization, but for analytical
purposes it is convenient to address the specific cases of E- or H-polarization,
for which the incident electric or magnetic vector, respectively, is parallel to an
edge. The problem of reducing the non-specular return then becomes the dual task
of reducing it separately for both polarizations. If the reduction can be accomp-
lished for each polarization, and if the technique required for each does not degrade
the performance for the other, the treatments will be effective for any polarization.

(U) At precisely edge-on incidence the trailing edge contribution is negligible
because, for a profiie of non-zero thickness, the trailing edge is shadowed. As
the aspect angle swings away from edge-on, eventually exposing the trailing edge
to the incident wave, the H-polarized return builds up rapidly due to a travelling
wave reflection at the rear, and this happens to be the dominant source of non-
specular scattering for H-polarized incidence. There is also a small, but non-
zero, contribution due to the leading edge. By contrast, the trailing edge return
for E-polarization remains small in comparison to that from the leading edge, and
the leading edge contribution increases quite slowly as the aspect angle swings
from edge-on out to 50 degrees or so. The magnitude of the travelling wave
return for H-polarization is comparable to that of the leading edgé return for E-
polarization.

(U) By the use of a two-dimensional impedance boundary condition computer
program (RAM1B) developed in the predecessor Contract we found that the travel-
ling wave returns were relatively easy to reduce with appropriate surface coat-

ings, hence we turned to the more difficult task of reducing the leading edge



MISSING
PAGE



MISSING
PAGE



(U) The analogy between the resistive sheet and waveguide loads extends even
to the physical length required to achieve a "good'" match. Experience has shown
that high performance broadband loads must be gently tapered lest new sources of
reflection be generated, and the same result prevails in the use of resistive sheets:
the wider the sheet, the more effective it is. In a practical application, however,
there is a limitation on permissible sheet width and the problem of extracting opti-~
mum performance becomes one of finding the most favorable rate of resistance
taper. Our studies have shown that a quadratic rate of change is optimum, as will
become apparent.”

(U) A total of five kinds of distributions have been examined during the contract
and their relative rates of build-up are sketched in Fig. 2-1. The generic forms

of the distributions are
R(s) =R (s/0)" 2.1)
max ’ ’

-ms/!

R(s) = Re. +Rb e ,

(2.2)

where R(s) is the resistance normalized to 377 ohms at any point along the sheet
located by the distance s, and £ is the total sheet width. The variations repre-
sented by (2. 1) and (2. 2) are valid for curved sheets as well as flat ones, since s
is a distance measured along the surface of the sheet from one edge. Equation
(2. 1) is a power distribution while (2. 2) is exponential and the constants Rmax’

Ra and R, must be specified either in ohms or normalized with respect to 377

ohms, de?)ending on which version of the computer program is used. The exponent
n need not be an integer, but thus far none other than integral values have been
used; the exponential form (2. 2) has been used only for the purpose of synthesizing
discontinuities in the slope of the resistance variation as controlled by the para-

meter m.

*(UJEarly in the predecessor contract we dealt with linear and square law distri-
butions. Later, as higher order variations such as the cubic were investigated, we
felt it appropriate to replace the term ''square law' with "parabolic'. Now it is
algebraically more descriptive to use the term "quadratic' instead of "'parabolic" or
"square law",



s/t

(U) FIG. 2-1:; Examples of resistance distributions for linear, quadratic, cubic
and quartic laws.
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reference. It can be seen that the theoretical curve is a quite good approximation
of the total return, at least for the smaller values of Rmax and/or the wider
sheets. We surmised that, by virtue of the close agreement for these cases, the
leading edge of the sheet is the dominant source of scattering and that the theor-
etical values represented by Fig. 2-7 were probably quite accurate.

(U) A model of the net scattering by the sheet-treated ogival cylinder was
subsequently assumed to consist of only two sources: the leading and trailing
edges of the sheet. For arbitrary angles of incidence a third contribution would
have to be included due to the trailing edge of the metallic cylinder, but at edge-on
incidence this source is totally negligible. The trailing edge of the sheet joins
the leading edge of the cylinder and while it could be argued that each makes a
contribution, it is not possible to separate one from the other since they occupy the
same point in space. Thus, although in the analysis below we speak of the "trailing
edge'" component of the resistive sheet, it actually refers to a junction effect, and
the value deduced for the "trailing edge' return depends quite strongly on the nature
of the Lody or edge to which the sheet is attached.

(U) Thus the conceptual model of the scattering of the sheet-cylinder ensemble

is the sum of a pair of returns, P, and Pt’ due to the leading and trailing edges -

!
of the sheet. If the origin is fixed at the leading edge, the total two-dimensional

scattering is then

12k
P=P1+Ptelk ) (2.3)

where £ is the distance between the two edges (i.e., the sheet width) and the
phase factor serves to account for two-way delay in the return from the rear edge.
Since the theoretical values listed in Appendix A are normalized to that of a

metallic half plane, it is convenient to write

i2k!
e

Pc = A+B , (2.4)

where P = P/PO’ A= PE/PO’ B = Pt/PO and P_ = -i/2, The left side of

0
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(2.4) is directly obtainable from the output of program RISK (when the sign error
is accounted for) and is, of course, a complex number. Since A is presumably
known for every Rmax’ we can solve (2. 4) for the normalized trailing edge com-
ponent B. The deduced values are plotted for the linear case in Fig. 2-8 and it
is quickly seen that the trailing edge can be a stronger scatterer than the leading
edge. Moreover, although the data are not shown, the phase of B is essentially
independent of the leading edge resistance as well as the sheet width.

