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MEMO TO: T. B. A. Senior
FROM: Sharad R. Laxpati
SUBJECT: Derivation of integral equations for a two dimensional

scatterer with impedance boundary condition and partially
clad by an absorptive sheet.

The possibility of reduction in radar return from a conducting scatterer
by means of cladding it with highly absorptive material has generated a con-
siderable amount of both experimental and theoretical literature in this area.
Oshiro, et al. (1966, 1971) have developed integral equations for a two
dimensional conducting body (fully and partially) clad by a resistive shell of
finite and infinitesimally small thickness. They have confined their study to
E-polarized incident field. Numerical solutions to the ‘integral equations have
been obtained for several different shapes of the scatterers.

Knott et al. (1973 a,b) have considered the scattering from a two-
dimensional scatterer with an impedance boundary condition. This form of
the boundary condition has an advantage, that the two polarizations of the
incident field do not have to be considered separately. Knott et al. have
obtained numerical results for a variety of conducting scatterers clad by an
impedance surface; the magnitude of the surface impedance varying as a function
of position. Their results indicate that the non-’/specular return (for example,
from an edge) can be reduced by as much as 13 dB by proper choice of impedance
surface cladding.

This idealized version of the boundary condition, an impedance boundary
condition, has a drawback of not being related to the physical parameters of

absorptive materials prevalent in experimental work. It is then of considerable
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interest to investigate the problem of cladding by absorptive materials whose
permittivity and permeability are different from those for free~space. In this
memo, the integral equations for a two-dimensional scatterer with impedance
boundary condition and partially clad by an absorptive sheet of infinitesimally
small thickness are derived. The formulation is a scalar one, and consideres
an E-polarized incident wave. The integral equations are derived for the un-
knowns; the electric surface current on the impedance surface and the electric

and magnetic polarization currents in the absorptive material.

Geometry and the boundary conditions

o
s>

CZ’ surface

i dance n Z
impedanc nso

5 ‘Absorptiive medium
of thickness A/2,
parameters € and u.

Figure 1.

Let a scalar ¥ represent the z-component of the electric field. Figure

1 shows the geometry of the problem. C_ represents the surface of an impedance

2
scatterer and encloses volume V_ . C0 is the boundary of the absorptive

material of small thickness % ar21d encloses volume Vo. Note that C0 isa
closed contour, since this is necessary for the application of scalar Green's
theorem. In the next section the case of an open contour C0 is treated as a
limiting case of a closed contour.

Let ¢(p) be the electric field at an arbitrary point p in V, where V is
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the infinite volume less V0 and V2. Let x,bo (p) be the corresponding scalar

field in V.. We shall derive the integral equation assuming an incident field
winc(e) in V.

The problem will be formulated by the application of the scalar Green's
theorem to ¥ in V and g[xo in Vo' The application of the boundary conditions
and the evaluation of ¥/(p) for p in C, and C_ and wo(g) for p in C, provides
the desired integral equations. Since the thickness of the absorptive medium
is very small, the volume polarization currents may be approximated as surface

currents. These surface currents are defined in terms of ¢ and &% on Co as

on
follows:
.. AX
ik _"e
Kz(go)=-z > d/(go)
and ° (1)
Axm aw,go)

* —_—
Ks(eo)"= 2 on

where KZ and K: are the electric and magnetic surface currents respectively.
2, is in CO, k is the free-space wave number and Zo the free-space impedance.
Xg and X are the electric and magnetic susceptibilities of the absorber. Using

the above defined equivalent surface currents, the boundary conditions on C0 are
w(ﬁo) - wo(eo) ) K: (Bo)

and (2)
aw(go) awo(go)

on on
) 0

= -ikZ K (Qo)

Note that the unit vectors lﬁo and 32 are always directed into volume V; the

observation point p is located in this region.

