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13 August 1973

MEMO TO: File

FROM: T. B. A. Senior

SUBJECT: Assessment of the Far Field Criterion, I: Circular
Cylinder

In radar cross section studies the scattering cross section is customarily
defined for a plane wave incident on the target and for the scattered field observed
at an infinitely large distance away. It is obvious that neither of these idealisations
can be achieved in practice, and if the scattering is measured using transmitting
and receiving antennas a finite distance R from the target, there will be some
effects attributable to the finite value of R; but if R is chosen large enough, say,
R > Ro, it is expected that these errors can be reduced to a level which is
acceptable. This, then, is the basis for the far field criterion in scattering work.

If the transmitter is sufficiently far from the target, the illuminating field
will be a spherical wave diverging from the phase center of the transmitting
antenna, and this differs from the idealisation of an incident plane wave in the
progressive amplitude decay as a function of distance and the curvature of the
wavefront. Under most circumstances the latter would appear to be the dominant
effect and a criterion for an acceptable distance of the transmitter from the
target can now be obtained by imposing an upper limit on the phase variation
of the illuminating field over the lateral extent of the target. In backscattering
work it is customary to use the same antenna for reception and transmission and

the scattering part of the problem can likewise be considered in terms of the
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phase deviations. If this antenna is small compared with the lateral dimension
D of the target, the range R can be connected with the one-way phase deviation

§ over the target using the formula

R=W ) (1)

and the far field criterion

2D
A

R>R = (2)
0

now follows by demanding that the phase deviation not exceed % (= 221/20) one-way.
A discussion of this criterion in its various guises has been given by Kouyoumjian
and Peters (1965).

In many experiments, particularly those carried out at high frequencies,
it may be hard to achieve even the minimum range R0 , and for lack of any
practical alternative it is then necessary to carry out the measurements at
closer range. As is well known, some of the consequences of markedly
violating the requirement R > Ro are a filling-in of the nulls in the scattering
pattern, a broadening of the lobes and a reduction in the levels of the peaks. In
extreme cases, the major lobes may assume a hump-backed shape or may be
split. Such grosser effects can be illustrated using the physical optics approxi-
mation to the scattering.

Most of these defects will not be evident at the larger ranges, but even if
R> Ro’ there will still be some differences from the ideal pattern for R = co.
Unfortunately, the nature and magnitudes of these differences are unknown, and
though they may well be insigniﬁcant for most practical purposes, they could be
vital if (for example) measured data, carefully acquired, were used to test the
output from a computer program. This application of measured data is of grow-
ing importance as the complexity of computer programs increases. It is there-

fore of interest to examine theoretically the effect of finite R on the amplitude
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and phase of the backscattered field.

An analysis of this type can be carried out only for a specific choice of
scattering object and the choice that is made will almost certainly affect the
magnitude of the effects observed. There will, in addition, be frequency and
polarisation effects, but since the far field criterion is most difficult to satisfy
at high frequencies, it would seem desirable to concentrate on objects at least
a wavelength or two in dimension.

Two bodies have been selected for consideration: a right circular
cylinder of radius a and a strip (or ribbon) of width d viewed normal to its
face. Physical reasoning would suggest that whereas the effective width for
the cylinder is less than 2a, becoming more so as ka increases, that for the
strip remains d at all frequencies, and the errors attendant on any one choice
of R/Ro should therefore be less for the cylinder than for the strip. Both
bodies are two dimensional and are illuminated by a cylindrical wave diverging
from a line source parallel to the generators. The fields are observed back
at the source. The present Memorandum is concerned only with the results for
the circular cylinder.

A perfectly conducting circular cylinder of radius a is illuminated by a
line source at a distance p from, and parallel to, the axis z of the cylinder.

The scattered field observed back at the same point is then

(00)

I (ka)
Ezs= - € { (1)(kp}
(ka)
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(ka)

n

(3)

for E and H polarisations, respectively, where a time factor e-i‘“’t has been
assumed and suppressed. For sufficiently large kp, the Hankel functions of
order kp can be replaced by the leading terms of their asymptotic expansion,
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are the far field amplitudes (see Bowman et al, 1969) for plane wave incidence

and scattering in the backwards direction.