(U)Figure 2-8 displays a distinct pattern of increasing trailing edge contribu-
tion with decreasing sheet width for fixed Rma.x’ suggesting that it is the discon-
tinuity in the slope of the resistance distribution at the rear edge that produces the
scattering. When the data are replotted as in Fig. 2-9 as a function of Rmax/ {
(instead of Rmax) it is apparent that, aside from dispersions in the display, the

trailing edge contribution is given approximately by
|B|=0.048R /1 .
max

Thus the trailing edge scattering is direcily propoviional to the slepe of the
resistance curve there.
(U) By way of verifying this concept, we carried out another numerical

experiment using an exponential variation of the form

R =R e-mx/l
max

where s is the distance rearward from the leading edge. The sheet width was
fixed at 1A and the slope of the resistance curve depends upon both Rma.x and
the constant m in the exponent. Nine discrete values for m were chosen,
ranging from about 0.1to 0.9. Using the same procedures outlined above, the
amplitude of the trailing edge contribution was extracted and the results are
plotted in Fig. 2-10 as a function of the slope at the rear edge. The deduced

value of the dependence on slope is

|B| =0.045tan 6 ,

19
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where, for this case, A' =0.0600 (which is slightly greater than the theoretical
value), n = 1,282 and B is the complex trailing edge component, which is
essentially a small constant for £ > and a rapidly changing function of £ for

L <\. Equation (2, 6) differs conceptually from the previous model postulated
[equation . 4):] only in the presence of the factor n in the exponent of the phase
term. Calculating B from (2. 5) was straightforward, but the results were dismal
disappointments, both with A' and n as specified above as well as for other values.
Invariably oscillatery values for |B| were obtained for £ >\, and instead of a con-
stant value of about 0,0055, as inferred from the undulations in the patterns, IBI
inevitably traced out a sinusoidal curve with increasing £, rising to peaks as

large as 0.01 and attaining nulls as low as 0.0015. Evidently there was a flaw in
the postulated model.

(U)In order to resolve the difficulty, we plotted Pc on the complex plane and
the result is the spiral shown in Fig. 2-14. Any point on the spiral is the phasor
sum of the leading and trailing edge returns and since the phase reference has
been fixed at the leading edge, A' remains constant, As the sheet becomes pro-
gressively wider, the trailing edge return B rotates counterclockwise and dimin-
ishes in amplitude at the same time. The diagram makes it clear that the only
flaw in the model was that A' had been assumed purely real when in fact it has a
small but influential reactive component. This small reactive component suggests
that the effective center of the scattering from the edge actually lies a small frac-
tion of a wavelength inward from the edge itself. It corroborates the theoretical
prediction (found near the end of Section A.4 of Appendix A) of precisely such an
effect. A few exploratory calculations showed that the optimum values of A' and n
are A' =0.059+i0.00641, n = 1,290. Using these values, equation (2. 5) was solved
for B for all the lengths used to construct Fig. 2-13, and the result is plotted in
Fig. 2-15.

(U) The mean variation in |B| has been indicated by a smooth solid line, but
careful examination of the figure shows that the datum points may lie slightly off
the smooth curve. The amplitude |A'| has been indicated as a dashed line run-

ning horizontally across the graph, since A' was assumed to be independent of .

.28.
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Note that although the two intersect near £ = 0.702, the null in Fig. 2-13 occurs
near { =0, ‘80)\ because the relative phase between them is not 180°. The decay
of B appears to be exponential and bottoms out at a threshold value of IB | =0.005,
and seems to have no inclination to fall below this level, We feel the threshold
level is related to the geometrical nature of the junction between the sheet and the
body and is thus a lower limit that cannot be further lowered without a modifica-
tion of the metallic body itself.

(U)The above analysis strengthened the conceptual model that the sources of
scattering are concentrated near the leading and trailing edges of the resistive
sheet. It shows that an unvarying leading edge component psgged at very nearly
the theoretical resistive half plane value is almost correct, but that it must be
allowed to take on a slightly reactive character. And although the parameters A'
and n had been determined for this particular case of a quadratic distribution for
Rma.x = 4,0, it was obviously of interest to determine the corresponding values

for other R and resistive distributions.
max

2.5 Other Cases

(U)A full scale analysis of all the cases examined thus far would have been
prohibitively costly, hence we settled for a detailed examination of only three
additional cases: a quadratic distribution having Rmax = 10.0 (instead of 4.0),
and linear and cubic distributions having Rma.x =4,0. The first would show the
effect of increasing Rma.x and the remaining two would allow us to compare the
effects of three different distributions, all rising to the same leading edge resis-
tance. In addition, it would be of interest to see how the threshold value dis-
covered in Fig. 2-15 would depend upon other distributions and other values of
Rma.x' Unfortunately, as will be shown in a moment, the sheets used in the three
additional data sets never grew wide enough to reveal the threshold levels and our
curiosity remains unsatisfied.

