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MEMO TO T.B. A.Senior
FROM Sharad R. Laxpati
SUBJECT Scattering from an impedance half-plane

at edge-on incidence.

The problem of electromagnetic scattering of a half-plane from an
impedance half-plane at normal as well as oblique incidence has been solved
(Senior, 1952, 1960). Several authors (Malyughinetz, 1960; Lebedev et al,
1963) have obtained analytical solutions for the general geometry of an imped-
ance wedge. None of these studies, however, have presented any data on the
effect of the magnitude of the impedance on backscattering or on the diffraction
pattern. Bowman (1967) applied Malyughinetz's result to derive approximate
(asymptotic) results for the problem of diffraction by a wide strip. He has
obtained numerical results for the strip for a number of surface impedances,
which to a first order approximate the characteristic of the absorbers utilized

in the experimental results.

Recent work on the relationship between impedance boundary conditions on
a sheet and an impedance sheet has led to a conclusion that for the case of a
half-plane with an E-polarized, edge-on incident wave, the scattered field for
the boundary condition specified by a surface impedance n Z, are the same
as that for a resistive sheet of resistance Rs =1 zo/ 2. (See memo 011764~
504-M, and its revision). Siginificance of such a close connection is of course,
that the numerical results for an impedance surface can be used to verify and/or

design resistive coatings for radar cross-section reduction. From numerical
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standpoint, the integral equations for an impedance boundary condition are
more convenient to program, since the same equations may be used for both

E- and H-polarization.

Senior (memo 011764-501-M) recognizing the close relationship between
the impedance surface and resistive sheet, has obtained some asymptotic
results for the half-plane. He has obtained the back-scattered diffraction
coefficient for an impedance half-plane, normalized to that of a perfectly
conducting half-plane, for edge-on incidence. The results are valid for small
and large n . These results are not valid for the range of n for which it is
expected to provide optimum reduction of radar returns for both polarizations.
This memo reports the numerical results for the impedance half-plane obtained
from the exact expression. The analytical results of Malyughinetz (1960) are
used instead of the results of Senior (1952) because of the numerical expediency.
The normalized back-scattered as well as bistatic diffraction coefficients are

obtained for edge-on incidence and E-polarization.

Back-Scattered Diffraction Coefficient

Malyughinetz (1960) has shown that for a plane wave of unit amplitude
incident at an angle o with the impedance half-plane, the scattered far field
at an angle 6 with the half-plane is given by

g8 L [2r ikr-im/4

z 4ri kr U(x 6, @) (1)

where

_ sinaf2 v (-8) v (27-6)
U(x, 0, o) = vix -a){sm9/2+cosa/2 ¥ sinO/Z—cosa/Z}

(2)
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p(BY =y (Bra+x)y B+1-X)y, B-7-0)V, B-7+X)
3

) 1 f rsinv-2/2rsin(v/2) +2v 4
ww(ﬁ) = eXp.{ - grx COS V

(4)

and

cos X = 1/n . (5)

For edge-on incidence, a =7 and for back-scattering 6 = 7. The normalized

back-scattered coefficient is then given by

PE(T’)_ Ul(x, 7, 7)
PE(O) T Ulioo, 7, T)

(6)
Bowman (1967) has listed in the appendix, properties and alternate
definitions for function ¥ i (B). We shall use them and refer to them using his
equation numbers. Since the function wﬂ(B) is an even function B, we obtain

from equations (2) and (3),

2y(m) (7)

U(x, 7, 7) = 4 (0)

Use of equation (A.11) and considerable algebraic manipulation lead to

8
y(r) _8cos X ww(x)
¥ (0)  (1+/2 cos x/2)* ‘l/ﬂ(ﬂ’/z)

(8)
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Use of equations (A.9) and (A.3), once again followed by algebraic simplifications,

gives

-9 [B 0 +b]

U(x, 7, 1) =2 e (9)

where
X

_1 vdv
B (0 = wf cosv (10)
0

and b= -Z;I-K , K =0.9159658. ... (Catalan's constant).