These amplitudes could (in principle) be determined experimentally by

measuring E: and H: at a sufficiently large range p and then removing the

effect of the space factors using a calibration process. If this same procedure

were applied to eqs. (3), the results would differ from PE(O) and PH(O) by the

complex factors I}: and PH respectively, where

['}‘I..

imkp —21kp = n (ka) (1) 2
" 2p (0) z Hy " (ke)
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2P (0) 1)'(ka) n

(6)



011764-503-M

It is of interest to compute these in amplitude and phase (degrees) as functions

of kp for fixed ka. According to eq. (2) with D =2a, the far field distance is

8
po X F
implying
kp = é(ka)2
o 7

and it is convenient to display ré: H as functions of vy, where

x kp . (7
(ka)

Y

[\M)

Since p =a corresponds to a line source at the surface of the cylinder, we require

that vy >IE . Comparison of eqs. (1) and (7) also shows that

1
Y= 2@ 2 (8)

so that v is merely the reciprocal of the two way difference between the phase
associated with the top and bottom of the cylinder and that corresponding to the
center. When y=1, @ = % (= 280), whereas at the far field distance, v =§r-(’-‘—‘ 1.273).
The calculations turned out to be relatively straightforward. The series
expressions on the right hand sides of eqs. (3) and (5) were individually computed
and for the values of ka and kp of concern to us (kp >ka > 5) it proved adequate
to truncate the series at the term n =2 ﬂca]+ 10. The Hankel functions and their
derivatives were calculated by forward recursion. The same procedure was also
used for most of the Bessel functions required, but for those functions whose
orders were much greater than the argument, a backward recursion scheme
proved more effective and was employed. A program listing is given in the
Appendix. For each pair of ka and kp values, the output consists of r.E and
FH in amplitude and phase (degrees), as well as the squared moduli of the fields

themselves.
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Data were obtained for ka =5.0 (2.5) 25.0 and a variety of kp in the range
ka <kp <400." Typical of these are the results shown in Table 1 for ka = 12.5.

Table 1: Date for ka=12.5

kp v |r1::| ¢E , deg. ‘[;Il ¢H , deg.
400 2.560 1, 0156 -0, 023 1. 0205 0.091
300 1.920 1.0212 ~0. 000 1.0269 0.111
250 1.600 1. 0259 0. 002 1.0318 0. 145
200 1.280 1. 0330 =0, 022 1. 0394 0.217
150 0.960 1. 0448 -0, 043 1. 0519 0.333
125 0.800 1. 0545 -0, 055 1. 0617 0.423
100 0. 640 1. 0695 -0, 074 1. 0762 0.542
90 0.576 1.0780 ~0. 080 1.0843 0.592
80 0.512 1, 0889 -0, 099 1. 0945 0. 647
70 0.448 1.1037 -0. 121 1.1076 0. 693
60 0. 384 1.1245 -0, 145 1.1258 0.701
50 0. 320 1.1555 «0. 176 1. 1536 0.631

As expected, with increasing v, |rl::| and “-;Il decrease towards unity and ¢E
and ¢H approach zero, but whereas the amplitudes are monotonic functions,
the phases show a very slight oscillation superimposed on a uniform behavior.
These oscillations are more apparent for H polarisation and, for some values

and

of ka, produce sign changes in the phase errors as vy increases. ,[—E\:

r;l are quite similar to one another; for fixed vy, the (small) difference

| T2l |

rather different, with the latter exceeding the former by a factor 4 or more,

is an oscillatory function of ka. In contrast, ¢E and ¢H are

but even @ is seldom more than a few tenths of a degree. At distances greater

H
than a few radii from the cylinder, the phase errors appear insignificant for
most practical purposes.

The amplitude ratios lf;l and ll—;{l are plotted as functions of v in
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Figs. 1and 2. For any fixed value of v it is at once evident that the errors
decrease with increasing ka. In particular, for v =1.273 corresponding to
the far field distance p = Py the E-polarisation errors decrease from 0.75 dB
for ka=5 to 0.17 dB for ka =20. If, for example, an error of 1.0 dB were
acceptable, the far field criterion would overestimate the distance p required
for all ka > 5, and would do so by an amount which increases with ka. Since,
in practice, it may be hard to achieve the far field distance Py particularly
at high frequencies (large ka), such overestimates are important ~~and wasteful =-
and it is now of interest to see how kp varies with ka for a given amount of
error.