(U) Figure 2-16 displays the edge-on cross sections of these test cases, and
it will be perceived that the amplitude data from Fig. 2-13 have been transferred
to and included in this figure. Note that the linear distribution is the least effective

of the four and that the quadratic variation for Rmax = 10.0 is not as effective as

31
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one for which Rmax = 4.0, at least for sheets less than 1.2\ wide. The cubic
distribution yields better performance than either of the parabolic ones for some
sheet widths, but poorer performance for others.

(U)Figures 2-17 through 2-19 display the spirals for the linear, quadratic
(Rmax = 10.0) and cubic distributions. Note that the decay rate for the linear
case (Fig. 2-17) is much smaller than for the others, as might have been inferred
from Fig. 2-16, and that the cubic spiral undergoes a decided change in decay
rate at a sheet width of 1A. The reason for this abrupt change has not been iso-
lated, but its effect influences the deduced behavior of the trailing edge component.
The leading edge component A' was determined graphically from magnified versions

of Figs. 2-17 through 2-19 and are summarized in Table 2-1. Note that the deduced

(U)Table 2-1: Deduced Leading Edge Components
Distribution R Real (AY) Imag (AY)
max

linear 4,0 .0585 .00680

quadratic 4.0 .059% .00641
cubic 4.0 .0582 . 00900
quadratic 10.0 .0242 .00316

values of A' for Rmax = 4.0 are essentially indepsndent of the particular distri-
bution rate, thus supporting the theoretical development in Appendix A.

(U)The deduced values of B are plotted in Fig. 2-20 for all four cases, and
none save the quadratic distribution previously studied seems to reach a threshold
level. At a sheet width of 1.5A, the widest used in the analysis, the trailing edge
components are decaying and finding their threshold levels would require sheets
ranging from 1.8X to 4.0A wide, as judged from extrapolations of the behavior
depicted. The linear and cubic distributions both exhibit slight undulations, sug-
gesting either that the correct value of A' has not been extracted from the spiral
plots or that A' is not constant, perhaps being weakly dependent upon £,

(U)The trailing edge contributions are replotted in Fig, 2-21 in the form of

radar cross sections. The logarithmic scale tends to emphasize the smaller

33



linear, R =40
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(U) FIG. 2-17;: Plot of ‘P for linear distribution, R =40,
c max
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max

Imag (Pc)

-0.2

l ] l | l | 4I

-0.2 .2 )
0 0 Real (Pc) 0 ' 0.4

(U) FIG. 2-18; Plot of P for quadratic distribution, R = 10.0.
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(U)FIG. 2-19: Plot of P for cubic distribution, R =4.0.
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(U)FIG. 2-20: Magnitudes of the trailing edge contributions.
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(U)FIG. 2-22; Optimization for fixed sheet width, quadratic distribution.
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femaiﬁ , howe{?ér, suffiéirentrtime to study the efféctiveness of magnetic sheets
placed ahead of the leading edge (or behind the trailing edge) of a metallic body—
instead of on the surface, as was initially planned—and the results of this investi-
gation are described in Sections 3. 3 through 3.6 below. Before documenting the
study, however, we first give the reader a glimpse of the nature of the program and

its capabilities.

3.2 Program RAMVS

(U) The generalized program has been dubbed RAMVS and it solves the
two-dimensional integral equations for the currents induced upon the surfaces of
cylindrical bodies and thin sheets. The fields on the surfaces of solid bodies are
assumed to satisfy an impedance boundary condition and the sheets are assumed
to be electrically or "magnetically" resistive. Electric and magnetic sheets can
be superposed and, if their resistivities are properly chosen, can be used to model
the effect of a layer of absorbing material having arbitrary permittivity and par-
meability. The program reduces the integral equations to a system of simultaneous
iluear equations, soives for the unknown currents, and irom these computes the far
field scattering pattern. The program has been thoroughly described in the second _
Interim Report issued during this contract (Liepa, et al., 1974). _

(U)Since RAMVS was designed as a research tool, and since electrically
resistive sheets proved to be successful edge treatrﬁents via programs REST,

RISK and RASP, it was natural to extend the concept of resistive sheets to the mag-
netic case as well. Although purely magnetic sheets do not exist in the physical
sense, they are as amenable to mathematical treatment as are electric sheets, and
the specification of a single parameter (resistivity) considerably simplifies the
search for desirable sheet properties in reducing non-specular scattering. The
electric and magnetic resistivities R and R* can be related to the properties of

physical materials by means of the expressions
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R= —mm— = e—
KAle -1 R =72k -Dn
r 0 T

(3.1)

where A is the sheet thickness, k is the free space wave number, Z 0 is the
impedance of free space and Cr and ur are the permittivity and permeability of
the sheet material, which may be complex.