Since B(i w)= - b, (from equation A.6), the back-scattered coefficient of
eugation (6) is

P_(n)
PE(O) =exp{-2 [B(x)+b]}. (11)
E

Equation (11) was used in numerical calculation for the back-scattered
coefficient. Integral in equation (10) was evaluated using 32 point Gauss
quadrature formula. B (x) was found to have at least 5 digit accuracy. All the
calculations were performed with single precision arithmetic on IBM machine.
Figure 1 shows a plot of the normalized diffraction coefficient as a function of n
for E-polarization. Using the duality, the scale for the impedance n for H-
plarization is also indicated. A comparison withthe asmyptotic results indicate
that for large n the asymptofic results are fairly accurate and in general,

they do predict the trend of the results fairly well.



011764-507-M

THE UNIVERSITY OF MICHIGAN

Bistatic Diffraction Coefficient

Although the ecpressions for the normalized bistatic coefficient are more
complicated, they are still relatively simple to evaluate numerically. From
the definition of the diffraction coefficient and equation (1) we have,

PE(n,O) Uy 6, 1)

P.(0,0) T U(iw, 6, 7) (12)

From equation (2),

TR R [w-ewm-e)]

¥ (0)

Use equation (A.14) and then (A. 16) in the expression for ¢ (27-8). After some

trigonometric manipulations, above equation reduces to

2 cos X ¥ (-6)
sin /2 (sin 6 +cos x) ¢ (0) °

U(x, 0, n)=

Now the ratio of two ¢ functions can be expressed in a form appropriate for

numerical computation by means of equations (A.11) and (A.4). This leads to

N 2 1 -
U(x, 6, 7) = 51n6/2(nsin6+1)exP{4 [2A(x)-A(x+6)-A(x 6)]}

(13)

where X
A(x)=%f"—§’—nllg"— dv . (14)

Use of equation (13) in equation (12) leads to the following expression for nor-
malized bistatic diffraction coefficient.
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P_ (n, 6)
pE(o 6) =1+1nsine°"¥{i' [2A(X)-A(x+e)_A(x_9)] +
E )

|-

[2 Alio)- Ali @+0)- A (1 @-0) ]}
(15)

Equation (15) is used to calculate the desired diffraction coefficient as a function

of 0 over the range 0 to 180°. The integral (14), in its derived forms as shown

in the apprndix, was evaluated using Gauss quadrature methods. The integrals

were accurate to at least 3 digits. The results for the normalized coefficient

are not surprising. The value of the diffraction coefficient increases monotonically

from its value in backscattered direction (68 = 7) toward the forward scatter

direction (6 = 0) where it reaches a value of 1 for all values of the impedance n

in the range of 10-2 to 102.
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Appendix

Various Formulas Employed for Numerical Evaluation of the
Exponents in Equation (15)

Note that for n <1, x is imaginary whereas for n>1, x is real.
It is found convenient to evaluate the exponent in a combined form
A(x)-1f2A(x+6)-1/2 A(x -0) instead of individual integrals when ¥
is imaginary. We also note that A (x) = A (-x) for X real. The formulas
shown below are obtained by standard procedures of change of variable, etc.,

and some special integrals discussed in work by Bowman (1963).

(A) X Real-1let x= .

(*4

1 -
(1) A(a)=-fm!—-2—!dv, O<a<m/2.
T cos V
0

(2) A(nr/2)= -tn2+D

T-a
(3) Al(a)=4b+ lf TENV-21 4 Teacn,
T cos v 2 -
0
a-T
(4) A(a)=4b+f 78inv+3y +2v dv, 7r<ar<§-1L
Co8 V 2
0

(b) x Imaginary - let x =if
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(b) x Imaginary - let x =iB

0
[A(iB)-%A(iﬁ+0)-%A(iB-9)] =_ %f T si:;:gzu W -

0

1 7 8inhv - 2v
L4 coshv
0

7 sinhvcoshv - 208infsinhv - 2v cos8 coshv v

cos2 e+ sinh2 v

Note that for B = o, the second integral in the above expression may be evaluated
using Gauss-Laguerre quadrature formula. However, for large B the integral
approaches 0. It can be truncated to a finite upper limit and evaluated by
Gauss-quadrature method. The results are found to be accurate to 4 digits if

the upper limit of 20 is used.

mfk 9
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