As an example, suppose that the maximum permissible error is 0.5 dB.
We therefore require “—" <1.059, and by observing the values of v at which
the curves in Figs. 1 and 2 intercept this horizontal line, we obtain the results

shown in Table 2. For E~-polarisation, pmin is almost proportional to the radius

Table 2: Minimum Ranges for 0.5 dB Errors

E-polarisation H-polarisation
ka % p/a Y p/a
5.0 1.875 9.4 2.31 11.6
7.5 1.25 9.4 1.62 12,2
10.0 0.925 9.3 1.155 11.6
12.5 0.745 9.3 0.84 10.5
15.0 0. 62 9.3 0.62 9.3
17.5 0.53 9.3 0.495 8.7
20.0 0. 46 . 9.2 0.42 8.4
22.5 0.41 9.2 0. 37 8.3
25.0 0. 365 9.1 0.35 8.8

of the cylinder independently of the frequency. Indeed, for 5 <ka <25, p min/ a

varies only from 9.4 to 9.1, and for an error not exceeding 0.5 dB, it is now
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sufficient to choose
p>9.4a (9)

at all frequencies for which ka > 5. This is less restrictive than the usual far
field criterion (2) if ka > 7.4, and becomes ever less restrictive as ka increases.
Moreover, it can be reconciled with (2) if an effective radius % is employed in the
far field criterion in place of the true radius a, and by comparing (9) and (2) it

can be shown that
= \1.175a0

A similar result can also be obtained using the concept of Fresnel zones: 3 is
then the radius of the Fresnel zone responsible for the scattering and in the
particular case of plane wave incidence, the above value of ‘A corresponds to a
zone of depth 0.588A.

With H polarisation, the values of v for which the error is 0.5 dB decrease
even more rapidly with increasing ka and, as seen from Table 2, p min/ a also
shows a downward trend on which is superimposed an oscillation. The oscillation
is almost certainly due to the creeping wave contribution whose magnitude is
much greater than for E polarisation and will persist until ka has become large
enough for the creeping waves to be a negligible source of scattering. When this
is so, the values of Ponin will be indistinguishable from those for E polarisation.
For smaller ka, however, pmin is, in general, larger for H polarisation than
for E. A formula which ensures that the errors do not exceed 0.5 dB for all
ka>5 is

p>12.2a (10)

corresponding to an effective radius

F=\/[1.525a)

but for larger ka, the condition (10) overestimates the minimum range required.
Nevertheless, this range is less than that demanded by the usual far-field
criterion if ka > 9.6.

10



011764-503-M

Although the conditions (9) and (10) are less restrictive than the far field
criterion (2) when ka is large, the reverse is true for cylinders whose radii
are less than or comparable to the wavelength. To use (2) could then entail
errors which are unacceptably large. Thus, for E-polarisation, the error at
the far field distance p = 8a2/)t (implying v =1.273) is 0.49 dB for ka=7.5,
but 0.76 dB when ka =5.0, and increases rapidly with decreasing ka. The
comparable values for H-polarisation are 0. 64 and 0.95 dB, and it is therefore
desirable to exceed the standard far field distance when working with targets

of resonant size.

11
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Appendix: Computer Program Listing

COMPLEX®*16 HANP(100) yHANA(100)sDHANA(100)yEZS4HLS
REAL*8 BESP(100),BESA(1CC) 4NEUP(100)4NEUA(1D0) yBESAA{2)
REAL*s DBESA(100)

REAL*8 XEyYE4XH,YH,PE,PHyGANAE y GAMAH
CCNMPLEX*16 AyAPRI yGAME,CANMK

CONMPLEX*16 EZA,HZA

REAL*8 EyHyEA,HA

REAL KP,KA,K1

PIE=2.141592¢5

READ(541) KPyKA

FCRMAT(2F1b.5)
NMAX=INT (2o % (KA+.4G)+iCa)