(U) Thus, if a favorable configuration of sheets and resistance variations
along the sheets can be found, then (3. 1) can be used to deduce the characteristics
of actual materials required to do so. Observe that, since the layer thickness is
a factor influencing the effective resistivity, many combinations of electrical and
dimensional properties can lead to the same value. On the other hand, given the
properties of a thin layer of absorber, egs. (3. 1) can be used to estimate effective
resistivities and the program could then be run to predict the scattered patterns.
This was in fact done, and comparisons of computed and measured patterns are
given in Figs. 3-1 through 3-4.

(U) The measured patterns arc represented by the solid traces and were
supplied by courtesy of the Air Force Avionics Laboratory. Figures 3-1 and 3-2

were for a strip of Emerson and Cuming LS-26 absorber 0. 125 inch thick, 18

inches long and 1 wavelength wide at the measurement frequency (7. 5GHz). The

relative permittivity of this material was measured by AFAL and reported to be

€ = 3.55+i4.20
r

at 7.5 GHz, the imaginary part being positive in accordance with the e-m time

convention. The normalized resistivity is complex and from eqs. 3. 1,
R =0.34882+i0.21178 .

Thus, using this value of R and omitting the need for a magnetic component to
simulate the absorber, the computed data were obtained and plotted as the dashed
lines. The measured (three-dimensional) cross sections were converted to the
two-dimensional values via the expressions given in Appendix C of Knott, et al.

(1973).

54



U0-98p

w y —~
- ]
<
o 1
. :
!

. A 4

. : I o

g L’ 3

g B £ 7T -3+ 34 i

e ; T =
Eggs ‘ 4 &
zE S8 (1 g
1.1 - v \ e
Bl AN N 13}

- N .

-1 - oo - | ik Y +'F-_I L : m
-
i o 4 e Ay oy
S R I - d-t==1T 1 -
e = Ll ——1 , - vaMI _
JI SO T S - - 4 - .. . i
- - % ”, - \ . : Aﬁ L i ! — ~—
28 SO0 2 - YN O 3 1 o_ g7 QA ‘%L o io!Q FH‘ 20 0 3w © TR in e 0 o G o)
] P ot it ; i
Sl 1=-1 1- D ofew AVM-3NO ¥3IMOd 3AILYIR 4 m
Siorepisppoaqr?y ol i = =
B N S E . § ()
3 el ey Mo N : o
i S S o A sl s el 1 PN O ) N [ - o Q
i g ot Sy i il SN N i I (e g
“ -~ -~ . ‘..Hl._ll..;lpu. Yy
B A 1+ S e o .

b I.v"-l [.l L . 5]
| I . I~~~ [«
A : . . 1)
: iy sy | -+ - 2}
| |10 - . ~
| I ’

! - - T g
! il
| T IS SR et I ol e ' N g
s it . ., . Q
AR - N N o &)
B el A - - .
i oy gl g il kel o - 3 - Loee
. ‘ k N - N
s p— = I |
S s R B SRR .4 ~ f =t B )
el el ilins o N A ot It B S : : / . P
ISR ) ey vy Ry e oy B o B - 7 = 7 @)
e s e S P - FUSS — . ‘ Rt = =
sl ot g il o N : S IR B Il Sl Nt S A | U <
| e & P = L =)
N

-40

/030101

patterns of an isolated strip of LS-26 material for

vertical (E) polarization.

95



20 St Dahunt ana Eaani A il “ | PATTERN No. DATE
: ' e aenead anas -+ proJeCT
- S SRR A i'| ENGRS.
& SRR ERE e .| REMARKS -
BE :
@ © b
an o o0
8 B s}
(1 .i R D
v : ;_'_\ i
1 <,\ R
’ AR
[l - ﬁ_."\\‘\
/DA
2L e—\ N
g e
CEL §
=] PN R I B VR N
E VA AN, B P R LN AR
2 I\ T/ NO)
-20 i \ o AN AVAN
Kl \ | LN
’ l . o . \\
A
\\/ [[ 6— \\ \\
S .
A\ oY \ 1V
-4 1Y . \\ //\\
¥
/ - ) |
/ 2 i VAR ]
) 12 : 18 2 2
I 3 R 7:2fi G _ .; e 1414 '\ 18
~40

(U) FIG. 3-2: Comparison of measured (—) and computed (- - -)
patterns of an isolated strip of LS-26 material for
horizontal (H) polarization.

o6




(U)Figure 3-1 shows the results for vertical polarization (electric field
parallel to the edges), with edge-on incidence occurring at 6 = Oo, 180° on the
chart. The computed pattern lies above the measured one by approximately 4dB,
and the discrepancy at broadside (normal) incidence is about 3.3dB. Both the
measured and computed data have the same form, with peaks and nulls located at
the same angular positions, and if it were not for the nearly constant 4 dB difference
between them, the fit would be remarkable. The error may be due to improper cal-
ibration, an inadequacy of eqs. (3. 1) or possibly differences between the electrical
and physical properties of the sample whose pattern was measured and the samples
used to obtain the electrical characteristics.

(U) Figure 3-2 shows the result for horizontal polarization for the L.S-26
material and except for the regions near edge-on incidence, the agreement can be
seen to be somewhat better than for vertical polarization. At edgze-on incidence the
predicted values go to zero (-o0dB), whereas the measured value is only some 25
to 30dB beleow the hroadside level, This represents a failure '{)f the thm '.sheet
approximation, since an infinitesimally thin electric sheet is truly iﬁx?isible when
seen at edge-on incidence by an H-polarized wave.