Derivation of the integral equations

Application of the scalar Green's theorem to ¥(p) in V, and noting that

the contribution of the surface at infinity leads to the incident value of ¢, we
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write, for p in V,

inc ‘ 3y (p') ' 3G(Q,_QL)) '
vip)= ¢ (p) - G(Q,_Qo) 5o -w(_go)——an—,—— ds'-
0 0
C
0
3K[/(_Q:'2) 0G(p, p'z)
- G(Q,p'z) ™ -¢(Q'2)T ds' (4)
o 2 2

2

where G(p, p') is the free-space Green's function for the two-dimensional

geometry and e--1wt harmonic variation, viz.,
ned gy
Glp,p") 2 0 (k|g gl) . (5)

Application of the scalar Green's theorem to xpo in Vo leads to, for p in Vo,

9G (e, py) 3¢/0(_2:))
x//o (p) = z//o(g;))-a—n,—-G(g,gz))—a—n,— ds' . (6)
t 0 o
(0]

Boundary conditions (2) and (3) are now used in RHS of equations (4) and (5). The
¢/o terms so introduced can be eliminated from the properties of scalar Green's
theorem. The basic property of interest here is the nature of the discontinuity
in ¢ in its representation through the Green's theorem. These operations and
some algebraic manipulations lead to the two integral expressions for ¥ and ¢/0

in their appropriate domains.

For p in V,
inc | . ol 1 3G(ﬂ*£§>) .
= 3 1 1 - — -
v (p)=yl(p) 1kz0 KZ(QO)G(Q,QO)ds KS(_QO) 8ng ds
C
(0] (o)
9G(p, py)
- 1) ( | - T —_—,—,—, - 1
ikZ Kzz(gz)G(g,_g'z)ds Z, nKzz(gz) an'z ds
C Cy (7)
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and, for p in Vo’

inc (A1 aG(Q"‘e:)) Yo ' t
0 (Q)=¢O(Q)+ KSQO)—-én,——ds +ikZ Kz(_go)G(Q,_go)ds

C ° C
(0] (0]

G(Q,_Q'z)
-1 t t | - e ————
ikZ Kzz(gz)G(g,gz)ds Z, nKZZ(B'2) P ds'. (8)

2
C2 CZ

Equations (7) and (8) are used to derive the integm 1 equations. First,
evaluate (7) at p = £+ This leads to equation (9). If we substitute p = 2,y in
equation (7) we obtain equation (11). Third equation is obtained by evaluation
of equation (8) at p = 2, This is equation (10) below. In the following equations

we have also used the definition of the Green's function from equation (5).

winc(e )= Y )+i K ( ')H(l)(kr )ds' -
o Bo 4 z‘eo 00

0
C
0
kZ
_.i.li 1Y\ (21, D (1) e —92 1 (1) -
4IK: (.90)(“;0' roo) H1 (kroo)dsl-l- 4 IKZZ(BZ)HO (krOZ)ds
C ’ C
o 2
ikZo ) A (1)
"2 n(p}) Kzzgg'z)<ﬁ'2-r02) H, (kr,) ds' (9)
C

2

' inc kZo (1)
) =v o) | K, ) H T (kr )ds'+
C

(0]

\

ik A A (1) kZo (1)
+ Z K:(_QL)) (n:)' roo) H1 (kroo)ds'+T Kzz(g'z)Ho (kroz)ds' -
C

Co 2
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1kZo A (1)
e ”‘13'2’ Kzz(g'z)(n'z\- roz)Hl (kroz)‘ds' (10)

C

1

kZ
nc - —9 1 (1) -
) (gz)-n(ez)zoKZZ(QZH 2 fKZ(QO)HO (krzo)ds'
C

0
B kZ
ik : A (1) of (1)
- — Sl At 1, e
4IKs(-Qo)(ﬁo‘ :<'20)H1 (krzo)ds + 2 ;Kzz(ﬂf'z)Ho (krzz)ds'-
C C
0] 2
ikz0 A, A (1)
- —— ] 1
2 n(gz)Kzzggz)(n'zroz)ﬂl (krzz)ds' (11)
02
where r.=p.-p!; i,j=0,2,

Equations (9) through (11) are the required integral equations. They can
be readily transformed into the usual form by means of the boundary condition
equations (2) and (3) along with the definition of the currents from equation (1).
For numerical purposes, it will be found advantageous to simplify equation
(10) by use of equation (9). This explicit form of the integral equations is not

shown.

Integral equations for a partially clad impedance surface

The previously derived integral equations, equations (9) through (11) are
valid only for a closed boundary Co' Since the practical cladding is mostly
partial, it is necessary to develop the integral equations for this case. The
technique employed here is to start with the closed boundary C0 and consider
the limiting case of the region enclosed by Co approaching 0. Figure 2(a)

shows the contour Co along with the identification of the sections of Co .
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Figure 2(a) Figure 2 (b)

Figure 2 (b) shows the result of the limit 6 —=» 0 on the geometry of Figure 2(a).