CALL BESJ(KA,04BESAALL)y140E-11,IER)
CALL BISJ(KP40y¢BESP(L1)y1.0E-11,1ER)
CALL BESJ(KP 41 43ESP(2)41.0E=11,1ER)
CALL BESY(KAyOyNEUA(L1)yIER]

CALL BESY(XA41,NEUA(2),1ER)

CALL BESY(KPyQ,NEUP(1)41ER)

CALL BESY(KPy1lyNEUP(2)4TER)
BESA{NMAX+1)=.14D-16
BESA(NMAX+2)=43D-17

JI=NNMAX+]

DU £ 1=1oNMAX

Ii=di-1
BESA(IL)=(2.%i1%BecSALIL+1)/KA)=cESA(IL+c)
KL=3tSA( 1/ 5AALL)

CC 2G I=1shMAX

B SAll)=BESA(I) /KL

BeSP (1+2)={2.0% [xBESP{I+1)/KP)-BeSP(I)
NELP({I+2)=(2.0%*NEUP(1+1)/P)=NEUP(T)
NELALT+2)=( 2. 0% I%NCUA(LI+1)/rA)=NEUALT)
W iTEl64101)

FURNAT(/ /77

WeiTe{oyiU2Z) KPy KA

Fl"l\ﬂAT(' 'y'KP="F8.27BX"KA-_"'FdoZ'///)
NYAX1=NMAX+1

OL 3 I=1,NMAXL

FANS (1) =BESP{I)+{0.0,y1CI¥NEUP LI

Haina (i 2=8ESA({I)+(0.Cy1.CI%®NEUA(T)

CC & I=1,N4AX

DRESA(Is=i{ -1)%BESALL)/KA)=-BESA(I+])
DHANA{I)={{i-L)*HANA(I)/KA)=-HANA(I+1)
PHi=0.
Eo$=BESA(1)*HANP(1)*HANP(L1)/FANA(L)
F.iS=CREeSA(1)*HANP{1)*HANP(1)/DHANA( 1)
A=2.%BrSIIL)/HANA(L)

Ar o =2.wLz n<{1)/DHANA(L)

13
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U6 [=2,NMAx

ElS=EZS+2.0%BESA(T )% rANP{ [)*HANP{I)#CAS((I-1)*PrI)/HANA(T)
HZS=HZS+2.0%DBESA{I)*HANP (I )%HANP(I)®*CCS((I- l)*PHI)/uHANA(I)
AzA+4 % ((=La) k% (1-1))*BESA(L)/HANA(IL)

APRI=APRI+4 % ([ =1)%%(I-1))*CBESA(I)/DHANALI)

CL.TINUE

£ S=EZS%*KP

;11.’ S=HZ S*KP

EZP=(0e0yLe0)*CEXP(2e%{04CylaC)*KP)*A/PIE
hZA=(0¢041e0)*CEXP(2e%({0.041.0)*KP)*APRI/PIE

GAME=EZS/EZA

GANH=HZS/HZA

XE=DREAL (GAME)

YE=DIMAG (GAME)

XH=DREAL (GAMH)

YH=DIMAG (GAMH)

PE=180.%CATAN(YE/XE)/PIE

PH=180.%CATAN(YR/XK)}/PIE

GAMAE=CDABS(GAME }

GAMAH=CDAES ( CAME)

WRITE (6,4104)

WRITE(61103) GAMAE yPE,GANAH 4 PH

FCRMAT (' ", EL15.593X9F1l0e396XyE15.593X4F10e377)

FORMAT(® *,6X,"GANMA E' 310X, *PHI E' y12X,"GANMA H' 910X, *PHI H*y/)
E=CDABS(EZS*DCUNJG(EZS))

H=CDABS(HZS*DCCNJGIHZS))

EA=CDABS{EZA%DCCNJG(EZA))

HA=CDABS (HZAXDCCNJG(HZA))

hRITE(b.lOS) Ey H

FORMAT( ', "CALCULATED FIELDS'5Xy"E="4EL5.5, 3x.-H ' E15.5//)
WRITE (6 100) EAy HA

FORMAT(' ', 'ASYMPTOTIC FIELDS',SX,'E 1E15.543Xs'H=,E15.5//)
STCP

END
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