(U) Figures 3-3 and 3-4 show the comparison between measured and computed
results for SF-11, a magnetic absorber also marketed by Emerson and Cuming.
This material had the same length and width as the L.S-26 sample, but was thin-
ner, being only 0.043 inch thick. based upon measurements of the permittivity

and permeability of other samples of the SF composition,

€ = 12.0+i0 ] . =2.0+i1.2 ,
r r

and the electric and magnetic resitivities specified on input to the program were

therefore

%
R = i0. 5295 , R =2.8646+i2.3872,
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(U)FIG. 3-12: Edge-on returns for metallic wedges.
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wave at edge-on incidence, while a wedge is not, and the scattering we must sup-
press is therefore a consequence of the fact that the edge of the body is wedge-like.
The rapid change in the edge-on return with increasing wedge angle is illustrated
in Fig. 3-12 and it is apparent that the leading edge of the ogival cylinder would
have a contribution of very nearly the target goal of -37dBAX if the interior wedge
angle could be reduced to 8 degrees. However, although this could be done with-
out the use of magnetic sheets, the edge reverts to a trailing edge when the cylinder
is viewed from the opposite direction. Thus, narrowing the wedge angle in order
to reduce the leading edge return would still require that the edge be treated to
suppress the strong travelling wave lobes that result when it becomes a trailing
edge.

(U)A true knife edge can be generated by fairing the body profile into a concave
shape, as was discussed in Section 2.6 for E-polarization, and such a geometry is

sketched in Fig. 3-13(a). In order to provide a possible absorption mechanism for

/._..m....\
a)

.
-
_—
-~

(U)FIG. 3-13; Faired metallic body (a), and body with faired
maguetic sheet (b).

the travelling waves launched toward this knife edge from the opposite end of the
body, we instead permitted the fairing to be made of magnetic sheets, thus forming

the "shield" shown by the dashed lines in Fig. 3-12(b). The magnetic resistance
73
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APPENDIX A
DIFFRACTION BY IMPEDANCE HALF PLANES

When illuminated by a plane wave at edge-on incidence, a sheet satisfying
an impedance boundary condition is mathematically indistinguishable from a resis-
tive sheet, and this fact has been of considerable value in understanding the scat-
tering from resistive sheets. Since an exact solution is available for a constant
impedance half plane, an expression for the edge diffraction coefficient can be
obtained and then used to estimate the edge-on backscattering from an electric
resistive sheet. The estimates agree quite well with numerical data, even for
narrow sheets having rapid variations in resistance. However, the more recent
studies described in Chapter II revealed a slight discrepincy which prompted a
closer examination of both the surface and far scattered fields of a constant im-
pedance half plane.

Our interest, then, is primarily in the case of an impedance half plane

illuminated at edge-on incidence by a plane wave whose electric field is parallel
t0 the edoe, The magnetic current sunmorted by the imnedance balf plane is iden-
tically zero in this case and the (remaining) electric current is analogous to that
associated with an electric resistive sheet, even for oblique angles of incidence.
Since Senior's treatment (1952) permits us to separate the effects of electric and
magnetic currents, it is possible to obtain the edge diffraction coefficients for a
resistive sheet for arbitrary incidence.

Unfortunately, Scnior's results are given in terms of certain "split"
functions which are much less convenient to use than the expressions of Maliu-
zhinets (1959), and it is therefore advantageous to explore the connection between
them. This is done in Section A. 1. We then examine in Section A. 2 the electric
surface field on the impedance half plane with emphasis on the region near the
edge, and in Section A. 3 we derive an expression for the bistatic edge diffraction
coefficient for a resistive sheet. Finally in Section A.4 we examine an impedance
half plane over which the impedance varies, but the varviation is such that an

exact solution of the diffraction problem is still obtainable.
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A.1 The "Split" Functions

For an E-polarized plane wave incident on a half plane of (constant)
surface impedance n, the surface and far fields can be expressed in terms of the
split functions K+(S) and K_(£) given in eqs. (21) and (20) of Senior (1952),

Since

k
K (€) = Qﬁ >K &) (A. 1)
- !,k2—§2 +

and

KK (-5 =1, (A.2)
it is sufficient to consider only K +(E); and if, for simplicity, we write

-1

€ =kcosb , implying sin -6

ol Mag]
ISTE

and
N 2 _
1 = 35ecy , implying yl-n =-itany ,

eq. (21) becomes

(kcosG) COSXA1TCOSH) 1+0039}/{ iny -cos 6 X/ { s X~ s1n6}——-1)/4

cosx tsin6 siny +cos 6 cosyx +sin6
exp{— cw_s_s_ s} ) (A.3)
osx+cos S

Integration by parts applied to the integral in (A. 3) yields an explicit term which
cancels the third factor on the right hand side, and the second factor can be com-
bined with the new integral to simplify it still further. As a result of these manip-

ulations,
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1/2 267X (13704
K (kcos ) = cos x(1+cos 6) expd - - + udu
4o 08 cosx +sinf P 2m sinu
0