. + -
The contour Co consists of Cl’ Cl’ COR and COL' Note that as
56— 0, the length of contours C OR and C OL—> 0. We rewrite our definition
of the currents and the boundary conditions as follows:
. Ax
. ik _e ot
Kz(eo)_ Zo 2 ‘l’(.Qo)
-, (12)
. Ax, av(ey)
K*('Eo) ) T +
S an;

)y s ew ot
V(e ) - v, (eg) <K*e)

+ + (13)
vle)) 9y () N
e 7 --ikZ K (g;)
on— o
(o) (o)

+
Note that the superscripts + are associated with the contours CI Under the

limit 6—» 0, we observe that
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+

= C,—>C

(1) Contour C 1 1

@) v @) —>_(o])

(3) Contributions from the integral over C OR and C oL will both
approach zero since: (a) the length of the contours are proportional to §
and (b) for infinitesimally small thickness A, the currents tangential to

C OR and C oL must approach zero.

In order to arrive at the necessary integral equations, first evaluate
(9) at L= _g'; and _Q'l' and add the two. We also replace integrals over C0

by C, with appropriate changes in the integrand. Furthermore, we define

1

- + -
Kz('el)- Kz('el)+ Kz('el)

(14)
R ) e wMat -
Ks (21) Ks(el)-‘-Ks (-91)
and use the definition of currents through equation (12). We obtain
inc iZo kzo (1)
z — —_— ! S
v (e iax, K (o))t K (e}) H ~(kr, )ds'-
C
kZ
-k 20,0\ (D . BreY 1y —2 gt o
4] K@, ) )y ds+ 2 K, () H ) ds
¢ C,
1 DK ()@ 2 ) Y e ast (15)
4 nleg) K o (05 )(ny: 1)) Hy ~(kry )dst .
02 ‘

An analogous manipulation of equation (10) and use of the boundary condition

(13) to eliminate wo leads to the following integral equation:

inc iZo 1 % kZo (1)

V) iy, Koy K @) ) K e st ¢
C
1

8
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i (1) -
..lrf K*(.Ql )H( )(krll)d q+____f (_QZ)H (krlz)ds
Cl 2
ikZ A (1)
- | K, ey (e T VH (ke ) ds' (16)
C

2

Transforming the integration over contour C0 in equation (11) to the contour

C 1 leads to the third integral equation.

V0 ) =n(0)Z K )+3 K (o) B
o/ = MNRy/ £ B 0 Be)T 7 221 By

(krzl)ds'—
Cl
-ffx *p!) (R 21>H‘”(kr )ds'+-—'fK (Z)H( )kr )ds'-
2
—.—.— 1 ( ) t
n(_ez)K (_92)(n2 22 (kr, )ds . (17)

Note: r..=p.-p!' , i,j=1,2.

Equations (15), (16) and (17) are the integral equations for the unknown
currents. Once again, for numerical evaluation, equation (16) can be simplified

by means of equation (15).

Scattered Fields

The expression for the scattered component of ) can be readily obtained

from equation (9).
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5( Ry e E Y e, Jast+ 2 | k2@ 2 e e yast -
vilp)=~-~ 2 B/ Ry KT AT I R LA Il
¢ C
KZ ikZ B
—_2 1 (1) 0 1 1] A A (1) t
“2 f KZZ(QZ)HO (krlz)ds'+ 2 In(‘e2)Kz2(£2) n'2- r12)Hl (krlz)ds )
Cz Cz (18)

Remarks:

The three integral equations in this work have been derived based on
scalar Green's theorem. It does have one shortcoming. In this derivation,
although boundary condition on the tangential component of the magnetic field
(via the normal derivation of ¥) has been used explicitly, no integral equation
for the magnetic field is developed. To do so would require a vector formula-
tion and consequently second derivatives of the Green's functions would appear
in the integrand. This would cause difficulties in numerical solution of these
equations.

The numerical solution may convince us that it is necessary to use an
integral equation for the magnetic field. At that time, the necessary equations
can be readily developed. The numerical difficultg} anticipated in such a case
is the evaluation of the contribution of the self cell (p—p'). However, I believe,
that this can be circumvented by the use of the theory of distribution functions,

and in particular, the Hadamard's brincipal value technique.

10
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