0

(A.49)

Maliuzhinets (1959) defines a meromorphic function x//ﬂ(B) one of whose

representations is

8 1/2 1/8 T_g
\/5 cos = +1 2b 2
() = 2 c exp L udu (A. 5)
T V2+1 1+sinf 4r sinu )
0
where b = %K with k = 0.9159856... (Catalan's constant). In particular,
o N/27 20\1/8
v (n/2) = <\f+lj ( ) (A.6)
and thus
T
2

B, \1/2 -8
wﬂ(ﬁ) ) \[2_00524-1 5 \1/8 a1 o du “n
wﬁ(ﬂ/Z) 2 1+sinﬁ) XPY- 17 sinu{ = 7
0

Comparison of (A. 4) and (A.7) now shows that

2 {2 cos x(1+cos 6)}1/2 {wﬂ(e +x) WW(G -x)}z

K (kcos9) = )
’ ({05 &% +2) (72 cos X 1) (570,
(A. 8)
and as a special case
4
1/2 v_x)
_ 4(cos x)
cos +1

wﬂ(ﬁ) being an even function of S.
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Equation (A. 9) can be used to determine the behavior of K +(§) for large
I‘g" |, 0 <arg& <w. For this purpose, let 6 =iy where v is real and will be-
allowed to approach infinity. From one of the alternative representations of |

z//”(B), we have

1/2
B8 B
+
v (B) = Fﬁ-g—i (cos B)_l/sexp L vdy (A. 10)
T V2 +1 4 cosv '
_ 0
(Bowman, 1967), and since
io
vdv —
cos v
0
it follows that
1/2
B8 ioo
(8)3: ﬁcosz+l\ {r\ncl)-l/80v {Vh-i--l' (\ VdV‘}
4 \ V2 +1 // e =P k4 47 1\ oS v
B
Hence, from (A. 6)
1/2 .
v _(B) ﬁcos§+l 1/8 1o
T - 2 2 < 1 vdv @. 11)
¢”(7T/ 2) 2 cos 3 XPY 47 Cos v ’
B

and for y>> 1,

0+ )
u ~ = expd Lo X
wﬂ(vr/2) V2 8 4 :
implying

wﬂ(e +¥) www -x)

. L4
wﬂ(ﬂ/ 2) wﬂ(n/ 2) 2

When this is inserted into (A. 8) and the remaining trigonometrical factors

approximated for v>> 1, we have
1
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K+(E) ~ (cosx)l/2 = n—1/2 s E>>1, (A. 12)
valid for n # 0.

A.2 The Surface Field

The surface electric field Ez on a constant impedance half plane can be
obtained by putting 6 = 0 in the general expression (Senior, 1952; eq. 34) for the
diffracted field, but in the spacial case of edge-on incidence (o = 7), it proves

more convenient to start with the total induced electric current
I (X) = H (X) +O) _H (X, -0)
2 X X

Note that this is the negative of the current J(x) computed in the electric resistive
sheet program.
Since the magnetic current I 1(x) is zero if ¢ =7, Ez is continuous across

the half plane and from the boundary condition at the surface,
E &) = InZH (x, 20)
Z U 4\
implying

=_1
Ez(x) 5 Z Olz(x) . (A. 13)

An expression for Iz(x) is given in eq. (25) of Senior (1952) and when a =7

28
ﬁy K+(k) cos o eikXCOSBdB
T 0 K+(kcosB) 1+nsinf
Cl

IZ(X) = .

where C' is a steepest descent path through the saddle point 8 = 0. Hence, for

kx >> 1,
I, (%) ~ -2Y \/——2-— exp(ikx+i 1)
2 0\l nkx 4
giving
E_(x) ~n ;gk; exp(ikx+i %) , (A. 14)
92
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which has the form of an edge wave.
Of more direct interest, however, is the behavior of the surface field
close to the edge, and this can be deduced from the properties of the Fourier

transform -fz(g) of I,(x) for large |&]. since

(22 KW

- . 1
L) = iy, ve/m F-k

kenlic-g2 K€
eq. (A.12) implies
LE ~i 22 \/;%KJr(k)
as |£F>o. Hence
L(0) = -2Y n'l/ K LK)
and E_(0) = nll ’k LK) (A. 15)

Asymptolic approximations 1o K +(k) for large and small j nj can be
obtained from eq. (A. 18) using the resuits in egs. (3.12) and (3. 15) of Knott and
Senior (1974). In particular, if [n|> 1,

-1/2 <-_1
K, ()~ 1 exp m)
and in this case

EZ(O) ~ exp(f{—:;) . (A. 16)

The values predicted by eq. (A. 16) are in excellent agreement with data computed
for resistive sheets having a quadratic variation of resistance. As an example,
for Rmax = 4 (at the front) the computed data show that J(0) = 0. 240 exp(i9. 9°)
for sheets of length £, 0.7 <{/A< 1.5, and since E_=RJ, it follows that

E_(0) = 0. 960 exp(i9. 9% .

93
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For comparison, eq. (A.16) with n =8 gives
EZ(O) =0, 961 .

The magnitudes are virtually indistinguishable and though (A. 16) does not explain
it, the observed non-zero phase is equivalent to a displacement of the effective
edge of the sheet by only A/36 and can be attributed to the resistance variation

in the vicinity of the edge (see Section A. 4).

A.3 Edge Diffraction

The edge diffraction coefficient P(a, 6), where ¢ and 6 é.re the angles of
incidence and scattering, respectively, has been investigated by Knott and Senior
(1974) for edge-on incidence (@ =) starting with Bowman's expression (1967).
An alternative approach leading to the same result is to use Senior's expression

(1952),

o 6 = & cosec? &
LB 4 2 K (kcos6)
and hence, from eg. (AL Z),
P(r, m-0') = . secz 6—'K (k)K (kcos 8") (A, 17)
! 4 2 T+ 7+ ’

where, for convenience, we have written 6' = 7-6. In particular, for backscat-

tering (6' = 0),

P(r,m) = —-i- {K+(k)}2 s (A.18)
i.e.,
8
v ()
. 4cosy T
P(r,m) = -i { } (A. 19)
(ﬁcos é +1>4 ww(ﬂ/ 2)

on using (A.9). If we now insert the expression for ![/W(X)/ I,[/ﬂ(?f/ 2) obtained from

eq. (A.11) with B =¥, P(r,7) becomes

94
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ioo

- i 2 vdv
P(r,7) 5 €XP {n oS v } (A. 20)
X

in agreement with eq. (3. 8) of Knott and Senior (1974).
For a perfectly conducting half plane, n =0 and x = iom; consequently
the integral is then zero and the diffraction coefficient reduces to the known value
-i/ 2 for a metallic edge. If we normalize with respect to this, the resulting
coefficient is
ico
B, m) = exp {% :;"V} . (A.21)
X

A tabulation of P(r,7), evaluated for real n using a Gaussian quadrature method,
is given in Table A-1 and these data are plotted in Fig. 2-7. The last column in

Table A-1 lists the scattering length per wavelength,
2 v o 2
0/?L= ; [P, 7| .

For bistatic scattering

1
P(?T ﬂ_el) - Secz Ql K+(k0059)
P(r, m) 2 K+(k)

and hence, from (A. 8) and (A. 9),

2
7 cos X + Xy +6! - ot
Plr. 70" =Sec-9_: \/'_cos2 1 \Ecosz 1 {wﬁ(x 6') gbﬂ(x 6)}
. X 16! X - 6!
Pl,7) \I—Z—Cos 29 +1 V2 cos 28 +1 w’/‘T(X) ‘//W(X)

(A. 22)
There is one consequence of this which is rather interesting and markedly simpli-
fies the task of computing the bistatic scattering. If we denote by Q(x) the ex-

pression (A. 19) for the backscattering coefficient of a surface whose impedance is

specified by the angle x, we have
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TABLE A-1: EDGE DIFFRACTION

P(r, 7) 10loga/X
. 96070 -8.33
.93112 -8. 60
. 90545 -8.84
. 88240 -9.07
. 86131 -9.28
. 84180 -9.48
. 82360 -9, 67
. 80652 -9, 85
.79041 -10.02
L7517 -10.20
. 65551 -11.66
. 57209 -12,83
. 50918 -13. 84
. 45956 -14,73
. 41919 -15.53
. 38561 -16. 27

35717 -16.93
332715 -17.53
31154 -18. 10

19100 =22, 37
. 13800 -25.18
. 10808 -27. 30
.088841 -29.01
. 075422 -30.43
. 065528 -31.66
.057930 -32.73
.051912 -33.68
. 047027 -34.53
. 024231 -40,28
.016321 -43.76
.012305 -46. 19
. 0098744 -48.08
. 0082459 -49, 66
.0070785 -50. 99
.0062007 -52.13
.0055166 =53. 15
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2
() : 1/4
() =) (et ) o}
T

and on replacing X by ¥ T 91, the results can be inserted into eq. (A.22) to give

1/4

2
P, 7-61) g cos’y Qi) Q-0 }
——t——= = gec — . . (A. 23)
P(r, ) 2 {coszx- sinZgr Q) Qx)

which enables us to deduce the bistatic scattering from the backscattering coeffi-
cients for different surface impedances.

If the plane wave is incident at an oblique angle (« % 7), an impedance half
plane has a magnetic current as well as an electric one whereas a resistive half
plane can support only the latter. Nevertheless, the electric current is the same
for both structures and we can therefore deduce the diffraction coeificient for a
resistive sheet by considering only the contribution of this current to the diffrac-
tion coefficient of an impsaance haif piane. From eg. 0% of Senior (1_952), wo
now have that for a resistive sheet
K, (-kcosa)

i -
== + o M —
P(a, 6) 2 (cosa+cos 6) K_(kcos o

implying

P(o',0Y) = - é‘ (cosat+cos 6')“1 K+(k cos a‘)K+(k cos 6')
where o = r-a. Comparison with eq. (A.17) shows

1 (1+cosea")(1+cosBY) P(r, 7-a")P(x, 7= 6"
2  cosa'+cos @' P(w, )

Pla',6') = (A.24)

We can therefore obtain the bistatic coefficient for any angle of incidence from the
coefficient for edge-on incidence (o' = 0), and hence, via eq. (A.23), from the
backscattering coefficient for edge-on incidence. In particular, for backscattering
(6' =2,
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P!, o) - J1 n Plm, m=a')
-——‘——P(Tr’ﬂ) {2 (14+secal) —+—— P(r. ) } (A. 25)

which is a strikingly simple result,

A.4 Tapered Impedance Half Plane

With the growing importance of variable impedance or resistive sheets, it
is of interest to re-examine those solutions for specific variations which were orig-
inally developed many years ago but which, at the time, seemed rather academic
and devoid of practical applications. An example is the solution obtained by Shmoys
(see Felsen, 1958) for a plane wave incident on a half plane having a particular type
of impedance variation.

The method is an extension of one proposed by Lamb (1945). By separation
of variables in a mixed coordinate system consisting of paraholic cylinder and
Cartesian coordinates, it is possible to construct a solution of the wave eQuation
satisfying the radiation condition and having certain constants still undetermined.
Under normai circumstances these would be specified by the boundary conditions
on the half plane, but instead of imposing the conditions at the outset, the con-
stants can be used to see what boundary conditions can be satisfied by the solution.

By proceeding in this manner it can be shown that for a plane wave

L +vsi
o= ik(x cos o +y sina) (A. 26)

incident on an opaque half plane y =0, x > 0, a solation of the wave equation

satisfying the radiation condition is

-im/4

-ikp cos (6 - - -4 +
g=2 o p cos( Q)F(—\/mcos 92 a) +Re ikp cos (8 +a)

VT
6+
XF<- 2kp cos 20)} (A. 27)

where R is a reflection coefficient and F is the Fresnel integral

98

UNCLASSIFIED



UNCLASSIFIED

F(7) = e du .

T

The requirement that the half plane be opaque has left only the one constant R
undertermined. If R = -1, u is simply the total field EZ for an E-polarized
plane wave ui = E; incident on a perfectly conducting half plane. Similarly,

ifR=1, u= HZ is the H-polarized solution, whereas if R is left arbitrary,
the solution is identical to that obtained by Raman and Krishnan (1927) for an

imperfectly reflecting screen.

The edge diffraction coefficient implied by the field (A. 27) is

i - +
P(a, 0) = —i—(secgé—e-w'-Rsecgz—Q

For edge-on incidence (¢ = ) this reduces to

P(r,0) = - i (1-R)cosec g (A. 28)

2
and since, for a perfectly conducting half plane, I-R = {O} for I}::I -polarization,
reduction of the E-polarized edge diffraction requires that 1-R be small.
If u is identified with either EZ or Hz' it is found that u satisfies an

impedance boundary condition at the surface, with

=1
ng =1/n,
as expected, and
ikx (1 +cos a)
1+ 1
ng = -1_—§ _sina+—é—kx— sin-2- g - (A. 29)
F (—T— V2kx cos '2->

where the upper (lower) signs refer to the upper (lower) surface. For a half plane
with the impedance (A.29), the expression for u given in eq. (A.27) is an exact
solution for the diffraction of the plane wave (A.26). In the particular case of
edge-on incidence,
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rkx  -im[4 14R
=\,— =2 A. 30
g 2 °© 1-R (4.30)

This is zero when x = 0, so that the edge of the half plane looks perfectly con-
ducting for all R # 1, but away from x = 0 the rate at which the impedance builds
up increases as R —> 1. As R approaches this limit, however, P(r,6) = 0.
Such behavior is characteristic of a constant impedance half plane as n—> o and
demonstrates that the edge diffraétion coefficient is determined not by the imped-
ance at the edge itself, but rather by an average impedance in the vicinity of the
edge.

By solving eq. (A.30) for R and substituting this into eq. (A.27) with
6 = 7w, we obtain
n ei7r/4 1

Pr,m) = -5 1+ =

2

and though this is rather meaningless as it stands, it does enable us tc find the

(A. 31)

equivalent constant impedance for backscattering at edge-on incidence. For a

half plane of constant impedance n, an expression for P(r,7) is given in eq. (A.20)
and approximations for large and small impedances were presented in Knott and
Senior (1974; eqs. 3. 12 and 3. 15). /Since these are valid for complex as well as
-irf4

real n, it follows that if n =ae with a real,

P(r,m) = -Eiexp {- a\T/;Z— 1= log 5’ >}fxp{1 %\@ <l log 5 Z)}
J

for a<1, and

P(r,7m) = - Zi; exp (— g>exp{1(§ - g }

for a2 1. By equating these to the expression for P(r,7) in eq. (A.31) we can
determine the distance x at which the variable impedance (A. 30) must be read to

produce a diffraction coefficient having the same magnitude as a half plane with
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constant impedance. The detailed calculations can be found in Senior (1973) and
show that for all a 20.4, implying R > -0.1, equivalence is obtained by taking

x = 1/27k. This can be interpreted as a displacement of the effective edge of the
variable impedance half plane. In spite of the fact that the impedance variation
is quite different from that used in the electrically resistive sheet study, it is
interesting to note that the displacement is the same as that suggested by the sur-

face field data discussed in Section A. 2.
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